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A B S T R A C T 

We e v aluate the performance of the Lyman α forest weak gravitational lensing estimator of Metcalf et al. on forest data 
from hydrodynamic simulations and ray-trace simulated lensing potentials. We compare the results to those obtained from the 
Gaussian random field simulated Ly α forest data and lensing potentials used in previous work. We find that the estimator is able 
to reconstruct the lensing potentials from the more realistic data and investigate dependence on spectrum signal to noise. The 
non-linearity and non-Gaussianity in this forest data arising from gravitational instability and hydrodynamics causes a reduction 

in signal to noise by a factor of ∼2.7 for noise free data and a factor of ∼1.5 for spectra with signal to noise of order unity 

(comparable to current observational data). Compared to Gaussian field lensing potentials, using ray-traced potentials from 

N-body simulations incurs a further signal-to-noise reduction of a factor of ∼1.3 at all noise levels. The non-linearity in the 
forest data is also observed to increase bias in the reconstructed potentials by 5 − 25 per cent , and the ray-traced lensing potential 
further increases the bias by 20 − 30 per cent . We demonstrate methods for mitigating these issues including Gaussianization 

and bias correction which could be used in real observations. 

Key words: gravitational lensing: weak – Cosmology: observations. 
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 I N T RO D U C T I O N  

eak gravitational lensing is the process by which the gravitational
eld sourced by foreground matter minimally deflects the observed

mages of background light sources. In contrast to strong gravi-
ational lensing or microlensing, the optical distortions are small
nd can only be detected through statistical methods. The weak
ensing signatures contained in observations of various continuous
elds can be used to gain no v el information about the foreground
atter distribution, making weak lensing a valuable cosmological

robe (Bartelmann & Schneider 2001 ). In the case of a continuous
eld, weak lensing causes distortions in the expected statistics of

he observed field. These distortions can be quantified and used
o reconstruct properties of the foreground matter (e.g. Lewis &
hallinor 2006 ). To this end, estimators have been developed for var-

ous continuous fields including the Cosmic Microwave Background
CMB) (Bernardeau 1997 ; Metcalf & Silk 1997 , 1998 ; Zaldarriaga &
eljak 1999 ; Hu & Okamoto 2002 ; Schaan & Ferraro 2019 ) and
1 cm line radiation (Madau, Meiksin & Rees 1997 ; Furlanetto, Oh &
riggs 2006 ). In this work, we focus on extending the techniques of
eak lensing to a no v el source field, the Lyman-alpha forest (Ly α

orest). 
The Ly α forest is a set of absorption features observed in the

pectra of high redshift ( z ∼ 3) galaxies and quasars (see re vie ws
y e.g. Rauch 1998 ; Prochaska 2019 ). Light from these background
ources is redshifted and absorbed by the intervening neutral hy-
rogen density field at the wavelength corresponding to the Ly α
 E-mail: pshaw2@andrew.cmu.edu 
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ransition. The result is that an 1D sampling of the hydrogen density
eld along the line-of-sight can be obtained from the spectrum of
 background source. If many background sources are observed,
he sampled ‘skewers’ can be combined to produce a 3D map of
he hydrogen density field. The Ly α forest is an ideal candidate
or weak lensing as it is well understood and easily simulated, has
arge amounts of observational data available or soon to be available
Dawson et al. 2016 ; Lee et al. 2018 ; Newman et al. 2020 ), and
s sensitive to lower redshifts than CMB lensing ( z ∼ 1 compared
o z ∼ 2.5 for the CMB; Manzotti 2018 ; Metcalf, Croft & Romeo
018a ). Ho we ver, the Ly α field is sparsely sampled as the positions of
bservable background sources are irregular. This poses a challenge
s the Fourier space-based techniques employed in CMB and 21 cm
eak lensing fail for a field that is not regularly and fully sampled. To

his end, Metcalf, Tessore & Croft ( 2020a ) have derived an estimator
or the foreground lensing potential that is suitable for the sparse
eometries of Ly α observations. 
In this paper, our goal is to further develop Ly α forest weak lensing

echniques by testing the Ly α estimator derived in Metcalf et al.
 2020a ) with more realistic Ly α forest and lensing simulations. The
ests in Metcalf et al. ( 2020a ) use simulations that assume that both
he Ly α forest and the foreground lensing potential are Gaussian
andom fields (GRF). This assumption should hold at larger scales,
ut not at smaller scales (e.g. Bardeen et al. 1986 ). It is important
o understand what impact the non-linearity introduced by more
ealistic hydrodynamic forest simulations has on the performance of
he estimator, as it will be present in real observational data. To this
nd, the paper will be organized as follows: First, we will briefly
ntroduce the weak lensing formalism and the estimator used, then
e will describe our methods for simulating data, and finally we
© 2022 The Author(s) 
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ill e v aluate the impacts more realistic data have on the estimator’s
erformance. 

 R E C O N S T RU C T I O N  M E T H O D  

.1 Lensing formalism 

n this work, we reconstruct the foreground lensing potential from 

he statistical distortions observed in simulated Ly α flux data. In the 
orn and thin lens approximation, an observed pixel image will be 
eflected on the sky by an angle � α( � θ) according to 

( θ ) = 

1 

π

∫ 
R 2 

d 2 θ ′ κ
(
θ ′ ) θ − θ ′ 

∣∣θ − θ ′ ∣∣2 . (1) 

( � θ) is the dimensionless convergence defined as 

( θ) = 

3 

2 

�m 

H 

2 
0 

c 2 

∫ χs 

o 

d χ

[
d A ( χ ) d A ( χ, χs ) 

d A ( χs ) a 

]
δ( θ , χ ) , (2) 

here δ( � θ, χ ) is the density contrast at a given radial coordinate, χ
s the comoving distance, d A ( χ ) is comoving angular size distance,
 0 is the Hubble constant, �m is the matter density parameter, and 
 is the scale factor. The gradient of the lensing potential yields the
eflection field 

α( θ) = ∇φ( θ) , (3) 

nd is related to the convergence by a Poisson equation 

∇ 

2 φ( θ) = 2 κ( θ ) . (4) 

herefore, the potential can be obtained from the convergence 
ccording to 

( θ) = 

1 

π

∫ 
R 2 

d 2 θ ′ κ
(
θ ′ ) ln 

∣∣θ − θ ′ ∣∣ . (5) 

.2 Quadratic estimator 

e reconstruct the lensing potential using the quadratic estimator 
erived by Metcalf et al. ( 2020a ). The estimator reconstructs the
mplitudes of the Legendre polynomial expanded potential, 

( θ) = 

N x ∑ 

m = 0 

N y ∑ 

n = 0 

ˆ φmn P m 

( x ) P n ( y ) . (6) 

he P n are the Legendre polynomials, and the variables are scaled 
uch that 

 ≡ 2 

(
θ1 − θo 

1 


θx 

)
− 1 , y ≡ 2 

(
θ2 − θo 

2 


θy 

)
− 1 , (7) 

here the ( θ1 , θ2 ) are the angular coordinates of the field origin
lower left) and the 
θ x , y are the field widths. The estimate for the
arameters ˆ φμ is given by 

ˆ 
μ = 

1 

2 
F 

−1 
μν

(
δ� C 

−1 P 

∗νC 

−1 δ − tr 
[
C 

−1 P 

∗ν
])

, (8) 

here F 

−1 
μν is the inverted Fisher matrix, δ is a vector of the Ly α

ux o v erdensities, C is the co variance matrix between Ly α flux
ixels including intrinsic correlations and noise, and P is constructed 
rom the deri v ati ves of the chosen basis functions. This discretized
stimator works for the sparse geometry of the Ly α forest, in contrast
o the Fourier-based methods employed in continuous field lensing 
uch as the CMB (Lewis & Challinor 2006 ). 

It is important to note that this estimator requires a priori knowl-
dge of the Ly α flux field correlation function. Errors in the assumed
orrelation function will lead to bias in the estimator. In this work,
e use the model proposed in McDonald ( 2003 ) to estimate the Ly α
ower spectrum from which we compute the Ly α pixel correlation 
unction (see Appendix A and B of Metcalf et al. 2020a for details).

.3 Geometry and implementation 

n this work, we consider a 0 . 655 × 0 . 655 deg 2 field with 512
ightlines containing 512 pixels each. This corresponds to a source 
ensity of η ∼ 1200 sources deg −2 which is comparable to currently 
v ailable observ ations (LATIS currently has η ∼ 1600 sources deg −2 

 v er 0 . 8925 de g 2 , Newman et al. 2020 , CLAMATO currently has η
1500 sources deg −2 o v er 0 . 157 de g 2 , Lee et al. ( 2018 ), and DESI

ill have 55 sources deg −2 over a much larger 14000 deg 2 field DESI
ollaboration 2016 ). This geometry corresponds approximately to a 
0 × 50 × 400(h −1 Mpc) 3 volume. We focus on geometries com- 
arable to LATIS and CLAMATO because these data are currently 
vailable and are more consistent with previous work allowing for 
irect comparison with other Gaussian random field tests (Metcalf 
t al. 2020a ). We expect smaller, higher density geometries like
A TIS and CLAMA TO to have more signal as there is more forest
ower at these scales compared to DESI. Future work will involve
etermining whether the larger amount of data in DESI is sufficient
o o v ercome the weaker signal. We discuss this further in Section 5.2
elow. 
The positions of the sightlines are determined by randomly 

opulating half of the points on a 32 × 32 grid to approximate
he irregular source distribution from a real Ly α forest observation. 

hile this method leads to a geometry that is less sparse than a true
urv e y, tests with the more realistic sparse geometries described in
etcalf et al. ( 2020a ) showed a reduction in signal to noise (S/N)

f only 1.09 for optimistic noise levels (pixel noise σ = 0.3 <
 > ) and .91 for realistic noise levels ( σ = 0.6 < F > ) in the
parse case. S/N reduction was larger for very small amounts of
oise ( σ = 0.1 < F > ) and no noise with reductions of 1.8 and 2.2,
espectiv ely. F or the realistic noise dominated cases, the impact is
e gligible, but if surv e ys achiev e lo wer noise le vels, this ef fect should
e investigated. The sampling approach described here is necessary 
ue to the geometry of the hydrodynamic Ly α forest simulation 
ample spectra we used for our tests. The pixel length is 0.78 h −1 Mpc
ompared to ∼1.2 h −1 Mpc in LATIS. 

The estimator is computed using the code described in Metcalf 
t al. ( 2020a ). Due to the large matrix inversions involved, this
omputation can be e xpensiv e. In this work, the sparse Ly α pixel
eometry is held constant for a four pixel deep slice in redshift to
itigate this cost. This way, only one estimator can be constructed

nd applied repeatedly to the many redshift slices comprising the total 
ata set. The results from these bins can be combined to provide an
 v erall estimate for the potential according to 

ˆ 
μ = 

1 

2 
F 

−1 
μν

n ∑ 

k= 1 

˜ φk 
ν , (9) 

here the ˜ φk 
ν are the parameter estimates from each bin. In the

ase of redshift bins with constant noise and identical geometry, 
his expression reduces to an average over the estimates from each
in. This approach is justified because the signal contribution of 
orrelations between even shallow slices in redshift are small, as 
ustified by Metcalf et al. ( 2020a ). We reconstruct up to order five
n the Legendre modes in either direction, yielding 22 reconstructed 
arameters. The (0, 0), (0, 1), and (1, 0) modes are filtered because
hey are not measurable from lensing. 
MNRAS 519, 5236–5245 (2023) 
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Figure 1. Demonstration of the visual effect of filtering the correlation 
function dependent modes and unresolved modes in a lensing potential map. 
The field of view is a square of side length 0.655 deg, at redshift z = 3. 
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 SIMULATIONS  

esting the efficacy of the estimator requires simulating both Ly α
orest data and a foreground lensing potential. In this paper, we are
nterested in e v aluating estimator performance on astrophysically
ealistic data sets. To this end, we will employ Ly α hydrodynamic
imulations and lensing potentials calculated from ray-traced N-body
imulations. These will be compared to GRF simulations of the same
elds. 

.1 Gaussian Ly α forest and potential 

revious work (Croft, Romeo & Metcalf 2018a ; Metcalf, Croft &
omeo 2018b ; Metcalf et al. 2020a ) has modelled both the lensing
otential and the Ly α forest as GRFs. We conduct the reconstruction
rocess under these assumptions as a control. In the case of the
orest, the correlation function for the Ly α pixels is computed
rom the parametrized power spectrum fitting function proposed by

cDonald 2003 . Then, the Ly α pixels are simulated directly from
he covariance matrix obtained using a Cholesky decomposition (see

etcalf et al. 2020a for details). The Ly α pixel correlation matrix C
an be decomposed as 

 = LL 

T . (10) 

herefore, our simulated Ly α pixels, δi , are given by 

i = L x i , (11) 

here the x i are generated by sampling a standard normal distribu-
ion. The resulting pixels will have the same statistics as if they were
ampled from a GRF. In this case, the correlation function assumed
y the estimator and the true correlation function of the forest are
qui v alent by construction, so we would expect the estimator to be
nbiased. 
Ne xt, the fore ground lensing potential is simulated. This potential

s also assumed to be a GRF. Using the power spectrum calculated
rom CAMB (Lewis, Challinor & Lasenby 2000 ) and CosmoSIS
Zuntz et al. 2015 ), a field eight times larger than the intended recon-
truction field is simulated using the standard Fourier space method.
his field is then cropped to the desired size, a v oiding imposing
eriodic boundary conditions. This potential can be integrated to
btain the lensing deflection field (see equation 1 ). In this case, the
y α forest can be easily simulated for an y pix el geometry, so the
stimator maintains a constant pixel layout and different potentials
re realized by ‘undeflecting’ the flux pixel locations to what their
nlensed positions would be given a particular lensing potential. The
stimator then attempts to reconstruct the lensing potential using
hese lensed Ly α pixels. The reconstructions can then be compared
o the known input to evaluate performance. 

.2 Ly α for est fr om hydr odynamic simulations 

e w ould lik e to compare the performance of the estimator in the
ase of Gaussian simulated fields to more realistic fields. First, we
ntroduce non-linearity (and therefore non-Gaussianity) into the Ly α
ux field. We anticipate this will have a more marked impact than

he introduction of a non-linear lensing potential. We accomplish
his by using a more realistic Ly α forest from a smoothed particle
ydrodynamics (SPH) simulation. This simulation used the P–
ADGET (Springel 2005 ; Di Matteo et al. 2012 ) code to evolve
 × 4096 2 = 137 billion particles in a (400 h −1 Mpc) 3 volume at z =
 in � CDM with h = 0.702, �� 

= 0.725, �m = 0.275, �b = 0.046,
 s = 0.968, and σ 8 = 0.82. (see Cisewski et al. 2014 ; Croft et al.
NRAS 519, 5236–5245 (2023) 
018b for more details). This simulation volume yields 256 × 256
y α sightlines which we sample with 512 pixels each. That allows
s to perform the reconstruction procedure on 64 realizations of the
eld geometry described in Section 2.3 . 
In this case, the unlensed Ly α fluxes are known only at fixed

ridpoints. This means that the ‘observed’ deflected positions will
ary depending on the lensing potential used. Therefore, we construct
 unique estimator from the lensed flux positions for each potential
ested. In this first study, the lensing potentials used remain Gaussian
nd are obtained in the same way as described in the previous
ection. 

One difficulty in the case of the non-Gaussian forest from a
ydrodynamic simulation is that the correlation function is no longer
nown exactly. We find that two modes (the longest wavelength (0,
) and (2, 0) modes) are particularly sensitive to the normalization
f the assumed correlation function. Attempts were made to mitigate
his by fitting the assumed correlation function to a direct estimate
f the correlation function measured from the SPH Ly α forest. In
hese calculations, the correlation function is expressed in the basis
f Legendre polynomials 

( s, α) = 

∑ 

� 

ξ� ( s) P � ( cos ( α)) , (12) 

here s is the absolute separation, and s ‖ / | s | = cos ( α) is the angular
eparation. In this work, the amplitudes of the first two non-zero
odes ( ξ 0 , ξ 2 ) were fit to a direct computation of ξ ( s , α) from

he SPH simulation data. Without this fit (i.e. assuming instead the
orrelation function used in our linear theory simulations), we find
n tests that these first two reconstructed modes can be more than
n order of magnitude different from their true value. The fit helps
omewhat, but more work is required to formulate a method to match
he correlation function exactly. As the other modes are reconstructed
ell and are not sensitive to the assumed correlation function,
e filter these problematic modes in the image reconstructions

nd statistical measures of the performance. These difficulties are
eparate from the issue of non-Gaussianity and should be addressed
n future work. Fig. 1 shows the visual impact of filtering both these
ong wavelength modes and the unresolved small wavelength modes.
he majority of the structure in the potential remains. 

.3 Ray-traced lensing potential 

e also test the introduction of more realistically simulated lens-
ng potentials in combination with the non-linear forest. These
otentials are obtained from the ray tracing simulations described
n Giocoli et al. ( 2016 ). The matter densities used to perform
he ray tracing calculations are obtained from the BigMDPL sim-
lation (Prada et al. 2016 ) which evolved 3840 3 particles in a
.5 h −1 Gpc box with parameters from Planck data Planck Col-

art/stac3786_f1.eps
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Figure 2. Normalized covariances between the 22 reconstructed mode 
amplitudes in the case of the Gaussian and non-Gaussian forest. Non- 
Gaussianity in the forest introduces correlations between modes as would 
be expected. 
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aboration ( 2014 ). A convergence map is calculated by deflecting 
hrough 24 lens planes out to a source redshift of z s = 2.2. We split
 5 . 5 × 1 . 6 deg 2 conv ergence map into fiv e fields of the desired size
0 . 655 × 0 . 655 deg 2 ) and then convert it into lensing potential using
quation ( 5 ). 

.4 Noise and varying data set size 

e investigate the impact of Ly α pixel noise and varying data 
et size to facilitate comparison with currently av ailable observ a- 
ions. We work with the flux o v erdensity, δF , a quantity with zero
ean. 

F = 

F 

〈 F 〉 − 1 , (13) 

here F is the observed Ly α flux. Noise is added in units of the
ean flux 〈 F 〉 . Three dif ferent le vels of noise were considered,

.1 〈 F 〉 , 0.3 〈 F 〉 , 0.6 〈 F 〉 . Noise is added by randomly and indepen-
ently sampling a Gaussian distribution with standard deviation 
orresponding to the desired noise level (0.1, 0.3, 0.6) and adding 
he result to the simulated Ly α flux pix el. F or comparison, both the
LAMA TO and LA TIS observations hav e median pix el noise of
0.6 〈 F 〉 . Previous work (Metcalf et al. 2020a ) focused on higher

oise levels (0.5 〈 F 〉 , 0.6 〈 F 〉 , 0.8 〈 F 〉 ). We assume that the pixel noise
s Gaussian and uncorrelated. Relaxing these assumptions is left 
o future work. Most of the results we present are obtained from
n average of 64 realizations of the Ly α forest, to allow more
recise e v aluation of biases and errors than would be possible with a
ingle realization. Ho we v er, we also av erage o v er fewer realizations
o give a qualitative sense of how effective reconstruction from 

 single data set could be. Because the source geometry remains 
nchanged between realizations, averaging over them is equi v alent 
o lengthening the sightlines. For example, averaging over two 
ealizations of the forest is equi v alent to a single observation where
ach sightline is twice as long and contains twice as many pixels. 

 RESULTS  

.1 Evaluating estimator performance 

o compare estimator performance for these different cases, we 
roduce lensing potential reconstructions for 64 Monte Carlo re- 
lizations of the Ly α forest for five different Gaussian random 
nput potentials. We also produce potential reconstructions for five 
ay tracing simulated potentials with the hydro simulated forest. 
or each reconstruction, we perform a linear fit for the slope of

he reconstructed Legendre amplitudes versus the input amplitudes. 
e then compute an error bar from the standard deviation of the

istribution of slope fits for the 64 realizations. The ratio of the
verage slope to the standard deviation of the slope distribution 
ives an estimate of the S/N for one realization of the forest.
e also compute a reduced χ2 using the standard deviations of 

he reconstructed modes. The covariances introduced by the non- 
inearity are relatively small (see Fig. 2 ), and we found that their
se added numerical instability without improving the χ2 , so the 
mplitude standard deviations alone were used. Four of the Gaussian 
andom field potential reconstructions are shown in Fig. 3 , the
econstructions from the five ray tracing simulation potentials are 
hown in Fig. 4 , and scatter plots of the reconstructed Legendre
odes versus the input potential modes are shown in Fig. 5 . 

.2 Impact of non-linearity 

n Table 1 , we summarize the performance of the estimator for four
ifferent noise levels (rows) with and without applying the bias 
orrection methods described below. At each noise level, we test the
RF simulated forest and potential, the hydrodynamic simulation 

orest (‘hydro’) and GRF lensing potential, the hydro forest with 
 post hoc Gaussianization procedure (described below) and GRF 

otential, and the hydro forest with a lensing potential from ray
racing simulations (columns). For each case, we present the best 
t parameter for the slope described in Section 4.1 , the signal to
oise computed from the ratio of the average fit parameter to the
tandard deviation of the parameter fits from 64 forest realizations, 
nd a reduced χ2 statistic weighted by the mode standard deviations 
o e v aluate the quality of the average slope fit. 

We find that the use of hydro Ly α forest flux data has an impact
n the performance of the estimator (see Table 1 ). In the noiseless
ase, the hydro forest reduces the S/N of the reconstruction by a
actor of ∼2.7. The drop in performance becomes smaller as noise
s added until the non-Gaussianity becomes negligible compared to 
he noise. We find that estimator appears to be biased in general,
s even in the Gaussian case, the average slope fit is less than one.
 or e xample, for the case with both GRF forest and GRF lensing
otential, the reconstructed modes ha ve a verage amplitudes that are
 factor of 0.73 ± 0.02 times the amplitudes of the modes of the
nput potential (top left cell of Table 1 ). The bias appears to be
xacerbated by the non-linear data set, as the average slope fit is
ven smaller in this case (reconstructed modes 0.44 ± 0.04 times 
he input amplitude, top right cell of Table 1 .) We attempt a simple
rocedure to try to correct for this bias using our simulated data. We
stimate the bias by computing the average residual for each mode
cross the five potentials. We find that modes seem to be biased in
 consistent manner; the average residual is non-zero with statistical 
ignificance. We then correct our reconstructions by subtracting our 
stimated bias for each mode. This yields both a slope closer to
ne and more realistic error bars as evidenced by impro v ed χ2 .
his bias correction method could be used even in the case of a

eal observation through simulated data. Explaining and managing 
his apparent bias is left for future work. The focus of this paper is
 v aluating the relative performance of the GRF and non-linear data
ets, so the bias exhibited in the method in general is treated as a
eparate issue. The pixel geometry used is comparable to simulation 
E in Metcalf et al. 2020a (512 × 512 pixels over 0 . 655 × 0 . 655 deg 2 

n this work compared to 500 × 200 o v er 0 . 5 × 0 . 5 deg 2 in simulation
MNRAS 519, 5236–5245 (2023) 
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Figure 3. Lensing potential reconstructions (right-hand panels) for four different potentials at four different noise levels for the Gaussian and non-Gaussian 
forest. The input potentials (left-hand panels) have modes (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), and modes higher than order five filtered as these modes are either 
unresolved or too sensitive to the choice of correlation function (see Section 3.2 ). The reconstructions are averaged over 64 realizations of the Ly α forest pixel 
geometry described in Section 2.3 . 
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Figure 4. Lensing potential reconstructions for four different non-Gaussian potentials at four different noise levels for the non-Gaussian forest. The input 
potentials have the (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), and modes higher than order five filtered as these modes are either unresolved or too sensitive to the choice 
of correlation function. The reconstructions are averaged over 64 realizations of the Ly α forest pixel geometry described in Section 2.3 . As in Fig. 1 , the field 
of view is a square of side length 0.655 deg, at redshift z = 3. 
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E). We find that our results for the Gaussian case (S/N ∼2.5) are
onsistent with those found in Metcalf et al. 2020a (S/N of 0.67 to
.3). The S/N in our case is larger due to sightlines that are twice as
ong. 
We e v aluate the quality of the fit using a reduced χ2 . The GRF fit
s worse than the hydro case due to the smaller error bars, which are
n underestimate when the bias is not corrected for. When the bias is
orrected, the χ2 indicates a relatively good fit. In Fig. 3 , we see that
MNRAS 519, 5236–5245 (2023) 
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Figure 5. Scatter plots of the bias corrected reconstructed potential Legendre mode amplitudes versus the input potential Legendre mode amplitudes (in units 
of 10 −6 ) for five different potentials and four different noise levels for the Gaussian forest, non-Gaussian forest, and non-Gaussian forest, and input potential. 
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Figure 6. Lensing potential reconstructions for different amounts of data and noise. As in Fig. 5 , certain Legendre modes have been filtered from each potential 
field. The columns from left to right represent potentials averaged over 1, 4, 8, and 16 realizations of the Ly α forest. Below the input row, the rows represent 
noise levels added to the Ly α forest data, at levels of 0, 0.1, 0.3, and 0.6 times the mean transmitted flux, respectively, from top to bottom. As in Fig. 1 , the field 
of view is a square of side length 0.655 deg, at redshift z = 3. 
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Table 1. Summary of the lensing potential reconstruction statistics. The rows represent the average statistics from five different potentials at the indicated noise 
levels. The fit is the average slope of the input potential coefficients versus the reconstructed coefficients for five different potentials and 64 forest realizations, 
with error propagated from the variance of the 64 forest realizations. S/N is estimated by dividing the slope fit by the noise expected in a reconstruction from 

a single forest realization (standard deviation of the 64 Monte Carlo trials). χ2 is the reduced chi-squared statistic which indicates how well the reconstruction 
fits the input data. 

GRF forest and potential Hydro forest, GRF potential Gaussianized forest, GRF pot. Hydro forest, ray-traced pot. 

Noise fit S/N χ2 fit S/N χ2 fit S/N χ2 fit S/N χ2 

Noiseless 0.73 ± 0.02 2.47 6.58 0.55 ± 0.04 0.91 2.32 0.6 ± 0.03 1.03 2.37 0.44 ± 0.04 0.69 2.47 
Noise 0.1 < F > 0.66 ± 0.02 2.19 5.09 0.6 ± 0.04 0.96 2.06 0.62 ± 0.03 1.06 2.13 0.43 ± 0.04 0.69 2.07 
Noise 0.3 < F > 0.75 ± 0.05 0.9 1.67 0.7 ± 0.06 0.66 1.17 0.75 ± 0.06 0.74 1.26 0.5 ± 0.06 0.48 0.9 
Noise 0.6 < F > 0.91 ± 0.14 0.37 1.58 0.85 ± 0.17 0.32 1.51 1.01 ± 0.15 0.39 1.6 0.56 ± 0.17 0.21 1.5 

Bias corrected 

Noiseless 0.86 ± 0.03 2.89 2.02 0.72 ± 0.04 1.16 0.86 0.71 ± 0.04 1.13 0.93 0.64 ± 0.04 0.97 0.69 
Noise 0.1 < F > 0.81 ± 0.03 2.63 1.88 0.74 ± 0.04 1.16 0.84 0.73 ± 0.04 1.14 0.92 0.64 ± 0.05 0.95 0.68 
Noise 0.3 < F > 0.76 ± 0.06 0.91 0.63 0.73 ± 0.07 0.67 0.33 0.73 ± 0.07 0.66 0.38 0.64 ± 0.08 0.54 0.27 
Noise 0.6 < F > 0.71 ± 0.14 0.29 0.1 0.67 ± 0.17 0.24 0.09 0.67 ± 0.17 0.24 0.13 0.61 ± 0.19 0.2 0.05 
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here is a little visual discrepancy between the reconstruction from
he GRF and hydro forest data, and both successfully reconstruct
he majority of the structure in the input potential at low to medium
evels of noise. 

To mitigate the deleterious effects of non-linearity and non-
aussianity in realistic data, we also explore the impact of a

imple method of ‘Gaussianizing’ the non-Gaussian forest data.
e rank order the Ly α flux pixels and remap their values to the

istribution from the Gaussian Ly α simulations (see e.g. Croft et al.
998 for details). This should eliminate the non-Gaussianity at
he one-point level while still maintaining the large-scale struc-
ures. We find that this procedure is successful in mitigating
ome of the drop in S/N (impro v ement of ∼0.1 without bias
orrection) and bias seen in the non-Gaussian data (see Table 1 ).
he Gaussianization procedure seems to be helpful only when

he reconstructions have not already been bias corrected. Further
nalysis is needed to determine why Gaussianization in concert
ith bias correction is inef fecti ve. Both Gaussianization and bias

orrection could be applied to a real data set to impro v e estimator
erformance. 
We also tested the estimator using both the non-linear Ly α

orest data and a lensing potential from ray tracing simulations.
e observe that it has a similar impact to the introduction of

orest non-linearity but to a lesser extent. The S/N is reduced by
 factor of ∼1.3 for all noise levels and the bias is increased by
0 − 30 per cent . 

.3 Varying data quantity and forest signal to noise 

inally, in Fig. 6 , we present image reconstructions for different
mounts of Ly α data that include noise added at various levels (see
ection 3.4 ). This is to allow the reader to gain some more insight

nto the likely situation for observational data from current and future
urv e ys. 

We see that for eight realizations of the forest at low-noise
evels, the structure of the input is well reconstructed. A substantial
mount of structure is reproduced for four realizations and even
ne realization. One realization of the forest in this work contains
12 × 512 = 262144 Ly α pixels. Currently available surveys such
s LATIS Newman et al. 2020 and CLAMATO Lee et al. 2018
ontain 235731 pixels in a field of similar size and 64304 in a field
f smaller size, respectively, with similar source density. Therefore,
NRAS 519, 5236–5245 (2023) 
he results for one forest realization should be comparable to what
an be achieved from currently available data. We show that even
ith the impact of non-Gaussianity present in real observations,

econstruction of structure seems possible at lower noise levels.
oise is the limiting factor in currently available data sets. At realistic
oise levels of 0.6 times the mean flux, some structure may still be
eco v ered, but it becomes difficult with the amount of data available.

e look forward to surv e ys such as DESI which will contain three
rders of magnitude more Ly α spectra o v er a larger observational
rea. 

 SUMMARY  A N D  DI SCUSSI ON  

.1 Summary 

e have further developed the field of Ly α forest gravitational weak
ensing by testing the performance of the Ly α forest estimator of
Metcalf, Tessore & Croft 2020b ) on more realistic data sets. We
pecifically e v aluated the impact of the introduction of non-linearity
n both the simulated Ly α forest pixel data and simulated lensing
otential. As expected, deviations from Gaussianity in both the
orest and lensing potential reduce the ef fecti veness of the estimator.
he estimator was derived and pro v ed to be optimal under the
ssumption of Gaussian fields (Metcalf et al. 2020a ), so we expect
or more realistic fields, the estimator will no longer be optimal.

e find that estimator performance suffers when applied to non-
inear data by a modest amount (factor of ∼2–3 reduction in signal
o noise). Ho we v er, we hav e presented two simple methods for
itigating the impact of non-linearity and non-Gaussianity including

Gaussianization’ and bias correction. We find that in most cases
hese methods impro v e our results and should be applicable to
eal observational data. The simulated data sets used here are
omparable in size to available Ly α observations, although the
imiting factor will likely be the noise present in observational
ata sets, which is at the high end of noise levels we have
ested. 

.2 Discussion 

e find that the estimator appears to be biased in general, yielding
ystematically smaller amplitudes of reconstructed Legendre modes
f the gravitational potential than those input. Some of the bias
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bserved in the non-Gaussian case can be attributed to difficulties 
n accurately estimating the Ly α correlation function. The estimator 
equires accurate a priori knowledge of the correlation function of the 
y α forest in order to be unbiased. Ho we v er, we observ e bias ev en

n the Gaussian case when both the estimator and forest assume the
ame correlation function indicating there is another source of bias. 
uture work will involv e dev eloping a method for more accurately
stimating the correlation function of observed data and mitigating 
he bias present in the estimator. 

Our investigations of the signal-to-noise of potential detections 
f Ly α forest lensing (e.g. the results in Table 1 ) ha ve inv olved
omparisons of the true gravitational potential to the reconstructed 
ne. This is complimentary to the work of Metcalf et al. ( 2020b ),
ho quantified the detection confidence of Legendre modes with 
on-zero amplitude. Observationally, the true potential would not 
e available, and for a comparison, one would need to make an
stimate, for example from the galaxy density field at the redshifts
f the lensing potential. 
With present data in de gree-scale surv e ys, such as Newman et al.

 2020 ) and Lee et al. ( 2018 ), we have seen that the likelihood of
 detection is small, given the relatively high noise levels (S/N of
rder unity) in currently available Ly α spectra. Our simulations of 
 non-Gaussian forest lensed by a non-Gaussian potential with a 
igh, but realistic level of observational noise yield a S/N of only
.2 for 512 sightlines o v er 0.42 de g 2 . Surv e ys such as DESI, which
ontain hundreds of thousands to millions of Ly α spectra o v er large
reas of the sky, will be needed if precision cosmology with forest
eak lensing is to be realized. Even with a relatively low signal-to-
oise detection, forest lensing will still have some advantages and 
ifferences with galaxy lensing, the most obvious being the higher 
ource redshift (pixels at z = 2–3), which probes the Universe at
arlier times ( z ∼ 0.5–1.0). 

Future work will involve testing the method with much larger, 
ower density simulated surv e y geometries similar to DESI to inves-
igate whether a Ly α weak lensing detection could be realized in this
egime. We also plan to refine our methods for mitigating the bias and
oise introduced by non-linearity and non-Gaussianity, uncertainty 
n the Ly α correlation function, and intrinsic bias observed in the 
stimator. 
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