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Abstract: Nanoparticle-filled polymers (i.e., nanocomposites) can exhibit characteristics unattainable
by the unfilled polymer, making them attractive to engineer structural composites. However, the
transition of particulate fillers from the micron to the nanoscale requires a comprehensive understand-
ing of how particle downsizing influences molecular interactions and organization across multiple
length scales, ranging from chemical bonding to microstructural evolution. This work outlines
the advancements described in the literature that have become relevant and have shaped today’s
understanding of the processing-structure—property relationships in polymer nanocomposites. The
main inorganic and organic particles that have been incorporated into polymers are examined first.
The commonly practiced methods for nanoparticle incorporation are then highlighted. The devel-
opment in mechanical properties—such as tensile strength, storage modulus and glass transition
temperature—in the selected epoxy matrix nanocomposites described in the literature was specifically
reviewed and discussed. The significant effect of particle content, dispersion, size, and mean free
path on thermomechanical properties, commonly expressed as a function of weight percentage (wt.%)
of added particles, was found to be better explained as a function of particle crowding (number of
particles and distance among them). From this work, it was possible to conclude that the dramatic
effect of particle size for the same tiny amount of very small and well-dispersed particles brings
evidence that particle size and the particle weight content should be downscaled together.

Keywords: nanocomposites; particle dispersion; mechanical properties; nano-sizing; epoxy polymer

1. Introduction

The field of materials science has seen one of the most interesting developments in the
emergence of nanostructured polymers. These materials are characterized by their unique
properties, which are largely due to the dispersion, size and content of the nanoparticles that
they contain. The addition of nanoparticles promotes significant changes to the mechanical,
thermal, electrical and optical properties of polymers, making them ideal for a wide range
of applications, from biomedical engineering to energy storage [1,2].

Fibrous reinforcements in a polymeric matrix also offer several advantages, mak-
ing them a popular choice in composite materials. The most commonly used fibers are
glass, carbon, aramid and basalt, which are selected to provide the necessary stiffness
and strength to the composite, depending on the fiber’s orientation, length, volume and
interfacial properties. As the polymeric matrix is responsible for the stress transfer at a
micromechanical level, and thus for the performance required, its mechanical properties,
because they are affected by environmental conditions, such as temperature, humidity,
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radiation and exposure to chemicals, are of utmost importance and can hinder the final
component functionality [2—4].

The cost of polymers increases with their degree of engineering. Bearing in mind the
importance of the property-to-cost balance to produce viable and scalable composites, the
need to finely tune polymers has been looked at from the perspective of tailored-made
nanostructured materials by several investigations in the last decades, shedding light on a
class of materials known as nanocomposites, disseminated by the Toyota research group
and literally opening a new dimension in materials science [5-7].

This development has emphasized the importance of factors like particles’ specific
surface area and mean free path, showing the intimate relationship among the amount of
added nanoparticles, faultless dispersions and the resulting properties. This suggests a
good economic balance and unveils an encouraging scenario for tailor-made applications
and high-performance materials.

Inspired by the above, this article reviews the incorporation of distinct particles in
epoxy matrices, analyzing how important parameters such as dispersion methods, particle
size and particle content affect the properties of nanostructured polymers. The particles
mostly used in particle-filled polymers are described first. Next, widely practiced tech-
niques for incorporating nanomaterials while preventing agglomeration are summarized,
emphasizing the processing difficulties. A discussion follows on how particle downsizing
influences the particle-epoxy mechanical properties, providing a different perspective on
processing-structure—property relationships.

2. Major Particle Fillers

In light of the distinct features of the numerous types of fillers described in the
literature, only those judged more relevant are discussed below, along with advances in the
respective field.

2.1. Inorganic Nanofillers

Inorganic nanofillers present some significant advantages over most organic ones.
Except for cellulose, inorganics tend to be much more scalable in production than carbon
nanotubes (CNTs) or graphene, for instance, while still providing interesting property
enhancements to polymer composites. Among the inorganic fillers, titanium dioxide
(titania, TiO,), silicon dioxide (silica, SiO;) and zinc oxide (ZnO) have been widely used
and thoroughly studied [8].

2.1.1. Titanium Dioxide

TiO, (titania) is a natural oxide found in three allotropic forms: rutile, anatase (both
tetragonal) and brookite (orthorhombic). Applications make use of mostly rutile and
anatase and are, as such, categorized into two groups.

Rutile is brown-red colored and has the highest density, with antibacterial and UV-
absorbent properties. For these reasons, applications include the military industry, cos-
metics, soap, sunscreen, toothpaste, cigarette paper and paints to coat electronics, toys,
furniture and packages [9]. On the other hand, anatase has a lower density and appears in
different colors (brown, yellow, orange, green and blue). Its applications include solar cells,
catalysts, sensors and battery components. An interesting feature of anatase is its bright-
ness, which enhances the whiteness of paper and removes the greasy-look of resin-coated
fibers. It is also used in rubber formulation due to its anti-aging properties [9].

As a filler, nano-TiO;, is scalable and extensively used in various industries for multiple
purposes (mostly photocatalysis, anti-corrosion and chemical stability), ranging from antibac-
terial materials, anti-fogging mirrors and electronics to sunscreens and cosmetics [9]. Particles
may be synthesized by numerous methods, with distinct shapes, sizes and properties [10].

When incorporated in polymer matrices, nano-TiO; is expected to enhance the mechan-
ical, electrical, optical and rheological properties [11]. It may be incorporated either as parti-
cles in the matrix [12] or as fiber coating [13]. The latter is particularly interesting for natural
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fibers given the offered barrier properties, thus substantially decreasing the water absorp-
tion capability of the fibers and protecting the composite from humidity-related aging.

From the perspective of the influence on the mechanical properties of composites,
Hunain et al. [14], for example, demonstrated the beneficial effect of titanium dioxide on
the dynamic mechanical properties of fiber-reinforced polymer composites. The increase in
fatigue resistance could be attributed to the influence of the filler simultaneously on the
matrix, making it tougher and more rigid over the interphase regions, ensuring a higher
adhesion among the fibers and matrix. As another illustration, Al-Zubaydi et al. [15]
showed that the dispersion of this filler in an epoxy matrix enhanced its resistance to wear,
which, allied with the known chemical and impact resistances of the composite, makes it
an interesting material for anti-skid flooring applications.

2.1.2. Silicon Dioxide

SiO; (silica) may be found in various crystalline and amorphous structures, with low
thermal conductivity and high chemical inertness towards most substances.

The compound is abundant throughout the planet and originates from many sources,
amongst which sand is the most common. Due to its availability and properties, silica is
widely used in industry in fields such as civil construction (mostly in Portland cement con-
cretes), food, pharmaceuticals, cosmetics, paints, inks, rubbers, glass, aerospace, automotive
and electronics (semiconductors) [16].

As a filler, nano-SiO; is used for its scalability and ability to increase the polymer’s
mechanical, thermal and electrical properties [17]. It has proven to be quite effective in de-
creasing the frictional wear of polyether—ether-ketone (PEEK) composites [18] by reducing
its friction coefficient and increasing the UV resistance of epoxy, both as hydrophilic or hy-
drophobic nanosilica [19]. It has also been found that both DC resistivity and the dielectric
breakdown strength improve in epoxy-silica nanocomposites [20], which is supposedly
due to the effectiveness of the organic-inorganic interface, opening possibilities for the
development of cutting-edge thermoset composites.

2.1.3. Zinc Oxide

ZnO is a multifunctional filler with a particular set of features, including a high refrac-
tive index, high thermal conductivity, antibacterial properties and high UV-shielding, which
makes it a strong candidate for reinforcing translucent and UV-resistant composites [21].
These are specifically attainable at a filler content lower than usual (0.03 wt.%). Nano-ZnO
epoxy-based coatings can promote surface charge dissipation on insulators in DC gas-
insulated systems [22] while also being anti-corrosive due to their hydrophobic nature [23].
Due to its amenable intrinsic and processing characteristics, ZnO is generally preferred
over other possible competitors [24].

Pure ZnO is a white powder with hexagonal wurtzite and the cubic zincblende
structure [25,26], naturally occurring as the mineral zincite, usually containing manganese
and other impurities that confer a yellow to red color [26]. Zinc oxide is an amphoteric
oxide and is nearly insoluble in water; however, it will dissolve in the majority of acids [26].

The applications of zinc oxide powder are numerous, and most exploit the reactivity
of the oxide as a precursor to other zinc compounds. Currently, it is added to materials
and products, including plastics, ceramics, glass, cement [26], rubber, lubricants [27], baby
powder and creams against diaper rashes, calamine cream, anti-dandruff shampoos, anti-
septic ointments [28], pigments for paints [29], and Li-ion battery and supercapacitors [30]
to name some.

2.1.4. Clays

Clays are natural silicate minerals that are divided into several groups according to
their composition and particle morphology, such as kaolinite, illite, smectite and vermiculite.
Most have a sheet-like morphology that tends to form stacked structures; however, some
can roll over and form tubular structures (e.g., halloysite, from the kaolinite group). Those
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stacked structures can be spread-out into nearly individual high-aspect ratio sheets of nearly
1 nm in thickness and around 100 nm in planar dimensions, as explained by Saba et al. [6]
in a very comprehensive review. Similar to CNTs, halloysite nanotubes (HNT) may also be
single- or multi-walled [30] but are much cheaper, more abundant and sustainable when
compared to CNTs. The layered architecture allows water adsorption/desorption and
enables cation exchange, which is vital to define the effectiveness of surface modifications.
This can convey an organophilic character to these particles, making them suitable for
dispersion in hydrophobic organic polymeric matrices [31].

When incorporated into polymeric matrices, these nanofillers, as others, are only a
minor proportion of the composite and still provide enhancements in physical, thermal
and mechanical properties, such as permeability, flammability and tensile toughness,
respectively [25,32-34]. These improvements enable the use of the composites in diversified
applications, such as flame-retardant plastics, high-clarity films [30], dental [35] and drug
delivery systems [36].

2.2. Organic Nanofillers
2.2.1. Graphene, Graphene Oxide and Graphene Nanoplatelets

Graphene is a single-layer, two-dimensional sheet of sp?-hybridized carbon atoms [37]
that has earned a reputation for being capable of enhancing the properties of reinforced
polymers, from fracture strength [38] to electric [39] and thermal [40] properties. These
improvements are possible thanks to characteristics such as a high surface area and aspect
ratio [41], good interfacial adhesion to thermosets, such as epoxy [38], and its high mechan-
ical strength. The applications of this filler are very diversified and include tissue engineer-
ing, drug delivery systems [42], magnetic resonance imaging [43] and cancer therapy [44].

The main behavioral difference between graphene oxide (GO) and graphene is the
fact that the first is hydrophilic and the latter hydrophobic. This change in polarity can
be explained by the presence of oxygen bonded through the sp? in GO, and it enables the
dispersion of GO in aqueous solutions, enhancing its applicability to polymeric composites,
as well as functionalization [45].

Graphene nanoplatelets (GNPs) are small sheets of graphene and, as such, can be
effectively embedded in polymeric matrices, enabling many applications due to the increase
in thermal and electrical conductivities and a reduction in the porosity of polymers [46].

Nevertheless, it is important to highlight that graphene is not yet applied on a large
scale for a few reasons. Firstly, achieving maximum purity in its production process seems
to be quite challenging [38]. Moreover, the production cost is currently a major barrier to
scalability [47]. Finally, storage, transportation and health and safety issues are also current
concerning topics [48].

2.2.2. Carbon Nanotubes

Carbon nanotubes (CNTs) are basically rolled-up graphene sheets. These CNTs might
have one and two or more concentric layers, respectively, called single-walled (SWCNT) or
multi-walled (MWCNT). Although the property enhancement from the inherent carbon
interatomic bonds is retained, reinforcement by CNTs is unidirectional, unlike the 2D
graphene sheets. As such, the reinforcement is most advantageous if the CNTs are aligned
in the direction of the applied load. The elastic strain energies of CNTs, however, tend to be
affected due to the curvature of the carbon bonds in the tubular shape [46]. Biomimetic
hierarchical composites using fibers and CNTs have also been investigated [49-52], with
inconclusive results. Aside from the mechanical improvements that this filler confers
to composites, it is important to underline their influence over thermal and electrical
properties [51], enabling applications in the fields of nanoelectronic devices, medicine
and defense [41-47].
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2.2.3. Nanocellulose

Cellulosic fillers are amongst the most abundant, sustainable, biodegradable and cheap
nanofillers. Its main nanometric forms are cellulose nanocrystals (CNC) and nanofibrillated
cellulose (NFC). Cellulose nanocrystals, for instance, are obtained from cellulosic fibers
by extracting nanofibrils, removing hemicellulose and lignin through bleaching, and then
removing the amorphous regions linking each CNC by acid hydrolysis [53].

Recent research has shown that the addition of CNC to polymeric coatings significantly
inhibits corrosion in mild steel, increases the elastic modulus and impact strength in rubber
vulcanization and may also be effective in producing tough and resilient polyacrylamide-
matrix hydrogels [54-56].

NFCs are the structures immediately above CNCs, being basically nanometric in
diameter and micrometric in length and including the amorphous regions between two
CNCs. Because it is longer and more flexible than CNCs, NFCs have some advantages, such
as their longer strain to fracture and higher surface area, which enables them to provide a
good adhesion with the polymeric matrix. An example of a recent application promoted by
this feature is the use of NFC aerogel for developing wearable strain sensors [57].

3. Dispersion Methods of Nanoparticles in Polymeric Matrices

Physical processing methods for dispersing nanoparticles in a polymeric matrix are
currently of significant interest. Melt-blending and solvent processing, assisted by high-
shear mixing or sonication, have been favored in important research contributions due to
simplicity and compatibility with standard industrial techniques. Melt blending is one of
the most economical methods for fabricating nanocomposites and is the easiest to scale
up for a wide range of polymeric composites [47,58-70]. The method obviously requires
temperatures typically higher than the melting point of the polymeric matrix.

The dispersion of the nanoparticle fillers within the polymeric matrix can be achieved
by applying high shear forces using, for example, single- or twin-screw extruders or
compounders, which help to break apart the filler agglomerates. Its simplicity makes it
attractive for industrial-scale processes; however, many parameters (rotation speed of the
twin-screw, temperature, high-shear mixers, hydrodynamics, etc.) must still be fine-tuned to
optimize the results. However, it has also been observed that adhesion between the matrix
and filler is not favored in melt processing, as compared to the very strong interaction
between individual nanoparticles [47]. While melt blending of hard-to-wet, untreated
carbon nanotubes (CNTs) and graphene has shown modest improvement in dispersion,
the melt mixing of montmorillonite clay with polymer has met with great success. The
chemical functional groups at the silicate surface of the individual clay platelets might
explain the observed greater affinity that results in better adhesion with the matrix.

On the other hand, solvent processing coupled with mechanical mixing or sonica-
tion is also suitable for obtaining nanocomposites [9,11,47,60,63,71-81]. The technique
involves dispersing the nanoparticles in a polymer that is firstly dissolved in a compatible
solvent. The breaking up of particle agglomerates is promoted by either a turbulent flow
or the formation of cavitation bubbles. The major disadvantage, of course, is that the
method is limited to polymeric materials that can be easily dissolved. In addition, the
solvents used in the sonication process need to have low viscosity (e.g., acetone, distilled
water, ethanol [63]).

Although these physical methods are supposed to be envisioned to benefit industrial
processing, it is worth mentioning that most of the studies pointed out that a fully ho-
mogeneous dispersion of nanoparticles is difficult to attain unless a rather low content
of nanoparticles (typically < 1.0 wt.%) is used. Furthermore, the mixing or processing
conditions may need to be tailored by introducing compatibilizers or surfactants to im-
prove the quality of filler dispersion. The recent review by Boon et al. [80] suggested
that ionic surfactants should be used for CNTs in aqueous mixtures, whereas nonionic
surfactants are preferred for mixtures with organic solvents. Some of the ionic surfac-
tants used with carbon nanotubes include sodium dodecyl sulfate (SDS), dodecyl-benzene
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sodium sulfonate (NaDDBS) and polyvinyl pyrrolidone (PVP), while nonionic ones include
polyoxyethylene-8-lauryl and Tergitol NP-7 [80-82].

To improve the interactions between nanofillers and a matrix, chemical methods are
needed. Functionalization has so far been preferred [9,11,22,45,51,52,68,78,83-90]. The
concept relies on the attachment of a specific functional group at the filler’s surface, which
promotes uniform polymer—particle suspensions and, after curing, restrains the nanofiller
within the matrix. Functionalization can also prevent re-agglomeration by generating steric
repulsion among chemical groups with larger molecules/long chains.

Further immobilization can be obtained if the particles are dispersed within the
monomers prior to polymerization [47,58,60,63,65,68,78,79,91-96]. One of the advantages
of this technique is that it allows the grafting of polymeric molecules onto the surface of
the fillers, which also leads to a better dispersion of hard-to-wet nanomaterials.

In contrast to the physical methods, such an in-situ polymerization route offers the
added advantage of higher nanoparticle loads.

The effects of the nanoparticle dispersion method on the physical and chemical struc-
tures of composites are widely reported in the literature. Observed changes in glass
transition temperatures (Tg), for instance, were attributed to a loss in the flexibility of
polymer chain segments resulting from the particle-matrix interaction, which relies on
well-dispersed nanoparticles within the matrix. The selected results are shown in Table 1.

Table 1. Summary on the effect of particle dispersion method on the glass transition temperature (Tg)
of epoxy nanocomposites relative to that of the matrix.

) . Nanoparticles AT
Dﬁ]::elrlilgn o Size Content (%§ Composites Preparation Remarks Reference
P (nm) (Wt.%)
. Prepared at 80 °C by 60 min stirring and 30 min
SiC <100 10 6 sonication. Tg: DMA (1 Hz, 35-250 °C, 5 °C/min). 621
b0
RYRN=R-t Prepared at 80 °C by 60 min stirring and sonication.
g g % CaCO;  40-70 6 0 Tg: DMA (1 Hz, 30-300 °C, 5 °C/min). [61]
N —= Q
29 8 Prepared at an elevated temperature by 30 min
R~ g a. 510 100 > > sonication. Tg: DSC (25-200 °C, 5 °C/min). (5]
Prepared at an elevated temperature by 5 min
a
CB 30 2 2 sonication. Tg: DSC (25-200 °C, 5 °C/min). (5]
Prepared in butanone with 10 min of stirring and
ZrO, 45 6 11 60 min sonication. Tg: DMA (1 Hz, 28-100 °C, [82]
T 2 °C/min).
EF d in liquid by high d
= F9 Prepared in liquid resin by high-speed mixing.
c Lo
25 % AlOs 80 1 21 Ty: DMA (1 Hz, 40-130 °C, 2 °C/min). [77]
>
£ s ¢ P d i tone by mechanical mixing and
nSe . repared in acetone by mec c g
gﬁ % Si0; 12 6 0 sonication. Tg: DMA (1 Hz, 20-175 °C). [76]
2]
. Prepared in benzyl alcohol by 5 min high-speed mixing
O, <10 3 21 and 5 min sonication. Tg: DMTA. [74]
Prepared by covalent bonding between functionalized
< e SiO, 7 7 15 SiO;, and resin by 10 min mixing and 30 min sonication. [89]
3 ) Tg: DMA (1 Hz, 25-200 °C, 5 °C/min).
=5 ©
£ 3 Prepared by covalent bonding between functionalized
R g GO n/a 05 > GO and resin by 30 min mixing. Tg: DMA. 501
- ,.a =
5 § 2 Prepared by covalent bonding between functionalized
6 < 2 TiO, 25 5 43 TiO; and resin by 15 min stirring. Tg: DSC [22]
E, < (N atmosphere, 20-200 °C, 10 °C/min).
< B
Z & d: 30 nm Prepared by covalent bonding between functionalized
c g b P y g
o &~ CNT L: 15 um 0.5 34 CNT and resin by 60 min stirring. Tg: DSC. [88]
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Table 1. Cont.

. . Nanoparticles
Dispersion Size Content A(:Fg Composites Preparation Remarks Reference
Method Type (%)
(nm) (wt.%)
d: 9.5 nm Prepared by in situ polymer formation in a CNT
g g CNT L:1.5 um 0.2 27 suspension. Tg: DMTA (1 Hz, 25-200 °C, 2 °C/min). [95]
£ 8 Prepared by in sit )\ f tion in a GO
= B P y in situ polymer formation in a
S £ é GO n/a 0.5 40 suspension. Tg: DMA (1 Hz, 5 °C/min). [%6]
Ef o
U = . . . . .
< S5 . Prepared by in situ polymer formation in a TiO,
o E b TiO, <25 76 2 suspension. Tg: DMTA (1 Hz, 5 °C/min). [57]
2 &
B ®
K== GOc / 1 0 Prepared by in situ polymer formation in a rGO [92]
r n/a

suspension. Tg: DSC.

a CB: carbon black; P for carbon nanotubes, d is the diameter, and L is the length; € rGO: reduced graphene oxide.

Combining nanoparticles with other nanofillers to make hybrid composites has been
shown to help the preparation of polymer—particle mixtures [84,91,98]. Coupled with a
chemical or a mechanical method, this technique emphasizes the potential of a percolated
network of hybrid filling nanomaterials, leading to a significant improvement in nanopar-
ticle dispersion within the polymeric matrix [99]. When compared to functionalization,
hybridization typically comes at a cost; however, it eases the fabrication process and has
become a promising way to counterbalance some of the manufacturing challenges.

From a more applied perspective, the applicability of these concepts to the develop-
ment of structural fiber-reinforced polymeric nanocomposites still needs to be assessed
and demonstrated.

4. Particle Effects on Composite Thermomechanical Properties

Aside from the complexities summarized above for the particle incorporation pro-
cesses, published research not only shows that the properties of nanostructured polymers
may be altered by the addition of nanofillers but also that those changes depend on the
particle type, size and content [87,98]. The major trends on this issue are described in
what follows.

To enable a consistent comparison among the variables involved, the polymer matrix
was chosen for the epoxy resin, the four most cited nanoparticles, namely TiO,, SiO,, GO
and GNP, were selected, and three properties, namely tensile strength (TS), storage (elastic)
modulus (E’) and glass transition temperature (Tg), were studied.

The titania (TiO,) particles are, indeed, the most commonly used particles found
in the literature, with more abundant data and several industrial applications. Simi-
larly, epoxy DGEBA is the most common polymeric matrix considered in these studies,
given its wide usage in industry, easy access to and ability to disperse particles within
low-viscosity media [11].

The shift in the selected properties as a function of particle type, size and content
(wt.%) was referred to (linearly normalized by) that of the corresponding epoxy matrix
alone and expressed as a percentage (A%) in order to level the information extracted from
the literature. Table 2 summarizes the tensile strength (TS) data collected. In a similar
way, Table 3 presents the data collected for the corresponding storage (elastic) modulus
(E’, related to the loss, or viscous, modulus E” by tan = E”/E’) and the glass transition
temperature (Tg) for the same nanoparticles and the epoxy polymer matrix.



Polymers 2023, 15, 3707

8 of 26

Table 2. Comparison of relative changes in tensile strength (ATS) for epoxy matrix nanocomposites

as a function of type, size and content of nanoparticles.

Type Size (nm) Content (wt.%) ATS (%) Reference
220 1;3;5;10 2;4;13;9 [100]
190 2;4;6;8;,10 45;62;31;14;7 [100]
50 1;3;5;10 7;14;11;9 [100]
o
[Cj_ 50 1;3;5 5;15;9 [101]
25 0.5;1;3;5 11;18;15; 6 [102]
17 1;3;5;10 13;14;12;6 [100]
15 1;2;3;4;5,6 51;71;19;11;7; 21 [103]
30 05;1;2;3 4;9;11;0 [104]
17 0.5;0.75;1; 3 12;42; —6; —14 [105]
ON 15 2;4;6;8 14; 27;10; 6 [82]
& 15 1;2;3;4;5 9;13;117; —14; 14 [106]
15 2;4;6;8 15;29;3; —12 [107]
15 0.5;1;1.5;3;5 1;24; 26; 31; 27 [108]
T 15(2Jonm 0.1;0.2;0.5; 1 7;9;11; 15 [109]
T 15(2)0nm 0.1;0.2;0.5; 1 3;4,7, —6 [109]
3
*O %522 r11(r)n 0.025; 0.05; 0.1; 0.2 2;10;19; 14 [110]
© 1.5 x 103
T.' 3.5 nm 0.025; 0.05; 0.1; 0.2 20;29;17;5 [110]
3
%-012 r11?n 0.1;0.3;0.5;0.7; 1 3;,2;,12;6;4;2 [111]
3
,?_'_043 rll(r)n 0.1;0.25;0.5; 1 11;11;13; —1;5 [112]
3
'{)FO;; iﬁl 0.25;0.5;1;1.5 20;11;1;, —6 [113]
3
:_ §1"02>5< igl 0.1;0.25;0.5; 1 5;,13;10;2;7 [114]
= :
O 3
5)1"02; igl 0.1;0.25;0.5; 1 —1; —-13; —-8;0 [115]
3
5:)1,02; igl 0.1, 0.25;0.5; 1 0;20;11;1 [115]

* For GO and GNP; T is the sheet thickness.

Table 3. Comparison of relative changes in storage modulus (E’), tan 4 and glass transition tempera-
ture (Tg) for epoxy matrix nanocomposites as a function of type, size and content of nanoparticles.

Properties (%)

Type B Reference
Size (nm) Content (wt.%) AFE’ Atan & ATg
250 1,3;5 20; 52; 40 Unchanged -1 [116]
~ 21 1;25;5;7.5;10 —15;4;8;12; —35 110; 80; 60; 70; 30 19; 18; 24; 19; 18 [114]
'8 3040 5,10; 15 18; 30; —10 -7,7, -9 -3;11;3 [117]
32 2;,4;6;8 9;21;22;15 —6; —5;, —9;, —5 9;14;19; 16 [118]
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Properties (%)
Type - Reference
Size (nm) Content (wt.%) AFE’ Atan & ATg
o 17 0.2;0.4;0.6 25;31; 45 6; —4; —3 -3;2;3 [13]
o
= 0.1;0.5;1;1.5;2;2.5; 215; 115; 138; 246;
2 ’ 7 L ’ “r ’ ’ ’ 7 'y _ R 7.
30 3,354 not reported 123; 246, 85, 77: 119 11; -5, -7, -7 [117,119]
90 1,3;5,7 8; 23;15; 15 2, -9, -2;12 1;2,0;, —8 [120]
40 1,3;5 8;14; 44 30; 43; 22 32;36; 41 [121]
C(J\‘ 70 0.5,2;,5 not reported —14; —27;, —28 7;16; 16 [122]
&
5;8;14;14;17;11;1, -10; -9;0;3;0; —9; PP
40 1;2;3;4;5,6;7;8 90 _17. 19 7;10;10;12;0;7;0; 1 [85]
15 1;2;4 not reported —15; —16; —21 3;3;3 [123]
3
1.3 <710 0.1;0.5;1;1.5 30; 35; 35; 39 10;, -7, —11; —21 -1, -1, -3; —11 [124]
T: 1 nm
W:5 um
L: 25 um 0.05;0.1;0.2; 04 6; 6; 56; 44 13;20;22; 9 1;0;13;5 [125]
T: 1.7 nm
3
* 2010 0.1, 0.25; 0.5 not reported —15; —15; —11 5,6;5 [126]
0 T: 9 nm
© 20 x 103
T 11 nm 0.1; 0.25; 0.5 not reported —16; —11; —22 6,57 [126]
25 x 103 .08 .81 .16 . 0.
T 12.3 nm 04;0.8;1.2 25; 81; 53 7; —16; =7 5,9;6 [127]
3
1210 0.1;0.3;0.5 54; 48; 46 100; 77; 110 18;15;3 [128]
T: 12 nm
5 x 10° .. 7. L 1.
T: 10 nm 13;5 2;7;16 ~2;,-7;-10 1,1;2 [129]
3
4510 0.1;0.3;0.5; 1 24; 30; 18; 12 -7, —12;, —14; —12 4;6;5;4 [130]
T: 12 um
g 25 x 103 anE. . Q. _AF. _
% T 6-8 nm 0.1; 0.25;0.5; 1 not reported 5; —9; —35; —25 1;4;7;1 [131]
3
4510 0.025; 0.1, 0.2 6;18;13 —26; —50; —38 6;19;15 [132]
T: 12 nm
3
5x10 0.1;0.3; 0.5; 0.7 8;10; 25, —9 -5, -9, —18; —15 2;4;5;3 [133]
T: 6 nm

*Is for GO and GNP; T is the sheet thickness; W is the width; L is the length.

In order to enable a concise yet representative analysis, the discussion that follows

was narrowed down to titanium dioxide (TiO;) particles.

To normalize the information gathered from different authors, the influence of the
particle size and weight content on properties was described in terms of the surface area.
The specific surface area (SSA), commonly expressed in m?/g, can be calculated from the
particle size, assuming a spherical shape for the oxide particles (Equation (1)) [134].

SSAsphere =6/p-d

M

In Equation (1), p and d represent the particle’s density and diameter, respectively. For
TiO,, the density considered was 4.23 g/ cm? [135].
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4.1. Effect on Tensile Strength

Figure 1 was constructed from the selected data listed earlier in Table 2, which is
plotted in the way usually found in the literature, i.e., as a function of the weight content of
the added particles. As there is no known mathematical relationship (i.e., dependency law)
between the tensile strength and added particle content, data points were simply linked by
smoothed lines to help the discussion.

20
1 ¢-220nm, 6.4 m%g
18 ] -e-50nm, 28.4 m?/g
16 A --50nm, 28.4 m%g
1 -4-25nm, 56.7 m?%g

H - -=-17nm, 83.4 m%g

12 4

ATS (%)
S

8 -
s /
4 X
2 s
O T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11

TiO, content (wt.%)

Figure 1. Tensile strength variation (ATS) for TiO,-filled epoxy composites as a function of TiO,
weight content for the particle size and SSA values shown.

Figure 1 shows that, regardless of the TiO, content and SSA, the composite’s TS was
always higher than that of the corresponding epoxy matrix. As a common trend, Figure 1
also shows that there is an optimal particle content that results in a maximum TS gain.
Above the optimal content value, the TS gain drops, apparently due to ineffective particle
dispersion: the higher the TiO, content, the harder it is to avoid particle agglomeration.
More importantly, it appears that the optimal particle content tends to decrease as the
corresponding SSA increases, i.e., higher TS gains might be obtained with lower contents
of smaller particles (high SSA).

Figure 1 also highlights several inconsistencies, pointed out as follows. The gain in TS
was markedly influenced by the SSA for any given particle weight content. This could be
attributed to the influence of the dispersion method on ATS, which can be illustrated at a
fixed TiO, content of 1 wt.%. As the SSA increased from 6.4 to 28.4 m? /g, ATS increased
from ~2 to ~7%. On the contrary, when the SSA increased from 28.4 to 56.7 and then to
83.4 m? /g, the gain in TS increased from ~7 to ~18 and then fell to ~13%. This drop in ATS
could suggest the existence of an optimal particle size (or SSA) for the best property gain
using a particular added particle weight content. However, it might also be attributed to the
structural changes due to differences in particle dispersion, given that, for 56.7 m?/g, TiO,
particles were incorporated into the epoxy by sonication [102] whereas, for 83.4 m?/g, by
using a moderate-speed mixing method [100]. As discussed in Section 3, sonication induces
the generation of collapsible cavitation bubbles, leading to a more effective dispersion.

The doubtful confidence on the effect of added particle content can be illustrated by
referring to the two different authors (Table 2, [100,101]) that explored similar 50 nm TiO,
particles (SSA of 28.4 m?/g) seeking to improve the tensile strength performance but used
a different added particle content range. As seen in Figure 1, the resulting curves do not
seem to match each other, even for the common particle content.

Thus, when specifically observing the particle influence on the structuring process,
particle size (expressed as SSA) certainly is an important variable; however, particle crowd-
ing (namely expressed as the mean free path between them, g, and the particle number,
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Content (wt.%):
Particle size, d (nm):
NP:

SAroraL (nm?):

NP) is not suitably translated by weight content, according to the majority representation
shown in works with nanocomposites [136-139].

The number of particles, NP, can be calculated (again assuming identical spherical
particles) through the volume fraction, V), from the corresponding weight fraction, as seen
in Equations (2) and [140].

v, = P D )
pp(1—wp) + p,wp

In Equation (2), p is the density, w is the weight fraction, and subscripts m and p refer
to the matrix and particle, respectively. In Equation (3), Vs is the volume of each particle.

Figure 2 was constructed using the commercial software Digimat® (Version 2021-3 by
Hexagon) and the Random Fiber Placement algorithm (the algorithm places the particles
at random positions within the cube until the specified volumetric fraction is reached),
illustrates the crowding of 0.05 wt.% TiO, particles in a 10 x 10 x 10 pum3 volume as a
function of the particle size. As the particle diameter is halved, the SSA duplicates (from
Equation (1)); however, NP increases sharply (multiplies by 2%). As seen in Figure 2, the
same small weight content of well-dispersed TiO, particles could result in a homogeneous
composite with properties that improve when the particle size decreases (i.e., SSA increases).
However, Figure 2 clearly shows that downsizing can result in an excessive number of
particles, whose crowding will bring about dispersion difficulties (e.g., agglomeration) and
consequently, hindered properties.

@) (b) (c) (d) (e)
0.05 0.05 0.05 0.05 0.05
1000 500 250 125 62.5

<1 2 16 126 999

7.85 x 10° 1.57 x 106 3.14 x 10¢ 6.19 x 106 1.23 x 107

Figure 2. Dispersion of 0.05 wt.% TiO, within a 10 x 10 x 10 um? volume illustrating particle
crowding as a function of TiO, particle diameter (software: Digimat® with Random Fiber Placement
algorithm). (a—e) show the particle number progressively increasing as much as the particle diameter
reduces, even though the amount of mass has remained unchanged.

Particle crowding can be assessed through the mean free path among particles, i.e.,
the distance between the surface of the closest particles. To calculate the mean free path,
a specific particle arrangement needs to be assumed. To this aim, the concept of atomic
packing factor is what most resembles the studied conditions. The densest particle packing,
corresponding to the face-centered cubic arrangement (74 vol.%), was chosen (Figure 3),
assuming, yet again, spherical particles. This would be the stringiest particle crowd-
ing condition, i.e., in actual homogeneous, well-dispersed composites, g would present
higher values.

Figure 3 shows the arrangement of particles for the face-centered cubic packing and
highlights the mean free path (g) as the distance between the closest spheres, which can be
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calculated by Equation (4) [134]. In Equation (4), d is the particle diameter, and V), is the

volume fraction of particles.
V2 167
= XZ 3/ =1 4
§Fcc ( 1\ 3, d 4)

X /\E\L
g
Figure 3. Schematic representation of the FCC particle packing, showing how to calculate the mean
free path, g (adapted from LibreTexts™ [33]).

The number of particles for a given mass percentage is directly proportional to its
diameter, d. The smaller the diameter, the greater the number of particles and, consequently,
the smaller the distance g among them. In the case of this review, the values of mass
percentages and particle diameters were given by the authors, requiring the transformation
of this information to a volumetric percentage and, later, the relative number of particles.

Thus, smaller particles can stand much closer than larger particles (g is directly
proportional to the particle size). Hence, there is a negative power law dependency
between g and the number of particles, NP, or an inverse linear relationship between log
(g) and log (NP). The values calculated for the number of particles, mean free path and
specific surface area for the TiO, particles used earlier in Table 2 and Figure 1 are presented
in Table 4 and expressed graphically in Figure 4.

Table 4. Comparison of relative changes in tensile strength (ATS) for TiO,-epoxy nanocomposites as
a function of particle size and added particle content (particle number (NP), mean free path (g) and
specific surface area (SSA) were calculated).

Content SSA

Size (nm) (Wt.%) ATS (%) NP g (nm) (m?/g) Reference

1 2 4.95 x 102 1159
3 4 2.34 x 103 731

220 5 13 3.96 x 103 578 64 [100]
10 9 4.52 x 10° 406
1 7 4.95 x 102 263
3 14 2.34 x 103 166

50 5 11 3.96 x 103 131 284 [100]
10 9 452 x 10° 92
1 5 1.07 x 100 263

50 3 15 476 x 10° 166 28.4 [101]
5 9 8.05 x 10° 131
0.5 11 7.79 x 10° 173
1 18 1.56 x 100 132

% 3 15 4.76 x 10° 83 56.7 [102]
5 6 8.05 x 10° 66
1 13 4.95 x 102 90
3 14 1.51 x 103 57

17 5 12 3.96 x 103 45 834 [100]
10 6 4.52 x 10° 31
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Figure 4. Tensile strength variation (ATS) for TiO,-filled epoxy composites as a function of the
number of TiO, particles (NP) for the particle size and SSA values shown.

Figure 4 allows a clearer analysis of the effect of TiO, particles on epoxy compared
to that shown in Figure 1. The dependency of the tensile strength variation with the
particle number enables a distinct separation of the ATS maxima and brings to evidence
the influence of the surface area (i.e., particle size and content), which was not apparent
in Figure 1.

The first point worth mentioning is that when the property is plotted as a function
of NP, a better overlap can be seen for the two 28.4 m?/g curves, despite the particular
processing parameters considered in each study [100,101], which the previous and tradi-
tional form of portraying data (in wt.%, as seen in Figure 1) did not show. Although the
maximum on the property curves was seen before, the representation in Figure 4 clearly
separates such maxima, bringing to evidence their dependence on the specific surface area.
In other words, for comparatively large particles (i.e., low SSA), the number of particles
required to reach the maximum is low; as the particles are downsized (i.e., increasing SSA),
the NP for the maximum also increases. Moreover, Figure 4 shows that the maxima on
ATS are clearly higher for the lower particle sizes while suggesting that there might be
an optimal particle size (or SSA) for the maximum property gain, as envisioned earlier
in Figure 1. When Figures 1 and 4 are analyzed together, as the particle size decreases,
the weight content needed for the maximum property gain also decreases; however, the
number of particles increases, i.e., the maxima move backwards in Figure 1 and forwards
in Figure 4. This is a direct consequence of the correlation between volume and weight
through density for any given type of material, yet it also hints at the possibility that the
property gain might be dependent on the particles’ total surface area. In other words,
smaller particles would be needed in lower-weight contents to reach a comparable property
gain. Figure 5 depicts such an exercise, as it gathers all data in Table 4 by plotting ATS as a
function of the particles’ total surface area (i.e., weight content x SSA). Despite the scatter
in the data, the dashed line in Figure 5 represents the general trend among the data points
(moving average trend line), suggesting that the location of the maxima observed earlier in
Figures 1 and 4 might be just fortuitous.

Thus, it is desirable to find an alternative way to access the property’s underlying
mechanism. When the property gain is plotted as a function of g (Figure 6), a trend similar
to that for NP can be observed, i.e., the distance among larger particles (with a lower
SSA) for the best property improvement is higher than that for smaller particles (with a
higher SSA).
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20
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Figure 5. Tensile strength variation (ATS) for TiO,-filled epoxy composites as a function of the TiO,
particles’ total surface area. The dashed line represents the general trend among data points.

20
] »-220nm, 6.4 m%g
187 --50nm, 28.4 m¥g
16 - -+-50nm, 28.4 m%g
14 i -4-25nm, 56.7 m%/g
| /X -*17nm, 83.4 m%g
=12 1 /
X 1 /
& o 4 / ‘
g ] ‘
6 .
4 T \
2 4 N
0 T T T T T T T T T T T T T T T T T
10 100 1000

Free mean path, g (nm)

Figure 6. Tensile strength variation (ATS) for TiO,-filled epoxy composites as a function of the mean
free path among TiO; particles (g) for the particle size and SSA values shown.

The expected relationship between g and NP at the property maximum, i.e., the neg-
ative power law relationship (or the linear relationship between log NP and log g), can
be observed in Figure 7a. More important, however, is the positive power law relation-
ship between g and d at the property maximum, which can be seen in Figure 7b. If the
strengthening of the polymer matrix relies on its texturing around the filler particles, it
would have been expected that the maximum benefit would correspond to a particular
optimum distance among particles, i.e., to a common g value. That is not what Figure 7b
shows. Indeed, Figure 7b suggests that the “affected” matrix volume surrounding each
particle depends on the particle size and increases with it. At the point of maximum gain,
larger particles will be surrounded by a thicker affected matrix layer than smaller particles
and will then need to stand further apart from each other.
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Figure 7. Power law relationship observed at the maximum tensile strength gain for TiO,-filled epoxy
composites between (a) particle number, NP, and mean free path, g, and (b) particle diameter, d, and
mean free path, g.

Having no direct experimental access to the values of g, it is important to determine if
the enhanced contrast provided by this alternative form of representation also works for
other properties.

4.2. Effect on Dynamic Mechanical Properties

By the fact that it is a viscoelastic material, the nanocomposite needs evaluations
both in the viscous phase and elastic. Because it allows the evaluation of properties in
the temperature domain and because it offers mechanical excitations compatible with
the scale of the new material (nanometers), a large number of researchers [141-145] use
DMA to determine the storage modulus parameters (E’), loss modulus (E”) and glass
transition temperature (Tg). Therefore, extending the reasoning just discussed for the
tensile strength, the following analysis considers the results for E” and Tg, obtained from
dynamic mechanical analysis tests (DMA). Table 5 presents data for the TiO, particles
selected from those listed earlier in Table 3.

Table 5. Comparison of relative change in storage modulus (AE’) and glass transition temperature
(ATj) for TiOp-epoxy nanocomposites as a function of particle size and added particle content (particle
number (NP), mean free path (g) and specific surface area (SSA) were calculated).

Size (nm) AE’ (%) ATg (%) Content (wt.%) NP g (nm) SSA (m?/g) Reference
20 -1 1 3.38 x 102 1317
250 52 -1 3 1.03 x 10% 831 5.7 [116]
40 -1 5 1.74 x 103 657
18 -3 5 425 x 10° 105
40 30 11 10 8.82 x 10° 74 35.5 [117]
-10 3 15 1.38 x 100 58
9 9 2 324 x 10° 127
21 14 4 6.58 x 10° 93
32 22 19 6 1.00 x 106 77 443 (18]
15 16 8 1.36 x 10° 67
—15 19 1 5.70 x 10° 111
4 18 25 1.44 x 106 76
21 8 24 5 293 x 10° 55 67.5 [114]
12 19 7.5 449 x 10° 45
—35 18 10 6.10 x 100 39
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4.2.1. Storage Modulus

The first point to note is that there should not be negative gains in the composite
modulus. The addition of inorganic (crystalline) particles to a softer polymeric matrix
should always result in stiffness gain. Such a discrepancy is frequently attributed to pro-
cessing difficulties (e.g., bad dispersion, lack of adhesion), meaning that the added particles
behave as defects or impurities rather than playing the expected role of strengthening aids.
Nevertheless, available data as those listed in Table 5, are scarce and, bearing the above in
mind, they were used in the discussion, all the same.

The composites’ storage modulus variations (AE’) as a function of TiO, weight content
and number of particles are presented in Figure 8a,b, respectively. As seen for the tensile
strength analysis, both representations show that the storage modulus gain (AE’) for each
different SSA increases up to a maximum value and then decreases.

60
1 -#-250nm, 5.7 m?/g
50 4
J --40nm, 35.5 m?/g
01 +-32nm, 44.3 m?lg

30 A -21nm, 67.5 m?/g

20 A

AE' (%)

10 A

0

12 13 14\15 16
210 4

-20 A

-30 1

-40

60

30 A
20 A

10 4

AE' (%)

0 e —
190 1000 10,000 100,000
10 1 «250nm, 5.7 m?/g

0,000,000
-20 4 —<-40nm, 35.5 m?/g

-30 { #-32nm, 44.3 m¥/g Number of TiO, particles, NP

1 2
40 “*+21nm, 67.5 m?g

(b)

Figure 8. Storage modulus variation (AE’) for TiO,-filled epoxy composites as a function of (a) TiO,
weight content and (b) the number of TiO, particles for the particle size and SSA values shown. The
dashed line in (b) represents the common straight line among the AE” maxima.

Figure 8a shows that the highest gain (52%) was reached with small contents of large
particles (small SSA, 5.7 m?/g). Composites with smaller particles (higher SSA) tend to
present their best property at higher particle contents. This effect is clear for the SSA
values of 35.5 m?/g and 67.5 m?/g, where the variation in storage modulus is negative,
i.e., despite the awkwardness of this concept, it means that the composite is worse than the
epoxy alone.
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This effect becomes much clearer from the perspective of the number of particles,
shown in Figure 8b. For instance, considering the particles with 5.7 m2/ g SSA, a small
number of particles results in a high gain for this composite. The others, prepared with
smaller particles (i.e., higher SSA), even if added in the same weight content, need a much
higher number of particles, with the dispersion difficulties that entails, to reach their best
increment in modulus.

Still, in Figure 8b, another trend can be observed, which is that the peaks of the
four curves nearly fall on a straight line, also shown in the graph, suggesting an inverse
proportionality between the modulus gain and the log (NP). This is to say that, despite the
size gap between the micro and nano size ranges in the data, a high number of particles
with high specific surface areas do not provide significant stiffness gains. As it is, the
reported low stiffness improvements (and perhaps also the negative gains mentioned
above), generally attributed to high SSA, hence poor dispersion, might be the result of
particle crowding (particles too close together), which can be evaluated in terms of the
mean free path, g, as shown in Figure 9.

60
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10 ‘ 00 1000
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Figure 9. Storage modulus variation (AE’) for TiO,-filled epoxy composites as a function of the mean
free path among TiO; particles (g) for the particle size and SSA values shown.

Figure 9 clearly explains the better performance of the 5.7 m?/g composite because the
average distance amonyg its particles is noticeably higher than in the others. In addition, the
height of the peak is also associated with the g value, i.e., higher maxima occur for a lower
SSA and higher g. This representation also evidences that when the particle size drops to
a few tens of nanometers, the effect of the distance between them seems to overcome the
effect of their number, i.e., the individual curves become overlapped.

The relationships between g and NP at the property maximum (i.e., gmax and NPmax)
and between gmax and the particle size, d, can be seen in Figure 10. To help the discussion,
the data shown earlier in Figure 7 is included again. The expected negative power law
relationship between NPmax and gmax (or the linear relationship between log NPyax and
log gmax), as well as the positive power law relationship between gmax and d at the property
maximum, can also be seen for the storage modulus.

It can be seen in Figure 10a,b that the relationships between the interparticle distance
at the property maxima (gmax) and the particle size (d), as well as between gmax and NPpax,
are, for all practical purposes, the same for ATS and AE’, supporting the inferred presence
of an “affected” matrix volume surrounding each particle, which depends on the particle
size and increases with it. However, because the dependence of the stiffness E’ on the
number of particles was found to be contrary to that of the strength, TS, it appears that, as
g decreases (more particles in the polymeric matrix), the polymeric chains in these narrow
gaps likely become more oriented and it would be easier for them to slip past each other
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(easier movement). This apparently results in a more flexible composite (a decrease in E’)
but one with increased strength, TS (and maximum strain).
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Figure 10. Power law relationship observed at the maximum property gain (ATS and AE’) for TiO;-
filled epoxy composites, between (a) particle number, NP, and mean free path, g, and (b) particle
diameter, d, and mean free path, g. To help the discussion, the data shown earlier in Figure 7 is
included again.

4.2.2. Glass Transition Temperature

To further clarify the influence of TiO,-particle downsizing on the structure—property
relationships in TiO,-filled epoxy composites, reported data (selected from Table 5) for
the glass transition temperature (Tg) was similarly explored. Figure 11a,b depicts the Ty
variation as a function of the TiO, content and the number of particles, respectively.

Figure 11a shows that Ty seems to improve for the high SSA (i.e., for particles with
smaller sizes), as seen earlier for the tensile strength (Figures 1 and 4) but is contrary to
the behavior of the storage modulus seen in Figure 8a. However, the curves appear to be
flatter, and more so for the higher SSA, i.e., less sensitivity to the particles’ weight content.

From the perspective of the number of particles, shown in Figure 11b, the effect of
lower thermal stability for the nanocomposites with bigger particles becomes even more
evident. The difference in the size of particles with 44.3 and 35.5 m? /g SSA (32 and 40 nm,
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respectively) appears to be not significant enough to change their number for the highest
property improvement despite the different weight contents that were used.

This analysis would suggest that the mechanisms for property enhancement of epoxy
through the dispersion of nanoparticles are different for storage modulus and glass transi-
tion temperature. Thus, it is possible that the increase in Ty may be related to a reduction
in the mean free path among particles, hence being favored by smaller particles that can
stand closer to each other, thus promoting the loss in the flexibility of polymer chains that
seems to favor Tg.
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Figure 11. Glass transition temperature variation (ATg) for TiO,-filled epoxy composites as a function
of (a) TiO, weight content and (b) number of TiO, particles for the particle size and SSA values shown.

5. Conclusions and Outlook

Technological advances have allowed the development of new nanoparticles and the
improvement of processing techniques for the preparation and design of nanocomposites,
and despite the fact that nanocomposites have been studied for decades, several authors
have recently devoted their work to providing new findings in various fields, such as
ballistics [146], sensors [147], water treatment [148], conducting polymer composites [149],
synergetic effects of self/induced crystallization and nanoparticles on the mechanical
properties of nanocomposites [150], mechanical properties increment based on carbon
nanoparticles, nanosilicon, and cobalt [111,151-154], besides thorough, updated, state-of-
the-art reviews [155,156].
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The chronology of the articles reviewed from the literature clearly depicts this trend,
as added nanoparticles with progressively smaller sizes are being investigated, and the
consequent exponential gains in the properties of polymeric matrix composites are being
reported. This work analyzed the particular case of titania nanoparticles added to epoxy
matrices, seeking a better understanding of the observed improvement in important ther-
momechanical properties, namely the tensile stress (TS), the storage (elastic) modulus (E’)
and the glass transition temperature (Tg).

The reported composite property improvement due to the simple decrease in particle
size, the so-called “scaling effect”, is attributed to surface energy effects, as the specific
surface area of a given weight content of particles of the same material directly increases as
their size decreases. What appears to have been overlooked so far is that the resulting num-
ber of smaller particles increases much faster, and what might have seemed a tiny weight
of added particles is, in fact, a huge particle number and a very crowded system whose
processing difficulties, often directly linked to a good dispersibility, might be tremendous,
upsetting the delicate balance between best performance and economic viability.

It should be remembered that real particles may have a variety of sizes (represented
by a flatter particle size distribution curve) and may agglomerate before or after addition
to the polymeric matrices, all of which hinder homogeneous dispersions. These processing
steps are very challenging, even with current technology. It would, therefore, not be
hard to accept that the experimental results reported in the literature could be impaired
by heterogeneous dispersions and/or agglomerations of uneven particles, resulting in
composites that are prone to premature failure.

The significance of considering tiny amounts of smaller and well-dispersed particles
within the polymer matrix was highlighted in this work in terms of the number of particles,
NP, needed to reach the highest property gain for a given particle size, d (or specific surface
area) and the likely mean free path (distance), g, between the closest particles, i.e., particle
crowding. For all practical purposes, the same positive power law relationships between
g and NP, as well as between g and d, at the property maximum were identified both
for TS and E’, suggesting that matrix texturing around the particles increases with their
size. However, the dependence of the stiffness on the number of particles was found to
be contrary to that of the strength, suggesting that, as g decreases (more particles in the
polymeric matrix), the likely forced orientation of polymeric chains apparently prompts
easier slipping, resulting in a more flexible composite—but one with increased strength
(and maximum strain). Surprisingly, the glass transition temperature appears to be less
sensitive to particle weight content or crowding, being simply favored by smaller particles
that can stand closer to each other, hence promoting the loss in the flexibility of polymer
chains that favor the increase in Tj.

Nowadays, given the varied techniques and materials used by each author, normal-
izing the results through particle crowding (the number of particles and distance among
them) brings evidence that the particle size and particle content should be downscaled
together and has an interesting potential to better compare the laboratory results and
further the knowledge on such important processing—structure—property relationships.
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