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Criticality and conformality in the random dimer model
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In critical systems, the effect of a localized perturbation affects points that are arbitrarily far from the
perturbation location. In this paper, we study the effect of localized perturbations on the solution of the random
dimer problem in two dimensions. By means of an accurate numerical analysis, we show that a local perturbation
of the optimal covering induces an excitation whose size is extensive with finite probability. We compute the
fractal dimension of the excitations and scaling exponents. In particular, excitations in random dimer problems
on nonbipartite lattices have the same statistical properties of domain walls in spin glass. Excitations produced
in bipartite lattices, instead, are compatible with a loop-erased self-avoiding random walk process. In both cases,
we find evidence of conformal invariance of the excitations that is compatible with SLEκ with parameter κ

depending on the bipartiteness of the underlying lattice only.
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I. INTRODUCTION

Let us suppose that we are given a graph G. A dimer on
G is an edge of G with its endpoints, which are said to be
“covered” by the dimer. A dimer covering of G is a subset
of its edge set such that each vertex is covered by one dimer
only. In other words, a dimer covering is a perfect matching
on the graph G [1]. Despite this apparently abstract definition,
dimer coverings appear in different models and theories in
statistical physics. Deposition of diatomics molecules, defects
in crystals, or simple magnetic systems are all examples of
problems that can be studied as dimer models [2].

For this reason, the properties of dimer coverings of a given
graph have received considerable attention. In the 1960s,
Kasteleyn [2,3] and, independently, Temperley and Fisher [4]
computed the asymptotic expressions of the number of dimer
coverings on infinite lattices in one and two dimensions. Their
results are at the basis of the Fisher-Kasteleyn-Temperley
algorithm for counting perfect matchings in planar graphs. Re-
markably, they also made clear the correspondence between
the solution of a dimer covering problem and the solution of
the two-dimensional (2D) Ising model on a lattice [2,5].

In the present paper, we study a disordered version of the
dimer covering problem, namely, the random dimer model
(RDM). In the RDM, covering an edge by a dimer costs a
(fixed) edge-dependent random price, so that a total cost of
the covering is the sum of the costs of the covered edges. In
consequence, there is an optimal way of performing a cov-
ering. The nontrivial “optimal configuration” can be thought
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of as a “ground state” of a disordered system. In this paper,
we will focus in particular on dimer coverings of 2D lattices,
and we will show that there is a correspondence between the
RDM and glassy systems in two dimensions. Unlike the 2D
Ising model, which is critical at finite temperature and has
trivial ground state, the RDM has a nontrivial ground state and
a critical behavior exactly at “zero temperature,” in analogy
with the physics of 2D spin glasses. Moreover, we will give
evidence of conformal invariance of the optimal solution, a not
obvious property that we will relate to observed conformality
of 2D spin glasses at zero temperature.

More specifically, we assume that a graph G(V, E ) is given,
with vertex set V , |V| = 2N , and edge set E ⊂ V × V . A
weight we is associated with each edge e ∈ E of the lattice. We
assume that the weights we are independently and identically
distributed random variables, having an absolutely continuous
probability density �(w). We also assume that the graph ad-
mits more than one dimer covering. We can assign a cost E [D]
to each covering D as

E [D] :=
∑
e∈D

we, (1)

and a corresponding Gibbs weight e−βE [D], depending on
the fictitious inverse temperature β. The associated partition
function is given by

Z (β ) :=
∑
D

e−βE [D]. (2)

In the β → 0 limit, all dimer coverings have the same weight
and Z (0) is simply the number of coverings on G. The com-
putation of Z (0) when G is a planar graph has been the object
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of intense study since the seminal results of Kasteleyn, Fisher,
and Temperley, recently extended to oriented surfaces [6]. We
say that D∗ is an optimal covering if

E [D∗] = min
D

E [D] = − lim
β→+∞

β−1 ln Z (β ). (3)

The optimal configuration is almost surely unique and cor-
responds to the “ground state” of the model. The introduced
randomness can be thought as due to noise, or impurities. In
a dimer deposition picture, for example, randomness in edge
weights might refer to a space-dependent binding energy of
the diatomic molecules on the substrate. The RDM has been
also used as a model for disordered quantum magnets [7].

If G is a complete graph or a random graph, the RDM
recovers the “random-link models” studied by statistical
physicists since the 1980s [8–12].

As we will show below, the RDM is also related to random
Euclidean matching problems (REMPs) [13,14]. In a REMP, a
set of 2N points {xi}2N

i=1 is given, uniformly and independently
generated on a given Euclidean domain in D dimensions (e.g.,
the unit hypercube). The goal is to find the optimal permuta-
tion of 2N elements σ that minimizes the cost

E [Dσ ] :=
N∑

i=1

d p(xσ (2i−1), xσ (2i) ), p ∈ R+, (4)

where d (x, y) is the Euclidean distance between x and y.
Each permutation defines a pairing, i.e., a set of matched
points Dσ := {(xσ (2i), xσ (2i−1))}N

i=1. We denote D∗ ≡ Dσ ∗ with
σ ∗ = arg minσ E [Dσ ]. In a bipartite variation of the problem,
the random Euclidean assignment problem (REAP), two sets
of N random points of distinct “colors,” {xi}N

i=1 and {yi}N
i=1, are

given. The pairing has to be such that only points of different
color are matched. In other words, we search for an optimal
permutation of N elements σ that minimizes the cost

E [Dσ ] :=
N∑

i=1

d p(xi, yσ (i) ), p ∈ R+. (5)

Here each permutation defines a set of N pairs Dσ :=
{(xi, yσ (i) )}N

i=1 of points from different sets that are matched.
Computing the average optimal cost in the REMP or in the
REAP is a challenging task, due to the presence of Euclidean
correlations between the pair costs [14–18]. The aforemen-
tioned random-link models provide the infinite-dimensional
limit of REMPs and REAPs [14].

The typical properties of the solutions of these problems
are not trivial. It has been shown, for example, that the
random-link model on the complete graph is “critical,” i.e.,
its Hessian spectrum is gapless [17]. In Ref. [19] evidence of
long-range correlations in the solution of the one-dimensional
REAP was given. On the other hand, the RDM in the
β → 0 limit on planar graphs showed interesting conformal-
ity properties. For example, given two uniformly sampled
dimer coverings, their union generates a set of curves and
paths. Kenyon predicted the convergence of such curves to a
Schramm-Löwner evolution SLE4 [20] and proved the confor-
mality of the loops [21] on bipartite lattices. He also showed
that the limit measure of the possible dimer coverings has
conformal invariance properties on the square lattice [22]. We
recall here that an SLEκ curve γ (t ) in the upper complex plane

H is given by γ (t ) = g−1
t (ξt ), where gt (z) satisfies the Löwner

equation,

dgt (z)

dt
= 2

gt (z) − ξt
,

g0(z)

z
= lim

z→+∞
gt (z)

z
= 1. (6)

Here ξt is the driving function of the process, and in the case
of a SLEκ it is given by a Brownian process with 〈ξt 〉 = 0 and
〈ξ 2

t 〉 = κt [23,24].
Finally, it is known that there is a special correspondence

between matchings and spin glasses in two dimensions [5,25].
The problem of finding the ground state of the two-
dimensional Edwards-Anderson (EA) model [26] can be
mapped into a planar matching problem [27,28]. Notably,
the 2D EA model has a glass transition at zero temperature
exhibiting scale invariance [29–31], and it has been suggested
that conformal invariance might hold as well. In particular, EA
domain walls have been found to be consistently described by
a SLEκ with κ ≈ 2.1 [32,33].

These results motivated us to investigate the presence of
criticality and conformality in the RDM on 2D lattices in
the β → +∞ limit, i.e., on the ground state, and search for
correspondences with the REMP, the REAP, and 2D spin
glasses. We will show that similar critical properties appear in
some RDMs, in the REMP, and in the EA model, suggesting
the existence of a unique universality class for these models.
Moreover, such properties depend on the nature of the under-
lying graph only.

II. MODELS AND METHODS

We analyze three types of lattices: the honeycomb (H)
lattice, the triangular (T) lattice, and the square (Q) lattice.
Each lattice is obtained considering L rows of L sites, dis-
placed in such a way that the lattice edge length is fixed to
1. The total number of sites is therefore 2N = L2. We impose
periodic boundary conditions in both directions. For L = 4,
for example, the three lattices are

We associate to each edge e a random weight we, ex-
tracted from the exponential distribution �(w) = e−w. Once
all weights have been assigned, Edmond’s blossom al-
gorithm [34,35] provides us the optimal weighted dimer
covering D∗. Subsequently, we select a random edge ê ∈ D∗
and we cut it. Forbidding the edge ê plays the role of a
local perturbation that induces an excitation. Rerunning the
algorithm on the graph in which ê is not present, we obtain
a new optimal solution D∗

ê of higher cost with respect to D∗.
The difference �Eê := E [D∗

ê ] − E [D∗] � 0 scales as �Eê =
O(1) for N � 1. To evaluate the extent of the perturbation
effect, we consider the symmetric difference between D∗

ê
and D∗:

Sê = {e ∈ E : e ∈ D∗�D∗
ê }. (7)
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FIG. 1. Example of cycle obtained comparing the minimum cost
solution and an excited random solution in the random dimer cov-
ering on the honeycomb lattice with 2N = 106, assuming periodic
boundary conditions. In this case the length of the cycle is S =
10 746.

This selects a set of edges in the original graph. Pictorially,
e.g., on the H model

Obviously, ê ∈ Sê and it is easy to see that Sê is a self-
avoiding single cycle. If the system is critical, we expect that
the localized perturbation induces, with finite probability, an
extensive rearrangement that affects arbitrarily far points. The
cycle Sê is a fractal object; see Fig. 1. We will denote by
Sê := |Sê| the number of edges of the cycle, thus its size.
Alongside the RDM, we consider the REMP and the REAP
with a total of 2N points on a square of size L = √

2N with a
periodic boundary condition. We adopt the cost in Eq. (5) with
p = 2.1 We study the excitations in these problems exactly
as in the RDM, exciting the optimal solution D∗ into a new
matching D∗

ê by forbidding a pair ê ∈ D∗. In the REMP, the
difference between σ ∗ and σ ∗

ê can be quantified as before
considering the cycle Sê as in Eq. (7). In the REAP the cycle
Sê is obtained starting from the edge set in Eq. (7) and then
joining consecutive points of the same color: this is because in
the REAP the typical distance of a pair in the optimal solution
scales as

√
ln N [36], whereas the distance between points of

the same color is O(1) as in all other considered cases.

III. CRITICALITY AND FRACTAL DIMENSION

We numerically evaluated the probability P [Sê > s] of
having a cycle of length greater than s for all models con-
sidered above. Scaling theory for critical systems states that

1In Ref. [9] it is shown that the p = D case has an exactly solvable
D → +∞ limit. We focused therefore on p = D = 2.

FIG. 2. (a) Cumulative distribution of the size s of the excitation
for the different models considered in the paper. The represented
sizes are L = 100, 300, 500 (from left to right in each case) for
each dimer model. For the Euclidean cases, instead, the represented
sizes are 2N = 2000, 5000, 10 000, from left to right. (b) Variance
of the winding angle as a function of L for all models. Lines are fits
obtained using the function f (L) = a + κ

4 ln L.

such a probability can be written as

P [Sê > s] = s−ζ ρ(sλL−1), (8)

for some scaling function ρ, such that 0 < limz→0 ρ(z) <

+∞. The scaling exponents ζ > 0 and λ > 0 have to be deter-
mined. The scaling ansatz in Eq. (8) is numerically confirmed
for all the analyzed cases; see Fig. 2. As the size L increases, a
power-law tail develops in all considered models. This implies
that local perturbations induce extensive rearrangements with
finite probability in the thermodynamic limit and the models
are indeed on a “critical point.” A numerical estimation of
ζ by fitting the tail in Fig. 2 also shows that the power-law
exponent is the same for the H and the Q model and the REAP,
whereas the T model has a different exponent very close to the
REMP one; see Table I.

Let us now evaluate the fractal dimension Df of the cycle.
Assuming now that 〈Sê〉 ∼ Lα , where 〈•〉 is the average over
all instances, from Eq. (8) we have

α = 1 − ζ

λ
. (9)

The gyration radius of the cycle is defined as

R2
ê := 1

2S2
ê

∑
i, j

d2(ri, r j ), (10)

where ri is the position of the ith node in the cycle and the
sum runs over all pairs of vertices of the cycle. Conditioning
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TABLE I. Asymptotic average optimal cost and of the scal-
ing exponents for random dimer covering problems on the torus.
Note that the REAP has an anomalous scaling in the cost, namely,
〈E [D∗]〉 ∼ N

π
ln N for N � 1.

H Q REAP T REMP

limN 〈N−1E [D∗]〉 0.703(1) 0.355(1) ∞ 0.529(1) 0.625(1)
〈�Eê〉 1.115(1) 0.655(1) 0.637(1) 0.380(1) 0.585(1)
α 0.508(2) 0.506(1) 0.504(1) 0.827(1) 0.824(1)
γ 1.259(1) 1.252(2) 1.257(15) 1.554(1) 1.554(1)
ω 0.74(2) 0.65(2) 1.0(2) 1.00(2) 0.94(7)
ζ 0.593(1) 0.597(1) 0.596(6) 0.350(1) 0.351(1)
ζ (from fit) 0.593(1) 0.595(1) 0.588(1) 0.354(1) 0.350(1)
Df 1.250(2) 1.253(2) 1.247(15) 1.273(1) 1.270(1)
κ 2.034(6) 2.003(7) 2.023(4) 2.181(4) 2.195(4)
1 + κ

8 1.254(1) 1.250(1) 1.253(1) 1.273(1) 1.274(1)

on cycles of length s, it satisfies a scaling law of the form2

〈
R2

ê

〉
Sê=s = s2D−1

f g(sλL−1), (11)

where g is a scaling function such that 0 < limz→0 g(z) <

+∞. Assuming that 〈R2
ê〉 ∼ Lγ , we obtain

γ = 2D−1
f − ζ

λ
. (12)

With reference to Eq. (9) a relation between the three expo-
nents α, γ , and ζ and the fractal dimension Df is easily found:

Df = 2 − γ + α, (13a)

ζ = 2 − γ

2 − γ + α
. (13b)

The fractal dimension and the power-law exponent ζ can
be extracted by a careful measurement of α and γ . These
quantities can be estimated using the method of ratios [37],
i.e., considering, for each L, a system of size L and a system
of size 2L. Assuming now that 〈Sê〉 ∼ Lα , the value of the
exponent α has been estimated as

log2
〈Sê〉2L

〈Sê〉L
= α + α(1)

Lω
+ o

(
1

Lω

)
, (14)

where 〈•〉L denotes an average at size L. The fit of our data,
given in Fig. 3, has been performed using a fitting function
f (L) = α + α(1)L−ω, with α, α(1), and ω free parameters.
Similarly for the gyration radius, assuming that 〈R2

ê〉 ∼ Lγ ,
we have

log2

〈
R2

ê

〉
2L〈

R2
ê

〉
L

= γ + γ (1)

Lω
+ γ (2)

L2ω
+ o

(
1

L2ω

)
. (15)

In this case, the fit has been obtained using a fitting function
f (L) = γ + γ (1)L−ω + γ (2)L−2ω, with γ , γ (1), and γ (2) free
parameters, while ω was fixed to the same value estimated in

2Here a hyperscaling assumption has been made: we assume that,
to get a proper L → +∞ limit, the argument of g in Eq. (11) has the
same scaling properties of the one of ρ in Eq. (8).

FIG. 3. Extrapolation of α (left) and γ (right) for the different
models. The value of both exponents in the bipartite models is clearly
different from the one obtained for the monopartite ones.

the analysis for α. The data points have been obtained aver-
aging over 107–108 different instances for each value of L. In
the case of lattice models, we used 8 � L � 512, whereas for
the REMP and the REAP we considered 64 � L2 � 51 200.
Our fits are given in Fig. 3.

All our results are collected in Table I. We observe that
the values of the exponents naturally splits in two groups:
the first one including the Q model, the H model, and the
REAP, with cycles having Df = 1.252(2), and the second one
including the T model and the REMP, with cycles having
Df = 1.273(2). The fact that the REAP and the H and Q
models share the same exponents, and similarly the T model
shares its exponents with the REMP, suggests that the only
relevant feature that determines the scaling is the nature of the
underlying graph, i.e., the fact of being bipartite or not. In all
cases ζ > 0, i.e., the local perturbation induces a long-range
rearrangement with finite probability in the large N limit.
Moreover, the estimated value for ζ is in agreement with
the result of the direct fit, confirming the consistency of our
scaling ansatz.

IV. CONFORMALITY

The presence of criticality suggests the inspection of a
stronger invariance, namely, conformal invariance. The possi-
ble presence of conformal invariance in the REAP has been
suggested in Ref. [38]. We restrict ourselves to the lattice
models, and we consider cycles � = (γ0, γ1, . . . , γs ≡ γ0)
of length s on the torus. By means of the notation above,
we denote the piecewise linear curve � passing through
γ0, γ1, . . . , γs ≡ γ0, γi being a site on the lattice for i =
0, . . . , s. We consider contractible cycles only. We say that
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FIG. 4. A contractible loop with s = 522 in the T model with L = 400 is split into two parts (red, of k = 90 steps, and black, of s − k
steps). By a sequence of conformal transformations, the black part is mapped into a curve in the upper half plane stemming from the origin.

a cycle is contractible if it does not wind around the torus.
Fixing k < s, in our approach, we map a portion of the cycles
into the standard chordal geometry as follows [39]:

(1) By means of a translation, rotation, and scale transfor-
mation that we denote σ , we map � into a curve in C such
that σ (γ0) = 1 and σ (γ1) = −1.

(2) We map the complement in C of the real segment
[−1, 1] to the complement in C of the unit disk, by φ(z) =
z + √

z2 − 1.
(3) We map the exterior to the interior of the unit disk, by

ι(z) = 1/z.
(4) We map the interior of the disk to the upper half-plane

H, by a Möbius transformation

μ(z) = i
1 + z

1 − z
. (16)

(5) Given now the curve �̃ = � ◦ �, where � := μ ◦ ι ◦
φ ◦ σ , we perform k steps of the standard zipper algorithm in
H. This uniformizes the first k − 1 steps of �̃, mapping each
of the γi for i = 0, . . . , k − 1 into the real axis. As a result, the
curve �̂k = (γk, γk+1, . . . , γs) ⊂ � (a chordal curve from the
point γk to the point γ0 in the original domain) is mapped in a
curve in the upper half plane.

(6) Finally, the zipper algorithm [40,41], applied to the
remaining s − k − 1 points of �̃, gives the set of pairs
(ti, ξti )

s−k−1
i=0 , with ξt0 ≡ 0. The quantity ξti is the driving func-

tion at the “time” ti extracted by the algorithm.
A pictorial representation of the described steps is given

in Fig. 4. In the hypothesis that the curve results from a
SLEκ , the obtained driving function has to be a Brownian
process with 〈ξ 2

t 〉 = κt . We perform the analysis on the Q
and on the T model. The results are given in Fig. 5. The
driving function is found indeed to be a Gaussian process
with 〈ξt 〉 = 0 and 〈ξ 2

t 〉 ∼ κt with κ ≈ 2.1(1) (see the Ap-
pendix for further details). Although we have not been able
to resolve the difference in κ between the different lattices,
the results strongly support that the obtained curves are SLEκ

with κ � 2.1.
As a second conformality test, we compute the variance of

the winding angle of the curves. We start by picking a random
starting edge on the cycle Sê. Then we choose an orientation
at random for the cycle (clockwise or anticlockwise), and we
compute a function ϑ (e) of the cycle edges, in such a way that,
if e + 1 is the subsequent edge along the cycle, ϑ (e + 1) =
ϑ (e) + angle(e, e + 1). Here angle(e, e + 1) is the turning
angle from e to e + 1 measured in radians [42]. We restrict
the computation to cycles winding around the system, so that
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FIG. 5. Results obtained from the study of the driving function on the Q lattice (top) and on the T lattice (bottom) with L = 400 for three
different values of k. (a) Mean-square displacement as a function of time, binned in intervals δt = 0.0008. (b) Probability density function
of the driving function. The numerical results have been obtained averaging over a wide range of time t and are compared with a normal
distribution (continuous line) having zero mean and variance κ = 2.1. (c) Fitted values of κ as functions of the upper cutoff tmax. Shaded bands
indicate our final estimates (dashed line) and their variability.

〈ϑ (e)〉 = 0. The variance of the angle is found to grow with
L, according to the law

Var[ϑ] = a + κ

4
ln L; (17)

see Fig. 2. The values of κ are given in Table I. Once again,
the T model and the REMP are found to have the same value
of κ . This value is different from the value of κ obtained for
the Q and the H model and for the REAP. In the hypothesis
that the obtained curves are SLEκ , Var[ϑ] has to behave as in
Eq. (17), and the quantity κ appearing in Eq. (17) is exactly
the parameter of the Schramm-Löwner evolution [42–44].
The quantity a is instead a nonuniversal constant. Moreover,
given an SLEκ , then Df = min (1 + κ

8 , 2) [23]. This rela-
tion approximately holds for all the considered models; see
Table I.

V. CONCLUSIONS

The obtained values ζ > 0 are evidence of criticality on
the ground state in the RDM on all three different lattices and
in the considered random Euclidean matching problems. The
scaling exponents of the excitations are found to depend on the
bipartiteness of the underlying lattice/graph only (the REMP
can be thought as a matching problem on the complete graph,

the REAP as a matching problem on a bipartite complete
graph). This dependence has been observed also assuming
a uniform measure over all possible dimer coverings. Under
such assumption, in Refs. [45,46], for example, the T model
is found to have short-range correlations unlike the same the
H and the Q model. Moreover, the fractal dimension of the
cycles obtained in the REMP and in the T model is compat-
ible with the one of 2D spin-glass domain walls, which is
estimated to be Df = 1.274(2) [47–50]. These results show
that nonbipartite matching problems and spin glasses in two
dimensions belong to the same universality class. On the other
hand, the H model, the Q model, and the REAP have cycles
with Df = 1.252(2), compatible with the fractal dimension of
the loop-erased self-avoiding walk in two dimensions, which
has Df = 5

4 and is a SLE2 [51,52]. Compatible fractal dimen-
sions have been obtained in Ref. [7], where the RDM has been
used as a model of 2D valence-bond solids. Our result also
recovers the one obtained in Ref. [53] for defect-induced ex-
citations in the 2D elastic medium on the honeycomb lattice.
Finally, as test of possible conformal invariance, we mapped
the contractible excitations in the half upper plane, and we
computed the driving function ξt generating the process. We
found, for all analyzed cases, that ξt is a Brownian process
with variance 〈ξt 〉 ∼ κt , as expected for an SLEκ . As addi-
tional test, the variance of the winding angle is found to scale
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asymptotically as Var[ϑ] ∼ 1
4κ ln L with κ = 8(Df − 1), as

predicted for SLEκ .
Our results uncover a nontrivial connection between the

RDM on monopartite lattices, the REMP, and the EA spin-
glass model in two dimensions. These models are all critical
at zero temperature and, more importantly, share the same
universality class, exhibiting signs of conformal invariance.
RDMs on bipartite lattices and the REAP, on the other hand,
show a similar critical zero-temperature behavior but with
different scaling exponents. The underlying graph topology
is therefore an essential feature for the determination of the
universality class of the critical point.
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APPENDIX: NUMERICAL ANALYSIS OF THE
DRIVING FUNCTION

We fix k = 60, 90, 120 and consider L = 200, 400. We
condition the ensemble to s > smin = k + 10 to ensure that
k < s; however, we checked that the results do not depend
appreciably on the particular choice of smin. For each pair
L, k, we measure the s − k pairs (ti, ξti )

s−k−1
i=0 as described in

Sec. IV, for ∼105 independent realizations.

We first performed our analysis on the Q model. The
leftmost panels in Fig. 5 show the ensemble-averaged mean-
square displacement of ξt as a function of time. For small
times, up to tmax ≈ 0.012, 〈ξ 2

t 〉 is approximately linear in
t . While the time tmax does not seem to change apprecia-
bly with lattice size, the average number of steps needed
to reach it, 〈s(tmax)〉, increases with L and with k. Note
that the quantity 〈s(tmax)〉 is computed without taking into
consideration the first k steps of the original curve, which
get mapped to the boundary of the domain. For L = 200
we find 〈s(tmax)〉 ≈ 110/157/188 for k = 60/90/120 respec-
tively; for L = 400 we find 〈s(tmax)〉 ≈ 174/268/325. The
ratios between 〈s(tmax)〉 and the average number of steps of
the curves are 0.43,0.49,0.51 for L = 200 (again for k =
60, 90, 120) and 0.46,0.58,0.61 for L = 400.

To compute κ we performed linear fits of 〈ξ 2
t 〉 versus t , us-

ing only the data at the larger size, L = 400. We performed fits
in intervals [0, tmax] with varying tmax. Fit results are shown in
Fig. 5. The fitted values for the square lattice stabilize around
tmax ≈ 0.01. The three values of k that we considered yield
compatible estimates at the plateau, namely, κ = 2.07(8).

Besides the scaling of the mean squared displacement, SLE
predicts that the normalized process ξt/

√
t is distributed nor-

mally with mean 0 and variance κ . To have sufficient statistics,
we considered the data for k = 60, 90, 120 combined, and all
times from tmin = 0.001 and tmax = 0.012 (for smaller values
of tmin lattice artifacts become apparent, affecting the tails of
the distribution). Figure 5 shows that the normalized process
is approximately Gaussian as expected.

Repeating the same procedure for the T model we obtain
κ = 2.16(13). However, notice that, in the T model, the three
values of k give slightly inconsistent estimates; see Fig. 5.
The values for k = 60 do not reach a well-defined plateau;
excluding them from the overall estimate gives κ = 2.20(8).
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