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1 Introduction

In the light of no evidence for the existence of new degrees of freedom at the weak scale or
below, the Standard Model Effective Field Theory (SMEFT) [1–3] provides a conceptually
simple, compelling, and powerful framework to probe beyond the Standard Model physics.
The SMEFT allows us to consistently and systematically parameterise possible deviations
from the SM predictions in the interactions among the known particles, using minimal
theoretical assumptions.

The interest in the SMEFT approach has triggered considerable efforts over the last
years not only in the quest for the best SM predictions, which are necessary to detect
deviations, but also to improve the accuracy of the SMEFT predictions by consistently
including higher order corrections in QCD and EW couplings.

With improved predictions at hand and more and more precise measurements coming
from the LHC, performing global interpretations of LHC measurements has become im-
perative and first results in the top quark sector [4–7], the Higgs and electroweak gauge
sector [8–10] as well as combinations of the two [11, 12] have appeared.
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These first studies have demonstrated that global interpretations in the SMEFT are
feasible and that order of tens of operator coefficients can be determined simultaneously,
by also exploiting the crucial fact that the SMEFT correlates observables from different
sectors.

Whilst the combination of different processes is needed to maximise the potential of
SMEFT interpretations, it comes with various complications and challenges. One such
complication is the fact that observables are typically associated to specific energy scales,
even in the same experiment. The same SMEFT operators are therefore probed at different
scales. In order to consistently combine the results, however, Renormalisation Group (RG)
effects should be taken into account, as RG Equations (RGE) are necessary to account for
different natural scales of different processes.

In principle, an approximate RGE flow can be computed off-line and once and for
all. The complete RGE of the SMEFT at dimension-6 are known at one-loop [13–15],
and several codes exist which allow one to input a set of Wilson coefficients at a given
scale and extract them at a different one [16–20]. Results on the SMEFT RGE for selected
dimension-8 operators are also available at one loop [21–24]. Up to now, the RGE evolution
in SMEFT interpretations of LHC measurements has either been neglected altogether, or
it has been taken from a high-scale µ0 to a fixed low-scale µ. Analyses where the scale µ is
chosen bin-by-bin for differential distributions have started to appear in the literature [25].
However, the analysis of observables such as differential distributions, that span orders
of magnitude in energy, calls for an event-by-event choice of renormalisation scale, that
can only be handled in a Monte Carlo tool at runtime. A dynamical scale choice requires
recomputing the Wilson coefficients at every phase-space point, and the only practical
way of incorporating such RGE effects into theoretical predictions is to include them into
suitable MC generators. Up to now, no dedicated implementation has been made available.

In this work we present the first implementation of RGE effects in a Monte Carlo
generator, Madgraph5_aMC@NLO [26]. We discuss the implementation and then present
phenomenological examples where the impact of RGE is investigated within the context
of SMEFT interpretations, and compare it with the next-to-leading order predictions. RG
improved predictions for SMEFT can potentially form an intermediate step towards a full
next-to-leading (NLO) order computation by resumming large logarithms. Our current
implementation focuses on leading-order RGE improved results, which capture the leading
effects arising from the presence of separated energy scales. We nevertheless envision
that our setup, combined with the NLO computations of [27] and the two-loop anomalous
dimension matrix (once available) will form the basis of state-of-the-art SMEFT predictions
in the coming years.

The paper is organised as follows. We describe the setup used and implementation
details in section 2. In section 3 we discuss RGE effects for top quark operators presenting
the relevant anomalous dimension matrix and several examples of operator running and
mixing. In section 4, as an example we focus on top pair production and show the results
for the LHC taking into account running and mixing for different choices of dynamical and
fixed scales. These results are then used in section 5 to perform a toy fit to illustrate the
impact of RGE effects when constraining the Wilson coefficients. Finally we conclude in
section 6.
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2 Computation and Monte Carlo implementation setup

In the context of the SMEFT, cross-sections can be decomposed in the following form:

dσ(µR, µF ;µ) = dσSM(µR, µF )

+
∑
i

ci(µ) dσi(µR, µF ;µ) +
∑
i≤j

ci(µ) cj(µ) dσij(µR, µF ;µ) + . . . , (2.1)

where the various Wilson coefficients are denoted by ci, and the explicit dependence on
nonphysical scales has been highlighted. In particular, µR denotes the SM renormalisation
scale, µF the factorisation scale, and µ the EFT renormalisation scale.

It is worth noting that the µ dependence of dσ enters through the Wilson coefficients
at all perturbative orders, and through the dσi··· at one-loop and beyond. In particular, if
SMEFT corrections are only considered at the tree level, the only µ dependence is through
the RG flow of Wilson coefficients.

The RGE of the SMEFT reads:

dci(µ)
d logµ = γij cj(µ), (2.2)

with γij the anomalous dimension matrix. We focus here on the QCD-induced part of the
running, i.e. we ignore terms in the anomalous dimension matrix which are not proportional
to αs. The γ matrix is then expanded in αs as:

γij =
∑
k=1

(
αs
4π

)k
γQCD,k
ij (2.3)

Due to the large value of αs, we expect γQCD,1
ij to typically give the leading contribution

to the running and mixing of the Wilson coefficients at present hadron collider energies.1

The solution to the RGE equation (2.2) is given by:

ci(µ) = Γij(µ, µ0) cj(µ0), (2.4)

where µ0 is a reference scale. The Γ matrix can be evaluated order by order in αs, at order
one it reads:

ΓQCD,1(µ, µ0) ≡ exp
(∫ µ

µ0

αs(µ′)
4πµ′ dµ

′ γQCD,1
)
. (2.5)

The computation described above forms the basis of our Monte Carlo implementation,
which takes the form:

ΓQCD,1(µ, µ0) = exp
( 1

2β0
log

(
αs(µ0)
αs(µ)

)
γQCD,1

)
, β0 = 11− 2

3nf , (2.6)

obtained by using the one-loop accurate expression for αs(µ) in (2.5); nf represents the
number of light flavours.

1Exceptions are known, for instance tt̄W and 4-top [28, 29] production receive sizable EW contributions.
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The running of αs is itself modified by SMEFT operators [13], however, given the
present bounds, this effect is completely negligible for our purposes, and we will use the
SM running of αs in our MC implementation.

In practice the numerical values of Wilson coefficients are set by the user at a given scale
µ0; an EFT renormalisation scale (µ) can then be selected, and the code will automatically
perform the corresponding running, using eq. (2.6), to the desired value of µ. The EFT
scale can be fixed, e.g. µ = mtop, or can be chosen on an event-by-event basis, as a function
of the event kinematics, e.g. µ = HT /2, where HT is the scalar sum of transverse mass
of the event (HT =

∑
i

√
p2
T,i +m2

i ). While our discussion is based on the case of the
SMEFT, the Monte Carlo implementation is generic and can be adapted to any scenario
with running couplings. Further details on our implementation are given in appendix C.

3 RGE of top quark operators

To illustrate our implementation of RGE effects, we consider the operators relevant for
top quark pair production at a hadron collider. These operators will be grouped in two
categories: 0/2-fermion operators and 4-fermion operators. We will focus on operators
entering top pair production, and following the SMEFTatNLO implementation [27] we assume
a U(2)q ⊗U(2)u ⊗U(3)d flavour symmetry, and CP conservation.

In the following, we will present the anomalous dimension matrix γQCD,1, entering the
RGE at order αs, for the set of degrees of freedom discussed above. The RGE flow of the
two subsets of operators, 0/2-fermion and 4-fermion, fully decouples, and the γQCD,1 matrix
is block diagonal.

We note that γ is a sparse matrix; the location of its zeros was observed in [30] by
looking at its holomorphic structure and later explained in [31] from unitarity cuts in
one-loop scattering amplitudes. The zeros at two-loops were further explored in [32] us-
ing unitarity cuts and the formalism of [33], which allows one to obtain the anomalous
dimension at higher-loops from phase-space integrals of lower-loop form factors and am-
plitudes. This method has been continued to be explored in the SMEFT [34, 35]. The
zeros obtained in [30, 31] are assumed in our calculation. The non-zero entries, on the
contrary, have been extracted independently of previous results, from the counterterms of
the SMEFTatNLO model [27], obtained within the NLOCT framework [36].

3.1 Bosonic and two-quark operators

Under our flavour assumption, there are two purely bosonic (0-fermion) operators to con-
sider for top pair production:

OG = gSfABCG
Aν
µ GB ρν GC µρ , OϕG =

(
ϕ†ϕ− v2

2

)
GµνA GAµν . (3.1)

The triple-gluon operator OG is already very well constrained by multijet observables [37,
38], and since cG is not induced by the RGE flow of any other Wilson coefficient, we will
not consider it further.
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In addition to (3.1), there are six 2-fermion operators [39] but only the following four
are running/mixing with other operators at order αs:

Otϕ =
(
ϕ†ϕ− v2

2

)
Q̄ t ϕ̃+ h.c., OtG = igS(Q̄τµνTAt)ϕ̃GAµν + h.c., (3.2a)

OtW = i(Q̄τµντIt)ϕ̃W I
µν + h.c., OtB = i(Q̄τµνt)ϕ̃Bµν + h.c., (3.2b)

where τµν = 1
2 [γµ, γν ]. In the following, we will trade ctB for the linear combination:

ctZ = − sin θW ctB + cos θW ctW , (3.3)

for physical convenience.
We obtain the γQCD,1 matrix in this sector:

γQCD,1
0/2F = 1

3



−24 96yt 96y2
t 0 0

0 −6β0 12yt 0 0
0 0 4 0 0
0 0 8g2 8 0
0 0 8g2 cos θW − 40/3 g1 sin θW 0 8


(3.4)

where Wilson coefficients are ordered as c = {ctϕ cϕG ctG ctW ctZ}. With g1, g2, θW we de-
note the EW SM parameters, with yt =

√
2mt,pole/v the top Yukawa, and β0 = 11−2/3nf .

As in [27], we defined the operators OG and OtG with explicit powers of gS . The extra
factors of gS are consistently evolved according to their RGE flow. Clearly, the running
of SM parameters, most notably the strong coupling gS , can have a sizable numerical
contribution in the running of some SMEFT Wilson coefficients. While some SM coupling
insertions in SMEFT vertices are fixed by their gauge structure (e.g. there must be a
relative gS between the effective ggH and gggH vertices, no matter their origin), the
normalisation of single operators (e.g. the rescaling with gS of OG and OtG noted above)
is model dependent and can only be fixed by making assumptions on the dynamics in
the UV. Here, we take an agnostic point of view and simply follow the normalisation of
SMEFTatNLO [27]. For convenience, we leave the parametric dependence on SM parameters
explicit in (3.4), to allow for an easy conversion among different conventions. Redefinitions
of the 0/2-fermion operators with factors of yt, g1, g2, gS , as e.g. done in [40, 41], remove
the corresponding parameters (yt, g, β0) from γQCD,1

0/2F . It should be clear that these choices
are only made for convenience (e.g. to catch the dominant effects already at LO, or to
uniform the power counting between SM and SMEFT amplitudes) and physical results
become independent of them at sufficiently high orders in a multi-coupling expansion.

The anomalous dimension matrix γQCD,1
0/2F was extracted in [13–15]; the running of

Otϕ, OtG, OtW , OtB also appeared in [42], and the running of OϕG, Otϕ, OtG in [40, 41].
Once different normalisation conventions are accounted for, our results are consistent with
the existing literature.

As an example, we show in figure 1 the RGE evolution of coefficients ctG and cϕG. The
running is quantified in terms of percentage change with respect to a reference value at
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Figure 1. Renormalisation group running of the coefficients ctG (top) and cϕG (bottom) as a
function of their value at 2TeV, run as given by eq. (3.4). The vertical grey line represents mtop.
The running of ctG mostly mixes into ctϕ, and to a lesser extent into all other coefficients in this
sector. The running of cϕG induces a non-zero value for ctϕ with opposite sign.

µ0 = 2TeV, run down to lower scales. In this case, we take 2TeV as the high scale where
new physics resides. For the sake of illustration, and to avoid cluttering the plots, we turn
on one operator at the high scale at a time. If one turns on multiple operators at the high
scale then what has to be done is to add their effect, simply by summing several plots such
as those shown in figure 1. Each coefficient generated by the mixing is shown separately,
normalized to the value at µ0 of the original one. We notice that the value of ctG gets
reduced by a few percent by running down to mt and it mixes into several other operators.
As obvious from the anomalous dimension matrix the largest coefficient induced by ctG is
ctϕ. The running of cϕG is more pronounced (i.e. its value changes by about 30%) and
there is significant mixing into ctϕ.

3.2 Four-fermion operators

In this section, we present the RGE for the 4-fermion operators involving top quark fields.
We organise 4-fermion operators in two categories, four-heavy (4H), involving four third

– 6 –
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Two-light-two-heavy Four-heavy
LL RR LR/RL LL RR LR/RL

Singlet O
(1,1)
Qq O

(1,3)
Qq O

(1)
tu O

(1)
td O

(1)
Qu O

(1)
Qd O

(1)
tq O

(1)
QQ O

(1)
tt O

(1)
Qt

Octet O
(8,1)
Qq O

(8,3)
Qq O

(8)
tu O

(8)
td O

(8)
Qu O

(8)
Qd O

(8)
tq O

(8)
QQ — O

(8)
Qt

Table 1. List of four fermion operators involving top quark fields classified according to their
flavour content, colour and chirality structure.

generation quark fields, and two-light-two-heavy (2L2H), involving two third generation
quark fields and two first or second generation quark fields.

Under our flavour assumption, there are five 4H operators. In the LHC Top Working
Group convention [27, 39], these are given by {O(1)

QQO
(1)
Qt O

(1)
tt O

(8)
QQO

(8)
Qt }. The map between

the degrees of freedom used here and those that appear in the Warsaw basis [3] is given by:

c
(1)
QQ ≡ 2C1(3333)

qq − 2
3C

3(3333)
qq , c

(1)
Qt ≡ C

1(3333)
qu , (3.5a)

c
(1)
tt ≡ C1(3333)

uu , c
(8)
QQ ≡ 8C3(3333)

qq , c
(8)
Qt ≡ C

8(3333)
qu . (3.5b)

There are fourteen 2L2H operators, that we take to be
{O(1,1)

Qq O
(1,3)
Qq O

(1)
tu O

(1)
td O

(1)
QuO

(1)
QdO

(1)
tq } and {O(8,1)

Qq O
(8,3)
Qq O

(8)
tu O

(8)
td O

(8)
QuO

(8)
QdO

(8)
tq }. The

relations between the 2L2H degrees of freedom we use and those in the Warsaw basis are:

c
(1,1)
Qq ≡ C

1,(ii33)
qq + 1

6C
1,(i33i)
qq + 1

2C
3(i33i)
qq i=1,2, c

(8,1)
Qq ≡ C

1(i33i)
qq + 3C3(i33i)

qq i=1,2, (3.6a)

c
(1,3)
Qq ≡ C

3,(ii33)
qq + 1

6C
1,(i33i)
qq − 1

6C
3(i33i)
qq i=1,2, c

(8,3)
Qq ≡ C

1(i33i)
qq − C3(i33i)

qq i=1,2, (3.6b)

c
(1)
tu ≡ C(ii33)

uu + 1
3C

(i33i)
uu i=1,2, c

(8)
tu ≡ 2C(i33i)

uu i=1,2, (3.6c)

c
(1)
td ≡ C

1(33ii)
ud i=1,2,3, c

(8)
td ≡ C

8(33ii)
ud i=1,2,3, (3.6d)

c
(1)
Qu ≡ C

1(33ii)
qu i=1,2, c

(8)
Qu ≡ C

8(33ii)
qu i=1,2, (3.6e)

c
(1)
Qd ≡ C

1(33ii)
qd i=1,2,3, c

(8)
Qd ≡ C

8(33ii)
qd i=1,2,3, (3.6f)

c
(1)
tq ≡ C1(ii33)

qu i=1,2, c
(8)
tq ≡ C8(ii33)

qu i=1,2. (3.6g)

To clarify the meaning of equations (3.6a)–(3.6g), taking c(1)
Qd as an example, we set

C
1(3311)
qd = C

1(3322)
qd = C

1(3333)
qd , and call this common value c(1)

Qd.
Table 1 summarises the operators we consider in this section. Operators are split in

2L2H and 4H as described above, then by their colour structure, singlet or octet, and
additionally by their chirality. There is no octet 4H RR operator, since the would-be
operator O(8)

tt reduces to our O(1)
tt due to SU(3) identities.

In this sector, we order Wilson coefficients as:

c = {c(1)
tt

∣∣ c(1,1)
Qq , c

(1,3)
Qq , c

(1)
tu , c

(1)
td , c

(1)
Qu, c

(1)
Qd, c

(1)
tq , c

(1)
QQ, c

(1)
Qt

∣∣ (3.7)

c
(8,1)
Qq , c

(8,3)
Qq , c

(8)
tu , c

(8)
td , c

(8)
Qu, c

(8)
Qd, c

(8)
tq , c

(8)
QQ, c

(8)
Qt},
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where a line separates the colour-singlet from the colour-octet sectors, with c
(1)
tt being a

special case. We obtain the following anomalous dimension matrix:

γQCD,1
4F = 1

3



44/3 0 0 0 0 0 0 0 0 0 0 0 4/3 2 0 0 8/3 0 4/3

0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8
0 36 0 0 0 0 0 0 4 0 0 0 0 0 4 6 2 10/3 2
0 0 36 0 0 0 0 0 0 0 0 −12 0 0 0 0 0 0 0
8 0 0 36 0 0 0 0 0 0 0 0 −6 6 4 0 8 0 4
8 0 0 0 36 0 0 0 0 0 0 0 4 −4 0 4 8 0 4
0 0 0 0 0 −36 0 0 4 0 8 0 2 0 −34 6 0 10/3 2
0 0 0 0 0 0 −36 0 4 0 8 0 0 2 4 −32 0 10/3 2
8 0 0 0 0 0 0 −36 0 0 4 0 4 6 0 0 −32 0 4
0 0 0 0 0 0 0 0 44 0 16 0 0 0 8 12 0 −16/3 4
8 0 0 0 0 0 0 0 4 −36 8 0 4 6 4 6 8 10/3 −36


Excluding c(1)

tt , that has no colour-octet partner, we note that the upper left block has
only zero entries, meaning that singlets do not run under QCD. Further, the top-right block
is diagonal, meaning singlets are only modified by their colour octet counterparts. This
is known, and understood, in terms of unitarity cuts [32]. We also note the bottom-left
block is almost diagonal, signalling that octets mix predominantly, but not exclusively, into
their singlet partner. Finally, the bottom-right block is the busiest part of the matrix with
several non-diagonal entries as colour octets both run and also mix with each other.

As mentioned above, the entries of γQCD,1
4F have been obtained automatically, from the

counterterms produced by NLOCT [36] for the SMEFTatNLO model [27]. The validity of such
counterterms has been confirmed with the COLLIER library [43], from the cancellation of
UV poles in a large variety of virtual amplitudes. The results of [13–15] agree with ours,
upon accounting for the different flavor symmetry, and for a different convention followed
for operators with repeated currents,2 that we describe in detail in appendix A.

In order to illustrate the impact of running and mixing, in figure 2 we show as an
example the running of c(8)

tq and c(1)
Qu. Each new operator coefficient induced by the mixing is

shown separately in the plots. The two coefficients we have chosen to plot are representative
of the general behaviour, singlets operators mostly run into their colour partner, while

2We thank Aneesh Manohar for clarifying the convention used in [13–15]. This helped us resolve what
originally seemed to be a disagreement between our findings and those of [15].
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Figure 2. Renormalisation group running of the coefficients c(8)
tq (top) and c

(1)
Qu (bottom), with

respect to their reference value at 2TeV. The vertical grey line shows mtop. Curves that do not
deviate appreciably from zero in the scale range considered are not plotted.

octets produce an intricate mixing pattern. The size of RGE shifts to Wilson coefficients
when running from 2TeV to mtop ranges from a few percent to around 20% depending on
the operator.

Whilst the anomalous dimension matrix gives a clear indication of the operator running
and mixing, to explore the physical impact of RGE effects we will consider the top pair
production cross-section in the next section.

4 Results for top pair production at the LHC

The numerical effects of RGE on top-pair production can be explored in
Madgraph5_aMC@NLO [26]. Our implementation is public, available from version 3.4.0, and
further details are given in appendix C. In this section, we study cross-sections and dif-
ferential distributions for each operator and different scale choices, as explained in the
following.

– 9 –
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4.1 Scale choices

The effects of running and mixing can be quantified by using different settings for the
SMEFT renormalisation scale µ. As discussed in section 2, scale choices can be either con-
sidered fixed or dynamical. In the former case, µ is constant, and the SM renormalisation
and the factorisation scales can also be fixed, or allowed to be dynamical. In the latter
case, µ is a dynamically-evaluated function of the final state’s momenta computed for each
phase space point.

4.2 Cross-section results

We first explore the linear contributions to the cross-section, which correspond to the second
term of eq. (2.1),

∑
i ci dσi, induced by a set of operator coefficients defined at a scale µ0 and

run to a different scale µ. In table 2 we show results for the SM-SMEFT linear interference
for p p → t t̄ at

√
s = 13TeV using the NNPDF2.3 LO parton distribution function with

αs(mZ) = 0.130 [44], for 0/2-fermion and 4-fermion operators respectively, evaluated at the
four choices of scales: (µ0 = 2TeV, µ = mtop), (µ0 = 2TeV, µ = HT /2), (µ0 = mtop, µ =
mtop), and (µ0 = mtop, µ = HT /2), at LO in QCD and EW. In addition to the EFT scales
µ0 and µ, table 2 considers two possible choices of SM renormalisation and factorisation
scales µR and µF , the constant mtop, and the dynamical HT /2. The comparison between
the first and last column of table 2 gives an assessment of the spread between the total
absence of RGE flow, and the now state-of-the-art in terms of including RGE effects.

As it is evident, the spread between these two extremes is often producing a correction
of order one to the interference cross-sections, signaling the importance of including running
and mixing effects. The spread between µ = mtop and µ = HT /2 can be considered as a
first estimate of theoretical uncertainty. To assess the shift induced by different choices of
running in the SMEFT sector, we compare the µ = mtop and µ = HT /2 cross sections,
keeping µ0 = 2TeV and µR = µF = HT /2, i.e. the fifth and seventh columns of the table.
Apart from ctϕ, that only enters top production at one loop, we note that the spread is small
for the rest of 0/2-fermion operators, amounting to a few percent difference at most. The
same holds true for the two-light-two-heavy colour-octets. The 2L2H colour-singlet cross-
sections, on the other hand, show a dramatic change. This effect is due to the small initial
SM-SMEFT interference (only with the EW SM amplitude), that is enhanced significantly
by the respective colour-octets induced by the RGE, for which the interference is much
larger. Typical shifts between using a fixed and a dynamical scale are of order 20%, with
outliers, such as c(1,1)

Qq and c(1)
tu , deviating much more, up to 100%. A similar effect happens

in the case of 4H operators, for both colour-octet and singlets, that can only enter bb̄→ tt̄

(at LO), and thanks to renormalisation group mixing induce 2L2H operators, that escape
the PDF suppression. This typically produces a spread of order 20% between different
EFT running choices. This comparison not only highlights the importance of considering
RGE effects at all, but shows how the choice of SMEFT renormalisation scale should be
carefully considered, just like it is commonly done for the SM.

We also note that in many cases the differences in cross-sections induced by SMEFT
running are comparable in size to the differences from variations in the choices of the
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Operator

Cross-section [pb]
µR = µF = mtop µR = µF = HT /2 µR = µF = HT /2

(fix.−dyn.)
dyn. [%]µ0 = mtop µ0 = 2TeV µ0 = mtop µ0 = 2TeV µ0 = mtop µ0 = 2TeV

µ = mtop µ = mtop µ = mtop µ = mtop µ = HT /2 µ = HT /2
SM 505 465 8.6 %
ctϕ 0.000 0.000 0.000 0.000 0.000 0.000 −
cϕG −4.343 −5.781 −3.992 −5.302 −3.842 −5.112 3.7 %
ctG 45.268 44.431 41.395 40.649 41.443 40.727 −0.2 %
ctW 0.128 0.121 0.125 0.119 0.126 0.119 −0.8 %
ctZ −0.068 −0.065 −0.068 −0.064 −0.068 −0.065 −0.9 %
c

(8,3)
Qq 0.350 0.355 0.324 0.329 0.322 0.328 0.4 %
c

(8,1)
Qq 1.732 1.594 1.601 1.475 1.626 1.496 −1.4 %
c

(8)
Qu 1.039 1.222 0.962 1.133 0.938 1.095 3.5 %
c

(8)
tq 1.730 2.047 1.601 1.896 1.560 1.833 3.4 %
c

(8)
Qd 0.706 0.744 0.656 0.690 0.654 0.682 1.1 %
c

(8)
tu 1.041 0.999 0.962 0.923 0.969 0.929 −0.6 %
c

(8)
td 0.708 0.610 0.657 0.567 0.673 0.582 −2.7 %

c
(1,3)
Qq 0.434 0.348 0.423 0.344 0.439 0.359 −4.3 %
c

(1,1)
Qq 0.119 −0.286 0.117 −0.258 0.189 −0.191 35.0 %
c

(1)
Qu 0.075 0.350 0.074 0.328 0.032 0.279 17.6 %
c

(1)
tq 0.087 0.545 0.085 0.509 0.016 0.428 19.0 %
c

(1)
Qd −0.026 0.150 −0.026 0.138 −0.054 0.108 27.1 %
c

(1)
tu 0.149 −0.100 0.145 −0.085 0.189 −0.043 97.1 %
c

(1)
td −0.050 −0.211 −0.049 −0.198 −0.020 −0.173 14.6 %
c

(8)
QQ −0.019 −0.095 −0.021 −0.091 −0.008 −0.078 16.1 %
c

(8)
Qt −0.005 −0.169 −0.006 −0.158 0.017 −0.128 23.2 %
c

(1)
QQ −0.031 −0.107 −0.033 −0.102 −0.017 −0.090 13.0 %
c

(1)
Qt −0.018 −0.038 −0.019 −0.038 −0.020 −0.033 17.3 %
c

(1)
tt 0.000 −0.179 0.000 −0.166 0.032 −0.137 21.3 %

Table 2. Leading order cross-sections for p p → t t̄ at
√
s = 13TeV in the SM and at linear order

in c/Λ2 for various choices of SM renormalisation scale µR, factorisation scale µF , and EFT scale
µ. The associated Wilson coefficients is set to 1 at µ0 and run to µ using the RGE we extracted;
Λ is set to 2TeV. The Monte Carlo uncertainty is beyond the quoted digits. From top to bottom:
0/2-fermions, 4-fermions colour-octet 2L2H, 4-fermions colour-singlet 2L2H, 4-fermions colour-octet
4H, 4-fermions colour-singlet 4H, c(1)

tt . For the SM, the last column refers to the difference between
µR = µF = mtop and µR = µF = HT /2, while for the EFT it referes to µ = mtop and µ = HT /2
for µ0 = 2TeV and µR = µF = HT /2.
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Figure 3. Renormalisation group flow of the tree-level (QCD+EW) tt̄ interference cross-section in-
duced by c(8)

tq (µ0) = 1 (top) and c(1)
Qu(µ0) = 1 (bottom), which are set to unity at 2TeV. Both µ0 and

the EFT scale Λ are set to 2TeV. The contributions proportional to eachWilson coefficient are drawn
separately in colour, and the total cross-section is drawn in black. The vertical grey line shows mtop.

factorisation and renormalisation scales. This indicates that, for the process we considered,
missing higher order corrections may be similar in size to the leading-log effects. We
investigate the comparison between full NLO SMEFT predictions and logarithmically-
enhanced LO ones in section 4.4.

The results shown in table 2 can be further visualised by decomposing, operator by
operator, the total cross-section into the terms induced by the original operator, and by the
mixing into others. As an example, in figure 3 we show the SM-SMEFT interference cross-
section for p p→ t t̄ at

√
s = 13TeV split in individual contributions from various operators,

obtained from setting c(8)
tq and c(1)

Qu to 1 at µ0 = 2TeV and running down to lower scales.

4.3 Differential distributions

In addition to the total tt̄ cross-section, we study the impact of operator running and mixing
on the distribution of the top pair invariant mass mtt̄. In the following plots, we show the
distributions for fixed and dynamical scales. In the fixed scale case, as above, the relevant
coefficient is set to one at 2 TeV and RGE evolved down to the top mass; in the dynamical
scale case, the initial condition is the same, but the RGE evolution stops at the phase-space
dependent point µ = HT /2. We show results for two 4-fermion operators, one colour-octet
2L2H and one colour-singlet 2L2H, in figures 4–5, and for more operators in appendix B.
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Figure 4. Linear interference contribution at LO QCD and LO EW to the tt̄ invariant mass
differential cross-section for pp → tt̄ at

√
s = 13TeV induced by the 2L2H colour-octet operator

O(8)
tq under the scale choices µ = mtop and µ = HT /2; Λ is set to 2TeV. The coefficient is set to 1

at µ0 = 2TeV and RGE evolved. Results obtained without running are shown for comparison. The
SM renormalisation and factorisation scales µR and µF are set to HT /2. The bottom plot shows the
ratio between µ = HT /2 and µ = mtop, with the uncertainty coming from Monte Carlo generation.

The impact of a different scale choice is moderate for the colour-octet 2L2H operator
reaching at most 10%, as already discussed above, while it amounts to a significant, O(50%),
shift for the 2L2H colour-singlet operator. As expected, the difference between our two
scale choices is larger for the higher energy bins, where HT /2� mtt̄, while the two scales
coincide at threshold as shown in the insets of our plots.

4.4 Comparison of NLO with the RGE-evolved LO

The interference cross-sections obtained in previous sections are Leading-Log (LL) im-
proved LO results, and thus do not contain all the information that would be present in
a full NLO calculation. In this section, we aim to determine if LO+LL results can serve
as a proxy for results at NLO. To do so, we evaluate the LO and NLO QCD cross-section
for top pair production at

√
s = 13 TeV with, as above, the Wilson coefficients defined as

unity at µ0 = 2 TeV and run to a lower scale µ. We show the comparison for four selected
operators in figure 6. Both the LO and NLO interferences are evolved under the one-loop
RGE we presented in the previous sections.

We note that for a formal NLO accuracy the 2-loop anomalous dimension matrix would
be needed, but this result is not yet available, therefore we are only able to employ the
one-loop anomalous dimension for our comparisons.

Two features are evident from figure 6: first, the NLO cross-section is significantly
more stable with respect to scale variations than the LO one, as expected. Second, the
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Figure 5. Same as figure 4 for the corresponding colour-singlet operator O(1)
Qu.

scale variation of LO seems to serve as a good proxy for uncertainty due to missing higher
orders. Third, relevant for our comparison, RGE corrections usually improve the leading-
order predictions, especially in the case of colour-singlet operators. Starting from the initial
condition at the high scale µ0, the LO cross-section tends to run in the direction of its NLO
value, growing if the NLO is larger and decreasing if the NLO is smaller. For instance, in
the case of O1

Qd, the RGE-corrected LO cross-section and the NLO cross-section almost
exactly agree at µ = mtop. In most cases, an RGE evolution to some intermediate value
µ & mtop gives a relatively good agreement between the LO and NLO cross-sections.

It must be noted, however, that whilst RGE corrections to LO cross-sections improve
their accuracy, they still do not capture the features of a full NLO calculation as they are
missing the finite pieces present in the full one-loop computation which can potentially be
large. Similar conclusions have been drawn previously in studies of Higgs [41] and top-Higgs
associated production [40].

We conclude this section by stressing that the computation of the two-loop anomalous
dimension is desirable to promote the formal precision of SMEFT predictions to NLO. We
note though that our computation and implementation is a first necessary step towards
properly accounting for RGE effects in SMEFT predictions. Our implementation can be
extended to include the two-loop anomalous dimension once this becomes available.

5 Impact of RGE effects on constraints on the EFT

In order to assess the impact of the scale choice and corresponding running and mixing
of the operators on bounding the Wilson coefficients, we perform a toy fit for top pair
production observables in the four-fermion sector of the SMEFT. Here we are not trying
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Figure 6. LO vs. NLO comparison for the SM-SMEFT interference cross-section for top pair
production for four selected two-light-two-heavy operators. The Wilson coefficients start at
c(2 TeV) = 1 and are RGE-evolved down to a lower scale µ. Λ is set to 2TeV. The SM renor-
malisation scale µR is also set equal to µ, while the factorisation scale is fixed to µF = mtop. A
vertical line is drawn at mtop.

to set realistic bounds on the operators, as this should be performed by proper global
fits [5–11], but we aim to understand the potential impact of RGE effects.

We use a selection of top observables, specifically: the tt̄ cross-section at
√
s = 8 and

13TeV, inclusive and differential in mtt̄, and the top asymmetry AC at 8TeV differential
in the tt̄ rapidity and velocity, as described in table 3. Our fit is performed using the
best available SM predictions, as in the last column of the table, together with SMEFT
predictions at LO QCD and LO EW for a fixed and a dynamical scale, as described in
previous sections. As we selected a set of tt̄ observables that is not particularly sensitive
to four-fermion 4H operators, we only constrain four-fermion 2L2H operators, both colour-
octets and colour-singlets.

Constraints are set on the values of the Wilson coefficients at µ0 = 2TeV under three
RGE scenarios. The first one, indicated with “No running”, is obtained setting the anoma-
lous dimension γ to zero. In this scenario identical constraints are obtained at any scale as
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Experiment
√
s [TeV] L [fb−1] Channel Observable Ref. SM Th. Ref.

ATLAS 8 20.3 Dilepton σtt̄ [45] NNLO+NNLL QCD, NLO EW [46]
CMS 8 19.7 Lepton+jets dAC/dytt̄ [3 bins] [47] NNLO QCD, NLO EW [48]

ATLAS 8 20.3 Lepton+jets dAC/dβtt̄ [3 bins] [49] NNLO QCD, NLO EW [48]
CMS 8 19.6 Lepton+jets σtt̄ [50] NNLO+NNLL QCD, NLO EW [46]
CMS 8 19.7 eµ σtt̄ [51] NNLO+NNLL QCD, NLO EW [46]

ATLAS 8 20.2 Lepton+jets σtt̄ [52] NNLO+NNLL QCD, NLO EW [46]
CMS 13 35.9 Dilepton dσtt̄/dmtt̄ [7 bins] [53] NNLO+NNLL QCD, NLO EW [54]

ATLAS 13 36 Lepton+jets dσtt̄/dmtt̄ [7 bins] [55] NNLO+NNLL QCD, NLO EW [54]
ATLAS 13 139 Lepton+jets σtt̄ [56] NNLO+NNLL QCD, NLO EW [46]
CMS 13 137 Lepton+jets σtt̄ [57] NNLO+NNLL QCD, NLO EW [46]

Table 3. Top pair production observables considered in the fit, together with the relevant SM
theoretical prediction used and their accuracy.

the coefficients do not run. This reproduces the past state-of-the art in SMEFT fits, where
RGE effects were not included. The second scenario, “Fixed scale”, amounts to setting µ0
to 2TeV and running down to µ = mtop, and the third scenario “Dynamical scale” sets µ0
to 2TeV and runs to µ, a dynamical quantity evaluated on an event-by-event basis, that
we take to be HT /2. Our three scenarios only differ with respect to the EFT scale µ, in all
three cases the SM parameters are renormalised at the dynamical scale µR = µF = HT /2.

We present the result of our fit in the following table and figures. In table 4, we
show the 2σ allowed range for each four-fermion 2L2H Wilson coefficient individually,
under the three RGE scenarios described above, for a fit at order O(c/Λ2) (“linear”) and
O(c/Λ2) +O(c2/Λ2) (“quadratic”). The same results are plotted in figure 7. In figures 8a
and 8b we show the 1 and 2 σ contours for selected pairs of Wilson coefficients.

As this work is aimed at determining the effect of running and mixing, and not at
producing a full global fit, we only fit one or two operators at a time, leaving all the Wilson
coefficients that are not being fit at zero at the high scale.

We first note that given the current sensitivity of experimental measurements, there
is a significant difference between the linear and quadratic bounds. For the colour-octets,
linear bounds are less stringent by up to factors of a few, whilst colour-singlets remain
essentially unconstrained at linear level, before RGE effects are applied. Once the RGE
flow is considered, as colour-singlets progressively run into their octet partner, experimental
constraints become more and more stringent. With current experimental precision, the
bounds on the colour singlet operators remain extremely loose even when RGE effects are
considered. At the quadratic level, on the other hand, we find that the individual bounds
depend mildly on the scale choice, with the three scenarios differing by at most 10-20%.

In the case of 2-dimensional exclusion regions, we find that, while not dramatically
altering the picture, RGE corrections can amount to significant numerical shifts, typically
of order of the spread between the 1 and 2 σ contours. Currently all Wilson coefficients
remain consistent with zero, and RGE effects just shift the allowed intervals. It is worth
noting though that as precision of the experimental measurements progressively improves
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Wilson Coeff.
Linear fit Quadratic fit

No Running Dynamical Scale Fixed Scale No Running Dynamical Scale Fixed Scale
c

(8,3)
Qq [−19, 34] [−20, 33] [−19, 33] [−8.7, 7.5] [−8.2, 7.2] [−7.9, 6.9]
c

(8,1)
Qq [−7, 9] [−7, 9] [−7, 9] [−10.4, 5.5] [−10.0, 5.7] [−9.7, 5.7]
c8
Qu [−16, 8] [−14, 6] [−13, 6] [−12.5, 4.3] [−11.4, 3.7] [−9.7, 3.4]
c8
tq [−11, 5] [−9, 4] [−9, 4] [−10.4, 2.6] [−9.5, 2.3] [−8.2, 2.1]
c8
Qd [−29, 14] [−27, 13] [−26, 13] [−15.6, 7.5] [−14.0, 6.9] [−12.1, 6.6]
c8
tu [−11, 14] [−10, 15] [−10, 15] [−12.5, 7.6] [−12.1, 7.6] [−11.4, 7.5]
c8
td [−22, 23] [−22, 25] [−22, 26] [−15.6, 10.0] [−15.1, 10.2] [−14.3, 10.2]

c
(1,3)
Qq [−19, 29] [−23, 33] [−24, 35] [−4.1, 3.6] [−4.0, 3.6] [−3.9, 3.6]
c

(1,1)
Qq [−49, 90] [−77, 154] [−60, 59] [−3.9, 3.8] [−3.8, 3.8] [−3.7, 3.8]
c1
Qu [−300, 124] [−71, 25] [−50, 24] [−4.7, 4.6] [−4.8, 4.4] [−4.8, 4.2]
c1
tq [−207, 103] [−47, 17] [−32, 17] [−3.7, 3.6] [−3.8, 3.4] [−3.8, 3.3]
c1
Qd [−450, 995] [−211, 70] [−126, 65] [−6.0, 6.1] [−6.1, 5.9] [−6.0, 5.7]
c1
tu [−52, 82] [−128, 323] [−189, 196] [−5.0, 4.8] [−4.9, 4.8] [−4.7, 4.8]
c1
td [−268, 207] [−89, 84] [−72, 64] [−6.2, 6.3] [−6.1, 6.3] [−5.9, 6.3]

Table 4. Numerical results of our fit on the LHC top data in table 3 under the three RGE conditions
described in the text, no running, dynamical scale (µ = HT /2), and fixed scale (µ = mtop). The
reported range for each operator is the 95% CL interval for the respective Wilson coefficient, in
units of 1/(2TeV)2, evaluated at µ0 = 2TeV. Results in the leftmost three columns are obtained
from a fit with linear SMEFT contributions only, while results in the right three columns refer to
a fit using the full linear + quadratic SMEFT contributions.

and in the case where a deviation from the SM is confirmed, these effects will be crucial to
reliably characterise New Physics.

6 Conclusion

We have presented a first study of RGE effects in SMEFT interpretations of collider data.
We extracted the anomalous dimension matrix at order αs for a selection of dimension-6
operators from the counterterms of the SMEFT@NLO model and implemented the RGE flow
into MadGraph5_aMC@NLO. This implementation provides a practical way of including RGE
effects in actual SMEFT analyses. In particular, our implementation allows, at LO, the
computation of RGE running and mixing at run time and on an event-by-event basis, which
is necessary to reliably predict differential distributions in the SMEFT.

To illustrate the setup of our implementation, we focused on top pair production at the
LHC, considering five bosonic operators and nineteen four-fermion operators. We studied
in detail the impact of including or not including RGE effects, and the impact of employing
a fixed or dynamical scale. The running and mixing of Wilson coefficients were shown to
shift the theoretical predictions for dimension-6 SMEFT corrections to cross-sections and
differential distributions by O(10 - 30%) depending on the operator, with up to O(100%)
deviations observed in special cases.
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Figure 7. Plot of the results presented in table 4. The three RGE cases are distinguished by
colour as described by the legend, while the order in c/Λ2 is distinguished by line thickness, with
the thick line corresponding to the fit using the full O(c2/Λ4) SMEFT predictions and the thin line
corresponding to only including the O(c/Λ2) component.

(a) (b)

Figure 8. 68% (solid) and 95% (dashed) allowed regions for the Wilson coefficients c8
Qu and c(8,3)

Qq ,
left, and c8

tq and c
(8,1)
Qq , right, under the three RGE conditions described in the text: no running

(blue), dynamical scale (orange), and fixed scale (yellow). Wilson coefficients are evaluated at
µ0 = 2TeV, the NP scale is also set to Λ = 2TeV. Our EFT predictions include both the linear
and quadratic term.

– 18 –



J
H
E
P
0
9
(
2
0
2
3
)
1
9
1

We demonstrated the effect of the renormalisation group flow on bounds on Wilson
coefficients by performing a toy fit in the top sector. Different scale choices are shown
to distort, sometimes significantly, the constraints obtained from experimental data, high-
lighting the importance of properly including RGE effects in global fits and in SMEFT
theoretical predictions in general.

We note that our toy fit only included tt̄ observables, for most of which the natural
scale is of order ∼ 2mtop. When observables from different sectors and more high-energy
differential distributions are included in a global fit, we expect that RGE effects will be
even more prominent.

We have implemented the RGE evolution to a fixed or dynamical scale in a user-friendly
and public setup, available within Madgraph5_aMC@NLO at version 3.4.0 and beyond. We
also released the anomalous dimension matrix at order αs of the operators we consid-
ered, within the SMEFTatNLO model. Extending the implementation to other operators is
straightforward.

Going beyond the SMEFT, the running and mixing implementation can be used for
other New Physics scenarios which involve running couplings. Our implementation already
steps in this direction, by allowing a more general RGE than the one we considered for the
SMEFT. This work paves the way for including running and mixing effects in all future
interpretations of LHC measurements.
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A Conventions for operators with repeated currents

In this appendix we describe the different conventions regarding SMEFT operators with
repeated currents, in particular focusing on the comparison between this work and refs. [13–
15].

We consider for concreteness the operator:

Q uu
prst

= (ūpγµur)(ūsγµut). (A.1)

Due to the repeated ūγu bilinear, this operator enjoys the symmetry:

Q uu
prst

= Q uu
stpr

. (A.2)

In our convention, if pr 6= st, the Lagrangian contains one between Q uu
prst

and Q uu
stpr

:

L1 ⊃
∑
pr=st

C uu
prpr

Q uu
prpr

+
∑
pr 6=st
unique

C uu
prst

Q uu
prst

, (A.3)

where by unique we mean that only one between e.g. 1133 and 3311 is included in the sum.
In the convention of [13–15], the Lagrangian is summed over all flavor indices regardless

of symmetries such as (A.2). The redundant degrees of freedom C uu
prst

and C uu
stpr

can be
broken into a symmetric and anti-symmetric part. Since upon summing over prst and
enforcing (A.2) the anti-symmetric part drops out of the Lagrangian, one can replace
C uu
prst
→ 1/2(C uu

prst
+ C uu

stpr
) and C uu

stpr
→ 1/2(C uu

prst
+ C uu

stpr
), and obtain:

L2 ⊃
∑
pr=st

C uu
prpr

Q uu
prpr

+
∑
pr 6=st
unique

2C uu
prst

Q uu
prst

. (A.4)

We note that while L1 and L2 are ultimately equivalent, their relative RGE’s will be
different, especially in the presence of further flavor assumptions, such as our (3.6a)–(3.6g).

B Additional results for differential distributions

In this section, we provide plots similar to figure 4, for additional selected 2L2H and 4H
four-fermion Wilson coefficients entering tt̄ production.

C Generation details

This appendix contains details of our implementation of the RGE in Madgraph5_aMC@NLO
(available since version 3.4.0). As the two-loop accurate RGE is currently not fully known,
our implementation is limited to LO event generation only, to preserve the formal accuracy
of the LO/NLO perturbative orders. (Therefore Madgraph5_aMC@NLO out-of-the-box will
be able to produce all the results in this paper except for the “NLO” curve in figure 6.)
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Figure 9. Same as figure 4 for the 4H operators O8
QQ and O1

tt.

Figure 10. Same as figure 4 for the 2H2L colour-singlet operators O8
Qu and O8

td, top, and O
(1,1)
Qq

and O1
tu, bottom.
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The new functionalities are available after executing the command:

install RunningCoupling

This installs the relevant material into Madgraph5_aMC@NLO, in the form of a C/Fortran
library [58–60].

The RGE is implemented in the running.py file, that is part of UFO models. This file
contains the anomalous dimension matrix in the form of Running Python objects, instances
of the class Running defined in object_library.py, one for each non-zero entry.

The structure of running.py is best illustrated by an example. The RGE for
dc1,3
Qq/d logµ contains a term proportional to c8,3

Qq, with coefficient (8/3)(αs/4π). This is
encoded in the following object:

RGE_7_9 = Running(name = ’RGE_79’,
run_objects = [[P.cQq13, P.cQq83, P.aS]],
value = ’(8./3.)/(4.*cmath.pi)’)

The string under value can be any valid Python numerical expression; it is evaluated at
process generation time, multiplied by αs, and placed in the c(1,3)

Qq − c
(8,3)
Qq position of the

anomalous dimension matrix. Once the matrix is reconstructed, with entries not supplied
assumed to be zero, the RGE is solved using (2.6), and the 2-loop accurate expression for
αs(µ).

In this work we have focused on (2.2), however the current code handles a more general
RGE, of the following type:

dci(µ)
d logµ =

(
gs(µ)
16π2 v

QCD,1
ij + αs(µ)

4π γQCD,1
ij

)
cj(µ). (C.1)

From Madgraph5_aMC@NLO version 3.5.0, the code supports both vQCD,1
ij and γQCD,1

ij to
be arbitrary functions of the model input parameters, such as g, g′, v. This is needed, e.g.,
for our γQCD,1

0/2F in eq. (3.4).
A new section has been added to the LO Run Card:

#***********************************************************************
# CONTROL The extra running scale (not QCD) *
# Such running is NOT include in systematics computation *
#***********************************************************************
True = fixed_extra_scale ! False means dynamical scale
172.5 = mue_ref_fixed ! scale to use if fixed scale mode
1.0 = mue_over_ref ! ratio to mur if dynamical scale

If fixed_extra_scale is True, the scale µ is taken to be the constant mue_ref_fixed;
if fixed_extra_scale is False, the scale µ becomes dynamical and is taken to be
mue_over_ref times µR. For simplicity, we have implemented this scenario by allowing µ
to be a fixed multiple of µR, the SM renormalisation scale. Therefore, to obtain a dynami-
cal µ one needs to select a dynamical value for µR, and choose the desired, constant, ratio
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µ/µR. We note that Madgraph5_aMC@NLO already allows µR to be an arbitrary function of
momenta, therefore the same now applies to the SMEFT scale µ. The case of a fixed µR
and dynamical µ is currently not implemented, but it has little physical motivation.

To specify the scale µ0 in param_card.dat, we follow the SLHA convention [61] which
allows to associate an input scale to any block of the Parameter Card. Following is an
example, in the context of the SMEFTatNLO model:

###################################
## INFORMATION FOR DIM62F
###################################
Block dim62f Q= 2000

1 1.000000e+00 # cpl1
2 0.000000e+00 # cpl2
3 0.000000e+00 # cpl3

The value after Q= is the scale in GeV, µ0 in the above text, at which the couplings are
provided. MadGraph5_aMC@NLO automatically checks that all parameters mixing into each
other are provided at the same scale, and will stop the computation if this is not the case.
On the other hand, if the anomalous dimension matrix is block diagonal, then the code
allows each block to have its own µ0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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