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1 Introduction

Our current understanding of fundamental interactions of elementary particles is based
on relativistic quantum field theories (QFTs) that are built upon symmetry principles.
Lorentz and Poincaré invariance, for example, not only dictate the possible particle content
of the theory (in terms of group irreducible representations), but also strongly limit
the possible form of their interactions. Charge conservation and then gauge invariance,
provide further constraints and non-trivial connections between interactions among different
particles. Finally, the requirement of renormalisability further reduces the number of allowed
interactions to a handful. The possible interactions in a renormalisable QFT is therefore
very much constrained once the field content of the theory and its (gauge) symmetries are
imposed. The most successful and famous example of a renormalisable QFT featuring a
very limited number of interactions encoded in a simple Lagrangian, invariant with respect
to SU(3)× SU(2)×U(1) gauge symmetries, is the Standard Model (SM) of particle physics.

In addition to symmetries, other fundamental properties of QFTs, such as unitarity
and positivity, have shown to provide very important constraints on the form of scattering
amplitudes, which can be obscure at the Lagrangian level. More recently, it has been
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suggested that being at the core of quantum mechanics, the entanglement properties of a
system could be used to provide constraints on the underlying dynamics. For example, it
was observed that the requirement of maximal entanglement puts constrains on the form
of the interactions in QED and the EW theory [1], while in refs. [2, 3] a very interesting
relation between minimisation of entanglement and enhanced symmetries was observed
for low energy QCD. These works focus on the entanglement of evolution dictated by the
S-matrix, which acts a quantum logical gate, between the initial and the same final states.
A different approach consists in studying the pattern of entanglement of a given final state
in a generic scattering amplitude. The simplest example is to consider the spin degrees of
freedom, described by a correlation matrix (R-matrix) which is pertubatively computable in
QFT, and see how predictions change depending on the form of the interactions. Although
different, the above two approaches allow to explore the relation between symmetries
and entanglement.

Recently, the authors of ref. [4] have pointed out that the quantum information
properties of the spin states of top-anti-top quark pairs at proton colliders should be already
accessible in current data. Using two measures of entanglement, the concurrence and
the Peres-Horodecki criterion, they identified two phase space regions featuring maximal
entanglement: at threshold and at high-pT . This has triggered a series of studies on
Standard Model tt̄ production, that have further elaborated on the experimental detection
strategy [5–9]. Moreover, other observables have been explored such as quantum steering
and discord that allow the top-anti-top spin correlations [10] to be organised in graded sets
of quantum correlations characteristic of a two-qubit state:

Spin correlations ⊇ Discord ⊇ Entanglement ⊇ Steering ⊇ Bell Inequalities .

In ref. [11], we have proposed to use quantum observables in tt̄ to search for physics
beyond the Standard Model (BSM), i.e., to study the structure and properties of fundamental
interactions at very high scales. Working in the SM Effective Field Theory (SMEFT)
framework, which allows to “deform” the SM in a consistent way (i.e. compatible with
the gauge symmetries and the particle content of the theory), we have calculated the new
physics contributions proportional to the Wilson coefficients (with a linear and quadratic1

dependence), to the concurrence fully analytically at the tree level. We have found that, in
the SMEFT analysis of tt̄ production, higher-dimensional operators reduce the entanglement
generated by the SM. The same conclusion was later corroborated also at next-to-leading
order (NLO) in αS , confirming the expectation that loop effects do not drastically change
the leading-order (LO) picture [12]. BSM effects in tt̄ have also been explored in ref. [13].

One of the reasons for interest in the top quark pair system is its simplicity: top quarks
being fermionic “bare” spin-1/2 states, form bipartite qubit systems. Beyond tt̄ production,
other two-particle final states that feature spin correlations described by two qubits have
been proposed, from ττ to diphoton [13, 14].

1Strictly speaking, by quadratic we here mean effects from the square of linear EFT amplitudes. In this
work, we do not consider double dimension-six insertions or linear dimension eight, which are formally at
the same order in the EFT expansion, i.e. Λ−4.
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Qubits can model most of the SM particles — fermions and massless bosons — with
the exception of the Higgs scalar and massive gauge bosons. Leaving out the Higgs boson
which has no spin, one notes that W± and Z bosons being massive are characterised by
three polarisations and therefore can be described by qutrits. Barr et al. [15–17] initiated
the quantum studies of final states involving massive vector bosons, first by introducing
the qutrit formalism for entanglement at colliders and then exploring Higgs boson decays
and diboson production, the latter mainly studied using a numerical approach. The same
processes have further been studied in refs. [18–21]. Recently, entanglement in diboson
production was also studied in the context of vector-boson fusion [22] and from decays of
top pairs [23]. The latter ref. studies also for the first time the detection of entanglement
between a W boson and a top quark.

Quantifying entanglement through the concurrence C [24, 25] is a challenging analytical
task for qutrits, as it involves an optimisation procedure, and closed analytic expressions
can be only obtained in special cases or configurations. It turns out, however, that lower
and upper bounds for the concurrence can be obtained in closed form,

CLB ≤ C(ρ) ≤ CUB, (1.1)

where CLB is the lower bound [26] and CUB the upper bound [27], and that in some cases
the bounds are so effective that they coincide with the actual values.

In this work we study the spin density matrix of diboson production, in the SM and
in SMEFT, with the goal of understanding whether quantum observables may provide a
better probe of new interactions than usual “classical” observables. This paper is organised
as follows. In section 2, we review the formalism used to study quantum information
observables for spin-1 particles, which slightly differs from the one used for top quarks. This
formalism is then applied to electroweak diboson production at present and future colliders.
Their interactions in the SM and in the SMEFT are described in section 3. We proceed by
studying perturbative unitarity and its relation with entanglement in section 4. We finally
present the results for diboson production at lepton and proton colliders in section 5 and
conclude in section 6. Details on the density matrix coefficients are given in the ancillary
Mathematica notebook provided as supplementary material of this work.

2 Qutrit formalism

The spin density matrix is a fundamental object in quantum mechanics as its knowledge
completely characterises the quantum system. In this context, quantum tomography is
the idea of conducting experiments with the objective of determining the density matrix
of the system at study. This objective was at the heart of top quark pair spin studies in
refs. [4–8, 10–13]. In the aforementioned studies, several quantum information observables
have been analysed, from spin correlations to quantum entanglement and tests of Bell
inequalities, both in the SM and exploring effects from heavy NP through SMEFT dimension
six effects.
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2.1 Spin density matrix and quantum observables

In the following we present the theoretical framework that is going to be used throughout
the paper to describe the spin density matrix of a bipartite system consisting of two spin-1
massive particles, i.e., qutrits. The formalism employed closely follows that of ref. [17].
While for spin-1/2 particles the measurement of the particle polarisation completely defines
the spin density matrix, this is not the case anymore for spin-1 particles, as the polarisation
vector determination is not enough to fully characterise the system. For a generic particle
of spin s, the Hilbert space has dimension d = 2s+ 1. The density matrix ρ is therefore a
d× d matrix with d2 − 1 free parameters (as Tr[ρ] = 1). This means that we can always
decompose the generic one-particle spin density matrix with the generators of SU(d), i.e.,
the generalised Gell-Mann matrices:

ρ = 1
d
I +

d2−1∑
i=1

aiλi . (2.1)

As made explicit from the above decomposition, in order to fully characterise the quantum
system one needs to determine the Bloch vector ai. In the case of spin-1/2 particles, the
Bloch vector has dimension 3, the same of the spin operator S⃗. This means that the density
matrix can be recast in terms of the spin operator spatial components and therefore its
determination is in one-to-one correspondence with the quantum tomography of the system.

The situation is more complicated for particles of higher spins. For instance, in the case
of massive spin-1 particles, the Bloch vector has dimension 8 and the measurement of the
spin components of the particle are not sufficient anymore for the complete characterisation
of the quantum state. It is however possible to express the spin density matrix in terms of
a spin matrix representation. In particular, given the spin-1 matrices

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 , Sz =

 1 0 0
0 0 0
0 0 −1

 , (2.2)

one can build a set of six operators

S{ij} ≡ SiSj + SjSi (2.3)

that together with the spin matrices allow us to decompose the spin density matrix in the
form

ρ = 1
3I +

3∑
i=1

αjSi +
3∑

i,j=1
βijS{ij} . (2.4)

Note that in this formalism not all of the coefficients are free parameters since some of
these operators are not linearly independent from the identity matrix, i.e.

S{xx} + S{yy} + S{zz} = 2
(
S2

x + S2
y + S2

z

)
= 4 I . (2.5)

In order for ρ to have unit trace we therefore have to impose the constraint
3∑

i=1
βii = 0 . (2.6)
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The generalisation to a bipartite system in this formalism is straightforward. The spin
density matrix for a pair of qutrits, in the Gell-Mann decomposition, is given by

ρ = 1
9 I⊗ I + 1

3

8∑
i=1

ai λi ⊗ I + 1
3

8∑
j=1

bj I⊗ λj +
8∑

i=1

8∑
j=1

cij λi ⊗ λj . (2.7)

Similarly, one could express eq. (2.7) in terms of the spin matrix representation, but we
find the Gell-Mann decomposition more straightforward and neat to use.

The parameters ai, bj and cij (called Fano coefficients) determine the angular distribu-
tions of the decay products, and characterise the interactions governing the decay. This
feature allows us to perform the quantum tomography of the system experimentally by
measuring the angular distributions of the decays and reconstructing the coefficients. The
aim of this work is to first explore the properties of the density matrix based on observables2

and the conditions for entanglement, deferring the tomography studies to a later stage.

Concurrence. We state that a system is entangled if the concurrence C(ρ) is non zero.
For bipartite qubit systems, this measure is easily evaluated by relating to the eigenvalues of
the matrix ω =

√√
ρ̃ρ

√
ρ̃ where ρ̃ = (σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2). However, for more complicated

bipartite systems, such as the two qutrits explored in this work, conditions for entanglement
cannot be calculated analytically [16, 28, 29].

For higher-dimensionality mixed states, the concurrence is obtained by the method of
convex roof extension [28]. For a given decomposition of the ρ matrix in pure states, i.e.

ρ =
∑

i

pi|ψi⟩⟨ψi| ,
∑

i

pi = 1 , pi ≥ 0 , (2.8)

the concurrence is defined as

C(ρ) = inf
[∑

i

pic(|ψi⟩)
]
, (2.9)

where the infimum is obtained over all possible ensembles {pi, ψi} for the decomposition
in eq. (2.8). The particular ensemble to which this infimum is reached is called optimal.
The given concurrence is then the average of the optimal ensemble states concurrence.3

The concurrence, however, cannot be calculated in a closed form for systems higher than
2× 2. In these cases, one can rely on lower and upper bounds, CLB and CUB respectively, to
quantify the entanglement.

A lower bound on the concurrence is given by [26]

(C(ρ))2 ≥ 2 max
(
0,Tr

[
ρ2
]
− Tr

[
ρ2

A

]
,Tr

[
ρ2
]
− Tr

[
ρ2

B

])
≡ C2

LB , (2.10)

where ρA = TrB(ρ) and ρB = TrA(ρ) are the reduced density matrices, obtained by tracing
out one of the subsystems. The function CLB(ρ) is a marker that is telling us that in case

2By observables, we mean final states angular distributions after the gauge boson decays.
3It is clear form eq. (2.9) that if we have a pure state, the concurrence will be calculable. This will be

relevant later for W Z production.
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of positive values, we have an entangled state. However, in the scenario of negative values,
the test is inconclusive. In particular, for the qutrit pair, we have

C2
LB = −4

9 + max

−8
3

8∑
i=1

a2
i + 4

3

8∑
j=1

b2
j ,

4
3

8∑
i=1

a2
i −

8
3

8∑
j=1

b2
j

+ 8
8∑

i,j=1
c2

ij . (2.11)

One can also obtain an upper bound for the concurrence, given in ref. [27] and recently
explored also in ref. [18],

(C(ρ))2 ≤ 2 min
(
1 − Tr[ρ2

A], 1 − Tr[ρ2
B]
)
≡ C2

UB , (2.12)

which in terms of the Fano coefficients reads

C2
UB = 4

3 − 4 min

 8∑
i=1

a2
i ,

8∑
j=1

b2
j

 . (2.13)

For a qutrit pair, the maximum value of the concurrence is obtained for a totally
symmetric and entangled pure state,

|Ψ+⟩ = 1√
3

3∑
i=1

|i⟩ ⊗ |i⟩ , (2.14)

with C(ρ) = 2/
√

3. This is different from a qubit pair, in which all entangled pure states
have concurrence C(ρ) = 1.

Purity. When exploring the density matrices to assess entanglement, it is useful to know
if the state is pure or mixed. This is quantified by the purity P given by

P (ρ) ≡ tr[ρ2] , (2.15)

which is one in the case of pure states and bounded to the lower value of 1/d for qudits.
Given the Fano decomposition in eq. (2.7), this means

P (ρ) = 1
9 + 2

3

8∑
i=1

(a2
i + b2

i ) + 4
8∑

i,j=1
c2

ij . (2.16)

Bell inequalities. Another interesting aspect of quantum system is the possibility of
violating Bell inequalities [30]. This allows to distinguish classical local realist theories from
quantum mechanical ones. In particular, for a pair of qubits, the Clauser-Horne-Shimony-
Holt (CHSH) [31] inequality holds

I2 = E(a, b) − E
(
a, b′

)
+ E

(
a′, b

)
+ E

(
a′, b′

)
≤ 2 . (2.17)

Quantum mechanics allows I2 to have values higher than two.
Analogously, one can define an observable for pairs of qutrits, the Collins-Gisin-Linden-

Massar-Popescu (CGLMP) inequality [32, 33]. By defining the quantum operator [34, 35]

B = − 2√
3

(Sx ⊗ Sx + Sy ⊗ Sy) + λ4 ⊗ λ4 + λ5 ⊗ λ5 , (2.18)

– 6 –
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one finds the CGLMP inequality

I3 = Tr[ρB] ≤ 2 . (2.19)

The above equation is valid in the x− y plane, but it can be generalised to any direction in
the 3-dimensional space and arbitrary bases in spin space. The generalised condition for
violation of the Bell inequalities becomes

⟨B⟩max = max
U,V

(
Tr
(
ρ (U † ⊗ V †)B (U ⊗ V )

))
≥ 2 , (2.20)

where U, V ∈ U(3) are unitary matrices.

2.2 EW boson production at colliders

We now turn our attention to electroweak production of spin-1 particles at colliders, i.e. W
and Z bosons. Following the approach of ref. [11], we define the R-matrix from the matrix
element amplitude:

RI
α1α2,β1β2 ≡ 1

NaNb

∑
colors

a,b spins

M∗
α2β2Mα1β1 (2.21)

with Mαβ ≡
〈
V (k1, α) V̄ (k2, β) |T |a (p1) b (p2)

〉
,

where I = ab = q̄q′, ēe are the possible initial states in proton and lepton colliders at LO
with Na,b degrees of freedom, and V = W±, Z are the respective vector bosons. For all
these diboson amplitudes, we can factor out the polarisation vectors, which carry the spin
dependence of the R-matrix as

Mαβ = Mµν ε
†µ
α (k1)ε†νβ (k2) (2.22)

where both polarisation tensors act as a map between the Lorentz tensor structures in
Mµν and the spin-space labelled by the index {α, β} forming the 9 × 9 qutrit matrix. The
R-matrix is in direct relation with the spin density matrix, i.e.

R = Ã I⊗ I +
8∑

i=1
ãi λi ⊗ I +

8∑
j=1

b̃j I⊗ λj +
8∑

i=1

8∑
j=1

c̃ij λi ⊗ λj , (2.23)

with the coefficient Ã encoding information on the differential cross section

dσ
dΩ = 9β

64π2ŝ
Ã(ŝ,k) , (2.24)

where k is the direction of the V boson, ŝ the invariant mass of the pair and β =
√

1 − 4m2
V

ŝ

the velocity of the V boson in the centre of mass frame. Each coefficient can be obtained by
tracing with the element of decomposition, e.g. ãi = tr[Rλi ⊗ I] and similarly for b̃j and c̃ij .

If we consider production at proton colliders, such as the LHC, the total R-matrix is
given by a weighted sum of the various different partonic channels, i.e.

R(ŝ,k) =
∑

I

LI(ŝ)RI(ŝ,k) , (2.25)

– 7 –
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with LI the luminosity functions [36]. The relevant channels for diboson production at
a proton collider are the quark annihilation ones. Note that, given that the initial state
particles are not identical, both qq̄ and q̄q channels are to be summed over. This can be
also taken into account by a symmetrisation over the polar angle, since it can be shown
that Rq̄q(ŝ, θ) = Rqq̄(ŝ, θ + π), i.e.

R(ŝ, θ) =
∑

q

Lqq̄(ŝ)(Rqq̄(ŝ, θ) +Rqq̄(ŝ, θ + π)) , (2.26)

where we made explicit that there is no dependence on the azimuthal angle ϕ of the vector
k, given the cylindrical symmetry of the problem. It is clear from the expression that the
R-matrix of a proton collider is by definition symmetric around θ = π/2. The R-matrix
is then related to the spin density matrix simply by an overall normalisation factor, i.e.
ρ = R/Tr(R). In particular we obtain the decomposition of the spin density matrix in
terms of the R-matrix Fano coefficients

ai = ãi

3Ã
, bi = b̃i

3Ã
, cij = c̃ij

9Ã
. (2.27)

In terms of these coefficients, the purity condition P (ρ) = 1 reads

36Ã2 = 3
8∑

i=1
(ã2

i + b̃2
i ) + 2

8∑
i,j=1

c̃2
i,j . (2.28)

We conclude this section by commenting on the possible effects of higher-order correc-
tions which in general will change the R-matrix and the expected entanglement. In specific
cases, such as ZZ and W+W− final states, IR/UV finite loop-induced processes could also
contribute, e.g., gg → ZZ/W+W−. Even though suppressed, at the LHC gluon fusion
production provides interesting information on Higgs properties. The framework presented
here could be directly employed to perform a dedicated study. This is left for future
investigations. More in general, for QCD or QED corrections, real and virtual contributions
need to be considered together. In case of inclusive predictions, the framework presented
here can be can be straightforwardly applied by simply tracing out (including integration
over the phase space) the unobserved degrees of freedom. Naively, one can expect some
degree of decoherence which should lower the entanglement compared to the leading-order
R-matrix. On the other hand, final states characterised by resolvable emissions could be
analysed on their own as three-body final states, where all vector bosons are measured and
the R-matrix has dimensionality higher than 9 × 9. In this case the an extension of the
framework presented here would be needed.

3 Diboson interactions

In this section, we discuss the relevant interactions for diboson production at colliders. In
particular, we consider the case of the SM as well as its extension in the SMEFT, where
higher dimensional operators will lead to the introduction of SM parameter shifts and new
Lorentz structures. The objective is to present the structure of the EW couplings dictated
by the SM symmetries and how heavy new physics could potentially alter it.
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γ/Z

W−

W+

W−

W+

h
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W+

Figure 1. W+W− production in the SM.

Z

Z

h

Z

Z

Figure 2. ZZ production in the SM.

W

W

Z

W

Z

Figure 3. WZ production in the SM.

3.1 SM couplings

As we are interested in both lepton and hadron colliders, we now discuss the couplings that
EW bosons have with quarks and with electrons. In particular, we consider the processes
e+e− →W+W− and e+e− → ZZ, for a lepton collider as well as pp→W+W−, pp→ ZZ,
and pp→W+Z for an hadron collider, respectively. In the latter case, the relevant partonic
channels at LO are given by uū and dd̄ for the neutral final states, while for W+Z it is ud̄.
We work in the 5-flavour scheme, so u comprises both up and charm quark, while d includes
down, strange and bottom quarks. We choose to discuss W+Z, in analogy with ref. [18], as
it is the dominant channel in a proton collider, but kinematic features are similar for W−Z.

In figures 1 to 3 we show the topology of interest in terms of Feynman diagrams for all
the processes considered. The properties of each process depend on the values and form of
couplings, which, in the SM, are completely determined by gauge symmetry and the EWSB
pattern. Specifically, the relevant couplings of the fermions are the coupling to the Z boson,
the coupling to the W boson and the coupling to the h boson. The latter is proportional to
the mass of the fermions, so it will be highly suppressed and substantially irrelevant for
the phenomenology at hadron or e+e− colliders. We will however discuss their role in the
high energy limit in section 4. Moreover, the processes are sensitive to the triple gauge
coupling (TGC) between the W and the Z boson, as well as the coupling of the W with a
photon. The coupling of EW bosons to the h boson is always accompanied by the Yukawa
coupling of the fermions, therefore our sensitivity to that is negligible.4 The couplings of

4However it could be interesting at a future Higgs factory at
√

s = mh.
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the fermions to the EW bosons read

Lf̄fZ ∝
(
gZ

V

)
−
(
gZ

A

)
γ5 , with gZ

V = T3
2 −Q sin2 θW , gZ

A = T3
2 , (3.1)

for the Z boson and

Lf̄fW ∝ gW (1 − γ5) , (3.2)

for the W boson, with T3 = −1/2 for down-type quarks and leptons, T3 = 1/2 for up-type
quarks and the electric charge Q = −1, 2/3,−1/3 for e, u and d respectively. In the
SM, gZ

V ≈ −0.027, 0.1,−0.17 and gZ
A ≈ −0.25, 0.25,−0.25 for e, u and d respectively and

gW = 1/2. Finally, the TGCs are specified by the gauge symmetries of the SM through the
gauge Lagrangian

Lgauge = −1
4W

a
µνW

aµν − 1
4BµνB

µν . (3.3)

In the SM, the couplings are given by

gW W γ = e , gW W Z = e cot θW , (3.4)

where the electric charge e and the trigonometric functions of the Weinberg angle can be
determined in terms of the chosen EW input parameters.

3.2 Modified interactions: SMEFT framework

We now discuss the effects of heavy new physics to the production of diboson at colliders.
We do so within the framework of the SMEFT where the SM gauge symmetries are all
preserved and the Higgs mechanism is realised linearly. The SMEFT is an extension of
the SM in which higher order operators modify the SM interactions, characterised by a
Lagrangian of the kind

LSMEFT = LSM +
N∑

n=1

cn

Λ2On + O
( 1

Λ4

)
, (3.5)

where On indicates a higher dimensional operator, cn is the associated Wilson coefficient, a
free parameter that in a bottom-up approach needs to be determined experimentally, and
N is the number of operators at this order in the expansion.

The operators are suppressed by the scale of new physics Λ, assumed to be at least at
the order of a TeV. This scale is what allows us to truncate the EFT series by means of
its power counting. For this analysis, we focus on the SMEFT dim-6 operators [39, 40] at
order 1/Λ2 and neglect higher order corrections. Note that we can only be sensitive to the
ratio cn/Λ2 and therefore we will absorb Λ2 into the definition of the Wilson coefficient for
the rest of the paper, i.e.

cn

Λ2 → cn . (3.6)

For the sake of simplicity, we assume flavour universality for the few operators that could,
in principle, have a more involved structure. Results will be presented in the mW input
parameter scheme, where the experimentally determined EW parameters of choice are
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Operator Coefficient Definition 95 % CL bounds
two-fermion operators

Oφu cφu i
(
φ†

↔
Dµφ

)(
ūγµu

)
[−0.17, 0.14]

Oφd cφd i
(
φ†

↔
Dµφ

)(
d̄γµd

)
[−0.07, 0.09]

O(1)
φq c

(1)
φq i

(
φ†

↔
Dµ φ

)(
q̄ γµ q

)
[−0.06, 0.22]

O(3)
φq c

(3)
φq i

(
φ†

↔
Dµ τIφ

)(
q̄ γµ τ Iq

)
[−0.21, 0.05]

Oφe cφe i
(
φ†

↔
Dµφ

)(
ēγµe

)
[−0.21, 0.26]

O(1)
φl c

(1)
φl i

(
φ†

↔
Dµφ

)(
l̄γµl

)
[−0.11, 0.13]

O(3)
φl c

(3)
φl i

(
φ†

↔
DµτIφ

)(
l̄γµτ I l

)
[−0.21, 0.05]

bosonic operators

OW cW εIJKW
I
µνW

J,νρWK,µ
ρ , [−0.18, 0.22]

OφW cφW

(
φ†φ− v2

2

)
Wµν

I W I
µν [−0.15, 0.30]

OφB cφB

(
φ†φ− v2

2

)
BµνB

µν [−0.11, 0.11]

OφW B cφW B (φ†τIφ)BµνW I
µν [−0.17, 0.27]

OφD cφD (φ†Dµφ)†(φ†Dµφ) [−0.52, 0.43]

four-fermion operator

Oll cll

(
l̄γµl

)(
l̄γµl

)
[−0.16, 0.02]

Table 1. Definition of the dimension-six SMEFT operators relevant for this analysis. The bounds
assume a scale of Λ = 1 TeV and are taken from the global fit of ref. [37] at order O(Λ−4). The
bound on cll comes from EWPO fits and here we quote the result from ref. [38].

{mW ,mZ ,mh, GF }. In table 1 the relevant CP-even operators for leading-order diboson
production, both in lepton and proton colliders are shown. We note that when considering
a massless initial state, OφW and OφB which modify the coupling of the EW bosons to the
Higgs, do not enter the processes because of the aforementioned pairing with the Yukawa
couplings. We will therefore not discuss further these two operators, but we listed them
for completeness.

The operators act in a multitude of ways, leading to different phenomenological conse-
quences. In particular, some operators act by shifting the SM value of the coupling of the
fermions to the EW bosons. Specifically we have

δgZ
V (e) =

(
sin2 θW − 1

4

)
δgZ − δs2

θ −
c

(3)
φl + cφe + c

(1)
φl

4
√

2GF

,
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δgZ
A(e) = δgZ

4 −
c

(3)
φl − cφe + c

(1)
φl

4
√

2GF

,

δgZ
V (u) =

(
1
4 − 2 sin2 θW

3

)
δgZ + 2

3δs
2
θ −

c
(−)
φq + cφu

4
√

2GF

, (3.7)

δgZ
A(u) = δgZ

4 − c
(−)
φq − cφu

4
√

2GF

,

δgZ
V (d) =

(
sin2 θW

3 − 1
4

)
δgZ − 1

3δs
2
θ −

2c(3)
φq + cφd + c

(−)
φq

4
√

2GF

,

δgZ
A(d) = δgZ

4 − 2c(3)
φq − cφd + c

(−)
φq

4
√

2GF

,

where we defined c
(−)
φq = c

(1)
φq − c

(3)
φq , which is the combination of Wilson coefficients that

modifies the coupling of up-type quarks to the Z boson. The variations of the couplings are
written as function of the quantities

δgZ = −
4c(3)

φl − 2cll + cφD

4
√

2GF

,

δs2
θ = cφD m2

W

2
√

2GF m2
Z

+
cφW B mW

√
1 − m2

W

m2
Z√

2GF mZ

,

(3.8)

which are SMEFT induced universal shifts specific to the EW input parameter scheme, see
ref. [38] for more details. For the coupling to the W boson, we have

δgW (e) =
c

(3)
φl

2
√

2GF

− δGF

2
√

2
,

δgW (q) = c
(3)
φq

2
√

2GF

− δGF

2
√

2
,

(3.9)

with the fractional shift to the Fermi constant originating from the muon decay measurement
given by

δGF =
2c(3)

φl − cll

2GF
. (3.10)

Finally, the operators can also alter the TGCs. The modified Lagrangian reads

LW W V

−igW W V
= gV

1

(
W+

µνW
−µV ν −W+

µ VνW
−µν

)
+ κV W

+
µ W

−
ν V

µν + iδλV

m2
W

V µνW+ρ
ν W−

ρµ ,

(3.11)
where V = Z, γ and we have defined Vµν = ∂µVν − ∂νVµ and W±

µν = ∂µW
±
ν − ∂νW

±
µ . The

dimension-6 SMEFT operators introduce a dependence on the couplings gV
1 = 1 + δgV

1 and
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κV = 1 + δκV , i.e.

δgγ
1 = 1

4
√

2GF

cφD
m2

W

m2
W −m2

Z

− 4c(3)
φl + 2cll − cφW B

4mW√
m2

Z −m2
W

 ,

δgZ
1 = 1

4
√

2GF

(
cφD − 4c(3)

φl + 2cll + 4 mZ

mW

√
1 − m2

W

m2
Z

cφW B

)
,

δκγ = 1
4
√

2GF

(
cφD

m2
W

m2
W −m2

Z

− 4c(3)
φl + 2cll

)
,

δκZ = 1
4
√

2GF

(
cφD − 4c(3)

φl + 2cll

)
.

(3.12)

Note that while c(3)
φl , cll and cφD universally shift the TGC of the SM, cφW B does not

contribute to κV but only to gV
1 , changing the symmetrical structure of the SM interactions.

Only one operator in table 1 leads to a new Lorentz structure by generating a term
proportional to δλV , with a dependence given by

δλγ = −6 sin θW
m2

W

gW W γ
cW ,

δλZ = −6 cos θW
m2

W

gW W Z
cW .

(3.13)

OW is therefore of particular interest, since it modifies the interactions among EW bosons
in a way that could potentially induce different helicity structures. This is of relevance for
this study, given that the density matrix of the diboson system could markedly change if
the EW bosons are produced in configurations not present in the SM.

4 Perturbative unitarity and entanglement

Perturbative unitarity and the role of the Higgs boson in the SM can be effectively studied
by considering multi-boson longitudinal scattering amplitudes and their cross-section [41].
Conservation of probability in QFT requires the unitarity of the S-matrix, which imposes
bounds on the energy dependence of the corresponding terms in the perturbative expansion.
The scattering amplitudes and cross-sections involving weak bosons violate the perturbative
bound if gauge invariance is not respected or Higgs-mediated interactions are not included.
How these violations appear and then cancel among different contributions in usual observ-
ables has been studied extensively. However, to the best of our knowledge, the perturbative
unitarity constraints on entanglement and quantum information observables has not been
explored. Before proceeding, we note that for this study and at variance with what done in
the previous sections, here we keep the fermion masses non-zero, to allow non-vanishing
Higgs couplings and investigate their role too.

It is possible to express 2→2 scattering amplitudes in powers of the normalised energy√
s/(2mV ):

M = M(2)
( √

s

2mV

)2

+ M(1)
( √

s

2mV

)
+ M(0) + O

(2mV√
s

)
, (4.1)

– 13 –



J
H
E
P
1
2
(
2
0
2
3
)
0
1
7

noting that this expansion is relevant also for the cross-section and the R-matrix [41].
Perturbative unitarity requires the bad high-energy behaviour to cancel and the 2 → 2
amplitude to go at most as a constant in the high-energy limit (s ∼ −t ∼ −u≫MV )

lim√
s

2mV
→∞
M = M(0), (4.2)

i.e., any amplitude respecting perturbative unitarity should have vanishing M(2) and M(1)

at high energies.

4.1 W W final state

Let us consider e+e− → W+W−. We have four amplitudes contributing to the process,
depicted in figure 1: Mγ and MZ with an s-channel photon or Z-boson (left), Mν with a
t-channel neutrino (centre), and Mh with a Higgs boson in the s-channel (right). The sum
of the Mγ , MZ , and Mν amplitudes grows with energy, displaying a unitarity violating
behaviour. At high energies we find

Mγ+Z+ν(±± → 00) ∼ −Mh(±± → 00) ∼ − e2

2 sin2 θW

me

mW

√
s

2mW
. (4.3)

However, the Higgs exchange Mh has the same behaviour in the high-energy limit and
exactly cancels the growth of the amplitude, recovering perturbative unitarity. As one
might expect, this cancellation occurs only for the longitudinal final states, since the other
cases do not grow with energy. At the cross-section level, a similar cancellation occurs (see
ref. [41] for an easy-to-access review).

Let us now turn our attention to the Fano coefficients. As one might expect, the
cancellation for the Ã is the same as that happening at the cross-section level. At high
energy and keeping the electron mass finite, the squared contribution of the sum of the γ,
Z and ν mediated diagrams to the Fano coefficient is

Ã|γ+Z+ν|2 = e4

288 sin4 θW

m2
e

m2
W

s

m2
W

+ O(s0) . (4.4)

Adding the contribution of the Higgs diagram, we obtain three more terms,

Ã|h|2 ∼ −Ã(γ+Z+ν)∗h ∼ −Ã(γ+Z+ν)h∗ ∼ Ã|γ+Z+ν|2 =⇒ Ã|γ+Z+ν+h|2 ∼ O(s0) , (4.5)

where now, due to the sign of the amplitudes, the interference terms of (γ+Z + ν) with the
Higgs cancel with the matrix-element-squared contributions, resulting in a O(s0) dependence.
This cancellation happens similarly for the ãi, b̃i and c̃ij coefficients. Specifically, we obtain
the following non-zero results at order s/m2

W for the (γ + Z + ν) diagrams

ã3,|γ+Z+ν|2 ∼ − 1√
3
ã8,|γ+Z+ν|2 ∼ e4

288 sin4 θW

m2
e

m2
W

s

m2
W

+ O(s0) , (4.6)
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which in the case of the third component cancels when summed with the Higgs-mediated-
squared and interference contributions, ã3,(γ+Z+ν)∗h + ã3,(γ+Z+ν)h∗ + ã3,|h|2 , and likewise
for the eighth component. The same expressions hold when considering b̃i. With respect to
the correlation matrix c̃ij , we have that for the γ + Z + ν diagrams

c̃33,|γ+Z+ν|2 = − 1√
3
c̃38,|γ+Z+ν|2 = − 1√

3
c̃83,|γ+Z+ν|2 = 1

3 c̃88,|γ+Z+ν|2

= e4

288 sin4 θW

m2
e

m2
W

s

m2
W

+ O(s0) .
(4.7)

Adding the Higgs contribution leads to the same cancellation of all the coefficients at s/m2
W

order, and perturbative unitarity is restored in the R-matrix. It is interesting to note that
this cancellation occurs only for the coefficients of the third and eighth Gell-Mann matrix,
while the others do not exhibit an energy growing behaviour. This occurs because in the
high energy limit the R-matrix is dominated by the longitudinal polarisations and these are
the Fano coefficients sensitive to those.

4.2 ZZ final state

We now turn to ZZ production. As in the previous case, let us focus on the lepton-initiated
channel. The story for ZZ is similar but now we only have two types of diagrams, t and
u-channel mediated by electrons and the Higgs s-channel. The cancellation in the amplitude
occurs for the same helicities as before

Me(±± → 00) ∼ Mh(±± → 00) ∼ −e2 csc2 2θ me

2mZ

√
s

2mZ
+ O(s0) , (4.8)

where Me represents both t and u channels. At the R-matrix level, the cancellation happens
in a similar fashion to the WW case. The Ã coefficient for the electron diagrams,

Ãe = e4

288 cos4 θW sin4 θW

m2
e

m2
Z

s

m2
Z

+ O(s0) , (4.9)

cancel when adding the Higgs diagram. For the coefficients b̃i and c̃ij , we again only
have contributions to the third and eighth components and the cancellations repeat the
previous pattern.

4.3 Non-interference EFT effects

The study of perturbative unitarity fits well in renormalisable theories where one does not
expect growing amplitudes in the high-energy limit. This discussion is different for EFTs, in
which higher-dimensional operators are included and they are allowed to grow with energy.
This is actually a feature used in SMEFT analyses to probe deviations from the SM in tails
of distributions. This growth can happen due to the particular new Lorentz structure of the
operators or because of the spoiling of the SM cancellations. To understand the high-energy
limit of the R-matrix and spin-related observables, let us first look at the amplitudes.

At high energy, the SM and the SMEFT induce a specific helicity pattern for diboson
production. In table 2, as representative, we report the helicity amplitudes for e+e− →
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(λ1λ2|αβ) SM EFT Λ−2 : cW W W

+ − 00 −2
√

2GFm
2
Z sin θ —

+ −−+ 2
√

2GFm
2
W sin θ —

+ − +− − 1√
2GFm

2
W sin3 θ csc4(θ/2) —

+ −±± — 3 · 21/4√GFmW sin θ (4m2
Wx2 −m2

Z)

+ − 0± — −3 · 23/4√GFm
3
W (±1 + cos θ)x

+ −±0 — −3 · 23/4√GFm
3
W (∓1 + cos θ)x

− + 00 2
√

2GF (m2
Z −m2

W ) sin θ —

− + ±± — 6 · 21/4√GFmW (m2
Z −m2

W ) sin θ

Table 2. Helicity pattern in the high-energy limit of electron-initiated diboson production amplitudes
for the SM and the SMEFT amplitudes induced by the OW operator, which has a distinguished
Lorentz structure. The ±± αβ case has all zero entries, regardless of αβ. The short-hand notation
x =

√
s/(2mW ) is used. Contributions to the helicity amplitude that are sub-leading and energy

suppressed are indicated with -.

W+W−. The helicity states are specified by the notation M(λ1λ2|αβ), where λ1, λ2 are
the helicities of the initial state electrons and α, β are the helicities of the final state EW
bosons. We retain contributions up to order O(x0) (see also refs. [42] and [43]).

It is clear that the SM and the OW operator induce different helicity amplitudes.
When computing a cross-section, where the on-shell final states are the gauge bosons, this
leads to a vanishing EFT linear correction due to non-interference of the amplitudes. The
cancellation for massless particles can be proven by applying helicity selection rules, see
ref. [44]. However, one can show that the interference can be recovered exploiting the angular
distributions of the decay products, e.g. considering the full process e+e− → V V → 4f ,
with f either a lepton or a quark. For in-depth phenomenological studies of this aspect we
refer the reader to the literature [43, 45–50].

In the R-matrix formulation, this translates into the fact that the diagonal terms at
the linear EFT level vanish, while the off-diagonal terms allow for a resurrection of the
interference between the SM and the operator OW . In the high energy and massless limit,
the Fano coefficient Ã has a vanishing linear EFT contribution

Ã(OW ) ∼ 0 , (4.10)

but the other Fano coefficients can be different from zero and potentially allow for increased
sensitivity. Defining x =

√
s/(2mV ) and in the limit mW ∼ mZ ∼ mV we have

ã1(OW ) ≃ b̃1(OW ) ≃ c̄W 25/4 x cos4(θ/2)(cos θ + 3) csc θ , (4.11a)

ã4(OW ) ≃ b̃4(OW ) ≃ −c̄W 23/4(cos θ((4x2 − 3) cos θ + 4x2 + 1) + 2) , (4.11b)

ã6(OW ) ≃ b̃6(OW ) ≃ c̄W 21/4 x sin2(θ/2) sin θ , (4.11c)
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with c̄W = cW G
3/2
F m5

V . The spin-spin Fano coefficients c̃ij(= c̃ji) for the operator OW are
given by

c̃13 ≃ 3 c̄W · 23/4 cos2(θ/2)(3 cos θ + 1) cot(θ/2)x (4.12a)

c̃14 ≃ −c̃25 ≃ c̃46 ≃ −c̃57 ≃ −3 c̄W · 23/4 sin θ(1 + cos θ)x , (4.12b)

c̃16 ≃ c̃27 ≃ 3 c̄W · 2−5/4 sin2(θ/2)((3 − 4x2) cos θ − 4x2 + 1) , (4.12c)

c̃18 ≃ c̄W

√
3 · 2−3/4 cos2(θ/2)(cos θ + 2) cot(θ/2)x , (4.12d)

c̃35 ≃ c̄W

√
3 · 2−3/4 sin2(θ/2) sin θ x , (4.12e)

c̃48 ≃
√

3 c̄W · 2−9/4(8(1 − x2) cos θ + (4x2 − 3) cos(2θ) − 5(4x2 − 1)) , (4.12f)

c̃68 ≃ −5
√

3 c̄W · 2−3/4 sin2(θ/2) sin θ . (4.12g)

The omitted ones are vanishing, showing that this matrix is rather sparse and several of the
energy growing terms are closely related between each other. Here, we note also that the
relevant coefficients for the perturbative unitarity cancellation vanish in the non-interference
analysis, as they are pertinent to the longitudinal polarisations, while the OW induces
energy growing behaviour in transverse helicity configurations.

5 Entanglement at particle colliders

In the following we will study the spin density matrix and the presence of entanglement in
diboson production for both lepton and proton colliders. In the case of the lepton collider,
we consider centre of mass energies up to 1 TeV, while in the case of the proton collider we
focus on the LHC setup with a centre of mass energy of 13 TeV. In the latter we work in
the 5 flavour scheme, i.e., all quarks are massless aside for the top quark, and we use the
latest NNPDF4.0 NNLO PDF set [51]. The input parameters used for the calculations are
the following

mW = 80.377 GeV , mZ = 91.1876 GeV ,

mh = 125.35 GeV , GF = 1.166 378 8 × 10−5 GeV−2 .

Calculations are performed analytically, taking advantage of the Feynrules [52, 53],
FeynArts [54] and FeynCalc [55] tool chain. Amplitude computations are also validated
numerically with MadGraph5_aMC@NLO [56] and SMEFT@NLO [57]. The results are presented in
the centre of mass frame of the diboson pair, as function of the kinematical variables mV V ,
the invariant mass of the system, and cos θ, the angle between the initial state anti-particle
and the W+ or Z boson. In the case of the SM calculations, we have validated our results
against the ones obtained in ref. [18], finding excellent agreement.

For each process considered, we computed the density matrix including EFT corrections
(both linear and quadratic) and consequently the various Fano coefficients, from which we
determine analytically the entanglement related markers CLB and CUB, the purity P and
the indicator ⟨B⟩max for Bell inequality violation.5

5The minimisation in the calculation of the latter is, however, done numerically.
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5.1 Lepton collider

In this section we discuss the entanglement pattern in diboson production at a lepton collider,
focusing in particular on its dependence on the couplings in the context of the SMEFT. In
a lepton collider, the collision energy is fixed. This means that at LO, without considering
initial state QED (or more in general EW) radiation, the diboson pair is produced with
an invariant mass mV V which is identical to the initial state energy. In this setup, we can
therefore study the behaviour of the entanglement by fixing the collider energy and looking
at its angular dependence. This remains true if we consider lepton colliders with energies
up to a few TeV. In the scenario of a multi-TeV lepton collider, such as a circular muon
collider, the machine would effectively behave as an EW boson collider and the main mode
of production for diboson pair will be vector boson scattering [58], see also refs. [59–63]
for in depth studies of muon collider physics. The study of this kind of processes, which
would be phenomenologically quite different and would add considerable sensitivity on
dimension-8 operators, is left for future work.

W W production. The production of a pair of W bosons is of most interest in a lepton
collider, as it is characterised by a considerably high cross section even at high energies.
For instance, at 1 TeV, the total cross section is still of the order of a few pb. This means
that the process is going to be particularly advantageous in terms of statistics and could
prospectively allow to detect entanglement with strong significance [18].

The relevant couplings for the process are the coupling of the lepton to the W boson
gW , the coupling to the Z boson gZ

V and gZ
A, and the TGCs. The process is therefore

sensitive to several of the EW interactions. Furthermore, in the SMEFT framework strong
correlations are present among the parameters.

In figure 4 we show the entanglement pattern we can expect from the production of a
pair of W bosons in the SM. Results are shown as a function of the kinematical variables
mW W and cos θ. Note that there is no symmetry around θ = π/2, as the EW interactions
are not parity invariant. This is not the case when considering for instance tt̄ production,
where the process is dominated by QCD [11]. In the upper left figure we show the values
for the purity indicator P , which depicts a scenario where the majority of the phase space
is characterised by a density matrix close to maximal purity. In the bottom left and bottom
right figure, we show the value of the lower and upper bound for the concurrence. The
plots demonstrate that the diboson pair has in general a very high value of the concurrence
across the phase space, indicating that entanglement is present almost everywhere, with the
exception of the collinear region with θ = 0, where low values of entanglement are expected.

This can be seen more explicitly in the left plot of figure 5, where four collider energies,
170, 250, 500 and 1000 GeV, are chosen as benchmarks. The plot displays bands for the
concurrence, where the lower and the upper bound are given by CLB and CUB respectively,
as a function of cos θ. Entanglement is high and stable for most of the angles, but decreases
sharply as we approach the forward collinear limit at high energies. Also, the closer we are
to threshold the tighter the bands get, indicating that the quantum state of the process
goes towards maximal purity, as confirmed from the purity plot in figure 4. In fact, as
previously discussed, in this limit CLB and CUB coincide.
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Figure 4. Entanglement in the e+e− → W+W− channel in the SM. We show the lower
bound CLB (bottom left) and upper bound CUB (bottom right) on the concurrence C, the pu-
rity P (top left) as well as the indicator ⟨B⟩max for Bell inequality violation (top right) as a function
of the invariant mass mW W (or equivalently the collider energy) and the cosine of the angle between
the positron and the W+ in the centre of mass frame.

Finally, in the upper right plot of figure 4 we display the Bell inequality violation
indicator ⟨B⟩max. The pattern in the figure closely resembles that shown for the concurrence
marker CLB and as expected, the violation is ubiquitous. In particular, Bell inequalities are
severely violated when high values of entanglement are present, i.e., at high energy in the
central region.6

6Note that we validated our results against ref. [18] finding excellent agreement for most of phase space
but some discrepancy in the forward region cos θ = 1, where the authors find a slight violation of Bell
inequalities, i.e. ⟨B⟩max > 2. However, as explicitly discussed above, we find that in the phase space region
in question the density matrix of the system is described by a pure separable state. Therefore, no Bell
inequality violation is expected, in agreement with figure 4. This property has been also verified with a
numerical simulation in MadGraph5_aMC@NLO, finding good agreement with the analytical calculation.
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Figure 5. For benchmark fixed collider energies, we show the expected value for the concurrence
as a function of cos θ in the SM. The bands are determined by the lower and upper bounds of the
concurrence, i.e., CLB and CUB. Left: e+e− →W+W−. Right: e+e− → ZZ.

In order to gain a better insight, it is useful to see how the density matrix decomposes
in terms of quantum states at particular phase space points. For instance, we find that the
diboson pair is produced at threshold in a pure and entangled quantum state, i.e.,

|Ψ(mW W = 2mW )⟩ = 1√
2

(
|+0⟩p + |0+⟩p

)
= |Ψ0+⟩p , (5.1)

where |s1s2⟩p = |s1⟩p ⊗ |s2⟩p and |s⟩p is the eigenstate of the spin operator in the direction
of the beam line p with eigenvalue s. This means that at threshold, the diboson pair is
produced in an entangled state, characterised by total spin 2 and spin component along
p equal to 1. However, despite the fact that this is an entangled state, the value of the
concurrence at threshold is 1, not reaching the maximal value of 2/

√
3. We find that this

quantum state is unaffected by the presence of new physics. Even when EFT effects are
taken into account, the quantum state of the system is still expressed by |Ψ0+⟩p. The reason
for that is that most of the contributions are identically zero at threshold and the ones that
are not, are simply shifting the absolute value of gW , resulting in an increased total cross
section but not affecting the spin correlation patterns. It turns out indeed that at threshold,
the only relevant coupling for the process is gW . Equally interesting is the situation at high
energy. In particular, in the central region, we find that the density matrix is characterised
by a mixed quantum state but dominated by the presence of a pure entangled quantum
state, which explains the high concurrence. Specifically, the density matrix can be defined
with respect to the k direction, the momentum of the W+ boson, in the following way

ρ(mW W → ∞, cos θ = 0) = p1 |1⟩ ⟨1| + p2 |2⟩ ⟨2| , (5.2)

with

|1⟩ = 0.64 |++⟩k − 0.64 |−−⟩k + 0.43 |00⟩k ,

|2⟩ = 0.3 |++⟩k − 0.3 |−−⟩k − 0.9 |00⟩k ,
(5.3)

and p1 ≈ 0.97 and p2 ≈ 0.03.
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Figure 6. The changes in the marker CLB is shown for a selection of operators and benchmark
Wilson coefficient values for the production of W+W− at a lepton collider. Only one operator
at the time is switched on. Top left: cφe = 0.1 TeV−2, top right: c(1)

φl = 0.1 TeV−2, bottom left:
cφW B = 0.25 TeV−2, bottom right: cW = 0.25 TeV−2.

On the other hand, in the collinear region, θ = 0, the concurrence goes to zero (see
figure 4) and we find that the diboson pair is produced in a separable state, i.e.

|Ψ(mW W → ∞, cos θ = 1)⟩ = |++⟩k . (5.4)

We now move to discuss the effects of dimension-6 operators on the spin density matrix.
In figure 6, we show the effects of a selected number of operators on the marker CLB. For
each operator we choose values that are currently allowed or at the boundary of the most
up to date global fit studies (see table 1 and for example refs. [37, 64]). In the context of
the EFT, here and in the following sections, we decide to limit ourselves mostly to show
the effects only for the CLB indicator, as a good representative metric for the entanglement
pattern across phase space. In some cases, we also show the purity for comparison. Note
however that the calculation performed and the expressions provided in the supplementary
material allow for a complete determination of the density matrix in the SMEFT and
consequently for the calculation of every quantum observable derived from it. We show the
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effects of the operators by turning on only one of them at the time, in order to display how
different modifications of the couplings alter the entanglement pattern. It is particularly
interesting to see that not only the effects of the operators are substantial for the value of
choice of the Wilson coefficients, but that the pattern of modification severely changes from
operator to operator. The ultimate reason for that has to be tracked down to the way they
induce shifts to the EW couplings defined in section 3. For instance, the operator Oll (not
displayed) is affecting the SM couplings in a universal way, inducing an overall rescaling
factor, and therefore does not affect the density matrix in any way, leaving the CLB marker
unchanged. On the other hand, the four Wilson coefficients shown in figure 6, cφe, c(1)

φl ,
cφW B and cW , alter the EW interactions in such a way that the density matrix of the final
state spins is sensibly affected. We can see for instance that a positive value of cφe, which
shifts the value of the right-handed coupling to the Z boson, induces an augmented level
of entanglement at high energy both in the central region and in the backward one. Very
different behaviour is instead produced by a positive c(1)

φl , which by shifting the left-handed
coupling to the Z boson decreases the value of the CLB marker in the same region. The
effects of the cφW B and cW operators is instead milder. In particular, one could have
potentially expected a big impact from the OW operator given that it induces the presence
of the non-SM Lorentz structure δλV , but that does not seem to be the case. Note that in
general, to an opposite sign value of the Wilson coefficient corresponds an opposite effect,
i.e., if for cW = 0.25 TeV−2 the high entanglement region increases, for cW = −0.25 TeV−2

we would see a decrease. Finally, it is worth noticing that all of the operators leave the
entanglement pattern in the forward region unchanged and have mostly sensible effects in
the high energy region, as one would have naively expected.

Finally, in figure 7, we depict the relative change of CLB (lower triangle) and the
purity (upper triangle) as a function of the Wilson coefficients, varying two coefficients at
a time and considering the fixed phase space point mW W = 500 GeV and θ = π/2. Here,
∆CLB and ∆P denote the difference between the marker CLB and the purity, respectively,
calculated within the SMEFT, and the SM values, CSM

LB = 1.0 and P SM = 0.94. The
SMEFT values are calculated including dimension-6 and dimension-6 squared contributions.
In addition, the contours depict the relative change in Ã, i.e., the relative change of the
differential cross-section with respect to the SM. Notably, we see that the spin-related
observables generally probe different parameter directions than the cross-section, potentially
offering complementary probes of NP. We stress that this is not an exclusive property of
quantum observables, but it is a feature of multivariate observables associated to the angular
distributions of the decay products. This could be of fundamental importance both for
discovery, enhancing the sensitivity to EFT corrections, and for characterisation in the event
of a clear deviation from the SM. Additionally, one can clearly see from the cW plots that
the spin-related observables display a resurrection of the interference, as expected, while
the differential cross-section contour lines are mostly dominated by quadratic corrections.

ZZ production. One key difference between ZZ and W+W− production is the fact that
they probe complementary couplings of the fermions to the diboson system. In particular,
in the case of ZZ, only the coupling of the fermions to the Z boson are relevant, while in the
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Figure 7. The relative changes in the marker CLB (lower triangle) and purity P (upper triangle)
compared to the SM values CSM

LB = 1.0 and P SM = 0.94 as a function of the Wilson coefficients cφe,
c

(1)
φl , cφW B and cW for W+W− production at a lepton collider, at mW W = 500 GeV and cos θ = 0.

The lines indicate the relative change of the cross section.

case of W+W− a more intricate coupling dependence is present, including the triple gauge
coupling. For Z pair production, the scattering amplitudes are completely determined by
the values of the vectorial and axial couplings to the Z boson in eq. (3.1).

In figure 8 we show the entanglement pattern in the SM. Contrary to the W+W− case,
we see a symmetry with respect to cos θ = 0, given that this time the final state has identical
particles and consequently the system exhibits a symmetry under parity transformations.
The plot in the upper left corner further indicates that, in contrast to W+W− production,
the majority of the phase space for ZZ production is characterised by a mixed quantum
state. High purity P is reached only in the high energy central region. The plot on the lower
left depicts the entanglement pattern in terms of the lower bound marker CLB. According
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Figure 8. Entanglement in the e+e− → ZZ channel in the SM. We show the lower bound CLB (bot-
tom left) and upper bound CUB (bottom right) on the concurrence C, the purity P (top left) as well
as the indicator ⟨B⟩max for Bell inequality violation (top right) as a function of the invariant mass
mZZ (or equivalently the collider energy) and the cosine of the angle between the positron and the
Z, in the centre of mass frame.

to that, the entanglement is expected to be high at high energy in the central region, but
quite low in the forward region. However, the picture gets more complicated if we look at
the right panel of figure 5, which displays bands for the concurrence, making use of both the
lower and the upper bound, for benchmark collider energies as a function of cos θ. In the
figure, we see that the lower bound goes towards zero in the collinear regime, but the upper
bound does not, giving us enormous uncertainty on the determination of the entanglement
with this approach. This is also confirmed by the plot in the lower right panel of figure 8
displaying the upper bound marker CUB across phase space. Almost all of the phase space
is characterised by CUB close to maximal. Finally, in the upper right plot of figure 8 we
report on the expected value for the Bell inequality violation marker ⟨B⟩max. In contrast
to the W+W− final state, the region of phase space with ⟨B⟩max > 2 is rather limited and
slight violations are only present in the high energy central region.
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Wilson coefficient values for the production of ZZ at a lepton collider. Only one operator at the
time is switched on. Left: cφD = 0.5 TeV−2, right: c(3)

φl = −0.25 TeV−2.

More information on the entanglement can be gathered by directly inspecting the
density matrix and its decomposition in terms of quantum states. In particular, we find
that at threshold the Z boson pair is produced in a mixed state

ρ(mZZ = 2mZ) = p1 |Ψ0+⟩p ⟨Ψ0+|p + p2 |Ψ0−⟩p ⟨Ψ0−|p , (5.5)

with p1 = 0.7 and p2 = 0.3 and

|Ψ0+⟩p = 1√
2

(
|+0⟩p + |0+⟩p

)
,

|Ψ0−⟩p = 1√
2

(
|−0⟩p + |0−⟩p

)
.

(5.6)

The two states are both fully entangled, but, given the fact that the density matrix is in a
mixed state, the value of the concurrence is not maximal.

On the other hand, at high energy the picture is different. In the central region, θ = π/2,
the diboson pair is produced in a pure spin-2 maximally entangled state

|Ψ+−⟩k = 1√
2

(|++⟩k − |−−⟩k) . (5.7)

This is fully consistent with what we observe in figure 8. The concurrence study based on
the lower and upper bounds is inconclusive in the forward region. On the other hand, by
inspecting the density matrix directly at θ = 0 in the high energy limit, we find that the Z
pair is produced in a mixed ensemble of separable quantum states, i.e.

ρ(mZZ → ∞, cos θ = 1) = p1 |++⟩p ⟨++|p + p2 |−−⟩p ⟨−−|p , (5.8)

with p1 = 0.7 and p2 = 0.3. We are therefore able to conclude that in the forward region,
the diboson pair is indeed not entangled as suggested by the CLB marker behaviour.
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Figure 10. The relative changes in the marker CLB (lower triangle) and purity P (upper triangle)
compared to the SM values CSM

LB = 0.86 and P SM = 0.83 as a function of the Wilson coefficients c(3)
φl ,

cφD, cφe and cφW B for ZZ production at a lepton collider, at mZZ = 500 GeV and cos θ = 0. The
lines indicate the relative change of the cross section.

As for the case of W+W− production, in figure 9 we show the effects of a selected
number of operators on the marker CLB. Since for ZZ production the dependence on
the couplings is considerably simpler, the only defining parameter of the entanglement
pattern is the balance between the vector and the axial coupling, or, to be more precise,
the ratio between the two. We observe that, aside for the operators that universally
rescale both couplings leaving the density matrix unchanged, the behaviour of all the
operators is phenomenologically identical. In the figure, we show the two possible deviating
patterns from the SM, choosing as benchmark Wilson coefficients cφD = 0.5 TeV−2 and
c

(3)
φl = −0.25 TeV−2. In the case of the former, the entanglement marker is augmented

almost everywhere, indicating that the Wilson coefficient shifts the couplings in such a
way that the dominant coupling prevails a bit more and the density matrix is slightly
“less mixed”. On the other hand, for c(3)

φl = −0.25 TeV−2 we observe a decrease of the
entanglement across the board. Note that at variance with W+W− production, the effects
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close to threshold are a bit more pronounced. We stress again that none of these behaviours
is pertinent to a specific operator, but both the increase and decrease of entanglement can
be produced by any of the operators by switching on the corresponding Wilson coefficient
(with negative and positive values for opposite effects). Finally, in figure 10 we show the
relative change of CLB and the purity as a function of a selection of Wilson coefficients,
considering the fixed phase space point mZZ = 500 GeV and θ = π/2. As for the case of W
pair production, the complementarity between differential cross section and spin-related
observables is self-evident. Additionally, it is interesting to see that purity and CLB probe
the same direction in the Wilson coefficient parameter space, indicating that there is a
strong correlation between the two observables at the spin density matrix level.

5.2 Hadron collider

We now present results for a hadron collider, specifically for a proton collider corresponding
to the LHC in Run 2. Studying the processes at LO, the relevant channels are the quark
annihilation ones. At the level of the hard scattering, the kinematic dependence and therefore
the density matrices are fairly similar to the corresponding ones at a lepton collider. The
main differences are given by the different charges, which induce different couplings to the
EW bosons. We find these effects to be relevant but not particularly disruptive of the
entanglement pattern. In particular, one can see that the explicit expressions for the density
matrix in the benchmark regions analysed in the previous section are fairly similar.

What really changes the picture in a proton collider are the contributions from different
partonic channels, weighted by the corresponding parton luminosity. Also, since we are now
colliding identical particles, the system will be invariant under the transformation θ → π+θ,
showing therefore a symmetry with respect to cos θ = 0. This can also be understood at the
level of the R-matrix from the symmetrisation in eq. (2.26). As a general remark, the most
evident effect of having to sum over the different partonic channels is that the presence of
entanglement is considerably diluted.

W W production. As in the case of a lepton collider, the production of a pair of W
bosons is the dominant diboson production channel. The high cross section makes it an
ideal candidate to probe the EW interactions and potentially uncover signs of NP in the
tails of the distributions. With this aim, the study of the spin density matrix can offer a
complementary approach which could be helpful to disentangle degeneracies and characterise
potential signals.

In the bottom panel of figure 11, we show the value of the marker CLB across phase space
for the two independent channels in proton collisions, u ū→W+W− and d d̄→W+W−.
As opposed to the lepton collider, we decide to show results up to 2 TeV in invariant mass.
The physics regulating the production of W bosons is fairly similar for all initial states and
the only differences are given by the different couplings the particles have with the Z boson,
i.e. the s-channel diagram. As a consequence, the balance between the right-handed and
left-handed couplings of the various initial states is slightly different and this translates
into a slight difference for the density matrix. Note that the mirroring of the uū channel
is fictitious and simply given by the conventional choice of the angle between the anti-up
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Figure 11. The lower bound for the concurrence CLB in the partonic channels as a function of
the invariant mass mV V of the diboson pair and the cosine of the angle between the q̄ and the
W+ (or Z for ZZ), in the centre of mass frame, in the SM. Bottom: W+W− production in the
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Top: ud̄→ ZW+ production.
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Figure 12. Entanglement in the pp → W+W− channel in the SM. We show the lower
bound CLB (bottom left) and upper bound CUB (bottom right) on the concurrence C, the pu-
rity P (top left) as well as the indicator ⟨B⟩max for Bell inequality violation (top right) as a function
of the invariant mass mW W and the cosine of the angle between the proton and the W+, in the
centre of mass frame.

quark and the W+. In fact, in the case of the positron and the d quark, that angle is the
one between the initial and final state particles that share the same-sign charge, while in
the uū case it is the angle between the opposite charge particles.

In the lower panel of figure 12, we plot the lower limit of the concurrence CLB for the
parton luminosity weighted combination of the channels, as described in eq. (2.26). As
expected, the result is symmetric with respect to cos θ = 0, given the symmetrisation over
the polar angle. It is interesting to observe the strong dilution of the entanglement pattern,
which is caused precisely by summing over the initial state and considering both qq̄ and
q̄q channels. This can be intuitively understood by looking at the plots of the individual
channels, where we can observe that the two collinear regions, cos θ = 1 and cos θ = −1 are
characterised by opposite behaviours and therefore the high entanglement of one region
is washed out by the other when summing over the two different polar angles in eq. (2.26).
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Figure 13. The changes in the marker CLB is shown for a selection of operators and benchmark
Wilson coefficient values for W+W− production at a proton collider. Only one operator at the
time is switched on. Top left: cφu = 0.05 TeV−2, top right: cφd = 0.05 TeV−2, bottom left:
c

(3)
φq = 0.05 TeV−2, bottom right: cW = 0.03 TeV−2.

Because of this, the diboson pair produced will mostly be in a mixed state, and a high level
of entanglement will only be found in the central region and at high energy, around θ = π/2.

As for the lepton collider case, in figure 12 we also report on the value of the quantum
observable indicators for the purity P , the Bell inequality violation marker ⟨B⟩max and the
upper bound on the concurrence CUB. The latter is not bringing much information to the
table, since it shows values of order 1 across phase space. On the other hand, from the
purity plot we learn that the density matrix is characterised by a highly mixed state and it
goes towards a purer state in the high-energy central region. We find that this is a common
feature across all proton collider processes, mostly an effect of the state mixing dictated
by eq. (2.26). Finally, in the upper right plot of figure 12 we display the marker for Bell
inequality violation, which follows closely the pattern indicated by the marker CLB, sign
once again that states violating Bell inequalities are a subset of entangled states.

We now move on to the study of the EFT effects to the density matrix of the W pair
produced in a proton collider. In figure 13 we display the changes in the CLB marker for
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∆Ã
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Figure 14. The relative changes in the marker CLB (lower triangle) and purity P (upper triangle)
compared to the SM values CSM

LB = 0.73 and P SM = 0.64 as a function of the Wilson coefficients cφd,
c

(3)
φq , cφu and cW for W+W− production at a proton collider, at mW W = 500 GeV and cos θ = 0.

The lines indicate the relative change of the cross section.

some benchmark Wilson coefficients. As can be seen in the two top figures, the effects of
cφu and cφd are very similar, enhancing the right-handed coupling of the Z boson with the
quarks and consequently decreasing the level of entanglement at high energy. The different
intensity of the two operators has to be traced back to the different weight at the level
of the PDFs, i.e., the uū luminosity is higher than the dd̄ one. As expected, switching on
the c(3)

φq , which instead modifies the left-handed coupling to the Z of the d-quarks and the
coupling to the W boson of both u and d, has the opposite effect, increasing the value
of the concurrence in the central region where we see the emergence of maximal level
of entanglement. A similar effect is found for the c−φq Wilson coefficient (not displayed)
which modifies the left-handed coupling of the u quarks with the Z boson. Finally, in the
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lower-right plot in figure 13 we show the effects of the OW operator. Interestingly, we find
that the presence of the pure BSM coupling δλV can be quite disruptive, especially at high
energy, inducing a decrease of the level of entanglement. The effects of the cφD and cφW B,
which modify the SM TGCs, are found to be sensibly smaller in this case. We observe
that the EFT effects are mostly in the central region while the collinear regions keep being
characterised by a substantial absence of entanglement.

Finally, in figure 14, we depict the relative change of CLB (lower triangle) and the
purity (upper triangle) as a function of the Wilson coefficients, varying two coefficients
at a time and considering the fixed phase space point mW W = 500 GeV and θ = π/2.
Contrary to the case of a lepton collider, we do not find that we gain much from the chosen
spin-related observables, i.e., the probed directions in parameter space are very similar to
the ones probed by the differential cross section. This has to be traced back to the fact that
in a proton collider we sum over the different partonic channels and in doing so we lose
sensitivity to the spin related Fano coefficients. The quantum spin observables are indeed
highly dependent on the Fano coefficient Ã, which controls the abundance of a channel over
the other, and therefore affects the spin density matrix of the total system. We verified
indeed that if one were to single out a specific channel (for example only uū and its ūu
counterpart), one would find results much more similar to those observed in figure 7 for the
case of a lepton collider.

ZZ production. We now discuss ZZ production at a proton collider. In the middle
panel of figure 11, we show the entanglement pattern for the case of quark annihilation and
in figure 15 their combination in a proton collider (lower left plot). It is interesting to notice
that the quark channels present a different pattern of entanglement with respect to the lepton
collider, which is caused by the simple fact that the value of the ḡV coupling depends on the
charge of the particle and is sensibly different in the three cases, i.e. ḡV ≈ −0.027, 0.1,−0.17
for e, u and d respectively. This is non-trivial as one could have naively expected the
patterns to be the same given that the EW couplings involved are the same. Also in the case
of a proton collider, the general feature remains that high entanglement in ZZ production
can be found at high invariant mass and in the central region. Once again the plot of
the upper bound marker CUB does not deliver any information, as the indicator reaches
close to maximal values everywhere in phase space. The plot of the Bell violating marker
⟨B⟩max in the upper right corner of figure 15 confirms that the density matrix in the central
high-energy region is characterised by highly entangled quantum states.

Moving on to the EFT effects, as we already discussed in the corresponding section on
ZZ production at a lepton collider, the only possible modifications are given by the shift
of the vectorial and axial couplings to the Z boson, in particular from operators that spoil
the balance between the two. We already saw that the effects are more subtle compared
to the case of W+W− production. However, rather surprisingly we observe that in the case
of the proton collisions there is even more sturdiness towards EFT effects. For values of the
Wilson coefficients within the current bounds coming from global fits, no visible effect on the
pattern of entanglement is present. For this reason we believe that Z pair production is the
least promising process to probe dimension-6 effects at the level of the spin density matrix.
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Figure 15. Entanglement in the pp→ ZZ channel in the SM. We show the lower bound CLB (bottom
left) and upper bound CUB (bottom right) on the concurrence C, the purity P (top left) as well as
the indicator ⟨B⟩max for Bell inequality violation (top right) as a function of the invariant mass
mZZ and the cosine of the angle between the proton and the Z, in the centre of mass frame.

W Z production. Contrary to the previous diboson production modes, WZ cannot be
produced at a e+e− collider without the emission of additional charged particles. At a
proton collider, only one relevant partonic channel exists, i.e., ud̄→W+Z and the charge
conjugated one. In the following we will focus on W+Z production as representative of
the two processes, which can distinguished in experiments. In this process, the relevant
couplings are those of the W and Z to the fermions, as well as the triple gauge coupling.
Note that in the case of WZ, at the partonic level depicted in the top panel of figure 11,
the expressions for CLB and CUB are identical (in the SM), indicating that CLB is precisely
the value of the concurrence and not just a lower bound. This is ultimately due to the fact
that the trace of ρ2 is equal to 1 (the system is a pure state everywhere in phase space)
and therefore the expressions in eqs. (2.11) and (2.13) coincide. The statement does not
necessarily hold true anymore in the presence of modified interactions, as we verified for the
dimension-6 operators considered in this work. However, this property is not maintained
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Figure 16. Entanglement in the pp→W+Z channel in the SM. We show the lower bound CLB (bot-
tom left) and upper bound CUB (bottom right) on the concurrence C, the purity P (top left) as well
as the indicator ⟨B⟩max for Bell inequality violation (top right) as a function of the invariant mass
mW Z and the cosine of the angle between the proton and the W+, in the centre of mass frame.

once the symmetrisation of the θ angle in eq. (2.26) is performed and consequently the
density matrix for proton collisions is ultimately highly mixed, as can be seen in the upper
left plot in figure 16. To improve the purity, one could consider events boosted in the
forward/backward regions and try to infer on a statistical basis the directions of the quark
and anti-quark in the initial states.

In figure 11 (top plot) we show the CLB pattern for the individual channel, while
the proton collider one is displayed in the bottom left plot in figure 16, where the main
difference is due to the fact that we have to take into account both qq̄ and q̄q initial states,
cf. eq. (2.26). We notice once again, that the entanglement is much lower in the proton
collider with respect to the individual channel. Surprisingly, we find high entanglement
at threshold as well as for cos θ ≈ ±0.5, while in the central region, for cos θ = 0, the
value of the concurrence is low. The overall pattern differs substantially with respect to
the previously analysed diboson processes. As a matter of fact, as can be seen from the
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Figure 17. The changes in the marker CLB is shown for a selection of operators and benchmark
Wilson coefficient values for W+Z production at a proton collider. Only one operator at the time is
switched on. Left: c(3)

φq = 0.03 TeV−2, Right: cW = 0.01 TeV−2.

marker ⟨B⟩max the violation of Bell inequalities is really weak even at high energy, mostly a
consequence of the fact that the density matrix is in a high mixture of states (see upper left
plot in figure 16).

With respect to the quantum state produced by the ud̄ channel, we find that at
threshold, the density matrix is described by a pure state

|Ψ(mW Z = mW +mZ)⟩ ≈ 0.75 |0+⟩p + 0.66 |+0⟩p . (5.9)

Notably, the quantum state is not symmetric under label exchange, as a consequence of the
fact that we are not dealing any more with pairs of particles sharing the same mass and
interactions. At high energy, in the collinear limit θ = 0, the density matrix is described by
a pure separable state, i.e., |++⟩p. On the other hand, in the central region, we still have a
pure but partially entangled state

|Ψ(mW Z → ∞, cos θ = 0)⟩ ≈ 0.164 |++⟩k − 0.973 |00⟩k − 0.164 |−−⟩k . (5.10)

Finally, we discuss the effects of the dimension-6 EFT operators. We point out that,
for this specific process, we set mW = mZ when computing the EFT corrections. This
approximation considerably speeds up the computation, and given that higher dimensional
operator corrections are mostly relevant at high energy, we expect the difference mZ −mW

to be negligible. We have verified the former statement for a subset of the operators, finding
that the naive expectation holds true.

In figure 17 we display the changes in the CLB marker for some benchmark Wilson
coefficients. We find that the density matrix is particularly sensitive to higher dimensional
operators for this process, even within the current bounds set by global EFT fits. In
particular in the plot on the right, we observe a strong effect coming from the presence of
the Wilson coefficient cW , which is unique in its kind inducing the BSM coupling δλV . The
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ÃSM

< 0

−30 % 0 % 30 %
∆CLB/CSM

LB

−30 % 0 % 30 %
∆P/P SM
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compared to the SM values CSM

LB = 0.38 and P SM = 0.55 as a function of the Wilson coefficients cW

and c
(3)
φq for WZ production at a proton collider, at MW Z = 500 GeV and cos θ = 1/2. The lines

indicate the relative change of the cross section.

effect of this operator is to increase the entanglement in the central region at high energy,
indicating that the dominant configuration in that phase space region is enhanced by the
presence of the operator. As previously discussed, the OW operator is of particular interest
from an EFT perspective and we find that the W+Z final state seems to be the best probe
among the diboson final states with respect to the spin density matrix. In the plot on the
left in figure 17 we instead show the changes coming from a modification of the left-handed
coupling to the EW bosons by the O(3)

φq operator. The effect in this case is opposite and
the value of the CLB marker is generally decreased in the high energy phase space region,
indicating that the two operators enhance different spin configurations. We find that other
operators affecting the process (O(1)

φq , OφD and OφW B) have close to negligible effects on
the entanglement pattern when considering non-excluded values of the Wilson coefficients.
We therefore do not show the corresponding plots.

To conclude the section, in figure 18 we display the relative change of CLB (left) and the
purity (right) as a function of the Wilson coefficients in two-dimensional planes. Note that
contrary to previously discussed processes, here the phase space point chosen is different
as in the central phase space region θ = π/2, low values of entanglement are found and
specifically for mW Z = 500 GeV, the value of CLB is equal to 0. We therefore opt for showing
plots for cos θ = 1/2. Once again, the added value of the spin observables in searches for
new heavy physics is evident and the plot displays a significant sensitivity both at the
cross section level and at the level of the spin density matrix, with deviations from the SM
predictions as big as 30 % for values of the Wilson coefficients well within the current limits
from global fits.
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6 Conclusion and future prospects

In this work, we have explored the sensitivity of quantum observables to the strength and
structure of couplings entering diboson production, both in the context of the SM and
of the SMEFT. Our main objective was to gauge the power of the quantum spin density
matrix and related observables to probe the existence of NP.

After setting up the formalism, we studied the behaviour of scattering amplitudes in
the high energy regime, where longitudinal polarisations dominate the production mode,
assessing the consequences for the spin density matrix. In particular, we exploited the
known fact that spin observables allow to study effects that are subdominant at the level of
single particle distributions, and depend on the interference between higher-dimensional
operators and the SM. These observables display a sensitivity to deviations from the SM
predictions in the high-energy tails of the distributions, which will be further explored with
Run-3 and the HL-LHC in the coming decade.

The main results of our study are reported in section 5, where different processes have
been analysed. We have considered both lepton and proton colliders, finding that the former
offer a much cleaner setup for spin density matrix probes. This is mostly due to the fact
that in a proton collider the quantum state of the system is the incoherent sum of different
partonic channels and therefore tends to be mixed. Nonetheless, considerable sensitivity to
NP is also found at proton colliders, which, featuring higher centre of mass energies, can
take full advantage of the energy growth of the dimension-6 amplitudes.

In general, we find that the ZZ production is the least interesting process when it comes
to NP sensitivity, as the phenomenology is completely determined by only two possibly
anomalous couplings (the right-handed and the left-handed coupling to the Z boson) and
the dimension-6 operators do not introduce new Lorentz structures. We note, however, the
potential interest in studying the effects of the neutral TGC which arise at dimension-8.
In this case, spin-observables could help in gaining sensitivity, especially because of the
possibility to fully reconstruct the final state, something which is experimentally more
challenging for final states involving W bosons. On the other hand, we find that WW

and WZ production show a rather large sensitivity to heavy NP effects in the spin density
matrix already at dimension-6 with significant changes expected in the entanglement pattern
across phase space. For example, interference effects due to the triple gauge operator OW

are clearly identified by quantum observables.
Our results motivate an experimental feasibility study for performing the detailed

quantum tomography of the four-fermion final states arising from V V production in the
SMEFT framework at the LHC and at future lepton colliders. Establishing whether phase
space regions characterised by quantum correlations are more sensitive to NP than classically
correlated ones requires a more in-depth investigation. Among the open questions, we
can also mention the identification of optimal angular observables and the assessment of
possible decoherence effects. Another fascinating research direction is the one related to
the connection between regions of maximal/minimal entanglement and symmetries [2].
Specifically, studying whether constraints on the Wilson coefficients could be imposed on
theoretical grounds from QI principles is a captivating prospect.
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