Supporting Information

Dynamic mapping of electrochemiluminescence reactivity in space: application to bead-based assays
Dongni Han, ${ }^{\text {a,b }}$ Danjun Fang, ${ }^{\text {b }}$ Giovanni Valenti, ${ }^{\text {c }}$ Francesco Paolucci, ${ }^{\text {c }}$ Frédéric Kanoufi, ${ }^{\text {d }}$ Dechen Jiang, ${ }^{\text {, e }}{ }^{e}$ Neso Sojic*, ${ }^{\text {, }}$
${ }^{a}$ Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607, Pessac, France
${ }^{b}$ School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211126, China.
${ }^{c}$ Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
${ }^{d}$ Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
${ }^{e}$ State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China

Corresponding authors: dechenjiang@nju.edu.cn; sojic@u-bordeaux.fr

Table of contents

1. Supplementary figures S2

2.Finite element simulation details and parameters S4
3. Supplementary Video S23

1. Supplementary figures

Figure S1. Variations of the current (black curve) and of the ECL signal (red curve) recorded during a cyclic voltammogram experiments performed with a GC electrode on which $12-\mu \mathrm{m}$ labelled beads were deposited. The solution was PBS containing 100 mM TPA (pH 7.4).

Figure S2. Dynamic ECL profiles extracted from a $12-\mu \mathrm{m}$ bead in top (a) and sideview (b) configurations within the first second of the anodic treatment. ECL was generated by imposing a constant potential of 1.4 V with a GC electrode in a PBS solution containing $100 \mathrm{mM} \mathrm{TPA}(\mathrm{pH} 7.4)$.

Figure S3. Variations of the height of ECL emission layer with time extracted from dynamic ECL imaging from a $12-\mu \mathrm{m}$ bead in top-view configuration.

Figure S4. Evolution of the current upon the imposition of a constant potential of 1.4 V at $\mathrm{t}=0 \mathrm{~s}$ (dashed blue line) to a GC electrode in a PBS solution containing 100 mM TPA (pH 7.4).

2. Finite element simulation details and parameters

The reactions simulated with finite element here were fully described in the main text see scheme 1. For the simulation software COMSOL Multiphysics 5.5 was used (package "Transport of Diluted Species" and "Surface Reactions"). The heterogeneous electron-transfer reactions were simulated in the boundary (flux electrode section) since those occur at the electrode surface. The reaction with the $\mathrm{Ru}(\mathrm{bpy}) 3^{2+}$ attached to the beads were simulated in the surface reaction section. Otherwise chemical reactions are considered in the subdomain settings. Dependent variables are TPA (named A in the simulation), TPA° (named E in the simulation), $\mathrm{TPA}^{\circ+}$ (named I in the simulation), HTPA (named C in the simulation), other products (named X in the simulation), $\mathrm{H}+$ (named H in the simulation) for the transport diluted species section and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$
(named G in the simulation), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{+}$(named G1 in the simulation), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+*}$ (named F in the simulation), and photons (named L in the simulation).

Simulation details are described below.

1.1 Global Definition

Table S1. Global definition: Simulation parameters

Name	Expression	Value	Description
alpha	0.5	0.5	electron transfer coefficient
F	96485	96485	Faraday constant [C mol-1]
R	8.314	8.314	Gas constant [J mol-1 K-1]
T	298.15	298.15	temperature [K]
fa	38.92	38.92	F/RT [V-1]
E0	0.9	0.9	forward TPA oxidation
D	$5 \mathrm{e}-6\left[\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right]$	$5 \mathrm{E}-10 \mathrm{~m}^{2} / \mathrm{s}$	Diffusion coefficient for TPA
DH	$5 \mathrm{e}-5\left[\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right]$	$5 \mathrm{E}-9 \mathrm{~m}^{2} / \mathrm{s}$	Diffusion coefficient for H
k0	$0.01[\mathrm{~cm} / \mathrm{s}]$	$1 \mathrm{E}-4 \mathrm{~m} / \mathrm{s}$	heterogeneous ET const [ms-1]
Na	6.022 e 23	6.022 E 23	avogadro number[mol-1]
n	1	1	n° of electrons exchanged
Ea	1.2	1.2	anodic switching potential [V]
k3	3.5e3[1/s]	3500 1/s	forward constant for deprotonation of RCtpa
k3	1e6[1/(s*M)]	$1000 \mathrm{~m}^{3} /(\mathrm{s} \cdot \mathrm{mol})$	backward constant for deprotonation of RCtpa
k1	1e7[1/(s*M)]	$10000 \mathrm{~m}^{3} /(\mathrm{s} \cdot \mathrm{mol})$	pka of Ctpa
k1_	$8 \mathrm{e}-3[1 / \mathrm{s}]$	$0.0081 / \mathrm{s}$	pkb of TPA
H0	1e-7[M]	$1 \mathrm{E}-4 \mathrm{~mol} / \mathrm{m}^{3}$	ph 7
E0d	-1	-1	
k5	1e6[1/M/s]	$1000 \mathrm{~m}^{3} /(\mathrm{s} \cdot \mathrm{mol})$	
k_5	$1 \mathrm{e}-3$	0.001	
kem	1e8[1/s]	1E8 1/s	constant for emission
DRu	$5 \mathrm{e}-10\left[\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right]$	$5 \mathrm{E}-14 \mathrm{~m}^{2} / \mathrm{s}$	

Name	Expression	Value	Description
C 0	0	0	
Dmin	$1 \mathrm{e}-50$	$1 \mathrm{E}-50$	
dC	0.000001	$1 \mathrm{E}-6$	
dt	0.1	0.1	
A 0 t	$0.180[\mathrm{M}]$	$180 \mathrm{~mol} / \mathrm{m}^{3}$	Initial concentration of TPA
Ru 0	1	1	Initial concentration of Ru
K	$\mathrm{k} 1 / \mathrm{k} 1_{-}$	$1.25 \mathrm{E} 6 \mathrm{~m}^{3} / \mathrm{mol}$	
CCO	$\mathrm{A} 0 \mathrm{t} /(1+1 /(\mathrm{K} * \mathrm{H} 0))$	$178.57 \mathrm{~mol} / \mathrm{m}^{3}$	
A 0	$\mathrm{~A} 0 \mathrm{t}-\mathrm{CCO}$	$1.4286 \mathrm{~mol} / \mathrm{m}^{3}$	
Rb	$6[\mathrm{um}]$	$6 \mathrm{E}-6 \mathrm{~m}$	bead radius

Table S2. Global definition Variables

Name	Expression	Unit	Description
kI	k0*exp(-alpha*fa*(Ea - E0))	m / s	forward constant for TPA oxidation
kA	k0*exp((1-alpha)*fa*(Ea - E0))	m / s	backward constant for TPA oxidation
kX	k0*exp(-alpha*fa*(Ea - E0d))	m / s	forward constant for TPA radical oxidation
kE	k0*exp((1-alpha)*fa*(Ea - E0d))	m / s	backward constant for TPA radical oxidation

1.2 Model

Table S3. Model, Definitions Variables

Name	Expression	Unit	Description
t1	0.1		""
t2	0.2		""
dt	0.01		""
f1	flc2hs(t-t1, dt)		""
f2	flc2hs(t-t2, dt)		""
r_k1	$\left(-k 1^{*} \mathrm{~A}^{*} \mathrm{H} 0+\mathrm{k} 1_{-}^{*} \mathrm{C}\right)$	$\mathrm{mol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)$	reaction
r_k3	(k3_*I - k3*E*H0)	$\mathrm{mol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)$	reaction
fs_E	k5*s_G*E	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	flux on beads
fs_I	k5*s_G1*I	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	flux on beads

Name	Expression	Unit	Description
r_G	(-fs_E+kem2*s_L)	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	reaction on beads
r_G1	$\left(-f s_{-} I+f s_{-} E\right)$	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	reaction on beads
r_L	(-kem2*s_L + fs_I)	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	reaction on beads
r_F	(+kem2*s_L)	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	reaction on beads
kem2	kem*1	1/s	
fe_A	$\left(-k A^{*} A+k I * I\right)$	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	flux on electrode
fe_E	$\left(-k E^{*} E^{*}(E>=0)\right)$	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	flux on electrode
fe_I	$(-k I * I+k A * A)$	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	flux on electrode
fe_X	$\left(k E^{*} E^{*}(E>=0)\right)$	$\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$	flux on electrode
r_kd	k1*I*E*(E> ${ }^{\text {a }}$)	$\mathrm{mol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)$	

1.3 Geometry

Figure S5. Model geometry. The model geometry used for the simulation is reported in the figure.

1.4 Transport of diluted species

Under transport diluted species: Diffusion, Axial Symmetry, No flux, Initial values, Reaction, Bulk, Flux electrode, Flux beads

Table S4. Diffusion domain 1-3

Description	Value
Diffusion coefficient A	$\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$
Diffusion coefficient E	$\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$
Diffusion coefficient I	$\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$
Diffusion coefficient C	$\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$
Diffusion coefficient X	$\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$
Diffusion coefficient H	$\{D H, 0,0\},\{0, D H, 0\},\{0,0$, $D H\}$

Figure S6. Model Domains: Axial symmetry. Blue line represent the axial symmetry in the model domains

No flux

Figure S7. Model Domains: No flux. Blue line is the no flux domain in the model

Initial values

Figure S8. Model Domains: Initial values. Blue area is the model domains where initial values are defined.

Reaction

Figure S9. Model Domains: reactions. Blue area is the model domains where the chemical reactions are defined.

Bulk

Description	Value
Species A	A0t -C
Species E	CO
Species I	C 0
Species C	$(\mathrm{AOt}) /(1+1 /(\mathrm{K} * \mathrm{H} 0))$
Species X	CO
Species H	HO
Concentration	$\{\mathrm{AOt}-\mathrm{C}, \mathrm{CO}, \mathrm{CO},(\mathrm{AOt}) /(1+1 /(\mathrm{K} * \mathrm{H} 0)), \mathrm{CO}, \mathrm{H} 0\}$

Figure S10. Model Domains: Bulk. Blue line is the bulk of the solution in the model domains

Flux electrode

Description	Value
Flux type	General inward flux
Species A	fe_A
Species E	fe_E
Species I	fe_I
Species C	0
Species X	fe_X
Species H	0
	$\left\{\mathrm{fe}_{2} \mathrm{~A}, \mathrm{fe} \mathrm{fe}_{2}, \mathrm{fe}, \mathrm{I}, 0, \mathrm{fe} _\mathrm{X}, 0\right\}$

Figure S11. Model Domains: flux electrode. Blue line is the electrode surface where electrochemical reactions occurs in the model

Flux beads

Figure S12. Model Domains: flux beads. Blue line is the beads surface

Under surface reaction: Surface proprieties, Axial Symmetry, No flux, Initial values, Reaction

Description	Value
Surface material	None
Diffusion coefficient G	$\{\{$ Dmin, 0,0$\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}$
Diffusion coefficient G1	$\{\{$ Dmin, 0,0$\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}$
Diffusion coefficient F	$\{\{D \min , 0,0\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}\}$
Diffusion coefficient L	$\{\{D m i n, 0,0\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}\}$

Figure S13. Surfaces reactions. Blue line is the beads surface where the luminophore is bound

Axial Symmetry

Figure S14. Surfaces reactions: axial symmetry. Blue points are axial symmetry

No flux

Figure S15. Surfaces reactions: Noflux

Initial values

Figure S16. Surfaces reactions: Initial value

Reaction

Figure S17. Surfaces reactions: Reactions. Blue line is the beads surface where the
luminophore reactions occurs
1.6 Mesh

Size:

Figure S18. Model mesh: mesh size

Free triangular:

Figure S19. Model mesh: Free triangular

Boundary layers:

Figure S20. Model mesh: Boundary layers

1.7 Study

Time-dependent solution has been optimized with different solution times in the time range: very fine when the potential is applied which then gradually increases when the
potential remains constant.
Table S5. Time dependent solver

Times	Unit
$010^{\wedge}\{$ range $(-7,1,-2)\}$ range $(0.05,0.05,1)$	s

Description	Value
Times	
Tolerance	User controlled
Relative tolerance	0.1

3. Supplementary Video

Video S1. Top-view ECL microscopy of a single bead recorded when imposing a constant potential of 1.4 V at $\mathrm{t}=1 \mathrm{~s}$ (dashed blue line) to a GC electrode in a PBS solution containing 100 mM TPA (pH 7.4). Exposure time: 100ms.

Video S2. Simulation of the ECL signal emitted by a single bead in the side-view configuration.

Video S3. Simulation of the ECL signal emitted by a single bead in the top-view configuration.

