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Abstract: Epigenetic changes are heritable modifications that do not directly affect the DNA sequence.
In cancer cells, the maintenance of a stable epigenetic profile can be crucial to support survival and
proliferation, and said profile can differ significantly from that of healthy cells. The epigenetic profile
of a cancer cell can be modulated by several factors, including metabolites. Recently, sphingolipids
have emerged as novel modulators of epigenetic changes. Ceramide and sphingosine 1-phosphate
have become well known in cancer due to activating anti-tumour and pro-tumour signalling path-
ways, respectively, and they have recently been shown to also induce several epigenetic modifications
connected to cancer growth. Additionally, acellular factors in the tumour microenvironment, such as
hypoxia and acidosis, are now recognised as crucial in promoting aggressiveness through several
mechanisms, including epigenetic modifications. Here, we review the existing literature on sphin-
golipids, cancer, and epigenetic changes, with a focus on the interaction between these elements and
components of the chemical tumour microenvironment.
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1. Introduction

Tumour development and growth can depend on many factors that often differ from
cancer to cancer. Despite this, it is widely recognised that, in order to evade the organism’s
safety checks, primarily apoptosis, all cancer cells must acquire a number of genomic
alterations. However, said alterations are not solely dependent on direct genomic mutations,
since changes in expression might also derive from an altered epigenetic profile, and lead
to similar consequences. Epigenetic changes are heritable modifications that do not directly
impact the DNA sequence, and they reportedly might play a more important role in cancer
onset than direct genomic mutations [1]. Furthermore, their maintenance is paramount to
cancer survival and growth [2].

Several factors can modulate the epigenetic profile, both in physiological and trans-
formed conditions. For example, it can be affected by environmental factors such as
smoking, alcohol consumption, pollutants, and even circadian rhythm changes [3].

The concentration of certain metabolites, including ketone bodies [4], diallyl disul-
phide [5], folate acid and vitamin B12 [6], has also been recently reported to modulate
epigenetic profiles. Additionally, a new body of work has been produced studying the
possible epigenetic changes enacted by sphingolipids, which could further enrich the
expanding role of these molecules in cell metabolism.

Sphingolipids are a class of seemingly structural fatty acids (FA) that have been
recently found to also act as second messengers in many metabolic pathways and play
an important role in cancer. In particular, ceramide and sphingosine 1-phosphate (S1P)
possess anti-tumour and pro-tumour effects, respectively, with S1P exhibiting increased
concentrations in many forms of cancer [7]. While ceramide promotes apoptosis and
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senescence, S1P upregulates proliferation, migration and cell survival, and thus constitutes
a promising therapeutic target in cancer treatment [8].

In this review, we examine all current knowledge on the role of sphingolipids in
epigenetic regulation, and lay the foundations for possible future studies. Furthermore,
we draw attention to a new avenue of research, examining the effects of the accumulation
of sphingolipids, induced by changes in the tumour microenvironment, on the epigenetic
profile of cancer cells.

2. Epigenetic Modifications

Epigenetic changes are heritable genomic modifications that do not result in the
alteration of the DNA sequence [9]. These can derive from several mechanisms, including
the covalent modification of DNA (e.g., methylation) or histone proteins, and micro-
RNA (miRNA)-mediated gene silencing. The proper regulation of epigenetic changes
is fundamental in normal cell development.

DNA methylation is a common mechanism of epigenetic regulation, as methylation
profiles are accurately inherited by daughter cells in physiological conditions [10]. Methyla-
tion typically occurs on cytosines located at genomic regions known as CpG islands, which
are rich in CpG sites: stretches of DNA sequence where a cytosine is followed directly by
a guanine. The reaction is catalysed by three enzymes called DNA methyltransferases.
The specific effects of methylation vary depending on the targeted portion of each gene:
methylated cytosines in the gene promoter generally result in downregulation through
coiling the DNA around histones, rendering said DNA transcriptionally inactive [11]; on
the other hand, the methylation of cytosines in the coding region may lead to an increased
or decreased expression, depending on the case [11–13].

The modification of histone proteins is also one of the most studied mechanisms in
epigenetics. DNA mostly exists in a compact structure, wrapped around nuclear proteins
known as histones, which themselves group together to form a nucleosome. There are
five different families of histones: H1/H5, H2A, H2B, H3 and H4, each containing several
members. The nucleosome is formed of two of each: H2A, H2B, H3 and H4, organised
in heterodimers, while H1 locks the DNA into place by binding at the entry and exit
points in the nucleosome [14]. Several enzymes can modify histones by adding or remov-
ing functional groups, leading to changes in gene accessibility and, thus, transcription.
These modifications generally occur at the N-tail of histones, and can include acetylation,
methylation, phosphorylation, ADP-ribosylation, SUMOylation and ubiquitination [15,16].

Acetylation, in particular, is the most widely studied, and involves the removal of an
acetyl group from acetyl-coenzyme A (acetyl-CoA) and its addition to the ε-NH+ terminal
of lysine residues. This reaction is catalysed by histone acetyltransferases and results in
an unravelling of chromatin around the targeted histone, increasing the transcription of
the surrounding genes [17]. Vice versa, the deacetylation of histones occurs by histone
deacetylases (HDACs), a class of enzymes that can deacetylate acetylated lysine residues in
a histone amino acid sequence, inducing chromatin condensation, resulting in the down-
regulated expression of target genes [16]. HDACs can also deacetylate lysine residues in
proteins other than histones, and have thus sometimes been called lysine deacetylases [18].
HDACs are divided into four families: Class 1 HDACs are ubiquitously expressed, pre-
dominantly nuclear and include HDACs 1, 2, 3 and 8 [19]; Class 2a HDACs can shuttle
between nucleus and cytoplasm after phosphorylation, and include HDACs 4, 5, 7 and
9 [20]; Class 2b is comprised of HDAC 6, which is cytoplasmic [21], and HDAC 10, which
can localise both to the nucleus and cytoplasm [20]; finally, HDAC11 is the only Class IV
HDAC, and shows higher expression in the brain, heart, muscles, kidney and testes [22,23].
HDACs 1 and 2 are almost identical and can be found in several repression complexes such
as sin3, nuRD, CoREST and PRC2 [24].

Histone methylation is another common type of modification, and also occurs at
lysine residues. The reaction is catalysed by the enzyme histone methyltransferase, which
can transfer a methyl group from S-adenosyl methionine to the target lysine. Like DNA
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methylation, the effects of histone methylation can vary between up- and downregula-
tion, depending on the targeted histone and lysine [25]. Meanwhile, phosphorylation
can instead occur at serine and tyrosine residues, and is important in the regulation of
several important cellular processes, including cell cycle, genomic expression, and DNA
repair. There is evidence of crosstalk between histone methylation and phosphorylation
at certain sites [25]. ADP-ribosylation, sumoylation and ubiquitination are less known,
overall. ADP-ribosylation is catalysed by ADP-ribosyltransferase and may be involved
in the DNA damage response [26]. Sumoylation is the attachment of a protein, known
as small ubiquitin-like modifier, to histone lysine residues, and generally results in sup-
pressed transcription, though new functions have been recently explored [27]. Finally,
ubiquitination is the addition of a ubiquitin molecule, once again on a lysine residue, and is
mainly associated with the DNA damage response, though it also plays a role in regulating
expression through the ubiquitination of H2A and H2B [28].

Lastly, another kind of epigenetic regulation is that induced by miRNAs. miRNAs
are small non-coding RNA molecules that possess antisense codons specific for a number
of target mRNAs. A miRNA duplex can recruit the RNA-Induced Silencing Complex
through its sense codon, which is then degraded, and guide said complex to a target
mRNA, promoting its degradation [29]. Conversely, some miRNAs can instead bind the 5’
UTR of a target mRNA to enhance its translation [30]. As such, miRNAs are able to modify
protein levels without altering the normal genetic profile of the cell.

3. Epigenetics in Cancer

Methylation profiles can differ greatly between healthy and cancer cells, the latter usu-
ally exhibiting hypermethylation-mediated silencing of tumour-suppressor genes. Common
targets of intragenic hypermethylation are p16, MGMT, APC, MLH1 and BRCA1 [31]. Hyper-
methylation can also lead to loss of imprinting. For example, the aberrant methylation of the
IGF2/H19 locus results in the overexpression of growth factor IGF2, which has been linked
to the progression of colorectal and gastric cancer, as well as Wilms’s tumour and osteosar-
coma [32–34]. However, despite the aforementioned hypermethylation of certain genes, total
methylation is generally decreased in cancer cells [35], with most demethylation occurring in
intragenic and intergenic regions rich in repetitive and transposable elements [36]. This can,
for example, lead to the overexpression of the L1NE1 retrotransposon, a known oncogene,
with increased DNA mutagenesis [37]. The maintenance of these altered methylation profiles
is key for cancer development [2], and in fact, said profiles have been shown as a reliable way
to diagnose specific types of bone sarcomas [38].

Like for the methylation profile, cancer cells present a different histone modification
profile compared to healthy ones. For example, decreased monoacetylated and trimethy-
lated forms of H4 compared to normal cells are observed in many human cancers [39].

Epigenetic modifications, including a different acetylation profile in histones, may be
related to cancer aggressiveness. In osteosarcoma, for example, H3K27 acetylation activates
the collagen type VI alpha 1 protein, promoting lung metastasis [40]. Histone modifications
are also involved in the DNA damage response (DDR). DDR is an important factor in cancer
development and progression, since it is often dysregulated [41]. For example, following a
double strand break, a variant of H2A called H2AX is rapidly phosphorylated, which was
shown to induce the accumulation of proteins linked to DNA repair, such as MDC1, RNF8,
RNF168, 53BP1 and BRCA1 [42].

Finally, there have been countless studies on the roles of different miRNAs in cancer,
both as pro-tumour and anti-tumour molecules affecting proliferation, survival, migra-
tion and angiogenesis [43]. For example, miR-17-92, a miRNA often overexpressed in
several types of tumour, was found to promote the expression of E2F, a transcription factor
heavily involved in inducing cell proliferation [44]. Another good example is the lack
of balance in the several p53-regulated miRNAs, once again observed in many kinds of
cancer [43]. Additionally, SNPs at the binding sites of certain miRNAs have been shown as
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viable biomarkers of gastric and colorectal cancer, highlighting the importance of miRNA
regulation in maintaining normal cell homeostasis [45].

4. The Sphingolipid Pathway

Sphingolipids are small molecules consisting of three main structural elements: a sph-
ingoid long-chain base (lcb), usually sphingosine, sphinganine, or 4-hydroxysphinganine;
an FA attached via amide bond to the C2 of the lcb; a head-group, which can be a sugar
(glycosphingolipids) or phosphorylcholine, usually attached to a hydrophilic region. The
basic structure of sphingolipids is shown in Figure 1A. The structure of the most studied
sphingolipids is shown in Figure 1B, whereas additional information on the structure of
more complex and less commonly studied sphingolipids is detailed in Table 1 [46].
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Figure 1. Basic structure of sphingolipids (A) and of the four more studied sphingolipids (B).

Table 1. Structures of sphingolipids.

Simple Sphingolipids R1 Group (See Figure 1A) R2 Group (See Figure 1A)

sphingosine OH H
sphingosine-1 phosphate (S1P) PO4 H

ceramide OH O + Fatty acid residue
ceramide-1-phosphate (C1P) PO4 O + Fatty acid residue
Complex sphingolipids

Sphingomyelin phosphocholine group O + Fatty acid residue
Cerebroside single sugar residue O + Fatty acid residue
Globoside di, tri, tetra-saccharide residue O + Fatty acid residue
Sulfatide single sugar residue + sulphate group O + Fatty acid residue

Ganglioside oligosaccharide residue + sialic acid O + Fatty acid residue

Ceramide occupies a central spot in the sphingolipid pathway (Figure 2) and is also
the first signalling sphingolipid. It presents no head-group and can be generated de novo,
starting from acyl-CoA. Different acyl-CoAs can be used, resulting in ceramides of various
length [47]. The addition of a phosphate group to the sphingosine or ceramide yields S1P
and ceramide-1-phosphate, respectively (Table 1). Furthermore, complex sphingolipids can
be synthesised through ceramide modifications. The addition of a phosphocholine group
to ceramide yields sphingomyelin, but the addition of glucose or galactose to ceramide
yields glycosphingolipids and sulfatides (Table 1)
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Figure 2. Schematic representation of the sphingolipid pathway. Sphingomyelin is converted
by sphingomyelinase into ceramide, which then can induce cytochrome C release and increase
expression of cathepsin B, CAPK, PP1 and FADD, resulting in cell death. Ceramidase converts
ceramide into sphingosine, which can either be reconverted into ceramide via ceramide synthases,
or be phosphorylated to S1P by sphingosine kinases. S1P mediates its cell survival effects by
interacting with g-protein-coupled receptors S1PR1-5, resulting in activation of several pathways,
and by inhibiting HDACs 1 and 2, increasing H3K9 acetylation and upregulating target genes. S1P is
cleaved by S1P lyase into ∆2-hexadecenal, which might also be capable of inhibiting HDACs 1 and 2.

Through its pro-apoptotic pathways, ceramide can induce cytochrome C release and
increase the expression of proteins such as cathepsin B, cAMP-dependant protein Kinase,
protein phosphatase 1 and FAS-associated death domain [48]. This implies an important
role for ceramide in cancer suppression, and in fact, its levels are decreased in many
forms of cancer [49,50]. Interestingly, ceramide 1-phosphate, which is generated through
the phosphorylation of ceramide by ceramide kinase, has pro-survival and pro-growth
effects instead [51]. Ceramide can be converted into sphingosine by ceramidase, or into
sphingomyelin by sphingomyelin synthases [52,53].

Sphingomyelin is a structural sphingolipid especially present in membrane
microdomains, such as lipid rafts. Following cellular stimuli enacted by 1-α,25-
dihydroxivitamin D3 and TNF-α, sphingomyelin is hydrolysed by sphingomyelinase
to form ceramide and phosphocholine [54].

Sphingosine can be converted into ceramide by a ceramide synthase, or phosphory-
lated to S1P by a sphingosine kinase (SphK). There are two sphingosine kinases (SphK1 and
SphK2), localised respectively in the cytoplasm and nucleus [55]. SphKs are activated after
phosphorylation by extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the cyto-
plasm or protein kinase D in the nucleus [56,57]. Additionally, SphK2 is often overexpressed
in many types of cancer [58–60].

S1P is an important signalling sphingolipid that can mediate its pro-survival effects by
interacting with five g-protein-coupled receptors, called S1P receptors 1-5 (S1PR1-5) [61],
leading to the activation of signalling pathways such as ERK1/2 [62]; AKT [63]; PLC [64]
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and Rho [65]. Higher S1P levels have been detected in many types of cancer, and are possi-
bly correlated with SphK2 overexpression [66]. S1P can be reconverted into sphingosine by
S1P phosphohydrolases 1 and 2, or be irreversibly cleaved into ∆2-hexadecenal (∆2-HDE)
and ethanolamine phosphate by the enzyme sphingosine 1-phosphate lyase (S1PL) [67,68].

While ∆2-HDE was long considered just a by-product of S1P catabolism, very re-
cent studies have linked it to different signalling pathways, such as the JNK-dependant
induction of apoptosis and growth inhibition [69,70].

5. The Sphingolipid Pathway and Epigenetics
5.1. Sphingolipids and HDAC

Both S1P and SphK2 have been demonstrated to be epigenetic regulators. In particular,
a recent study has shown that, in the nucleus, S1P may function as an HDAC1 and HDAC2
inhibitor, leading to histone 3 (H3) acetylation [71]. Specifically, the authors found that
SphK2 can associate to H3 and/or HDAC1/2, and the S1P it synthetises can bind to and
inhibit HDAC1/2, preventing histone deacetylation (Figure 3).
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Figure 3. Schematic representation of HDAC inhibition by S1P. HDAC1/2 deacetylate histones as
part of the Sin3 or NuRD repressor complexes localised at the promoters of target genes. SphK2
binds to said repressor complexes. SphK2 then synthetises S1P that, in turn, binds to and inhibits
HDAC1/2, preventing deacetylation and thus increasing overall gene expression.

This results in an increased acetylation level, in particular of histone 3 (H3) lysine 9 (K9),
but also H4-K5 and H2B-K12, leading to the activation and expression of several genes [71].
Intriguingly, SphK2 was shown to localise preferentially at said genes. Among these, we
find the genes codifying for the cyclin-dependant kinase inhibitor p21, which is known to
regulate cell-cycle progression, DNA replication and apoptosis [72], and the transcriptional
regulator c-fos, a proto-oncogene associated with cell proliferation, differentiation and
survival, as well as hypoxia response, angiogenesis and metastasis [73]. Additionally, in
another study, the inhibition of HDAC1/2 by S1P has been linked to Ca2+ homeostasis.
Both studies also reported that the silencing of SphK2 or overexpression of S1PL abrogated
the inhibition of HDAC1/2 and resulting transcriptional regulation [71,74].

Therefore, according to the studies above, S1P and SphK2 are both active epigenetic
regulators that can induce the inhibition of HDAC1/2, resulting in increased histone
acetylation and the expression of certain genes.

5.2. ∆2-HDE as a Novel Epigenetic Regulator

S1PL can catabolise S1P into different by-products, including ∆2-HDE, that in turn
have different biological activities. A study from 2005 reports that both SphK1 and S1PL are
necessary to induce the increased proliferation normally associated with S1P, suggesting
that a by-product of S1P catabolism might be at least partially responsible for this effect [75].
Recently, ∆2-HDE was shown to possess a number of regulatory functions. Kumar et al.
demonstrated that the abundance of ∆2-HDE in HeLa cells causes detachment, cytoskeletal
reorganisation and apoptosis, through the activation of MLK3 and JNK [69]. Amaeg-
beri et al. later reported that ∆2-HDE can induce the activation of the p38 and ERK1/2
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pathways, in addition to JNK, causing a decrease in proliferation in a dose-dependent
manner. Furthermore, said decrease was shown to not be correlated with lipotoxicity from
an excess of ∆2-HDE [70].

Given these novel discoveries, and the recent attention to epigenetic changes enacted
by S1P, investigating ∆2-HDE for those same effects was the logical next step. A very
recent study has shown a promising connection between ∆2-HDE and HDACs [76]. It was
reported that, in lung cells infected with Pseudomonas aeruginosa, ∆2-HDE was capable of
inhibiting HDAC1/2 activity, even in the absence of S1P. The effect was dose-dependent,
with increased H3K9 and H4K5 acetylation, although interestingly, excessive doses of
∆2-HDE (>1 µM) led to decreased acetylation instead. Furthermore, all these effects were
abrogated in cells lacking S1PL, even in the presence of S1P. ∆2-HDE was also shown
to be able to form Lys adducts with HDAC1 in vitro. These results seemingly contrast
with a previous article, which claimed that S1PL overexpression abrogated S1P-mediated
HDAC1/2 inhibition [74]. Although the study by Ebenezer et al. did not use a cancer
model, Pseudomonas aeruginosa infection has been previously reported to upregulate nuclear
S1P [77]. Given the well-documented increase in S1P concentration in many types of cancer,
investigating ∆2-HDE epigenetic activity in tumours could prove worthwhile.

In conclusion, ∆2-HDE, a compound generated by the S1PL-mediated lysis of S1P,
was recently shown to possess a number of biological functions, and may possibly play a
role in epigenetic regulation through the inhibition of HDAC1/2.

5.3. Ceramide and Epigenetics

Ceramide has opposite effects to S1P, activating pro-apoptotic pathways. This pattern
seemingly holds true in regard to ceramide-mediated epigenetic changes, which play a role
in counteracting tumour progression.

A recent study has shown that ceramide can inhibit the inhibitor 2 of protein phosphatase
2A (I2PP2A), resulting in increased H4 acetylation and decreased tumour progression [78].
I2PP2A is an inhibitor of the serine/threonine phosphatase 2A overexpressed in many forms
of cancer, and is associated with cancer formation and progression [78]. Additionally, it is also
a known inhibitor of acetyltransferases, negatively regulating H4 acetylation [79].

Another article reported that ceramide upregulates ciliogenesis in normal cells, specif-
ically Madin–Darby canine kidney cells, possibly through promoting tubulin deacetylation,
since trychostatin A, an HDAC inhibitor, exhibited similar effects [80]. Since cilia expression
is abnormal in many types of cancer, this ceramide-mediated secondary epigenetic regula-
tion shows yet another tumour-suppressant effect associated with the sphingolipid [81,82].

Finally, a study on adenocarcinoma in lung cells has shown that ceramide can bind
to HDAC1 and promote the deacetylation of Sp3, a transcription factor heavily involved
in human telomerase reverse transcriptase (hTERT) regulation, resulting in decreased
expression of the latter. It should be noted that only C18, synthesised by CerS1, could
downregulate hTERT by binding to HDAC1, and not C16 produced by CerS5 and CerS6,
suggesting different roles for ceramide isoforms based on their carbon chain length [83].
This once again shows how ceramide and S1P can enact opposite effects, with the former
promoting HDAC-mediated deacetylation and the latter decreasing it.

Thus, a number of studies have associated ceramide with different mechanisms of
epigenetic regulations, often with opposite effects to S1P, including reduction in tumour
progression and proliferation, and even the activation of HDAC1.

6. The Tumour Microenvironment and Epigenetic Balance

Recently, cancer research has shifted from looking at tumours as an isolated phe-
nomenon to considering their interactions with surrounding cells and molecules. These are
influenced by cancer cells into forming an area called tumour microenvironment (TME).
The TME is altered by cancer cells to support growth, proliferation and protection from
apoptosis [84]. The TME can itself be divided in stromal components, such as immune cells,
mesenchymal stem cells (MSC), fibroblasts and epithelial cells and chemical components,
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which includes phenomena such as hypoxia and extracellular acidosis. In addition to being
important for cancer development and resistance to treatments [85,86], the chemical TME
has also been shown to both be a target and an inducer of epigenetic changes, in part
through the accumulation of lipids, including sphingolipids, inside the cell, and is thus of
particular interest to this review [85–88].

6.1. Hypoxia and the Sphingolipid Pathway

Hypoxia is a common phenomenon in solid tumours, which ensues when existing
capillaries cannot grant a sufficient oxygen supply. This usually occurs when the tumour’s
diameter exceeds 1 mm, but it is possible for a tumour to possess areas of intermittent
hypoxia [89]. Low extracellular oxygen concentration causes a metabolic switch from
oxidative phosphorylation (OXPHOS) to glycolysis through the activation or inhibition of
the expression of specific genes associated with glycolytic metabolic pathways, such as the
glucose transporters [85]. The regulation of the expression of these genes is determined
by hypoxia-inducible factor (HIF), a transcription factor that can regulate the response
to hypoxia. HIF is composed of two subunits, HIF-α and HIF-β [90]. HIF-α consists
of a basic helix-loop-helix domain, two different Per, Ahr/ARNT, Sim (PASA; PASB)
domains that are thought to be involved in HIF-αβ heterodimerisation and a c-terminal
transactivation domain [91]. HIF-α can exist in two different isoforms, called 1α and 2α,
which are respectively ubiquitously expressed, and only present in highly vascularised
organs rich in hypoxic tissues. HIF-α normally exists in a hydroxylated form, making it an
ubiquitination target, and thus leading to rapid degradation [92]. The enzyme responsible
for HIF-α hydroxylation, HIF prolyl-hydroxylase, requires oxygen as a cofactor, and is thus
inhibited in hypoxic conditions [93]. HIF-α is then free to migrate to the nucleus, where
it heterodimerises with HIF-β [92]. The dimer can then modulate transcriptional activity,
usually through binding sections known as hypoxia response elements on its target genes,
which include EPO, VEGF, HO-1, ADM and Glut-1 [94].

Hypoxia has generally been shown to lead to a worse prognosis in cancer [95,96]
since it can lead to several changes in cancer cells, including altered gene expression,
lowered apoptosis, epithelial–mesenchymal transition, metastasis and drug resistance.
Interestingly, once the switch has happened, tumours retain a preference for glycolysis
even in aerobic conditions, a phenomenon known as the Warburg effect [97]. A number
of these effects are likely to be caused by changes in the epigenetic profile. For example,
hypoxic conditions can lead to increased H3K4 and H3K36 trimethylation, resulting in
chromatin rearrangement [98]. However, hypoxia can also activate several jumonji-type
histone lysine demethylases, promoting the demethylation and thus altering the expression
of several genes [99]. Additionally, hypoxia can induce the methylation of the chromatin
remodelling protein Pontin, which is often overexpressed in cancer, by stabilising G9a,
a methyltransferase, resulting in the hyperactivation of several HIF-α target genes [100].
Furthermore, HIF-1α can promote the recruitment of the histone lysine acetylase TIP60 to
chromatin, leading to the acetylation of HIF-1α target genes in colorectal cancer [101].

Hypoxia has also been shown to alter lipid metabolism, including sphingolipids. A
very recent study on pancreatic ductal adenocarcinoma has shown how genes related to
lipid metabolism are abnormally expressed in cancer cells under hypoxic conditions, with
different expression clusters leading to changes in survival time. Of particular interest,
cluster 1 showed high levels of both SphK1 and SphK2 [102]. In the same year, another
group confronted lipidomics from HCT 116 colon carcinoma cells grown in a 2D monolayer
and a 3D spheroid model. Spheroids are used to simulate phenomena that occur in solid
tumours, but cannot be replicated in 2D cultures, such as hypoxia. Interestingly, the results
of the spheroids’ lipidomic show an increased production of sphingolipids, compared to
that of the monolayer culture [103]. Conversely, sphingolipids have been shown to interact
with the cellular response to hypoxia. In a recent study, immortalised renal interstitial
fibroblasts stimulated with S1P were shown to enhance the stabilisation of HIF-2α, with
a consequent increase in erythropoietin expression [104]. Judging from the cited body of
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work, it is logical to think that hypoxia and sphingolipids can interact with each other in
a variety of ways, and it is worthwhile to examine their crosstalk from the point of view
of epigenetics.

In a quite recent study on breast cancer, SphK2 was shown to associate with HIF-1α in
repression complexes and to localise at the promoters of HIF target genes. The S1P-mediated
inhibition of HDACs can lead to an increased overall acetylation of genes codifying for HIF-
1α, promoting its expression. Furthermore, it can also cause the acetylation of the VEGF
gene, an important target of HIF-1α, making it available for transcription and possibly
allowing HIF-1α to bind to its hypoxia response element. Furthermore, S1P can bind
directly to the PAS region of HIFα, resulting in higher protein stability and, thus, increased
transcription of HIF target genes such as VEGF, SERPINE1, OCT4, ALKBH5 and CD44 in
hypoxic conditions (Figure 4). Importantly, the silencing of SphK2 abrogated these effects
in both normoxic and hypoxic conditions [105].
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In conclusion, hypoxia can induce a large number of epigenetic changes, and thus S1P
and SphK2, by upregulating HIF-1α expression and stability, can be considered indirect
mediators of the described changes.

6.2. Acidosis and the Sphingolipid Pathway

As a consequence of hypoxia, or due to high glycolytic activity caused by the Warburg
effect, high concentrations of protons accumulate in the cytosol and are readily transported
passively or actively out of the cancer cell, causing extracellular acidosis (pHe) and the
formation of an acidic TME [106] (Figure 5(1)). Tumour acidosis is a dysregulation of pH
balance, wherein the normal gradient between intracellular and extracellular pH (pHi and
pHe) is inverted, with pHe becoming acidic (6.5–7) and pHi alkaline (>7.4). In more detail,
to ensure NAD+ regeneration in anaerobic conditions, the enzyme lactate dehydrogenase
A converts pyruvate into lactate, which is then pumped outside the cell by different mecha-
nisms. Among these, the monocarboxylate transporter 4, a lactate/H+ symporter, causes
the accumulation of H+ ions outside the cell, thus decreasing the pH. Additionally, the
increased consumption of ATP necessary to satisfy tumour metabolism can also lead to the
excessive production of H+ ions. Thirdly, pHi is kept at an alkaline level by Na+/HCO3−

co-transporters, which provide bicarbonate to titrate-excess intracellular H+. Finally, cancer
cells in the TME, while not exhibiting a metabolic switch, can still participate in decreasing
pHe through the production of CO2 during OXPHOS [87,107,108] (Figure 5(2)). Inter-
estingly, acidosis has been shown to induce genetic remodelling, including epigenetic
changes, since it can increase the NAD+-dependent activity of histone deacetylases sirtuin 1
and 6 [87] (Figure 5(3)), which in turn can upregulate HIF-2α expression and downregulate
HIF-1α and acetyl-CoA carboxylase [109,110]. In a collaborative study with Chano et al.,
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we also investigated the acid-induced epigenetic changes in osteosarcoma cells. In this
work, we tested whether or not there was a change in HDAC1/2 activity and/or H3K9
acetylation in osteosarcoma cells, compared to normal MSC. Interestingly, while controls
presented an increased acetylation under acidosis, osteosarcoma cells did not show any
significant change. This led us to believe that osteosarcoma cells have adapted to maintain
a higher epigenetic stability compared to MSC [88]. This adaptation may possibly derive
from an increased availability of metabolites that can serve as substrate for histone acetyla-
tion. It is a matter of fact that acidosis is accompanied by abnormal lipid metabolism in
cancer, accumulations of lipids inside the cell, and compartmentalisation of accumulated
lipids in droplets (Figure 5(4)) to prevent free FA-mediated cytotoxicity [87,111,112]. The
accumulated lipids can then be used to form membranes for intracellular signalling, such
as for ceramide and S1P (Figure 5(5)), or be oxidised to acetyl-CoA (Figure 5(6)) to generate
energy and allow non-enzymatic acetylation [113]. Notably, in HUVEC cells, S1P upregu-
lates Sirtuin 1 that, in turn, stimulates angiogenesis, although the exact mechanism, and
whether or not it also occurs in cancer cells, is unknown [114]. It is likely that, in these cells
as well as in cancer cells, the increased S1P accumulation induced by acidosis can result
in higher Sirt1 expression on the one hand and the inhibition of HDAC1/2 on the other,
although this has never been demonstrated.
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Figure 5. Possible mechanisms induced by acidosis in the TME. Extracellular acidosis results from
the extrusion of protons in the TME from highly glycolytic cancer cells (1), or by the production of
CO2 from adjacent cells (2). Acidosis, in turn, stimulates sirtuin(s) activity (3) and induces stress in
tumour cells, which causes the accumulation of lipids inside the cell, in the form of lipid droplets,
(4), and an increase in intracellular S1P (5) and Acetyl-CoA (6). The increased Acetyl-CoA and S1P
concentration may lead to inhibition of HDAC1/2 and overexpression of SIRT1, thereby resulting in
epigenetic changes.

However, although the data obtained so far are quite suggestive and promising, very
few studies have been conducted in this area. Particularly unexplored is the role of ∆2-HDE
in acidic conditions as well as the impact on the epigenetic profile of acid-induced lipid
accumulation, as the latter leads to an increase in intracellular FA-derived acetyl-CoA
that could be employed for histone acetylation, in addition to the already documented
mitochondrial non-enzymatic hyperacetylation in tumours [113].

In conclusion, extracellular acidification is an important phenomenon in tumours,
and can lead to several epigenetic changes. In addition, it can promote the intracellular
accumulation of lipids, including S1P, which could possibly further alter the epigenetic
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profile due to S1P-mediated HDAC1/2 inhibition, even though this mechanism has yet to
be studied.

7. Conclusions

Recent studies on several types of disease, including cancer, have revealed a number
of novel roles of sphingolipids in cell metabolism. The regulation of epigenetic balance is
the latest frontier in understanding the full effect of these molecules, with a particular focus
on their interactions with histone deacetylases. However, this topic of research is as of yet
in its infancy, and many avenues of study remain relatively unchallenged.

Tumour acidosis has been shown to play a crucial role in cancer progression and
resistance to treatment. With hypoxia being a major cause of acidosis, and the recent
evidence of the interaction between SphK2, S1P and HIFα, focusing more closely on how
sphingolipid-mediated epigenetic regulation shifts in an acidic TME, is an interesting
possibility. Additionally, according to the most recent data, ∆2-HDE, a novel player in
sphingolipid metabolism, has been reported to interact with HDACs, but said interaction
remains unexplored in cancer and thus presents several avenues for research, both in
normal and acidic conditions. These further studies may serve to elucidate its role in the
regulation of epigenetic balance.

All in all, the effects of sphingolipids on epigenetic changes are a novel topic that
presents many enticing opportunities, both to thoroughly explore the subject and to later
connect it to possible new treatments. To our knowledge, no review on the topic has been
published previously, and thus this work may be helpful to researchers in planning future
studies on sphingolipids and epigenetic changes in cancer.
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