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Abstract
We consider the problem of recovering an unknown k-factor, hidden in a
weighted random graph. For k = 1 this is the planted matching problem, while
the k = 2 case is closely related to the planted traveling salesman problem. The
inference problem is solved by exploiting the information arising from the use
of two different distributions for the weights on the edges inside and outside
the planted sub-graph. We argue that, in the large size limit, a phase transi-
tion can appear between a full and a partial recovery phase as function of the
signal-to-noise ratio. We give a criterion for the location of the transition.

Keywords: inference, graph theory, cavity method, disordered systems, belief
propagation, planting

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of recovering a hidden structure (the signal) in a graph on the basis of the obser-
vation of its edges and the weights on edges and vertices appears in many, diverse contexts.
Community detection [1], group testing [2], certain types of error correcting codes [3], particle
tracking [4] are some example of statistical inference problems formulated on graphs in which
some underlying pattern has to be identified. The feasibility of the hidden structure recovery
depends, of course, on the amount of ‘noise’ in the problem. It turns out that, in the limit
of large system sizes, sharp recovery thresholds with respect to the signal-to-noise ratio can
appear. These sharp thresholds separate no recovery phases (in which no information on the
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signal is accessible), partial recovery phases (in which an output correlated with the signal can
be obtained) and full recovery phases (in which the signal is recovered with a vanishing error).

These algorithmic transitions, analogous to phase transitions in physics, can be of different
orders (depending on the number of derivatives of the order parameter that exist). The order of
the transition seems to have important algorithmic implications. First order transitions, in par-
ticular, have been related to the presence of a computationally hard phases [1]. In the stochastic
block model on sparse graphs, for example, a phase transition between a no-recovery phase and
a partial recovery phase is found [1]. In [5, 6] it has been shown that a partial to full recovery
transition can also appear in the same model if denser topologies are considered. A partial to
full recovery first order transition appears in low-density-parity-check error correcting codes
[3], where the target is to correctly recover a code-word. Somewhat uncommonly, a partial to
full recovery infinite order phase transition has been recently found in the planted matching
problem, in which a hidden matching has to be detected in a weighted random graph [7–9].
This is a new type of a phase transition found in inference problems that has been put in rela-
tion with the presence of instabilities of the belief propagation (BP) fixed points. It is thus of
interest to investigate whether it appears in other problems than the planted matching.

In this paper we study a generalization of the planted matching problem—the so-called
planted k-factor problem. A k-factor of a graph G is a spanning subgraph with fixed degree
k, i.e., a spanning k-regular graph. In this problem, the (weighted) k-regular graph is hidden
(planted) by adding new weighted edges to it. The weights of the planted and non-planted edges
are random quantities with different distributions. The goal is to recover the planted k-factor
knowing k and the two weight distributions.

In analogy with percolation being continuous while the appearance of a k-core is a discon-
tinuous (first order) phase transition [10], we may have anticipated that the transition in the
k-factor problem will be of a different type than in the planted matching. We will show instead
that the planted k-factor problem manifests a partial-full recovery continuous phase transition
akin the one in the planted matching, and we will give a criterion for the threshold between the
two phases.

The planted k-factor problem is related to many interesting inference problems. For
example, it shares some similarity with the problem of structure-detection in small-world
graphs [11]. In the latter case, a k-regular ring lattice is hidden in a (unweighted) random
graph by a rewiring procedure. Full recovery is possible depending on the parameters of the
rewiring process.

The planted one-factor problem corresponds to the aforementioned planted matching
problem, introduced in [4] as a model for particle tracking. In this model, a weighted perfect
matching, hidden in a graph, has to be recovered. In reference [4] the problem was studied
numerically for a particular case of the distribution of weights. The results suggested the
existence of a phase transition between a full recovery phase and a partial recovery phase.
More recently, Moharrami and coworkers [7] rigorously analyzed another special setting of the
problem assuming that G is the complete graph and the weights are exponentially distributed,
and proved the existence of a partial/full recovery phase transition. The results of reference [7]
have been generalized to sparse graphs and general weight distributions in reference [8], via
heuristic arguments based on a correspondence between the problem and branching random
walk processes. A proof of the results in [8] has been recently given in [9].

The planted two-factor problem is a relaxation of the planted traveling salesman problem
[12]. In this problem, a unique, hidden Hamiltonian cycle visiting (exactly once) all vertices of
a graph has to be recovered. In the planted two-factor problem, instead, the planted subgraph
is more generally given by a set of cycles. Solving the two-factor problem can be, however,
informative on a hidden Hamiltonian cycle. In reference [12] the Hamiltonian cycle recovery
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problem has been studied on the complete graph. Therein, a sufficient condition for the full
recovery of the planted Hamiltonian cycle has been derived. Moreover, it is proved therein
that, within the full recovery phase, the solution obtained searching for a two-factor coincides
(with high probability and in the large size limit) with the hidden Hamiltonian cycle.

In this paper, we generalize the available results for the planted one-factor problem and
planted two-factor problem to the general planted k-factor problem with arbitrary distributions
for the edge weights and including sparse graphs in the analysis. Unlike reference [11], we
will assume no prior knowledge on the structure of the planted k-factor (except for the degree
of its vertices). Our approach, based on the standard cavity method and the corresponding BP
equations [13], allows us to obtain, at the level of rigor of theoretical physics, a criterion for
the full recovery of the planted subgraph in the large size limit of the problem. The threshold
criterion is derived studying the recursive distributional equations (RDE) corresponding to the
cavity equations. It turns out that a ‘drift’ in their solutions can appear under iteration. If this
is the case, the full-recovery solution is the only stable one, and full recovery is possible. The
study of such drift has been tackled in analogy with the analysis in reference [8] for the k = 1
case, and with the phenomenon of front propagation for reaction-diffusion equations [14–18].
We give an explicit criterion for the threshold between a partial recovery phase and a full
recovery phase of the planted k-factor. Our results recover, as special cases, the ones obtained
in references [7–9] for the planted one-factor. In the limit of dense graphs, they provide a
sharper characterization of the phase transition for k = 2 with respect to the analysis in [12],
as discussed in more detail in section 6.1.

The rest of the paper is organized as follows. In section 2 we define the problem under
study and introduce two adopted statistical estimators, namely the block maximum a posteriori
(MAP) and the symbol MAP. In section 3 we present the BP equations for the solution of
the problem and their corresponding probabilistic description. In section 4 we numerically
study a specific case, observing that a transition between a full recovery and a partial recovery
phase can appear as function of the parameters of the problem. In section 5 we give a heuristic
derivation of the criterion for the location of the transition for arbitrary weight distributions for
the block MAP estimator, equation (52), which is the main result of the paper. In section 6 we
compare our theoretical predictions with the numerical results obtained for different variants
of the problem, including the case considered in section 4 and the Hamiltonian cycle recovery
problem considered in reference [12]. Finally, conclusions and perspectives for future work
are given in section 7.

2. Definitions

2.1. Planting a k-factor

Let us assume that an integer k ∈ N and two probability densities p and p̂ on the real line are
given. We will focus on an ensemble of weighted simple graphs denoted G0 = (V 0, E 0, w),
containing by construction a planted k-factor to be recovered. Here V 0 = {1, . . . , N} is the
set of N ∈ N vertices such that kN is even, and E 0 is the set of edges (unordered pairs of
distinct vertices of V 0). A weight we ∈ R is associated to each edge e of the graph, so that
w = {we : e ∈ E 0} is the set of such weights. We introduce a probability measure over the set
of weighted graphs by means of the following generation steps of G0 (see figure 1(a)).

(a) One first constructs a k-regular graph having vertex set V 0. The graph is chosen uni-
formly among all possible k-regular graph with N vertices [19]. This can be achieved
using fast algorithms available in the literature [20]. The obtained graph has 1

2 kN edges and
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Figure 1. Pictorial representation of the preliminary pruning in a planted two-factor
problem. (a) A two-regular graph on a vertex set of N vertices is generated (thick double
lines; in the picture, N = 18), with edge weights distributed as p̂. Random edges are
added with some probability c/N (thin lines), with edge weights distributed as p. The
obtained graph is G 0.s A capacity k is assigned to each vertex. (b) Edges in supp(p̂)\Γ
(double lines) can be identified as planted and removed, decreasing the capacity of the
endpoints by 1. Edges in supp(p)\Γ (thick single lines) can be identified and removed.
Vertices with zero capacity can be removed. (c) We call G the obtained pruned graph,
and we call F(0)

k the set of identified edges by means of this first pruning process (green).

edge-set F∗
k . A random weight we, generated independently of all the others with density

p̂, is associated to each edge e ∈ F∗
k .

(b) Given a pair of vertices that are not neighbors in F∗
k , a link is added between them

with probability cN−1. Let E0 be the final set of edges of the obtained graph. A weight
we, independently generated from all the others with distribution p, is assigned to each
e ∈ E0\F∗

k .

We shall call planted (resp. non-planted) edges those in F∗
k (resp. in E0\F∗

k). The parame-
ters of this ensemble of weighted random graphs are thus the integers N and k, the parameter c
controlling the density of non-planted edges, and the two distributions p̂ and p for the genera-
tion of the weights of the planted and non-planted edges respectively. Given F∗

k , the probability
to generate a graph G0 is therefore

P(G0|F∗
k) = I(F∗

k ⊆ E0)
∏

e∈F∗
k

p̂(we)
∏

e∈E0\F∗
k

p(we)
( c

N

)|E0|−k N
2
(

1 − c
N

)(
N
2

)
−|E0|

, (1)

where here and in the following I(A) denotes the indicator function of the event A. The edges
in E0\F∗

k form essentially an Erdós–Rényi random graph of average degree c. The edge-set
F∗

k , on the other hand, is a k-factor of G 0 by construction, i.e., a spanning subgraph of G0 in
which all the vertices have the same degree k. The resulting graph has average coordination
c + k. Note that, for k = 1, F∗

1 is a matching on G0, and the introduced ensemble of graphs
coincides with the one studied in reference [8] for the planted matching problem.

2.2. The inference problem

Given a graph G0 in the ensemble described above, we wonder if it si possible to infer the
k-factor F∗

k hidden in it. We assume that the generation rules are known, alongside with k,
c, p and p̂. All the exploitable information is contained in the posterior probability P(Fk|G0)
that a certain k-factor Fk in G 0 is the planted k-factor F∗

k . From Bayes theorem we obtain the
following expression for the posterior:

P(Fk|G0) ∝ I(Fk is a k − factor)
∏

e∈Fk

p̂(we)
∏

e∈E0\Fk

p(we)I(Fk ⊆ E0), (2)

4



J. Phys. A: Math. Theor. 54 (2021) 175002 G Sicuro and L Zdeborová

where the symbol ∝ hides a normalization constant independent of Fk. To parametrize the
probability measure above, it is convenient to introduce, for each edge e, the binary variable
me ∈ {0, 1}, so that m = {me = I(e ∈ Fk) : e ∈ E0} ∈ {0, 1}|E0|, and rewrite the posterior as

P(m|G0) ∝
∏
e∈E0

(
p̂(we)
p(we)

)me N∏
i=1

I

(∑
e∈∂i

me = k

)
, (3)

where ∂i denotes the set of edges incident to the vertex i. We want to compute an estimator F̂k

that is ‘close’ to the hidden k-factor Fk. The estimator is associated to the set of binary vari-
ables m̂ that encodes the set of edges in F̂k. With a slight abuse of notations, in the following
we identify a set of edges Fk with its corresponding m. We will denote m∗ the set of variables
associated to F∗

k and m̂ the set of variables associated to an estimator F̂k. In this paper, we
will quantify the distance between an estimator F̂k and the true planted k-factor F∗

k in terms
of the cardinality of the symmetric difference F∗

k � F̂k between F∗
k and F̂k,

�(F∗
k , F̂k) :=

|F∗
k �F̂k|

2|F∗
k |

=
1

kN

∑
e∈E0

I(m̂e �= m∗
e), (4)

or equivalently the Hamming distance between the binary string m∗ encoding F∗
k and the

binary string m̂ encoding F̂k. We will consider two ‘maximal a posteriori’ (MAP) estimators,
each one minimizing a ‘measure of distance’ with the planted k-factor.

• A first possibility is to choose as estimator the k-factor that minimizes the probability
P(F∗

k �= F̂k) over all realizations of the problem,

F̂(b)
k = arg max

m
P(m|G0). (5)

This estimator is usually called ‘block MAP’ [3].
• A different estimator, called ‘symbol MAP’ and denoted in the following F̂(s)

k , is obtained
requiring that the distance to be minimized is precisely the error in equation (4). In this
case, for each edge e ∈ E0, we choose

m̂e = arg max
me

Pe(me|G0), (6)

with Pe the marginal of the posterior probability (3) for the edge e. Observe, however, that
this estimator is not necessarily a k-factor.

In the following, we will discuss both the estimators defined above, in the thermodynamic
limit N →∞, as a function of the parameters of the model. As in the planted matching problem
[4, 7, 8], the possibility of identifying the planted edges will depend on the similarity between
the distribution p and the distribution p̂, and on the parameter c, that corresponds itself to a
noise level expressing the number of confusing non-planted edges introduced in the graph.

3. Cavity equations

3.1. Pruning the graph

To efficiently solve the problem, and possibly reduce the size of the input, it is convenient to
proceed with a preliminary ‘pruning’ of the graph. Before proceeding further, let us assign a
‘capacity variable’ κi = k to each vertex i. The capacity of each node i will take into account

5
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the number of unidentified planted edges incident at i. Let

supp( p̂) := {w ∈ R : p̂(w) > 0}, (7a)

supp(p) := {w ∈ R : p(w) > 0}, (7b)

be the support of p̂ and p respectively, and let

Γ := supp(p) ∩ supp( p̂) (7c)

be the intersection of these supports. We suppose that Γ �= ∅ (the inference problem is
otherwise trivial).

If an edge e bears a weight we ∈ supp(p)\Γ, then it can be immediately identified as ‘non-
planted’, and removed from G0. This event will happen with probability 1 − μ, where

μ :=
∫
Γ

p(w)dw. (7d)

On the other hand, the set of edges

F(0)
k := {e ∈ E0 : we ∈ supp( p̂)\Γ} (7e)

surely belongs to the planted configuration,F(0)
k ⊆ F∗

k . These edges can be correctly classified
as ‘planted’ with no algorithmic effort, except for the inspection of their weights. A planted
edge e can be therefore identified, solely on the basis of the value of its weight, with probability
1 − μ̂, where

μ̂ :=
∫
Γ

p̂(w)dw. (7f)

We can remove from the graph the identified planted edges, see figure 1(b). We must take care,
however, of reducing at the same time by 1 the capacity of the endpoints of a planted edge
that is removed. At the end of this process, the capacity of a generic vertex i is 0 � κi � k, see
figure 1(c). For large N, the capacity of the vertices after this pruning has binomial distribution
Bin(k, μ̂). In particular, (1 − μ̂)kN vertices have zero capacity, meaning that all their incident
planted edges have been identified. These vertices can also be removed, alongside with all their
remaining (non-planted) incident edges.

In the resulting pruned graph, a vertex has K incident planted edges and Z non-planted
edges, where K and Z are two random variables having distribution

P[K = κ] =

(
k
κ

)
μ̂κ(1 − μ̂)k−κ

μ̂k
, κ = 1, . . . , k, (8a)

P[Z = z] = γz e−γ

z!
, z ∈ N0, γ := cμμ̂k, (8b)

where μ̂k := 1 − (1 − μ̂)k, so that the pruned graph has average degreeE[K + Z] = γ + kμ̂μ̂−1
k .

The distributions of the weights of the surviving edges are obtained from the original ones
conditioning the weights to be in Γ, i.e.,

P(w) :=
p(w)
μ

I(w ∈ Γ), (9a)

P̂(w) :=
p̂(w)
μ̂

I(w ∈ Γ), (9b)
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for the non-planted and planted edges, respectively. We will denote G = (V , E , w) the pruned
graph, with V ⊆ V0 and E ⊆ E0 the new vertex and edge-sets. For large N, V has cardinality
N̂ := μ̂kN, each vertex i ∈ V having capacity 1 � κi � k distributed as K. The graph will have
a total of 1

2 kμ̂N surviving planted edges and 1
2γμ̂kN surviving non-planted edges.

3.2. The belief propagation equations

To write down a BP algorithm for the planted k-factor problem, we start from the probability
distribution over the configurations m = {me : e ∈ E} ∈ {0, 1}|E| on the edges of the pruned
graph G ,

ν(m) ∝ exp

(
−β

∑
e∈E

meωe

)∏
i∈V

I

(∑
e∈∂i

me = κi

)
, (10)

where β > 0 and ωe = ω(we), with

ω(w) := − ln
P̂(w)
P(w)

. (11)

The quantities ωe play the role of effective weights on the edges of the graph. The introduction
of β is convenient because the measure in equation (10) coincides, for β = 1, with the posterior
defined in equation (3). On the other hand, for β →∞ the measure concentrates on the config-
urations maximizing the posterior, i.e., on the block MAP. Equation (10) can also be associated
to a graphical model. In particular, we can associate a variable vertex me ( ) to each edge e of
G . We also introduce two types of interaction vertices. A first type of interaction vertex ( ) is
associated to each i ∈ V , and linked to all variable vertices me such that e ∈ ∂i. Such vertex
imposes that κi variables me, e ∈ ∂i, are equal to 1. A second interaction vertex expresses the
contribution e−βmeωe ( ) for each e, and it is linked to the variable vertex me. Pictorially,

The BP algorithm [13] provides a recipe for the computation of the marginals of ν on such
factor graph. The idea is to approximate the marginal νe(m) for the edge e = (i, j) as

νe(m) :=
∑

{mẽ }̃e�=e

ν(m) � νi→e(m)ν j→e(m)e−βmωe ,

where ν i→e(m) (respectively ν i→e(m)) mimics a marginal probability in graphical models in
which j (respectively i) is absent. Such factorization is exact on infinite trees. The algorithm
goal is the computation of such messages, and it is conjectured to be exact in the large size limit
for sparse random graphs. The messages obey the following equations (one for each directed
edge of the graph),

νi→e(m) ∝
∑

{mẽ }̃e∈∂i\e

I

⎛
⎝m +

∑
ẽ∈∂i\e

mẽ = κi

⎞
⎠ ∏

ẽ=(r,i)
ẽ∈∂i\e

νr→ẽ(mẽ)e−βmẽωẽ . (12)

7
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We adopt the convention
∑

a∈A f(a) = 0 and
∏

a∈A f(a) = 1 if A = ∅ for any function f .
Pictorially, equation (12) can be rendered as

where the arrows indicate the directions of ‘propagation’ of the messages. Taking advantage
of the binary nature of the variables me, it is convenient to parametrize the marginals in terms
of ‘cavity fields’ hi→e,

νi→e(m) =
eβmhi→e

1 + eβhi→e
, (13)

so that an equation for the cavity fields hi→e can be written as

hi→e = − 1
β

ln
νi→e(0)
νi→e(1)

=
1
β

ln
∑

{mê}∂i\e

I

⎛
⎝ ∑

ê∈∂i\e

mê = κi − 1

⎞
⎠

×
∏

ê=(r,i)
ê∈∂i\e

eβmê(hr→̂e−ωê)

− 1
β

ln
∑

{mê}∂i\e

I

⎛
⎝ ∑

ê∈∂i\e

mê = κi

⎞
⎠

×
∏

ê=(r,i)
ê∈∂i\e

eβmê(hr→̂e−ωê). (14)

Once the equations have been solved for all the fields on the graph edges, the marginal
probability of the variable m on the edge e = (i, j) is given by

νe(m) =
eβm(hi→e+h j→e−ωe)

1 + eβ(hi→e+h j→e−ωe) , (15)

i.e. νe(1) evaluated with β = 1 is the probability that e ∈ F∗
k . The BP approximation to the

symbol MAP estimator in (6) is obtained computing the messages, and then the marginal, with
β = 1, and then selecting the set

F̂(s)
k (G) :=

{
e ∈ E : νe(1) >

1
2

}

= {e = (i, j) ∈ E : hi→e + h j→e > ωe} .
(16)

Observe that proceeding in this way the selected edge-set F̂(s)
k ∪ F(0)

k is not an actual k-factor
in general.

8
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The block MAP estimator is obtained taking β →+∞ in the equations for the marginals: in
this limit the measure in equation (10) concentrates on the configuration {me}e that maximizes
the likelihood. For β →+∞, equation (14) simplify, and we obtain

hi→e = min(κi)

[
{ωê − hr→ê}ê=(r,i)

ê∈∂i\e

]
, (17)

where min(r)[A] outputs the rth smallest element of the set A. The block MAP estimator F̂(b)
k

is found using the same criterion given in equation (16) upon convergence of the algorithm, so
that the final estimator for F∗

k is F̂(b)
k ∪ F(0)

k .

3.3. Recursive distributional equations

In this section we will study the average error on the considered ensemble by analysing the sta-
tistical properties of the solutions of the BP equations by the cavity method [21]. We introduce
the following random variables.

• Ĥ is a random variable that has the law of the cavity field hi→e given that e is a randomly
chosen planted edge;

• H is a random variable that has the law of the cavity field hi→e given that e is a randomly
chosen non-planted edge;

• Ω̂ is a random variable that has the law of the effective weightωe given that e is a randomly
chosen planted edge;

• Ω is a random variable that has the law of the effective weightωe given that e is a randomly
chosen non-planted edge.

In the hypothesis that the replica symmetric hypothesis holds (i.e., typical realizations of
ν have no long-range correlations), then (14) translates into RDEs involving the introduced
random variables H and Ĥ. To write down this set of RDEs, first observe that an endpoint i of
a planted edge e is incident to Z non-planted edges, plus a set K′ − 1 of other planted edges.
The random variable K′, however, is not simply distributed as K, but instead as [13]

P[K′ = κ] =
κP[K = κ]

E[K]
=

(
k
κ

)
κμ̂κ(1 − μ̂)k−κ

kμ̂
. (18)

This is because the planted subgraph, having μ̂kN � 1 vertices, contains 1
2 μ̂kNκP[K = κ]

edges adjacent to a vertex of capacity κ, so that the probability of picking a planted edge that
is adjacent to a vertex with capacity κ is proportional to κP[K = κ]. For the sake of brevity,
here and in the following, given a random variable X, we will denote by X′ a random variable
distributed as

P[X′ = x] =
xP[X = x]

E[X]
. (19)

Similarly, if e is a non-planted edge and i is one of its endpoints, there will be K planted edge
incident to i, and other Z′ − 1 non-planted edges. Within the replica-symmetric assumption of
independence of the incoming cavity fields, one thus obtains from equation (14):

Ĥ d
=− 1

β
ln

∑
{m},{m̃}I

(∑K′−1
i=1 mi +

∑Z
j=1 m̃ j = K′

)∏K′−1
i=1 eβmi (Ĥi−Ω̂i)

∏Z
j=1 eβm̃ j(H j−Ω j)∑

{m},{m̃}I
(∑K′−1

i=1 mi +
∑Z

j=1 m̃ j = K′ − 1
)∏K′−1

i=1 eβmi(Ĥi−Ω̂i)
∏Z

j=1 eβm̃ j(H j−Ω j)
,

(20a)

9
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H d
=− 1

β
ln

∑
{m},{m̃}I

(∑K
i=1 mi +

∑Z′−1
j=1 m̃ j = K

)∏K
i=1 eβmi(Ĥi−Ω̂i)

∏Z′−1
j=1 eβm̃ j(H j−Ω j)∑

{m},{m̃}I
(∑K

i=1 mi +
∑Z′−1

j=1 m̃ j = K − 1
)∏K

i=1 eβmi(Ĥi−Ω̂i)
∏Z′−1

j=1 eβm̃ j(H j−Ω j)
.

(20b)

The equalities have to be considered in distribution. In the equations above all random variables
are independent, Z is Poisson distributed with mean γ, the Ωi’s have the same law as Ω, Hi

are independent copies of H, and, similarly, Ĥi of Ĥ. Finally, the variable K is distributed as

in equation (8a). Observe that being Z Poisson distributed, Z′ − 1
d
= Z. Note also that, in the

β →+∞ limit, equation (20) simplify, giving

Ĥ d
= min

i j

(K′)
{
{Ω̂i − Ĥi}K′−1

i=1 ∪ {Ωi − H j}Z
j=1

}
, (21a)

H d
= min

i j

(K)
{
{Ω̂i − Ĥi}K

i=1 ∪ {Ωi − H j}Z′−1
j=1

}
. (21b)

Recalling the inclusion rule (16), the average reconstruction error is given as

E[�] =
μ̂

2
P[Ĥ1 + Ĥ2 � Ω̂] +

γμ̂k

2k
P[H1 + H2 > Ω]. (22)

3.4. Hard fields

At this point, we aim at evaluating E[�] by solving, possibly numerically, the RDEs given in
equation (20). It is, however, convenient to first isolate the contribution of ‘hard-fields’. It is
indeed not difficult to see that the events Ĥ = +∞ and H = −∞ have finite probability. This
follows from the fact that P[Z = 0] > 0 in (20a), which leads to Ĥ = +∞, and this event can
lead to H = −∞ in (20b). Let therefore be q̂ :=P[Ĥ < +∞] and q :=P[H > −∞], probability
that the fields are finite. We introduce two new random variables Ĥ and H that have the law of
Ĥ and H conditional on being finite:

H d
=

{
−∞ with prob. 1 − q ,

H with prob. q,
(23a)

Ĥ d
=

{
+∞ with prob. 1 − q̂ ,

Ĥ with prob. q̂.
(23b)

To obtain the equations obeyed by q, q̂, H and Ĥ, it is convenient, in this sense, to observe that

Ĥ d
=

(K′)
min

{
{Ω̂i − Ĥi}K′−1

i=1 ∪ {Ωi − H j}Z
j=1

}
+ O(1/β), (24a)

H d
=

(K)
min

{
{Ω̂i − Ĥi}K

i=1 ∪ {Ωi − H j}Z
j=1

}
+ O(1/β), (24b)

the correction terms being finite. From these equations we easily get that

1 − q̂ = e−γq, (25a)

1 − q =

k∑
κ=1

P[K = κ](1 − q̂)κ = 1 − 1 − (1 − μ̂q̂)k

1 − (1 − μ̂)k
, (25b)

10
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that is a set of equations for q and q̂. Introducing the variables Z distributed as

P[Z = z] =
1 − q̂

q̂
(γq)z

z!
, z ∈ N (26a)

and the variable K distributed as

P[K = κ] =

(
k
κ

)
(1 − μ̂q̂)k−κ(μ̂q̂)κ

1 − (1 − μ̂q̂)k
, κ = 1, . . . , k, (26b)

we can reduce ourselves to equations involving ‘soft fields’ H and Ĥ only. Using the notation
introduced in equation (19) we can write

Ĥ
d
=− 1

β
ln

∑
{m},{m̃}I

(∑K′−1
i=1 mi +

∑Z
j=1 m̃ j = K′

)∏K′−1
i=1 eβmi(Ĥi−Ω̂i)

∏Z
j=1 eβm̃ j(H j−Ω j)∑

{m},{m̃}I
(∑K′−1

i=1 mi +
∑Z

j=1 m̃ j = K′ − 1
)∏K′−1

i=1 eβmi(Ĥi−Ω̂i)
∏Z

j=1 eβm̃ j(H j−Ω j)
,

(27a)

H
d
=− 1

β
ln

∑
{m},{m̃}I

(∑K
i=1 mi +

∑Z′−1
j=1 m̃ j = K

)∏K
i=1 eβmi(Ĥi−Ω̂i)

∏Z′−1
j=1 eβm̃ j(H j−Ω j)∑

{m},{m̃}I
(∑K

i=1 mi +
∑Z′−1

j=1 m̃ j = K − 1
)∏K

i=1 eβmi(Ĥi−Ω̂i)
∏Z′−1

j=1 eβm̃ j(H j−Ω j)
.

(27b)

In the β →+∞ limit,

Ĥ
d
= min

i j

(K′)
{
{Ω̂i − Ĥi}K′−1

i=1 ∪ {Ωi − H j}Z
j=1

}
, (28a)

H
d
= min

i j

(K)
{
{Ω̂i − Ĥi}K

i=1 ∪ {Ω j − H j}Z′−1
j=1

}
. (28b)

It is important to note that the solution Ĥ = +∞ and H = −∞ is an admissible solution of
the RDEs for any value of β. This solution corresponds to a full recovery phase, in which the
fraction of planted edges that are not correctly recovered vanishes as the system size grows.

The average reconstruction error (22) can be rewritten as

E[�] =
μ̂q̂2

2
P[Ĥ1 + Ĥ2 � Ω̂] +

μ̂kq2γ

2k
P[H1 + H2 � Ω]. (29)

This procedure of ‘hard-fields’ elimination on the RDEs admits also an interpretation on a
single graph instance. Infinite fields on the planted edges may appear in the BP equation (14):
if a vertex i has coordination equal to its capacity κi, then hi→e = +∞ for all its incident edges
e. This is not surprising: in this case, indeed, all edges incident to i surely belong to the planted
k-factor. The vertex i and all the κi edges incident to it can be removed and the capacity of its
neighbors updated. This removal procedure can be iterated until either F∗

k has been entirely
recovered, or a non-trivial core survives in which every vertex i has |∂i| > κi. The BP algorithm
in equation (14) can be runned on the obtained core.

The described pruning appears as a generalization of the known pruning procedure adopted
for the study of optimal matching on Erdós–Rényi graphs [22] and planted matching prob-
lems [8]. It corresponds to a process of identification of the planted edges merely based on the
topology of the graph G (and therefore not related to the weights on the edges). A ‘percolation

11
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transition’ occurs in the parameter of the problem between a phase in which the graph is com-
pletely pruned (and the k-factor completely recovered), and a phase in which an (extensive)
core survives. The threshold is obtained studying the equation

q +

(
1 − μ̂+ μ̂ e−γq

)k − 1
μ̂k

= 0 (30)

that has q = 0 as attractor for

ckμμ̂ � 1. (31)

In the considered problem, this condition implies full recovery of the planted configuration by
simple topological considerations, i.e., iterative pruning.

4. A numerical experiment: the exponential distribution case

We shall now numerically investigate the planted k-factor problem on the ensemble of graphs
introduced above, using the tools described in the previous section. We will take an uniform
distribution for the non-planted weights,

p(w) =
1
c
I(0 � w � c), (32)

and an exponential distribution

p̂(w) = λ e−λw
I(w � 0), (33)

for the planted weights. It follows that in this case Γ = [0, c], μ = 1, μ̂ = 1 − e−cλ and
γ = c(1 − e−kcλ). In the c →+∞ limit, μ̂ = μ = 1 and q = q̂ = 1∀ k ∈ N.

The large N limit results for E[�] have been obtained by a numerical resolution of the RDEs
for the soft fields for β = 1 and β →+∞ (see equation (28)) via a population dynamics (PD)
algorithm [21]. The approach consists in introducing an iterative version of the RDEs discussed
above that defines a new set of random variables (Ĥ(n), H(n))n, n = 0, 1, . . . . These new random
variables satisfy, for β →+∞,

Ĥ(n+1) d
= min

i j

(K′)
{
{Ω̂i − Ĥ(n)

i }K′−1
i=1 ∪ {Ωi − H(n)

j }Z
j=1

}
, (34a)

H(n) d
= min

i j

(K)
{
{Ω̂i − Ĥ(n)

i }K
i=1 ∪ {Ω j − H(n−1)

j }Z′−1
j=1

}
, (34b)

with initial condition Ĥ(0) = H(−1) = 0. A similar set of iterative RDEs can be written for
β = 1 starting from equation (27). The underlying assumption is that, if a non-trivial solution
of the original RDEs exists, such solution will be reached in probability by equation (34) for
n →+∞.

From the algorithmic point of view, the law of the random variable H(n) is represented by
an empirical distribution of a sample {h1, . . . , hN} of its representants, with N � 1, so that

P[H(n) � h] ≈ 1
N

N∑
i=1

I(h(n)
i � h). (35)

Similarly, an empirical distribution is adopted to approximate the law of Ĥ(n). The RDEs (34)
are used to update the population representing (Ĥ(n), H(n)) to a new population representing the

12
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variables (Ĥ(n+1), H(n+1)), each update corresponding to an ‘iteration’ of the algorithm. The
algorithm stops when some convergence criterion (usually the convergence of the moments of
the populations) is satisfied (see, e.g., reference [13] for additional details).

The PD predictions have been compared with actual BP results, obtained solving the infer-
ence problem on a large number of instances (see also section 6 for further details about the
BP implementation).

In the block MAP case (β →+∞) it is observed that, for a given pair k and c, there exists an
interval Λ(b) := (λ


−,λ

+) of values of λ, such that for λ ∈ Λ(b) the PD algorithm converges to a

finite solution. The corresponding value of E[�] is found to be non-zero and, within numerical
precision, E[�] → 0 smoothly on the boundary of the interval. In particular, we numerically
observe that

lim
λ→λ
+

√
λ

+ − λ ln E[�] = −α, α > 0. (36)

This implies that E[�] approaches zero exponentially fast as λ→ λ

+, i.e., the transition is of

infinite order. Remarkably, the very same behavior has been observed in the k = 1 and c →+∞
case [8,9], where it is shown that λ


+ = 4 and

ln E[�] = − 2π√
4 − λ

− 3
2

ln(4 − λ) + O(1). (37)

Finally, for c →+∞ it is observed that λ

− → 0, whereas λ


+ approaches a finite limit. The
obtained prediction for E[�] is fully compatible with the BP results, and E[�] → 0 for λ→ λ


±
with the size of the considered graphs.

On the other hand, for λ /∈ Λ(b) the PD algorithm does not converge. To be more precise, the
population is subject to a ‘drift’ towards the full recovery solution, H →−∞ and Ĥ →+∞.
This can be seen, for example, in figure 2(c), where some numerical results for c = k = 2
are given in the β →+∞ case for Ĥ. It is seen that the numerically estimated mean E[Ĥ]
is population-size-dependent, and in particular diverges with the population size, whereas the
variance is not. Moreover, larger populations correspond to larger values of E[Ĥ].

The numerical results suggest therefore that a nontrivial, attractive fixed point exists for
λ ∈ Λ(b) only, otherwise the only attractor being the trivial fixed point Ĥ = −H = +∞ cor-
responding to the full recovery phase. In reference [8] it is argued that, for k = 1, an infinite
order phase transition takes place between a full recovery phase and a partial recovery phase,
and in particular full recovery is obtained for λ ∈ R

+\Λ(b). The conjectures in reference [8]
about the location of the transition and its nature have been recently rigorously proved in refer-
ence [9]. Our results strongly suggest that the same phenomenology extends to the k > 1 case.
As in the k = 1 case, the accurate numerical determination of the endpoints of Λ(b) is heavily
affected by finite-population-size effects using PD (and finite-size effects using BP). Indeed,
the transition manifests itself as a front propagation in the cumulative distribution function that
drifts towards large values of the fields. Such front propagations are generically driven by the
behavior in the exponentially small tail far away from the front [16]. The finite population size
induces a cutoff on the smallest representable value of the cumulative distribution function, that
translates, assuming an exponential decay of the cumulative, into logarithmic finite population
size effects on the velocity of the front and the location of the transition.

The very same phenomenology is observed for β = 1, i.e., for the symbol MAP, where a
partial recovery phase λ ∈ Λ(s) = (λ


−,λ

+) is surrounded by a full recovery phase. For a given

pair k and c of parameters, the symbol MAP transition points are found to be very close to
the block MAP transition points obtained for the same values of k and c. Also in this case,

13
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Figure 2. (a) and (b) Reconstruction error using the block MAP (a) and the symbol
MAP (b) estimators for the planted two-factor problem with exponential planted weights
and different values of average degree c of the non-planted edges. The lines have been
obtained numerically solving the RDEs (28), corresponding to β = +∞, and (27) with
β = 1 respectively, using a PD algorithm with N = 106 fields. The dots are obtained
solving 103 instances of the problem using the BP algorithm in equations (17) and (14)
with β = 1 on graphs of N = 103 vertices. The c →+∞ curves are estimated using PD
with c = 20 and are compared with BP results obtained solving the problem on complete
graphs with N = 102 vertices. In the block MAP case, we marked with an arrow the
partial to full recovery threshold in the c →+∞ limit predicted to be at λ = 4k. In the

insets, plot of
√

λ

+ − λ ln E[�] given by the PD algorithm, with λ


+ estimated using
the condition in equation (54). Both in the block MAP case and in the symbol MAP case,
the limiting value for λ→ λ


+ is finite, suggesting that the transition is of infinite order.
(c) Mean and variance of the variable Ĥ estimated using a PD algorithm for k = c = 2
for β →+∞. In this case, we numerically find λ


+ = 7.9(1), whereas the prediction
given by equation (54) is λ


+ = 7.9946 . . . . The results are obtained assuming all the
N fields equal to zero as initial condition. An ‘iteration’ of the algorithm corresponds
to an update of all fields of the population by means of the RDEs. For λ = 5, inside
the partial recovery phase, the algorithm rapidly converges to asymptotic values that
do not depend on the size N of the population. For λ = 10, i.e., in the full recovery
phase, the algorithm converges to values of E[Ĥ] that are N -dependent and diverge with
N , whereas the variance of the distribution goes to an N -independent value (although
noisy). The described phenomenology appeared for all the investigated values of c and
k, and for both the block MAP and the symbol MAP. (d) Transition point λ


+ for the
block MAP in the exponential model for c →+∞. The continuous line correspond to the
prediction λ


+ = 4k given in section 6.2, whereas the dots are the numerical estimation of
the transition point obtained using PD with c = 50 and a population of N = 108 fields.
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it is found that (λ

+ − λ)1/2 ln E[�] →−α̂ for λ→ λ


+ for some α̂ > 0, suggesting that the
transition between the partial recovery phase and the full recovery phase is of infinite order
also in this case. In figure 2(b) we give the PD results for E[�] in this case, alongside with the
results of the BP simulations.

5. A criterion for the block MAP transition

In this section we give a heuristic criterion for the transition between the partial recovery
phase E[�] > 0, and the full recovery phase E[�] = 0 in the case of the block MAP. Our
reasoning will follow and generalize the one given in reference [8] for the k = 1 case. Our
approach is inspired by the physics literature on front propagation in reaction-diffusion sys-
tems and equations of the FKPP type [16–18]. Before applying it, however, an additional
simplification of equation (28) must be performed. We will proceed in generality, assum-
ing that p̂ depends on a parameter, let us call it λ. Moreover, we will assume that a special
value λ
 exists such that for λ < λ
 we are in a partial-recovery phase, whereas for λ > λ


we are in a full-recovery phase. We will also assume that the transition is continuous, i.e.,
E[�] → 0 smoothly as λ→ λ
−. Observe that E[�] → 0 means that Pr[H1 + H2 < Ω] → 1
and Pr[Ĥ1 + Ĥ2 > Ω̂] → 1, see equation (29). The first property implies that, approaching the
transition, H1 < Ω− H2 almost surely, i.e., in equation (28b) the minimum picks almost surely
one of the ‘planted contributions’. Similarly, the second property implies that in the same limit
the minimum in equation (28a) is almost surely picked in the set of ‘non-planted contributions’.
These observations lead us to introduce a new set of random variables (Û(n), U(n))n, satisfying
the iterative RDEs,

Û(n+1) d
= min

1�i�Z
{Ωi − U(n)

i }, (38)

U(n) d
= max

1�i�K
{Ω̂i − Û(n)

i }, (39)

with initial condition Û(0) = U(0) = 0, corresponding to the expected ‘effective’ behavior of
equation (34) near the transition. The new set of auxiliary variables is informative on the
behavior of the random variables (Ĥ(n), H(n))n. Indeed, we can prove that

Û(n) � Ĥ(n), H(n−1) � U(n), ∀ n. (40)

Given two random variables X and Y, we say that X � Y if P[X > z] � P[Y > z] for all z [23].
The proof proceeds by induction. Equation (40) are satisfied for n = 0. Assuming that they are
satisfied for given n, it is easily proved that they are satisfied for n + 1, being

H(n) � max
1�i�K

{Ω̂i − Ĥ(n−1)
i } � max

1�i�K
{Ω̂i − Û(n)

i } = U(n+1), (41a)

Û(n+1) = min
1� j�Z

{Ω j − U(n)
j } � min

1� j�Z
{Ω j − H(n)

j } � H(n+1). (41b)

The result stated above implies that, if Pr[Û(n) > z] → 1 for n →+∞, then Pr[Ĥ(n) > z] → 1
as well in the same limit. We will obtain now a sufficient condition to have Pr[Û(n) > z] → 1
that we will give us, therefore, a (sufficient) criterion to be in the full recovery phase. We define

F(x; n) :=P[Û(n) < x], (42)

Φ(x; n) :=P[U(n) < x]. (43)
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Denoting by EX[•] the expectation with respect to the random variable X, we have that

F(x; n + 1) = 1 − EZ

[
(EΩ [Φ(Ω− x; n)])Z

]
, (44)

Φ(x; n) = EK

[(
1 − EΩ̂

[
F(Ω̂− x; n)

])K
]

, (45)

and therefore

F(x; n + 1) = 1 − EZ

[(
EΩ

[(
1 − EΩ̂

[
F(Ω̂− Ω + x; n)

])K
])Z

]
. (46)

Suppose now that the cumulative F(x; n) is subject to a ‘drift’, i.e., there exists a velocity v such
that F(x + vn; n) → F(x) as n →∞. This is in line with the numerical result, which suggest that
E[Ĥ] →+∞ andE[H] →−∞ approaching the transition, whereas the higher order cumulants
remain finite. Figure 2(c), in particular, shows that the means of the distributions are subject to
a constant drift velocity that (at the leading order in n) does not depend on n. Moreover, this
assumption is compatible with what has been observed in [8], and rigorously proved in [14,
15], in the study of equation (38) for K ≡ 1. Then, for n →+∞,

F(x − v) = 1 − EZ

[(
EΩ

[(
1 − EΩ̂

[
F(Ω̂− Ω+ x)

])K
])Z

]
. (47)

For x →−∞, F(x) → 0 by definition, and in this limit at first order in F

F(x − v) � E[Z]E[K]E
[
F(Ω̂− Ω + x)

]
(48)

(we have dropped the subscripts implying an average over all variables in the argument). This
linear (integral) equation has a solution in the form Fv(z) = eθz, with θ > 0 to respect the
increasing character of distribution functions. Indeed, plugging this solution into the linearized
equation we have

v(θ) � −
ln
(
E[Z]E[K]E

[
exp(θΩ̂− θΩ)

])
θ

. (49)

The choice of the appropriate θ to estimate the drift velocity is, at this point, not obvious. It
can be shown [14–18] that the relevant value θ∗ is the one that corresponds to the maximum
velocity, i.e., θ∗ = arg supθ>0 v(θ), and therefore

v = −inf
θ>0

ln
(
E[Z]E[K]E

[
exp(θΩ̂− θΩ)

])
θ

(50a)

= −inf
θ>0

ln [I(θ)I(1 − θ)]
θ

(50b)

where

I(θ) :=
√

ck
∫
Γ

p̂θ(w)p1−θ(w)dw. (51)

If v = v(θ∗) > 0, then the distribution drifts towards +∞ and we are in a full recovery phase
(Ĥ →+∞). We postulate that the marginal condition v(θ∗) = 0 ⇒ ln [I (θ∗)I(1 − θ∗)] =
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0 corresponds to the transition point. Being ln(I(θ)I(1 − θ)) a convex function symmetric
around θ = 1/2, one has v = 0 when I(1/2) = 1. This condition can be written as

D1/2( p̂‖p)
ln(ck)

= 1, (52)

where

Dα(p‖q) :=
1

α− 1
ln
∫

pα(x)q1−α(x)dx, (53)

is the Rényi divergence of order α. In an equivalent form, equation (52) can be written as∫
Γ

√
p̂(w)p(w)dw =

1√
ck
. (54)

The condition above generalizes the one obtained for the planted matching problem [8], that
is recovered for k = 1.

As a final comment, observe that, being by constructionE[�(F̂(s)
k , F∗

k)] � E[�(F̂(b)
k , F∗

k)],
full recovery by means of the block MAP implies full recovery by means of the symbol MAP,
and the partial recovery interval obtained using the symbol MAP is contained in the partial
recovery interval of the block MAP.

6. Examples of results

In this section, we consider some special formulations of the planted k-factor problem, and
we compare our numerical results with the theoretical predictions obtained from the general
criterion given in section 5.

The numerical results are obtained studying the RDEs (20) for the problem by means of a
PD algorithm for β = 1 (symbol MAP) and β →+∞ (block MAP).

We also implemented a BP algorithm for the solution of the problem on actual graphs by
means of the algorithm in equation (14). In particular, a random weighted graph with N vertices
is generated according to the ensemble introduced in section 2. This graph is first subject to the
pruning procedures described in sections 3.1 and 3.4. Given an edge e = (i, j) of the resulting
graph, we associate two fields hi→e and hj→e to it, initialized to random values. The fields are
updated using equation (14) if β > 0 or using equation (17) if β = +∞ for a large number
of iterations. A candidate solution F̂k is then selected using the criterion in equation (16). In
all cases, we stopped the algorithm after 5N updates, or before if the set F̂k does not change
for at least 50 iterations. The error � is then obtained using equation (4), and the average error
E[�] is estimated considering a large number of independent instances of the problem.

The BP algorithm for the estimation of the block MAP given in equation (17) coincides with
the BP algorithm for the minimum weight k-factor introduced by Bayati and coworkers [24].
They proved therein that the algorithm converges in polynomial time to the correct minimizer
as long as there are no fractional solutions, i.e., solutions with non-integer values of me. A
worst-case analysis of the convergence properties of the BP algorithm with β = 1, on the other
hand, is still missing. Observe that the BP algorithm has longer running time for c � k when
β is finite with respect to the β →+∞ case. In this case, indeed, given a node with valence κ,
each step in equation (14) requires the sum of O(cκ) contributions. Equation (17), instead, asks
only for to the κth incoming field, an operation that requires O(c) steps. On complete graphs,
having c = N − k − 1, this means that the algorithm running time is increased by a factor Nk−1

in the finite β case with respect to the β = +∞ case.
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6.1. The fully-connected case

Dense models are recovered in our setting considering the c →+∞ limit, to be taken after
the N →+∞ limit. Assuming that μμ̂k �= 0 (the problem is otherwise trivial) this implies
γ →+∞ and therefore q̂ = q = 1 because of equation (25), meaning that in the thermody-
namic limit there are (almost surely) no hard fields.

Equation (52) also implies that, if limc→+∞ D1/2( p̂‖p) < +∞ no transition can take place
in the fully connected limit. To get nontrivial results in this limit, it is therefore necessary to
scale the weights with c, so that at the transition

D1/2( p̂‖p) = ln c + o(ln c) for c � 1. (55)

Suppose, for example, that p is c-independent, and p̂(w) ≡ c−a f (wc−a; b) with a > 0 and
b parameters, and some function f such that f0(b): = limx→0 f(x; b) ∈ (0,+∞). Then the
condition (55) implies that the threshold for c →+∞ is at

a = 1. (56)

If instead p̂(w) ≡ c−1 f (wc−1; b), then the asymptotic formula (55) is not sufficient anymore
and equation (54) must be considered. The threshold condition becomes

√
f0(b)

∫ √
p(w)dw =

1√
k
. (57)

The observations above are compatible with the rigorous results obtained by Bagaria
and coworkers for the planted two-factor problem on complete graphs of N vertices for
N →+∞ [12]. In their paper, they prove that, for k = 2, on the threshold the following limit
holds

lim inf
N→+∞

D1/2( p̂‖p)
ln N

= 1 (58)

under some assumptions on the distributions p and p̂ (fulfilled, e.g., by Gaussian or exponen-
tial distributions, see reference [12] for details). This condition corresponds to equation (55),
observing that on a complete graph c = N − k − 1. As we will show below, however,
equation (58) can be not sufficient to recover the transition point.

6.2. The exponential model

Let us now briefly revisit the exponential case discussed in section 4. If we apply equation (54)
to derive the block MAP threshold, we obtain

2 − 2 e−
cλ
2 =

√
λ

k
. (59)

Introducing s = ck and t = λk−1, one parameter can be absorbed obtaining

2 − 2 e−
st
2 =

√
t. (60)

This equation is always solved by t = λ = 0. For s = ck �1.2277 . . . , two additional solutions
for t, and therefore λ, appear, let us call them λ


− and λ

+, delimiting the partial recovery phase,

see figure 3. In the c →+∞ limit, λ

− � 1/c → 0 and only one transition point is found

λ

+ = 4k. (61)
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Figure 3. Phase diagram of the planted k-factor with exponential planted weights on
sparse graphs. Our argument in section 5 predicts a partial recovery (PR) phase (in blue)
and a full recovery phase, corresponding to the remaining portion of the plane, depending
on the values of λ and c. Within the full recovery phase, the red area corresponds to the set
of parameters for which full recovery is possible by means of pruning, i.e., q̂ = q = 0.
The red dots have been obtained from the numerical resolution of the RDEs (17) for
the two-factor by a population dynamics algorithm with N = 107. The black dots
correspond instead to the k = 1 case and are taken from reference [8].

This result is confirmed by the numerics, see figure 2(d). For k = 1 we recover the known
result λ


+ = 4, rigorously proved in [7]. The criterion predicts that 4k − λ

+ approaches

zero as e−ck for ck →+∞. Observe that in this case, considering c = N − k − 1, D1/2( p̂‖p) =
ln N + O(N) for all values of k and λ > 0. In other words, equation (58) of [12], although
verified on the transition, is not enough to recover the threshold.

6.3. Hidden Hamiltonian cycle recovery

In this section we are interested in solving a special type of planted two-factor problem, namely
the hidden Hamiltonian cycle recovery (HC) problem. This is a planted two-factor problem in
which the hidden two-factor is connected, i.e., it is a Hamiltonian cycle of the graph. The very
same BP algorithms discussed for the planted two-factor can be applied to recover the hidden
Hamiltonian cycle.

This problem was studied in reference [12], with the planted weights being assumed to
be normal variables, p̂ = N (λ, 1), whereas the non-planted weights have distribution p =
N (0, 1). In this case, therefore, D1/2( p̂‖p) = 1

4λ
2. Applying equation (58), a nontrivial tran-

sition in the block MAP estimator is expected at λ2 = 4 ln N + o(ln N). Parametrizing p̂ with
λ2 = λ̂2 ln N, the transition is then at λ̂ = 2. This is rigorously proved and numerically ver-
ified in reference [12], see figure 4. In figure 4 we also plot, for the block MAP case, the
probability that the estimator F̂2 provided by the BP algorithm is actually connected, i.e., it is
a single Hamiltonian cycle. Our numerics suggest that, for λ̂ > 2, this probability goes to 1 as
N →+∞.

As discussed in section 2, however, the block MAP is not the estimator that minimizes the
error in equation (4). If we aim at minimizing the error �, then the optimal estimator is the
symbol MAP. We recall that this estimator does not provide a k-factor in general. Running our
BP algorithm on graphs with hidden Hamiltonian cycles in the ensemble considered in [12], we

19



J. Phys. A: Math. Theor. 54 (2021) 175002 G Sicuro and L Zdeborová

Figure 4. Recovery using the block MAP and the symbol MAP in the HC problem
with p̂ = N (λ̂

√
ln N, 1) and p = N (0, 1). The dots are obtained running BP on 103

instances of complete graphs with N = 100 with a hidden Hamiltonian cycle to be recov-
ered. The black lines correspond to the PD prediction for the planted two-factor with
c = 100, with same planted and non-planted weight distributions. The vertical line indi-
cates the transition point between partial and full recovery predicted by the theory for
the block MAP. In gray, we plot the probability that the block MAP estimator F̂(b)

k=2 is
a Hamiltonian cycle (instead of a union or two or more cycles) for different sizes of the
problem.

obtained the results in figure 4. The average error obtained using the symbol MAP is found to
be smaller than the one obtained using the block MAP, as expected. On the other hand, finding
the symbol MAP is computationally more expensive, as discussed above. For comparison, in
figure 4 we plot also the PD results for the two-factor, finding a good agreement between the
infinite-size prediction of the two-factor problem and the BP results of the HC problem also in
the partial recovery phase.

7. Perspectives

The transition appearing in the planted k-factor problem is of the same type as found in the
planted matching problem [7–9] and separates a partial recovery phase from a full recov-
ery phase. Using heuristic arguments based on the literature on front propagation for reac-
tion–diffusion equations, we have been able to obtain a simple and explicit criterion for the
transition. We numerically tested the transition criterion, and we checked its consistency with
the known results on the recovery thresholds of the planted two-factor problem. A rigorous
proof of this transition criterion remains, however, as an open problem.

The heuristic argument is based on the fact (numerically observed) that the phase transi-
tion is continuous. It is not excluded a priori that first order transitions are possible for some
nontrivial choice of the weight distributions or degree distributions of the graph, allowing the
presence of multiple BP fixed points [25].

Finally, the threshold criterion obtained in the paper concerns the block MAP and only pro-
vides a bound for full recovery by means of the symbol MAP. In the numerically investigated
cases, the recovery thresholds of the symbol MAP are observed to be very close to the ones of

20



J. Phys. A: Math. Theor. 54 (2021) 175002 G Sicuro and L Zdeborová

the block MAP. A formula for the exact location of the symbol MAP transition (and possibly
its relation with the block MAP transition) is however still missing.
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