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We introduce a methodology and investigate the feasibility of measuring quantum properties of tau
lepton pairs in the H → τþτ− decay at future lepton colliders. In particular, observation of entanglement,
steerability, and violation of Bell inequalities are examined for the International Linear Collider (ILC)
and Future Circular eþe− Collider (FCC-ee). We find that detecting quantum correlation crucially relies
on precise reconstruction of the tau lepton rest frame, and a simple kinematics reconstruction does not
suffice due to the finite energy resolution of the colliding beams and detectors. To correct for energy
mismeasurements, a log-likelihood method is developed that incorporates the information of impact
parameters of tau lepton decays. We demonstrate that an accurate measurement of quantum properties is
possible with this method. As a by-product, we show that a novel model-independent test of CP violation
can be performed and the CP phase of Hττ interaction can be constrained with an accuracy comparable to
dedicated analyses, i.e., up to 7.9° and 5.4° at ILC and FCC-ee, respectively.
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I. INTRODUCTION

After almost one century since it was named by Born and
an outstanding number of predictions and experimental
confirmations, quantum mechanics has become the found-
ing aspect of all theories aiming to describe phenomena at
the fundamental level. Together with special relativity, it
provides the foundation of quantum field theory, on which
the Standard Model (SM) of particle physics has been built.
The most peculiar (and spectacular) trait of quantum
mechanics is entanglement [1,2], a type of correlations
between two (or more) subsystems that can survive even if

they are spacelike separated. After having puzzled phys-
icists for decades, entanglement has now become part of
our everyday life, being the key to many advanced
technologies, such as quantum computation, cryptography,
and teleportation (see, e.g., [3]). The nature of entangle-
ment and quantum correlations has been studied intensively
with the methods of quantum information theory, revealing
multiple levels of quantum correlations within entangled
states. In the strongest end, a correlation exists that no
classical system can account for it. Such a correlation can
be detected as violation of Bell-type inequalities [4–6]. In
the low-energy regime, violation of those inequalities has
been observed in a number of experiments [7–13].1
High-energy colliders, such as the Large Hadron

Collider (LHC) at CERN, provide a unique and interesting
environment to test entanglement and other quantum
correlations at the highest scales and shortest distances.
Recently, tests of entanglement and Bell-type inequalities
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1Relatively recently, “loophole-free” tests of Bell-type inequal-
ities have been performed [14–16], and the violation has been
observed.
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at the LHC have been proposed in the final states of
tt̄ [17–22] and a pair of weak bosons [23–25,25–27]. A
theoretical discussion of entanglement in the production of
a pair of photons and tau leptons has also been given [28].
The effect of beyond the Standard Model physics on entan-
glement measurements has been studied in the Standard
Model Effective Field Theory (SMEFT) framework [29,30].
In this paper, we introduce a new methodology and study

the feasibility to measure various quantum correlations
within the tau pairs in H → τþτ− at future lepton colliders,
in particular, the International Linear Collider (ILC) [31,32]
and the Future Circular eþe− Collider (FCC-ee) [33]. Our
aim is to access observables that signal different levels of
quantum correlations: entanglement, steering, and Bell
nonlocality, which we will define and discuss in detail
in the next section. We find that, employing standard
reconstruction methods, an accurate measurement of quan-
tum correlations is quite challenging even at lepton
colliders because of the presence of neutrinos in the final
state and finite beam and detector energy resolutions. To
improve the measurement accuracy, a log-likelihood
method is proposed that incorporates the information of
the impact parameters of tau lepton decays. The spin
correlation of tau lepton pairs in H → τþτ− is sensitive
to the CP phase of theHττ interaction. Exploiting this fact,
we propose a model-independent test of CP violation. We
estimate the expected resolution of the CP phase at the ILC
and FCC-ee via quantum property measurements.
The paper is organized as follows. In the next section,

we review the main properties of a biqubit system and
introduce the notion of three types of quantum correlations:
entanglement, steerability, and Bell nonlocality. We discuss
their relations and define some observables that are
sensitive to each type of correlation. In Sec. III, we study
the quantum state of the ditau system in H → τþτ− with
general Hττ interactions. Section IV describes our strategy
to measure the quantum spin correlation of the tau pairs in
H → τþτ−. Our assumptions on the future eþe− colliders
are spelled out in Sec. V. In Sec. VI, we describe the details
of our Monte Carlo (MC) simulation and event analysis.
The result of the quantum property measurements (based
on MC simulations) is also shown. As a by-product of our
analysis, we propose a novel model-independent test of CP
violation and the resolution for the CP phase of the Hττ
coupling is estimated in Sec. VII. Section VIII is devoted to
the conclusion and discussion.

II. QUANTUM NATURE OF BIPARTICLE
SYSTEMS

A. Entanglement

The Hilbert space of the spin-1=2 biparticle system is
spanned by the four basis kets fj1i; j2i; j3i; j4ig ¼
fjþ;þi; jþ;−i; j−;þi; j−;−ig. On the rhs, jmA;mBi is
a simultaneous eigenstate of the spin z component, ŝIz, of

particles A and B, respectively, i.e., ŝAz j�; mBi ¼ �j�; mBi
and ŝBz jmA;�i ¼ �jmA;�i.2 In this basis, the density
operator ρ for a general mixed state is represented by a
4 × 4 matrix:

ρ ¼ 1

4
½1 ⊗ 1þ Biσi ⊗ 1þ B̄i1 ⊗ σi þ Cijσi ⊗ σj�; ð1Þ

where the summation of i, j ¼ 1, 2, 3 indices is implicit and
σi are the Pauli matrices. The physical density matrix is
Hermitian, TrðρÞ ¼ 1 and positive definite. The Hermiticity
condition implies the coefficients Bi, B̄i, and Cij are real.
The expectation value of a physical observable Ô is given
as hÔi ¼ TrðÔρÞ. It follows that Bi ¼ hŝAi i, B̄i ¼ hŝBi i, and
Cij ¼ hŝAi ŝBj i, giving clear interpretation to these coeffi-
cients: Bi (B̄i) is the spin polarization of A (B), and Cij is
the spin correlation. From this interpretation, it is apparent
that the magnitude of these coefficients is less than or equal
to 1.
If a density matrix can be written in the form

ρ ¼
X
k

pkρ
A
k ⊗ ρBk ; ð2Þ

with pk ≥ 0 and
P

k pk ¼ 1, the state is said to be
separable. Conversely, nonseparable states are called
entangled. A sufficient condition of entanglement is
obtained by taking a partial transpose for the B part:

ρTB ≡X
k

pkρ
A
k ⊗ ðρBk ÞT: ð3Þ

If the state is separable, ρTB must still be a physical density
matrix, in particular, positive definite. If one finds a
negative eigenvalue for ρTB, the system must therefore
be entangled. This condition, known as the Peres-
Horodecki criterion [34,35], is also a necessary condition
of entanglement for spin-1=2 biparticle systems. A simple
sufficient condition that ρTB has a negative eigenvalue is
given by (see, e.g., [17,21])

E≡max
i
fjTrðCÞ − Ciij − Ciig > 1: ð4Þ

A more quantitative measure of the entanglement of two
qubits is given by the concurrence [36], which is defined by

C½ρ�≡maxð0; η1 − η2 − η3 − η4Þ; ð5Þ

where ηi is the eigenvalues of a matrix R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ̃
ffiffiffi
ρ

pp
in the descendent order, ηi ≥ ηj (i < j), and ρ̃≡ ðσ2 ⊗ σ2Þ
ρ�ðσ2 ⊗ σ2Þ. Although R is generally non-Hermitian, the

2We use the spin operators ŝIi that are scaled by a factor of 2=ℏ
compared to the usual ones, so that the eigenvalues are �1.
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eigenvalues are real and non-negative. The concurrence
takes a value in the range 0 ≤ C½ρ� ≤ 1. For separable states
C½ρ� ¼ 0, while C½ρ� ¼ 1 for maximally entangled states.

B. Clauser-Horne-Shimony-Holt inequality

Consider the following experiment. Four identical (stat-
istical) samples of spin-1=2 biparticle systems are prepared,
labeled by ρab, ρa0b, ρab0 , and ρa0b0 (ρab ¼ ρa0b ¼ ρab0 ¼
ρa0b0 ≡ ρ). Alice and Bob measure the spin components of
particles A and B, respectively. Their measurements are
spacelike separated. Alice can measure the spin in the
directions of either a or a0, while Bob can choose between
b or b0. For the samples labeled by ρaXb

(Xb ¼ b; b0), Alice
uses the a direction for her measurements, while she uses
the a0 direction for the samples labeled by ρa0Xb

. Similarly,
Bob measures the spin in the b (b0) direction for the
samples labeled by ρXabðb0Þ (Xa ¼ a; a0).
Let MA and MB be all possible measurement axes of

Alice and Bob, respectively. If their measurement axes are
A ∈ MA and B ∈ MB, the conditional probability of
observing the outcomes a ¼ �1 and b ¼ �1, respectively,
is written by pða; bjA;BÞ. If this probability can be written
in terms of a set of “hidden” variables λ with probability
distribution PðλÞ as

pða; bjA;BÞ ¼
X
λ

PðλÞpðajA; λÞpðbjB; λÞ; ð6Þ

for all A, B, a, and b, the state ρ is said to be Bell local
[4,5], where pðajA; λÞ and pðbjB; λÞ are the conditional
probabilities for Alice and Bob, respectively, when hidden
variables take value λ.
After the measurements, various spin correlations can be

computed. In particular, we are interested in the following
quantity [6]:

RCHSH ¼ 1

2
jhŝAa ŝBb i − hŝAa ŝBb0 i þ hŝAa0 ŝBb i þ hŝAa0 ŝBb0 ij: ð7Þ

It has been shown that for any Bell-local state RCHSH is
bounded from above by 1 for any four measurement axes.
Namely,

Rmax
CHSH ≡ max

a;a0;b;b0
RCHSH ≤ 1 ðBell localÞ; ð8Þ

where the maximum is taken over all unit vectors a, a0, b,
and b0. This bound is known as the Clauser-Horne-
Shimony-Holt (CHSH) inequality [6], which is one of
the Bell-type inequalities [4]. Experimental observation of
violation of the CHSH inequality would confirm Bell
nonlocality and falsify all local-real hidden variable theo-
ries. Quantum mechanics, on the other hand, can violate the
CHSH inequality up to

ffiffiffi
2

p
:

Rmax
CHSH ≤

ffiffiffi
2

p
ðQMÞ: ð9Þ

This quantum mechanical bound is known as the Tsirelson
bound [37].
For two-qubit systems, Rmax

CHSH can be analytically calcu-
lated as

Rmax
CHSH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ1 þ μ2
p

; ð10Þ

where μi (μ1 ≥ μ2 ≥ μ3) are the eigenvalues of the matrix
CTC. The set of unit vectors a�, a0�, b�, and b0� which
maximizes RCHSH is given by

a� ¼
1ffiffiffiffiffi
μ1

p Cd1; a0� ¼
1ffiffiffiffiffi
μ2

p Cd2;

b� ¼ cosφd1 þ sinφd2;

b0� ¼ − cosφd1 þ sinφd2; ð11Þ

where φ≡ arctanð ffiffiffiffiffiffiffiffiffiffiffiffi
μ1=μ2

p Þ and d1 and d2 are the normal-
ized eigenvectors of the matrix CTC; ðCTCÞdi ¼ μidi.

C. Steerability

Nonlocality of quantum states was first pointed out by
Einstein, Podolsky, and Rosen in 1935 [38]. Schrödinger
reacted to this work and introduced a concept called steering
together with entanglement in his 1935 paper [2]. In the
previous biparticle system of Alice and Bob, steering by
Alice is Alice’s ability to affect Bob’s state by her
measurement. Although the concept is old, the formal
definition of steering was found relatively recently [39,40].
The state ρ is said to be steerable by Alice if it is not
possible to write the probability distribution of measure-
ment outcomes as

pða; bjA;BÞ ¼
X
λ

PðλÞpðajA; λÞpQðbjB; λÞ; ð12Þ

with

pQðbjB; λÞ≡ Tr½ρBðλÞFB
b �; ð13Þ

for all A, B, a, and b, where ρBðλÞ is Bob’s local state
and FB

b is Bob’s positive operator valued measure [3].
An operational definition of steerability is also given
in Appendix A.
By definition, all Bell-nonlocal states are steerable. Also,

if states are separable, the probability of measurement
outcomes can be written in the form of Eqs. (12) and (13).
Namely, the following hierarchy is established [39]:

entangled ⊃ steerable ⊃ Bell nonlocal: ð14Þ
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III. QUANTUM AND CP PROPERTIES
OF H → τ + τ −

In theH → τþτ− decay, the spins of two tau leptons form
a two-qubit system and can be used to test various quantum
information properties. We now calculate the observables
introduced in the previous section for the two-qubit system
in the H → τþτ− decay.
A generic interaction between a Higgs boson and tau

leptons can be written as

L ∋ −
mτ

vSM
κHψ̄ τðcos δþ iγ5 sin δÞψτ; ð15Þ

where mτ and vSM are the tau lepton mass and the SM
Higgs vacuum expectation value, respectively. The real
parameters κ ∈ Rþ and δ ∈ ½0; 2π� describe the magnitude
of the Yukawa interaction and the CP phase. Within this
parametrization, the Standard Model corresponds to
ðκ; δÞ ¼ ð1; 0Þ.
The spin density matrix for the two tau leptons is

given by

ρmn;m̄ n̄ ¼
M�nn̄Mmm̄P
mm̄jMmm̄j2 ; ð16Þ

where

Mmm̄ ¼ cūmðpÞðcos δþ iγ5 sin δÞvm̄ðp̄Þ ð17Þ

is the amplitude of H → τþτ− and c ¼ −iκmτ=vSM. Here,
pμ ¼ ðmH

2
; 0; 0; pzÞ and p̄μ ¼ ðmH

2
; 0; 0;−pzÞ are the

momenta of τ− and τþ, respectively, in the Higgs boson
rest frame. The indices m, n (m̄; n̄) label the τ−ðþÞ spin in
the direction of the z axis (the direction of τ− momentum).
A straightforward calculation leads to [41,42]

ρmn;m̄ n̄ ¼
1

2

0
BBB@

0 0 0 0

0 1 e−i2δ 0

0 ei2δ 1 0

0 0 0 0

1
CCCA ð18Þ

up to the term of the order of m2
τ=m2

H. On the rhs, the
column (mn) and row (m̄ n̄) are ordered as ðþ;þÞ;
ðþ;−Þ; ð−;þÞ; ð−;−Þ. From this, the expansion coeffi-
cients in Eq. (1) can readily be obtained as Bi ¼ B̄i ¼ 0 and

Cij ¼

0
B@

cos 2δ sin 2δ 0

− sin 2δ cos 2δ 0

0 0 −1

1
CA: ð19Þ

The signature of entanglement (4) is calculated to be

EðδÞ ¼ 2j cos 2δj þ 1: ð20Þ

This is greater than 1 unless δ ¼ π
4
; 3π
4
; 5π
4
and reaches the

maximum [EðδÞ ¼ 3] at δ ¼ 0 (SM), π=2 (CP odd), and π
(negative Yukawa coupling).
The concurrence is also calculable. Equation (18) leads

to ρ̃ ¼ ρ andR ¼ ρ. It also implies ηi ¼ ð1; 0; 0; 0Þ, and we
therefore have C½ρ� ¼ 1. The τþτ− pair is maximally
entangled regardless of the CP phase δ [28].
For states with vanishing Bloch vectors, Bi ¼ B̄i ¼ 0, a

convenient sufficient and necessary condition for steer-
ability is known [43–45]. The state is steerable if and only if
S½ρ� > 1 with

S½ρ�≡ 1

2π

Z
dΩn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTCTCn

p
; ð21Þ

where n is a unit vector to be integrated out. In H → τþτ−,
we obtain S½ρ� ¼ 2 (steerable) from Eq. (19). We use S½ρ�
as a measure of steering in the following sections.
The variable Rmax

CHSH can be calculated immediately from
Eq. (10) as

Rmax
CHSH ¼

ffiffiffi
2

p
; ð22Þ

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH is independent of
δ, a test of Bell nonlocality can be done regardless of the
CP property of the Hττ interaction.
The state in Eq. (18) is pure, i.e., Trρ2 ¼ 1. The

corresponding pure state can be found as [46]

jΨH→ττðδÞi ¼
1ffiffiffi
2

p ðjþ;−i þ ei2δj−;þiÞ: ð23Þ

In the Standard Model (δ ¼ 0), this state is the triplet state
ðs;mÞ ¼ ð1; 0Þ, where s and m are the magnitude and the z
component of the total spin, respectively. This can be
understood as follows. Since the SM Higgs is CP even
scalar, the final state must have even parity and zero total
angular momentum, JP ¼ 0þ, provided the parity is con-
served in the Hττ interaction. In the final state, the total
parity is given by P ¼ ðητ−ητþÞ · ð−1Þl, where ητ−ðþÞ is the
intrinsic parity of τ−ðþÞ and l is the orbital angular
momentum. The intrinsic parities of a fermion and its
antifermion are opposite, ðητ−ητþÞ ¼ −1, and the spin state
of the final state must be s ¼ 0 or 1. The only consistent
choice to obtain JP ¼ 0þ is l ¼ 1 and s ¼ 1. The same line
of argument leads to a conclusion that, if τþτ− are produced
from the decay of a particle with JP ¼ 0− (δ ¼ π

2
), the final

state must have l ¼ s ¼ 0; namely, it must be the singlet
state 1ffiffi

2
p ðjþ;−i − j−;þiÞ. This observation is consistent

with Eq. (23).
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IV. MEASUREMENT STRATEGY

The spin of the tau leptons is not directly measurable
at colliders. What can be measured instead is the direction
of a decay product with respect to the motion of the tau. In
order to sensibly compare the directions of decay products
among different events, we adopt a coordinate system
called the helicity basis [47]. The three normalized basis
vectors (r, n, k) are introduced (see Fig. 1) at the center of
mass frame of τþτ− in the following way: k is the direction
of τ−, r is on the plane spanned by k and h, which is the
motion of the Higgs in the τþτ− rest frame, and defined as
r≡ ðh − k cos θÞ= sin θ with cos θ≡ k · h, and n≡ k × r.
Suppose that at the rest frame of τ− the tau spin is

polarized into the s direction (jsj ¼ 1). The τ− decays into a
decay mode f, producing a detectable particle d. The
conditional probability that the particle d takes the direction
u (juj ¼ 1) when the τ− spin is polarized in the s direction
is given by [48]

PðujsÞ ¼ 1þ αf;ds · u; ð24Þ
with the normalization

R
dΩ
4π PðujsÞ ¼ 1, where αf;d ∈

½−1; 1� is called the spin analyzing power. For the CP

counterpart, ðf; dÞ↔CP ðf̄; d̄Þ, αf̄;d̄ ¼ −αf;d.
We denote the τþ polarization by s̄ (js̄j ¼ 1). The

direction of its decay product, d0, measured at the rest
frame of the τþ, is represented by a unit vector ū. We want
to relate the spin correlation hs ⊗ s̄i with the angular
correlation hu ⊗ ūi since the latter is measurable. Using
the probability distribution (24), it is not hard to show (see
Appendix B)

huaūbi ¼
αf;dαf0;d0

9
hsas̄bi; ð25Þ

where ua ≡ u · a, s̄b ≡ s̄ · b, etc., are the components with
respect to arbitrary unit vectors a and b. Using this relation,
we can obtain RCHSH in terms of the angular correlations:

RCHSH ¼ 9

2jαf;dαf0;d0 j
jhuaūbi − huaūb0 i þ hua0 ūbi

þ hua0 ūb0 ij: ð26Þ

In H → ττ, a set of four unit vectors that maximizes RCHSH
can be chosen as [see Eqs. (11) and (19)]

a� ¼ r; a0� ¼ n; b� ¼
1ffiffiffi
2

p ðnþ rÞ;

b0� ¼
1ffiffiffi
2

p ðn − rÞ: ð27Þ

We use the above unit vectors and consider a direct
measurement of R�

CHSH ≡ RCHSHða�; a0�;b�;b0�Þ to test
the Bell nonlocality in Sec. VI.
From Eq. (24), one can also show [49]

1

σ

dσ
dðuaūbÞ

¼ 1þ αf;dαf0;d0Cabuaūb
2

ln

�
1

uaūb

�
: ð28Þ

This allows us to measure the Cab component by fitting
the dσ

dðuaūbÞ distribution with the function on the rhs [19].

It has been pointed out that the components of the C
matrix can also be measured from the forward-backward
asymmetry [21]:

Cab ¼
4

−αf;dαf0; d0
Nðuaūb > 0Þ − Nðuaūb < 0Þ
Nðuaūb > 0Þ þ Nðuaūb < 0Þ :

ð29Þ
The simplest approach to measure the C matrix is to use
Eq. (25):

Cab ¼ hsas̄bi ¼
9

αf;dαf0;d0
huaūbi: ð30Þ

We have tested the above three approaches to measure Cab
and found very similar results. Our final result in the
following sections is based on the simplest method (30),
since it has given the most precise result among the three
approaches.
For the steering measurement, we calculate S½ρ� by

directly performing the integral inEq. (21)with themeasured
C matrix.
In the Standard Model (δ ¼ 0), the C matrix in the

helicity basis is given by

Crr ¼ Cnn ¼ 1; Ckk ¼ −1; Cij ¼ 0 ði ≠ jÞ;
ð31Þ

and the entanglement signature becomes

E ¼ Ek ≡ Crr þ Cnn − Ckk: ð32Þ
There is a way to measure this combination directly [21].

We introduce a metric ηk ¼ diagð1; 1;−1Þ and define
cos θk ≡ uTηkū ¼ urūr þ unūn − ukūk. This quantity dis-
tributes as

1

σ

dσ
d cos θk

¼ 1

2
ð1 − αf;dαf0;d0Ek cos θkÞ; ð33Þ

FIG. 1. Helicity basis.
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and Ek can be measured as a forward-backward asymmetry:

Ek ¼
6

−αf;dαf0;d0
Nðcos θk > 0Þ − Nðcos θk < 0Þ
Nðcos θk > 0Þ þ Nðcos θk < 0Þ : ð34Þ

In our numerical analysis, we calculate Ek with Eq. (34).
Entanglement is detected if Ek > 1.
For the concurrence measurement, we assume R ¼ ρ, as

suggested in Eq. (18). Using Trρ ¼ 1, the concurrence can
be expressed by C½ρ� ¼ maxð0; 2η1 − 1Þ, where η1 is the
largest eigenvalue of ρ. Assuming all off-diagonal entries of
C, except for Crn and Cnr, vanish, we have

C½ρ� ¼ max

�
0;
Dþ þ Ckk − 1

2
;
D− − Ckk − 1

2

�
ð35Þ

with D� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCrn � CnrÞ2 þ ðCrr ∓ CnnÞ2

p
. In our meas-

urement, we construct the concurrence from measured
C-matrix entries using the above expression. C½ρ� > 0
signals a formation of entanglement, and C½ρ� ¼ 1 implies
maximally entangled states.

V. HIGH-ENERGY e+ e − COLLIDERS

For testing entanglement and Bell nonlocality in
H → τþτ−, high-energy eþe− colliders have two main
advantages over hadron colliders. First, the background
is much smaller for lepton colliders. At pp colliders, the
main production mode is gg → H → τþτ−, which is loop
induced. This final state is generally contaminated by the
tree-level qq̄ → Z� → τþτ− process, in which the final state
tau pair belongs to a different quantum state than in the
signal. The main handle for signal-background separation
is the invariant mass of the visible decay products of two
tau leptons, mvisðτþτ−Þ. However, due to the presence of
neutrinos in tau decays, the mvisðτþτ−Þ distributions have
long tails, and the signal and background distributions
overlap significantly. A usual practice to overcome this
problem is to try to reconstruct the tau momenta by making
some assumption on the neutrino momenta, based on either
kinematics (e.g., collinear approximation) or the knowl-
edge of the Standard Model (e.g., likelihood approach).
However, this is not an option here, since our aim is to
measure the angular distribution. Assuming the Standard
Model distribution simply defeats the purpose of the
measurement.
At eþe− colliders, the main production channel near the

threshold,
ffiffiffi
s

p
∼ ðmH þmZÞ, is eþe− → ZH followed by

Z → qq̄=lþl− and H → τþτ−. The main background is
eþe− → Zτþτ−, where the pair of taus comes from an
exchange of γ�=Z�. Unlike hadron colliders, the full
4-momentum Pμ

in of the initial state (e
þe− pair) is precisely

known at lepton colliders. From this and the measured
Z-boson momentum pμ

Z ¼ ðpq=l− þ pq̄=lþÞμ, one can
reconstruct the Higgs momentum as

pμ
H ¼ Pμ

in − pμ
Z ð36Þ

in a good accuracy independently from the Higgs decays.
The distribution of the recoil mass,mrecoil ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPin − pZÞ2

p
,

therefore sharply peaks at the Higgs mass in the signal [50].
By selecting events that fall within an narrow window,
jmrecoil −mHj < 5 GeV, one can achieve background/signal
∼ 0.05 with a signal efficiency of 93% and 96% for the ILC
and FCC-ee, respectively.
The second advantage of eþe− colliders over hadron

colliders is the ability of reconstructing two tau momenta
by solving kinematical constraints. This is possible thanks
to the fact that the initial state 4-momentum Pμ

in is known in
a good precision. This is important for the C-matrix
measurement and the Bell inequality test, since they are
based on the angular distributions of u and ū, which must
be performed at the rest frames of τ− and τþ, respectively.
Since taus are heavily boosted, a small error on the tau
momentum leads to a large error on the angular distribution
when boosted to the tau rest frame. Precise reconstruction
of the tau momenta is therefore crucial for the C-matrix
measurement and Bell inequality test.
We consider two benchmark collider scenarios labelled

by “ILC” [31] and “FCC-ee” [33]. The relevant parameters
we use in our simulation are listed in Table I.
We notice that the beam energy resolution is signifi-

cantly better for FCC-ee, which will have a significant
impact on the Bell inequality test as we will see in the next
section. We assume the eþe− beams are unpolarized for
both ILC and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

τ− → ντπ
−; τþ → ν̄τπ

þ ð37Þ

with Brðτ− → νπ−Þ ¼ 0.109 [51]. For these decay modes,
the spin analyzing power is maximum: αf;dαf̄;d̄ ¼ −1.
We generate signal and background events with
MadGraph5_aMC@NLO [52] at leading order in the

TABLE I. Parameters for benchmark lepton colliders [31,33].
Only the main background eþe− → Zτþτ− is considered, where
τþτ− are produced from off-shell Z=γ. The numbers of signal and
background reported here include the decay branching ratios and
the efficiency of the event selection, jmrecoil −mHj < 5 GeV.

ILC FCC-ee

Energy (GeV) 250 240
Luminosity (ab−1) 3 5
Beam resolution eþ (%) 0.18 0.83 × 10−4

Beam resolution e− (%) 0.27 0.83 × 10−4

σðeþe− → HZÞ (fb) 240.1 240.3
Number of signals (σ · BR · L · ϵ) 385 663
Number of backgrounds (σ · BR · L · ϵ) 20 36
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Standard Model, i.e., ðκ; δÞ ¼ ð1; 0Þ. We employ the
TauDecay package for τ decays [53]. The beam energies
are smeared according to the parameters in Table I.
All “neutrinoless” Z-boson decay modes, Z → xx̄ with
xx̄ ¼ qq̄, eþe−, μþμ−, are included in the analysis. The
expected signal events [eþe− → HZ, Z → xx̄, H → τþτ−,
τ� → νπ�] produced at the ILC and FCC-ee are 414 and
691, respectively. At the ILC and (FCC-ee), after impos-
ing the requirement jmrecoil −mHj < 5 GeV, 385 (663)
signal events survive. We estimated that 20 (36) back-
ground events contribute to this phase-space region. We
perform 100 pseudoexperiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.
To take into account the energy mismeasurement, we

smear the energies of all visible particles in the final state as

Etrue → Eobs ¼ ð1þ σE · ωÞ · Etrue ð38Þ

with the energy resolution σE ¼ 0.03 [32,33] for both ILC
and FCC-ee, where ω is a random number drawn from the
normal distribution.

A. Solving kinematical constraints

Because of the presence of neutrinos in Eq. (37), the
momenta of two taus are not measured. To perform
measurements of the C matrix and R�

CHSH, the momenta
of two neutrinos must be reconstructed by solving kin-
ematical constraints. For six unknown momentum compo-
nents, there are two mass-shell constraints—m2

τ ¼
ðpντ þ pπ−Þ2 and m2

τ ¼ ðpν̄τ þ pπþÞ2—and four conditions
from the energy-momentum conservation—ðPin − pZÞμ ¼
ðpντ þ pπ− þ pν̄τ þ pπþÞμ. By solving those six constraints
for the six unknowns, an event can be fully reconstructed
up to twofold solutions: is ¼ 1, 2 (see Appendix C for
details).
The system is first boosted to the rest frame of H. For

each solution is, we then boost the system to the recon-
structed rest frame of τ− and calculate the r, n, k
components of the π− direction, i.e., ðuisr ; uisn ; uisk Þ. In the
same way, the πþ direction, ðūisr ; ūisn ; ūisk Þ, are obtained
at the reconstructed rest frame of τþ. We estimate the

C-matrix elements with Eq. (30). For the Bell inequality
test, R�

CHSH ≡ RCHSHða�; a0�;b�;b0�Þ is calculated using
Eqs. (26) and (27). Both solutions is ¼ 1, 2 are included in
the calculation of Cab and R�

CHSH.
The result of the measurements for Cab, Ek, C½ρ�, S½ρ�,

and R�
CHSH is summarized in Table II. We see that the C

matrix is measured as a diagonal form with good accuracy.
However, the diagonal elements are far off from the true
values, C ¼ diagð1; 1;−1Þ. Not only are the magnitudes
significantly less than one, but also the signs are flipped for
all diagonal components. We also see no clear indication of
the quantum correlations, i.e., entanglement (Ek > 1,
C½ρ� > 0), steerability (S½ρ� > 1), and CHSH violation
(R�

CHSH > 1).
We identify two main reasons for this disappointing

result. The first is the effect of false solutions of the
kinematic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The other
effect is the smearing of the beam energies and the energy
mismeasurements for the final state particles. These impact
the reconstruction of the tau momenta, in particular, the
direction of the tau leptons. In addition, since the tau
leptons are highly boosted, a small error on their directions
results in a large error on the π� distribution measured at
the reconstructed τ� rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations
identified in the previous section. We note that the
information obtained from the impact parameter measure-
ments of tau decays has not been employed. Since tau
leptons are marginally long-lived, cτ ¼ 87.11 μm [51],
and highly boosted, one can observe a mismatch between
the interaction point and the origin of the π� in τ� → νπ�.
The impact parameter b⃗� is the minimal displacement of

TABLE II. Result of quantum property measurements with a simple kinematical reconstruction method.

ILC FCC-ee

Cij
 −0.600� 0.210 0.003� 0.125 0.020� 0.149

0.003� 0.125 −0.494� 0.190 0.007� 0.128
0.048� 0.174 0.0007� 0.156 0.487� 0.193

!  −0.559� 0.143 −0.010� 0.095 −0.014� 0.122
−0.010� 0.095 −0.494� 0.139 −0.002� 0.111
0.012� 0.124 0.020� 0.105 0.434� 0.134

!

Ek −1.057� 0.385 −0.977� 0.264
C½ρ� 0.030� 0.071 0.005� 0.023
S½ρ� 1.148� 0.210 1.046� 0.163
R�
CHSH 0.769� 0.189 0.703� 0.134

3We, however, checked that when smearing is turned off, even
if only false solutions are used for the measurements, the true
values for Cab (and, therefore, also for R�

CHSH and Ek) are
recovered as in the case where only true solutions are used. When
smearing is switched on, both solutions are different from the MC
truth, and we, therefore, lose the notion of true and false
solutions.
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the extrapolated π� trajectory from the interaction point.
The magnitude of the impact parameter jb⃗�j follows an
exponentially falling distribution with the mean jb⃗�j ∼
100 μm for Eτ� ∼mH=2, which is significantly larger than
the experimental resolutions [32]. In our numerical simu-
lation, we take constant values σbT ¼ 2 μm (transverse) and
σbz ¼ 5 μm (longitudinal) for the impact parameter reso-
lutions, although the actual resolutions are functions of the
track momentum and the polar angle θ� from the beam
direction. The above modeling with the constant parame-
ters gives a reasonable approximation for the track momen-
tum ∼100 GeV and θ� ≳ 20° as can be seen in Fig. II–3.10
in Ref. [32].
If all quantities are accurately measured, the impact

parameter b⃗�, from the τ� → νπ� decay, is related to the
directions of τþ and πþ and their angle Θ� by [54]

b⃗� ¼ jb⃗�j · ½eτ� · sin−1Θ� − eπ� · tan−1Θ��≡ b⃗reco� ðeτ�Þ;
ð39Þ

where eτ� and eπ� are the unit vectors pointing to the
directions of τ� and π�, respectively, and cosΘ�≡
ðeτ� · eπ�Þ. In the second line, we defined a 3-vector
function b⃗reco� ðeτ�Þ and emphasized its dependence on eτ� .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle α (α ¼ π�; x; x̄) from the observed value as

Eobs
α → EαðδαÞ ¼ ð1þ σE · δαÞ · Eobs

α ; ð40Þ

where δα is a nuisance parameter characterizing the amount
of the shift with respect to the energy resolution σE. Using
these shifted energies, we solve the kinematical constraints,
as outlined in Appendix C, and obtain the tau directions as
functions of the nuisance parameters, eis

τ�ðδÞ, up to twofold
solutions, is ¼ 1, 2, where δ ¼ fδþπ ; δ−π ; δx; δx̄g. Based on
the mismatch between the observed and reconstructed
impact parameters,

Δ⃗is
b�ðδÞ≡ b⃗� − b⃗reco� ðeisτþðδÞÞ; ð41Þ

we define a contribution to the log-likelihood for a solution
is as

LisðδÞ ¼ LisþðδÞ þ Lis−ðδÞ ð42Þ

with

Lis
�ðδÞ ¼

½Δis
b�ðδÞ�2x þ ½Δis

b�ðδÞ�2y
σ2bT

þ ½Δis
b�ðδÞ�2z
σ2bz

: ð43Þ

The total log-likelihood function is then defined as

LðδÞ ¼ min ½L1ðδÞ; L2ðδÞ� þ δ2πþ þ δ2π− þ δ2x þ δ2x̄: ð44Þ

The log-likelihood function LðδÞ is to be minimized over
the nuisance parameters δ. We denote the location of the
minimum by δ�. We define “the most likely” solution i� as
the solution that gives the smaller Lis, i.e., Li� ðδ�Þ ¼
min ½L1ðδ�Þ; L2ðδ�Þ�. Our best guess for the tau lepton
momenta is, therefore, given by

p�
τ� ¼ pi�

τ�ðδ�Þ: ð45Þ

In what follows, we use p�
τ� in the quantum property

measurements.
In Table III, we show the result of our quantum property

measurements when the impact parameter information of
tau decays is incorporated in the log-likelihood. We see that
for both ILC and FCC-ee the components of the C matrix
are correctly measured including the sign. The entangle-
ment signature Ek and the concurrence C½ρ� are also
measured with a good accuracy, and the formation of
entanglement (Ek > 1 and C½ρ� > 0) is observed at more
than 5σ. The steerability variable S½ρ� is also well mea-
sured, and the Standard Model value S½ρ� ¼ 2 is more or
less reproduced. The steerability condition S½ρ� > 1 is
observed at ∼ 4σ for the ILC and ≫ 5σ for the FCC-ee.
Observation of Bell nonlocality is the most challenging
one, since it is the strongest quantum correlation. As can be
seen in the last line in Table III, the violation of the CHSH
inequality is confirmed at the FCC-ee at ∼3σ level, while
R�
CHSH > 1 is not observed at the ILC beyond the statistical

TABLE III. Result of quantum property measurements with a log-likelihood method incorporating the impact parameter information.

ILC FCC-ee

Cij
 

0.830� 0.176 0.020� 0.146 −0.019� 0.159
−0.034� 0.160 0.981� 0.1527 −0.029� 0.156
−0.001� 0.158 −0.021� 0.155 −0.729� 0.140

!  
0.925� 0.109 −0.011� 0.110 0.038� 0.095
−0.009� 0.110 0.929� 0.113 0.001� 0.115
−0.026� 0.122 −0.019� 0.110 −0.879� 0.098

!

Ek 2.567� 0.279 2.696� 0.215
C½ρ� 0.778� 0.126 0.871� 0.084
S½ρ� 1.760� 0.161 1.851� 0.111
R�
CHSH 1.103� 0.163 1.276� 0.094
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uncertainty. The superior performance of FCC-ee is attrib-
uted to the fact that the beam energy resolution of FCC-ee
is much better than ILC. The precise knowledge of the
initial state momentum is crucial to accurately reconstruct
the rest frame of τ�.

VII. CP MEASUREMENTS

Since the Cmatrix is sensitive to the CP phase δ, one can
use the result of C-matrix measurement and derive a
constraint on δ. From Eq. (19), we see that only the rn
part (i.e., the upper-left 2 × 2 part) of the C matrix is
sensitive to δ. By comparing the measured C-matrix entries
in the rn part and the prediction in Eq. (19), we construct
the χ2 function as

χ2ðδÞ ¼ ðCrr − cos 2δÞ2
σ2rr

þ ðCrn − sin 2δÞ2
σ2rn

þ ðCnn − cos 2δÞ2
σ2nn

þ ðCnr þ sin 2δÞ2
σ2nr

; ð46Þ

where Cij and σij are the central value and the standard
deviation, respectively, obtained from the analysis in
Sec. VI B. The goodness of fits are found to be
χ2minðILCÞ=d:o:f: ¼ 0.93=3 and χ2minðFCC-eeÞ=d:o:f: ¼
0.86=3 for each benchmark collider.
The minimum of χ2 appears at the vicinity of three

CP conserving points: δ ¼ 0, �180° (CP-even), and �90°
(CP odd). Focusing on the minimum around δ ¼ 0, the
1, 2, and 3σ regions of δ obtained from this analysis are
listed in Table IV. The analysis is based on Δχ2ðδÞ≡
χ2ðδÞ − χ2min, whose values around δ ¼ 0 are plotted
in Fig. 2.We note that the allowedwindows are asymmetric.
This is due to the statistical uncertainty of the 100
pseudoexperiments.
We see that the resolution of δ obtained from this

analysis is roughly ∼ 7.5° (ILC) and ∼ 5° (FCC-ee) at
1σ level. These results should be compared with the
resolutions obtained in the standard approach for the
H → τþτ−; τ� → π�ν channel, which exploits the angle
φ⋆ [55,56] defined between the two planes, each spanned
by the pair of momentum 3-vectors ðp⃗πþ ; p⃗τþÞ and
ðp⃗π− ; p⃗τ−Þ in the Higgs rest frame. Using the same event
reconstruction technique described in Sec. VI B and the
statistical method based on 100 pseudoexperiments, we
find the resolution of the CP phase with the φ⋆ method is
6.4° for FCC-ee. This shows that the proposed method

based on Eq. (46) is at least as good as the standard
method with φ⋆.
In the literature, the HττCP phase measurements at

ILC using different tau decay modes have also been
explored [42,57]. The studies in Refs. [58,59] exploit
the τ� → ρ�ν channel and suggest that the sensitivity can
reach ∼ 4°,4 which is in line with the expectations of first
theoretical studies, i.e., 2.8° [60], including also other
decay modes, e.g., τ� → a�ν and τ� → l�νν. A recent
study [61] using a likelihood analysis based on the matrix-
element claims that the CP phase can be measured in the
accuracy of 2.9° at the ILC.
At the HL-LHC, the resolution of the HττCP phase

measurement is expected to reach ∼11° using the tau decay
modes τ� → π�ν [54] and τ� → ρ�ν [58]. Combining
comprehensive decay modes with the matrix-element like-
lihood method, the resolution may reach 5.2° [62]. On the
other hand, however, Ref. [63] claims that the detector
effect severely impacts on the performance of CP mea-
surements at the HL-LHC and the CP phase hypothesis
δ ¼ 0 can be distinguished from δ ¼ 90° only at 95% C.L.
with the τ� → π�ν channel.

A. Model-independent CP test

Under the CP conjugation, the C matrix transforms as

C!CPCT . This fact can be used for a model-independent
test for CP violation. To measure the asymmetry in the
C matrix, we define

A ¼ ðCrn − CnrÞ2 þ ðCnk − CknÞ2 þ ðCkr − CrkÞ2 ≥ 0:

ð47Þ

FIG. 2. Δχ2 as a function of the CP phase δ.

TABLE IV. Expected sensitivities on the CP phase δ.

C.L. ILC FCC-ee

68.3% ½−7.94°; 6.20°� ½−5.17°; 5.11°�
95.5% ½−10.89°; 9.21°� ½−7.36°; 7.31°�
99.7% ½−13.84°; 12.10°� ½−9.21°; 9.21°� 4Note, however, that these analyses do not include the effect of

energy mismeasurement.
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An experimental verification of A ≠ 0 immediately con-
firms violation of CP.
From the analysis described in Sec. VI B,A is measured as

A ¼
�
0.168� 0.131 ðILCÞ;
0.081� 0.060 ðFCC-eeÞ: ð48Þ

Here, the error corresponds to a 1σ statistical uncertainty
obtained from 100 pseudoexperiments. The result is con-
sistent with the Standard Model (i.e., absence of CP
violation) at ∼1σ level.
In the explicit model defined by Eq. (15), we have set

A ¼ 4 sin2ð2δÞ. One can interpret the above model-
independent result within this model and derive bounds
on δ. In the domain around δ ¼ 0, the following limits are
obtained at 1σ:

jδj <
�
7.9° ðILCÞ;
5.4° ðFCC-eeÞ; ð49Þ

consistently with the limits obtained in the χ2 analysis
(see Table IV).

VIII. CONCLUSIONS

We have investigated the feasibility of testing various
quantum properties, such as entanglement, steering, and
Bell nonlocality, with the tau spin pairs in H → τþτ− at the
future eþe− colliders. Two collider benchmark scenarios,
ILC and FCC-ee, have been considered with the parameters
listed in Table I. We found that, although the tau spin pairs
in H → τþτ− are maximally entangled (C½ρ� ¼ 1) and satu-
rate the upper bounds of the steering and Bell-nonlocality
measures (S½ρ� ¼ 2 and Rmax

CHSH ¼ ffiffiffi
2

p
), experimental obser-

vation of those quantum properties is nontrivial, since
quantum correlation is easily smeared away once the detector
and beam energy resolution are taken into account (see
Table II). In order to curb the effect of energy mismeasure-
ments, we developed a log-likelihood method by measuring
and utilizing the consistency between the reconstructed tau
momenta and themeasured direction of impact parameters of
tau decays.
Using MC simulations of 100 pseudoexperiments (for

each of ILC and FCC-ee), we have demonstrated that
accurate quantum property measurements are possible at
ILC and FCC-ee, including the effects of the detector and
beam energy resolution. Our main result is summarized in
Table III. Table V summarizes our results by showing the
statistical significance for observation of the quantum
properties: entanglement, steerability, and Bell nonlocality.
Our analysis shows that violation of the CHSH inequality
cannot be observed even at 1σ level at ILC due to large
beam energy resolutions, while it can be observed at 3σ
level at FCC-ee.

The spin correlation of tau pairs inH → τþτ− is sensitive
to the CP phase of theHττ interaction. We have proposed a
model-independent test of CP violation with the measure-
ment of the spin correlation matrix. We found this method
can constrain the CP phase of theHττ interaction up to 7.9°
and 5.4° at ILC and FCC-ee, respectively, at 1σ level (see
Table V), similarly to dedicated analyses at the correspond-
ing colliders.
Finally, we comment on a subtlety of the collider test of

Bell nonlocality [64]. In collider experiments, the spin of
particles is not directly measured but only inferred from
angular distributions of their decay products. For example,
in our analysis we calculated RCHSH with Eq. (25), which
relates the spin correlation to the angular correlation. The
problem is this relation is based on Eq. (24), which is
derived using quantum mechanics, quantum field theory in
particular. In fact, one could think of a class of local hidden
variable (LHV) theories that predict the pion directions
directly through a set of hidden variables as uðλÞ and ūðλÞ.
In that case, analogously to Eq. (7), Bell’s argument derives
a CHSH inequality directly about the pion directions:

R̃CHSH ≡ 1

2
jhuaūbi − huaūb0 i þ hua0 ūbi þ hua0 ūb0 ij ≤ 1:

ð50Þ

Although this inequality is more general and applicable

for any LHV theories, it is too weak. Since R̃CHSH ¼
jαf;dαf0 ;d0 j

9
RCHSH and RCHSH ≤

ffiffiffi
2

p
in quantummechanics, the

inequality (50) is not violated even in quantum mechanics
and cannot be used to falsify LHV theories.
Having said that, the angular distribution (24) iswell tested

elsewhere experimentally. As long as one believes the
physical picture in which the tau lepton is a spin-1=2 particle
and its decay products obey the angular distribution (24),
observation ofRCHSH > 1 excludes the LHV theories that try
to explain the spin correlation of tau pairs in H → τþτ−.
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APPENDIX A: AN OPERATIONAL DEFINITION
OF STEERABILITY

In this section, we provide an operational definition of
steerability [39,40] and derive the mathematical definition
given in the main text [Eqs. (12) and (13)] from it.
Consider the following experiment. Prior to the experi-

ment, Alice and Bob agree that Alice prepares a biparticle
quantum state ρ, keeps one particle with her, and sends the
other one to Bob. Bob’s task is to prove, without trusting
Alice, that Alice can “steer” (change) the state of his
particle by her measurement. He carries out his task by
asking Alice to perform some measurement on her particle
and report the outcome via a classical communication. He
can also make a measurement on his particle. Bob can
repeat the process any number of times. If he succeeds the
task, the state ρ is said to be steerable by Alice.
Without any information from Alice, the local state of

Bob’s particle is

ρB ¼ TrAðρÞ; ðA1Þ

where TrA is the partial trace for Alice’s particle. Let MA
andMB be the sets of all possible observables of Alice and
Bob, respectively. If Alice measures an observable
A ∈ MA, the probability of observing the outcome a is

qAa ¼ Tr½FA
a ρðFA

a Þ†�; ðA2Þ

where FA
a is Alice’s positive operator-valued measure

(POVM) with FA
a ≥ 0 and

P
aðFA

a Þ†FA
a ¼ 1. For projec-

tive measurements (closed systems), FA
a ¼ jaihaj, with

Ajai ¼ ajai. Because of Alice’s measurement, the quan-
tum state collapses into the postmeasurement state as

ρ!a;Aρposta;A ¼ FA
a ρðFA

a Þ†
qAa

: ðA3Þ

After this event, Bob’s local state becomes

ρa;AB ¼ TrAðρposta;AÞ: ðA4Þ

To test whether Alice can indeed steer Bob’s state, Bob
would first check if she reports the outcome a with the
correct frequency qAa , which he can calculate from ρ.
Second, he makes measurements on his particles (one
measurement at each time, but he makes many different
measurements in different times) and checks if his state is
indeed changed from ρB to ρA;a

B when she measures A and
reports a. Bob does these checks for all possible observ-
ables of Alice. If all of these checks pass, Bob would be
inclined to agree that Alice can steer Bob’s particle.
However, he must consider the following “cheating”
scenario.
In the cheating scenario, Alice sends Bob a one-particle

local state ρλB, parametrized by some variables λ with
probability distribution PðλÞ, such that ρB ¼Pλ PðλÞρλB.
Alice has the full information of λ and ρλB every time she
sends it. If Bob asks Alice to measureA, Alice will tell him
the outcome is a with some frequency pðajA; λÞ, depend-
ing on λ. Bob’s first check will pass, if this function satisfiesX

λ

pðajA; λÞPðλÞ ¼ qAa : ðA5Þ

For his second check, he would collect all the states in
which Alice reported the outcome a in herAmeasurement.
Then, he makes measurements on this correction to check if
it is indeed ρa;AB . In the above scenario, he has a local state
ρλB with the probability pðajA; λÞPðλÞ=qAa , so this collec-
tion is a mixed state

P
λ pðajA; λÞPðλÞρλB=qAa . Therefore,

Bob’s second check would pass if pðajA; λÞ satisfies
1

qAa

X
λ

pðajA; λÞPðλÞρλB ¼ ρa;AB : ðA6Þ

The above consideration tells that if there exists a
function pðajA; λÞ satisfying both Eqs. (A5) and (A6)
for all A ∈ MA, Bob cannot exclude the possibility that
Alice is cheating. Conversely, if such functions do not
exist, Bob must conclude Alice can indeed steer the local
state of his particle. Since qAa and ρa;AB depend on ρ and the
statement is about all A ∈ MA, Alice’s steerability
depends only on ρ.
In the cheating scenario, Bob’s local state after the

Alice’s measurement ða;AÞ is given by Eq. (A6). If he
measures B ∈ MB on his particle, the probability of
obtaining the outcome b is

Tr½ρa;AB FB
b � ¼

1

qAa

X
λ

pðajA; λÞPðλÞTr½ρλBFB
b �; ðA7Þ

where FB
b is Bob’s POVM. At the same time, the proba-

bility that Alice reports a when Bob asks her to measure A
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is qAa . The joint conditional probability under which Alice
and Bob measure A and B, respectively, and then Alice
reports a and Bob finds b is the product of these two
probabilities, i.e.,

pða; bjA;BÞ ¼
X
λ

PðλÞpðajA; λÞTr½ρλBFB
b �: ðA8Þ

This means that the definition of steerability can also be
phrased in the following way: The state ρ is steerable by
Alice if there does not exist a set of functions pðajA; λÞ and
one-particle local states ρλB, such that the joint conditional
probability pða; bjA;BÞ is described by Eq. (A8) for all
A ∈ MA and B ∈ MB. This agrees with the mathematical
definition provided in the main text [Eqs. (12) and (13)].

APPENDIX B: SPIN VS ANGULAR
CORRELATIONS

The spin correlation hsas̄bi of τ−τþ and the angular
correlation huaūbi between the τ−τþ decay products are
related by Eq. (25). To derive this result, we start by
recalling Eq. (24), i.e., the conditional probability that the
decay product d takes the direction u (at the rest frame of
τ−), when the tau spin is polarized into the s direction, is
given by

PðujsÞ ¼ 1þ αf;du · s

with the normalization
R dΩu

4π PðujsÞ ¼ 1.
We introduce the joint probability that τ− and τþ are

polarized into s and s̄ and write it as Pðs; s̄Þ with
normalization

R dΩs
4π

dΩs̄
4π Pðs; s̄Þ ¼ 1. For arbitrary unit vec-

tors a and b, the correlation between the τ− and τþ spin
components, sa ≡ a · s and s̄b ≡ b · s̄, can be written as

hsas̄bi ¼
Z

dΩs

4π

dΩs̄

4π
ða · sÞðb · s̄ÞPðs; s̄Þ: ðB1Þ

Similarly, the correlation between the components of the u
and ū vectors is given by

huaūbi ¼
Z

dΩu

4π

dΩū

4π

dΩs

4π

dΩs̄

4π
ða · uÞðb · ūÞ

× PðujsÞPðūjs̄ÞPðs; s̄Þ: ðB2Þ

We carry out the integration dΩu by expressing u in a
polar coordinate where the pole is taken into the s direction
(we call this the z direction). Similarly, we represent ū
in a polar coordinate with the pole in the s̄ direction (z0
direction). Using these two coordinate systems, we have

u · s ¼ cθ; ū · s̄ ¼ cθ0 ;

a · u ¼ axsθcϕ þ aysθsϕ þ azcθ;

b · ū ¼ bx0sθ0cϕ0 þ by0sθ0sϕ0 þ bz0cθ0 ;

az ¼ a · s ¼ sa; bz0 ¼ b · s̄0 ¼ s̄b; ðB3Þ

and Eq. (B2) is expressed as

huaūbi ¼
Z

dcθdϕ
4π

dcθ0dϕ0

4π

dΩs

4π

dΩs̄

4π

× ðaxsθcϕ þ aysθsϕ þ azcθÞ
× ðbx0sθ0cϕ0 þ by0sθ0sϕ0 þ bz0cθ0 Þ
× ð1þ αf;dcθÞð1þ αf0;d0cθ0 ÞPðs; s̄Þ: ðB4Þ

Any terms depending on ϕ or ϕ0 will drop out by
performing dϕ and dϕ0 integrals, respectively. The remain-
der is

huaūbi ¼
Z

dcθ
2

dcθ0

2

dΩs

4π

dΩs̄

4π

× azcθbz0cθ0 ð1þ αf;dcθÞð1 − αf0;d0cθ0 ÞPðs; s̄Þ

¼
Z �

dΩs

4π

dΩs̄

4π
sas̄bPðs; s̄Þ

�

×

�Z
dcθ
2

dcθ0

2
cθcθ0 ð1þ αf;dcθÞð1þ αf0;d0cθ0 Þ

�
;

ðB5Þ

where the first bracket on the rhs is nothing but hsas̄bi in
Eq. (B1). The second bracket produces

αf;dαf0 ;d0
9

, and one
obtains the result [64,65]

huaūbi ¼
αf;dαf0;d0

9
hsas̄bi:

APPENDIX C: EVENT RECONSTRUCTION

Since neutrinos are invisible in the detector, one has
to reconstruct the neutrino momenta (or, equivalently, the
tau momenta) by solving kinematical constraints. The
4-momentum of the initial eþe− pair, Pμ

in, and the Z boson,
pμ
Z, are relatively accurately measured. This motivate us to

write the Higgs momentum as

pμ
H ¼ Pμ

in − pμ
Z: ðC1Þ

The tau momenta pμ
τþ and pμ

τ− are unknown, but the sum is
constrained by

pμ
τþ þ pμ

τ− ¼ pμ
H: ðC2Þ

Each tau momentum is a 4-vector, so they can be expanded
by four independent 4-vectors. We choose pμ

H, p
μ
πþ , p

μ
π− ,
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and qμ as the basis vectors (neither orthogonal nor
normalized), where we introduced

qμ ≡ 1

m2
H
ϵμνρσpν

Hp
r
πþp

s
π− ; ðC3Þ

which is orthogonal to the other basis vectors, ðq · phÞ ¼
ðq · pμ

τþÞ ¼ ðq · pμ
τ−Þ ¼ 0. In terms of these basis vectors,

the tau momenta are expanded as [66–68]

pμ
τ� ¼ 1 ∓ a

2
pμ
H � b

2
pμ
πþ ∓ c

2
pμ
π− � dqμ: ðC4Þ

The advantage of this expansion is that the constraint (C2)
is automatically satisfied. We traded the remaining
unknown 4-vector ðpμ

τþ − pμ
τ−Þ by the four unknown

coefficients, a, b, c, and d. Our first goal is to determine
these coefficients by solving four mass-shell constraints.
The first two mass-shell constraints are ðpτþ − pπþÞ2 ¼

m2
ν ¼ 0 and ðpτ− − pπ−Þ2 ¼ m2

ν ¼ 0. They can be recast
into

m2
τ þm2

π − xþ ax − bm2
π þ cz ¼ 0;

m2
τ þm2

π − y − ayþ bz − cm2
π ¼ 0; ðC5Þ

where we introduced ½x; y; z�≡ ½ðph · pπþÞ; ðph · pπ−Þ;
ðpπþ · pπ−Þ�. Similarly, the remaining two mass-shell con-
ditions p2

τþ ¼ m2
τ and p2

τ− ¼ m2
τ can be written as

m2
τ ¼

�
1 − a
2

�
2

m2
h þ

b2 þ c2

4
m2

π þ d2q2

þ ð1 − aÞb
2

x −
ð1 − aÞc

2
y −

bc
2
z;

m2
τ ¼

�
1þ a
2

�
2

m2
h þ

b2 þ c2

4
m2

π þ d2q2

−
ð1þ aÞb

2
xþ ð1þ aÞc

2
y −

bc
2
z: ðC6Þ

By subtracting these, we get

am2
h − bxþ cy ¼ 0: ðC7Þ

The three equations in Eqs. (C5) and (C7) can be organized
in a matrix form:

½M� · v ¼ Λ; ðC8Þ

with

½M� ¼

0
B@
−x m2

π −z
y −z m2

π

m2
h −x y

1
CA; v¼

0
B@
a

b

c

1
CA; Λ¼

0
B@
λx

λy

0

1
CA;

ðC9Þ

and ðλx; λyÞ ¼ ðm2
τ þm2

π − x;m2
τ þm2

π − yÞ. The solution
can be readily obtained by inverting Eq. (C8) as

v ¼ ½M�−1 · Λ: ðC10Þ

The last coefficient, d, can be obtained by considering
the sum of the two equations in Eq. (C6). This leads to

d2 ¼ 1

−4q2
h
ð1þ a2Þm2

h þ ðb2 þ c2Þm2
π − 4m2

τ

þ 2ðacy − abx − bczÞ
i
: ðC11Þ

For physical solutions, the rhs must be positive. For
positive d2, there are twofold solutions for pτþ and pτ− ,
denoted by pi

τþ and pi
τ− , corresponding to d > 0 (i ¼ 1)

and d < 0 (i ¼ 2), respectively.
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