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Ahlfors regular spaces have regular subspaces of any dimension

Abstract. We characterize Q-dimensional Ahlfors regular spaces among
trees’ boundaries and show how to construct, for each 0 < α < Q, an
α-regular subspace. As an application, we give an alternative simple
proof of the existence of α-regular subspaces of aQ-dimensional complete
Ahlfors regular metric space (X, ρ), which was proved in [8].
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Any metric space (X, ρ) supports a Q-dimensional Hausdorff measure HQ

for all Q > 0, see [9] for a nice introduction to the topic. The upper Hausdorff
dimension of X is Q = dim(X) := inf{α : Hα(X) = ∞} ≥ 0. If 0 < α < Q, it
is natural to ask whether there exist subsets A of X such that 0 < Hα(A) < ∞.
A special case of Corollary 7 in [7] gives a positive answer in great generality:
if X is a complete, separable Hausdorff space, and 0 < α < dim(X), then there
is a compact subset of A such that 0 < Hα(A) < ∞.

Among metric spaces, a class which has been much studied in recent decades
is that of the Ahlfors regular ones. In these spaces the Q-dimensional Hausdorff
measure HQ(B(x, r)) of the metric ball having center at x and radius r > 0
satisfies

(0.1) crQ ≤ HQ(B(x, r)) ≤ CrQ.
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with 0 < c < C independent of x and r ≤ diam(X) ≤ ∞. They proved to be
an excellent setting for developing harmonic analysis even in many of its fine
features [4]. In this paper we always assume (X, ρ) to be also complete.

Recently, Ahlfors regular spaces were found to be a favorable environment
for many chapters of potential theory [1]. Adding more structure, rectifiable
curves and “gradients” of functions, it is possible to push the potential theory
even further [6], but in this article we will make use of Ahlfors regularity alone.

It is thus desirable having a vast catalog of Ahlfors regular spaces. In this ar-
ticle we increase the catalog by characterizing all Ahlfors regular spaces among
trees boundaries. Then, for each given complete Ahlfors regular tree boundary
we construct “fractals” of any lower dimension, which are themselves complete
Ahlfors regular. A different construction can be obtained by specializing Corol-
lary 5.2 of [8] and the constructions leading to its proof to our context. In fact,
the result in [8] can be obtained by its special “dyadic” version and Michael
Christ’s Theorem on the dyadicization of homogeneous spaces [2].

T h e o r em 0.1. Let (X, ρ) be a complete Ahlfors Q-regular metric space
and let 0 < α < Q. Then, there exists Y ⊆ X, closed, such that (Y, ρ) is
α-regular.

We point out that the result is classical if (X, ρ) has a dilation structure. See
e.g. §8.3 in [5], from which a statement like ours can can be easily deduced. In
fact, the easiest way to produce fractal subsets of Euclidean space is by means of
families of similarities. When available, dilations are the easiest way to produce
a multi-scale decomposition of the metric space; but such decompositions do
not exist in all Ahlfors regular space, and the basic idea is using multiscale
decompositions to produce Ahlfors regular fractal sets of all dimensions.

Our approach is to split the proof into two steps. First, we show that
Theorem 0.1 holds if X is a tree boundary (equivalently, if X is an ultrametric
space: ρ(x, y) ≤ max{ρ(x, z), ρ(z, y)}). This is done in Section 1. While doing
so, we will provide several characterizations of trees whose boundary is Ahlfors
regular, which might have independent interest. The general case is reduced to
the special one by means of standard dyadization in Section 2. In fact, we see
here at work the heuristic principle that statements concerning Ahlfors regular
spaces in general can be deduced by the corresponding statements restricted to
regular tree boundaries, or regular ultrametric spaces.

N o t a t i o n . We write �A to denote the cardinality of A. We use the symbols
� and ≈ with their usual meaning: A(x) � B(x) means that A(x) ≤ CB(x)
with a constant C > 0 which is independent of x (but which might depend on
other parameters); A(x) ≈ B(x) means A(x) � B(x) � A(x).
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1 - Ahlfors regular tree boundaries.

A tree T is a connected, simply connected graph, with edge set E(T ) and
vertex set V (T ), which, with harmless abuse, we denote by T . The edge having
as endpoints the vertices x �= y can be identified with the unordered couple
{x, y}. A path between two vertices x and y is a sequence of edges {x0 =
x, x1}, {x1, x2}, . . . , {xn − 1, xn = y}: n ≥ 0 is the length of the path. The
natural distance |y− x| between two vertices x, y in T is the minimal length of
a path starting at x and ending at y. It is realized by exactly one path [x, y],
the geodesic between x and y. It is correct and useful to think of |y− x| as the
hyperbolic distance between x and y.

We now introduce a well known analog of the Euclidean metric, sometimes
called the visual metric. A distinguished vertex o is chosen: the root of T . We
write y � x if x ∈ [o, y], and |x| := |x − o|. Given vertices x, y, we have that
[o, x] ∩ [o, y] = [o, x ∧ y] for exactly one vertex x ∧ y, the confluent of x and
y. If e = {x, y} is an edge of T and y is its endpoint which is furthest from o,
set ρ̄(e) = 2−|y|−1. Given a finite path Γ = {ej}nj=1 in T , define its ρ̄-length to
be ρ̄(Γ) =

∑n
j=1 ρ̄(ej). The ρ̄-distance ρ̄(x, y) between the vertices x and y is

the minimal ρ̄-length of a path starting at x and ending at y. It is obviously
realized by the ρ̄-length of the geodesic [x, y]. The metric space (T, ρ̄) has finite
diameter.

We shall make on T the assumption that the number of the edges leaving
a vertex x �= o is at least 2. This rules out the existence of “leaves” at a finite
distance from the root. We will see that Q-regularity of T ’s boundary implies
that the number of such edges is bounded by a constant N which is independent
of the particular vertex.. Let T ⊃ T be the completion of T with respect to
the metric ρ̄: (T , ρ̄) is a complete metric space; (T, ρ̄) is dense into it and it is
a discrete set. We define ∂T := T \ T the boundary of T . The points ζ in ∂T
are in a bijection with half-infinite geodesics Γ starting at o (i.e. infinite paths
starting at o, with no repeated edges), since the sequence of the vertices in Γ
is a Cauchy sequence in (T, ρ̄), converging to a unique ζ in ∂T . In this case we
write Γζ = [o, ζ) and Γζ = [o, ζ].

Given a tree T with a root o, the subtree T (x) having root x has as vertices
the y’s such that [o, y] � x. Its boundary, ∂T (x), can be naturally identified
with a subset of ∂T .

The restriction of the distance ρ̄ to ∂T = T̄ \ T is

ρ̄(x, y) = 2−|x∧y|,

and an inspection shows that is an ultrametric, ρ(x, y) ≤ min{ρ(x, z), ρ(z, y)}
on ∂T . In particular, any point of a metric ball B in ∂T is its center. If the
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root has at least two descendants, diamρ̄(∂T ) = 1. Here ∧ is the extension of

the confluent to ∂T : [o, x ∧ y] = Γx ∩ Γy. Balls Bρ̄(x, 2−n) = Bρ̄

(
x, 2−n+ 1

2

)

in the metric are cl-open. Metric balls can be identified with the boundaries of
the subtrees ∂T (w):

Bρ̄(x, 2−n) = Bρ̄

(
x, 2−n+ 1

2

)
= ∂T (w)

for a well specified w in T with |w| = n. We are not ruling out the possibility
that Bρ̄(x, 2−n) = Bρ̄(x, 2−n−1), although this, in the Q-regular case, can not
happen too often, as can be made quantitative using the Lemma below.

We provide here two characterizations of trees whose boundaries are
Q-regular.

Given x ∈ T , we denote by Stop(x) the family of stopping regions below x,
that is, T ⊇ S ∈ Stop(x) if

(1.1) S ⊂ T (x) and
⊔
y∈S

∂T (y) = ∂T (x)

where
⊔

denotes a disjoint union. Stopping regions S parametrize open covers
of ∂T (x) by metric balls. Since ∂T (x) is compact, S is a fortiori finite.

L emma 1.1. (∂T, ρ̄) is Q−regular if and only if there are 0 < a0 < a1 so
that, for all x in T and S in Stop(x), we have

(1.2) a02
−Q|x| ≤

∑
y∈S

2−Q|y| ≤ a12
−Q|x|.

Applied to the stopping set S(x) containing the vertices just below x, the
lemma implies that �(S(x)) ≤ N , where N is independent of x.

P r o o f. Assume that ∂T is Q-regular. We first show that if ζ ∈ ∂T and
B(ζ, 2−n) = B(ζ, 2−n−1) = . . . B(ζ, 2−n−m), then m ≤ C. There are xj in T
with B(ζ, 2−n−j) = ∂T (xj) and |xj | = n+ j. By Q-regularity, then,

c2−Qn ≤ HQ(∂T (x0)) = HQ(∂T (xm)) ≤ C2−Q(n+m),

so that 2−Qm ≥ c
C . We have then the estimate:

(1.3)
c2

C
2−Q|x| ≤ HQ(∂T (x)) ≤ C2−Q|x|.

Let now x ∈ T and S ∈ Stop(x) be given and let z ∈ ∂T (x) ⊆ ∂T . Then,
∂T (z) = �y∈S∂T (y), hence,

c2

C
2−Q|x| ≤ HQ(∂T (x)) =

∑
y∈S

HQ(∂T (y)) ≤ C
∑
y∈S

2−Q|y|,
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where both the first and the last inequalities hold by Q-regularity (0.1), thus

2−Q|x| ≤ C2

c2

∑
y∈S

2−Q|y|, and similarly 2−Q|x| ≥ c2

C2

∑
y∈S

2−Q|y|.

Conversely, let M > 0 be a fixed integer and let {Un}n be a cover of ∂T (x)
by sets Un ⊆ ∂T such that diam(Un) ≤ 2−M . For each n select wn ∈ Un and
replace Un by ∂T (wn) ⊇ Un with 2−|wn|−1 < diam(Un) ≤ 2−|wn| ≤ 2−M . Then,
{∂T (wn)} is a new cover of ∂T (x) and, since ∂T (x) is compact, we can select a
finite subfamily of it, which we might relabel as {∂T (wn)}Nn=1, such that {wn}
is a stopping set below x.

Now,

2Q
N∑

n=1

diam(Un)
Q ≥

N∑
n=1

diam(∂T (wn))
Q

=

N∑
n=1

2−Q|wn|

≥ a0 2
−Q|x|,

and similarly
N∑

n=1

diam(Un)
Q ≤ a12

−Q|x|.

In particular, given ∂T (x) = Bρ̄(ζ, 2−|z|) , we deduce that

a02
−Q2−Q|x|

≤ HQ
δ (∂T (x)) := inf

{∑
n

diam(Un)
Q : ∪nUn ⊇ ∂T (x), diam(Un) � δ

}

≤ a12
−Q|x|,

hence,

2−Qa02
−Q|x| ≤ HQ(∂T (x)) = lim

δ→0
HQ

δ (∂T (x)) ≤ a12
−Q|x|.

�

Let k ≥ 1 be an integer and, for any x ∈ T set

Sk(x) := {y ∈ T (x) : |y − x| = k}.
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T h e o r em 1.2. The metric space (∂T, ρ̄) is Q-regular if and only if there
are 0 < b0 < b1 so that

(1.4) b02
Qk ≤ �Sk(x) ≤ b12

Qk

holds for all x ∈ T .

P r o o f. Suppose (1.4) holds. By natural rescaling, it suffices to prove the
result for x = o, the root of the tree T . Let S ∈ Stop(o) be a stopping set,
let x ∈ S and consider SN−|x|(x) where N = max{|y| : y ∈ S}. is a positive
integer to be fixed later. Then,

2−QN �SN (o) =
∑

u∈SN (o)

2−Q|u| =
∑
x∈S

∑
u∈SN−|x|(x)

2−Q(|x|+N−|x|)

=
∑
x∈S

2−Q|x|�SN−|x|(x)2
−Q(N−|x|).

By (1.4) we have

b0 ≤ 2−QN �SN (o) ≤ b1
∑
x∈S

2−Q|x| ≤ b1
b0
2−QN �SN (o) ≤ b21

b0
,

and we can apply Lemma 1.1.
Conversely, assume that (∂T, ρ̄) is Q-regular. Then, since each Sk(x) ∈

Stop(x), Lemma 1.1 implies that

2−Q|x| ≈
∑

y∈Sk(x)

2−Q|y| = 2−Q(|x|+k)�Sk(x),

and the desired estimate for �Sk(x) follows. �

By Theorem 1.2 the boundaries of homogeneous trees are Ahlfors regu-
lar metric spaces. Namely, if T is a q-homogeneous tree, than (∂T, ρ̄) is
log2 q-regular.

Before proving our main theorem for a general tree, it is simple and useful
to see how it is proved in the model example of the binary tree. We exploit
Theorem 1.2 above.

Let T be the binary tree with root o so that (∂T, ρ̄) is 1-regular. Given
α ∈ (0, 1), we want to find a α-regular subspace of ∂T . We construct a subtree
U of T , where a subtree of T consists in a subset E(U) of the edges E(T ) of
T such that, together with their endpoints V (U), they form a tree. We will
construct U in such a way it has no finite end.
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For n ∈ N set En = [αn] be the integer part of αN , and set en = En−En−1 ∈
{0, 1} for n � 1. Given a vertex x of T , remove one of the edges below it if
e|x|+1 = 0 and keep both of them if e|x|+1 = 1. Let U be the tree obtained this
way.

Let n, p be in N. Then, En+p −Ep − nα = O(1) as n → ∞, uniformly in p:

(1.5) En+p − Ep − nα = [(n+ p)α]− (n+ p)α− ([pα]− pα) ∈ [−1, 1].

Now, if Sk(x) = {y � x : |y − x| = k},

log2(�Sk(x)/2
αk) = e|x|+1 + . . .+ e|x|+k − αk = E|x|+k − E|x| − αk,

hence, by (1.5),
1

4
≤ �Sk(x)

2α|x|
≤ 1

and the α-regularity of ∂U follows from Theorem 1.2.

The proof of Theorem 0.1 is similar, but it has to take the dishomogeneities
of the tree into account. We now prove Theorem 0.1 for a general tree. We
first need to homogenize the given tree T . Let k > 0 be a fixed integer, then
we construct a new tree U which is easier to work with. This step could be
avoided, but at the expenses of cleanness of exposition.

Consider the portion ∆o,k of the tree between x0 = o and Sk(x0) = {x1,j :
|xo − x1,j | = k} and replace it by geodesics of length k, each joining xo and
some x1,j , meeting at xo only. Repeat now the same construction at each of
the points x1,j , considering the portion of the tree between x1,j and Sk(x1,j)
instead and iterate the process. Let U be the tree constructed this way. Let
ST
Nk and SU

Nk be SNk(x0) for the tree T and U respectively. Then, we have

ST
Nk = SU

Nk

for all N � 1. In fact, we have more. Let {xN,jN }N ⊆ SNk be a sequence of
points and let T (xN,jN ) and U(xN,jN ) be the subtrees with root xN,jN of T and
U respectively. Then,

F :
⋂
N�1

T (xN,jN ) �→
⋂
N�1

U(xN,jN ), F : ∂T → ∂U,

is a bijection of ∂T onto ∂U . Moreover, it is a bi-Lipschitz map.

L emma 1.3. a) The map F is a homeomorphism.

b) Fix 0 < δ � 1. Then F is bi-Lipschitz w.r.t. the metrics ρ̄T on ∂T and ρ̄U

on ∂U , with constants depending on k ∈ Z.
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P r o o f. Assertion a) is implied by b). Let γ be a geodesic joining x, y ∈ ∂T .
Then, γ crosses a sequence of regions ∆T

xj ,k
, entering and leaving in two points

yj−1, yj ∈ {xj} ∪ ST
k (xj). The length of the geodesic connecting the same

vertices yj−1, yj in ∆U
xj ,k

is bounded above and below by positive multiplicative

constants (depending on k) times the corresponding quantity in ∆T
xj ,k

. Hence,

C−1
k ρ̄T (x, y) � ρ̄U (F (x), F (y)) � Ckρ̄

T (x, y)

as we wished to show. �

o
T

∂T x

2k

k

o
U

∂UF (x)

2k

k

Fig. 1. From the tree T to the tree U .

Since Ahlfors regularity is a metric property, preserved by bi-Lipschitz maps,
we might look for our Ahlfors regular subspace on ∂U rather than on ∂T .

We now prove the dyadic version of Theorem 0.1.

T h e o r em 1.4. Let (∂T, ρ̄) be a Ahlfors Q-regular metric space and let
0 < α < Q. Then, there exists Y ⊆ ∂T such that (Y, ρ̄) is α-regular.

P r o o f. Given the data 0 < α < Q, let ε > 0 such that α < Q−ε is rational

and let k > 0 integer such that (i) (Q − ε)k is integer, and (ii)
�ST

k (x)

2kQ
≥ 2−εk

(this requirement can be fulfilled if k is large enough, by Theorem 1.2).

For such a k, let U be the tree in Lemma 1.3, whose boundary is biLipschitz
equivalent to the boundary of T . Clearly, the metric space (∂U, ρ̄) is Ahlfors
Q-regular as well. We now construct a subtree of U as follows. Given the root
o ∈ U , we select exactly 2(Q−ε)k vertices in the set SU

k (o) = {y � x : |y−o| = k}.
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Let {x1,j}2
(q−ε)k

j=1 be these points. Then, we select 2(Q−ε)k vertices in the set

SU
k (x1,j) for any j = 1, . . . 2(Q−ε)k and we iterate the process. We denote by V

the subtree of U constructed in such a way. The tree V is very close to be a
homogeneous tree, it is a periodic tree. The level n of the tree V is the set of
points {x ∈ V : |x| = nk}

We now proceed to the construction of an α-regular subset ∂W of ∂V .
The desired α-regular subspace of ∂T will be F−1(∂W ) where F is the map of
Lemma 1.3.

o
U

o
V

o
W

4k

3k

2k

k
e1 = 0

e2 = 1

e3 = 0

e4 = 1

Fig. 2. The trees U , V and W .

Given 0 < α < Q, set λ = α
Q−ε ∈ (0, 1). Let EN = [λN ], and let {en =

En−En−1 : n � 1}, so that en ∈ {0, 1}. Construct a subtreeW of V accordingly
to the following procedure. For each vertex x at the nth level of V : if en = 1,
we keep all the edges leaving x in direction of the (n+ 1)th level; if en = 0 we
dismiss all the edges leaving x in direction of the (n + 1)th level but one. We
now prove that the tree W we constructed is α-regular exploiting Theorem 1.2.

Recall that En = e1+ . . .+ en, n ∈ N. Fix now x in W , (p−1)k < |x| ≤ pk,
and let l ≥ pk − |x|,

l = [pk − |x|] + nk +m, with 0 ≤ m < k.
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Then,

�(SW
l (x))

= �(SW
nk(x1)) where x1 is the point in W below x such that |x1| = pk

= 2(Q−ε)k(En+p−Ep) by construction of W

≈ 2(Q−ε)knλ by (1.5)

= 2αkn

≈ 2αl,

with constants which depend on k. For 0 < l < pk − |x|, �(SW
l (x)) = 1 ≈ 2αl,

hence the condition in Theorem 1.2 is satisfied, showing that ∂W is α-regular,
and F−1(∂W ) is the α-regular subspace of ∂T we were looking for. �

The constant C > 0 which satisfies

2α�/C ≤ �SW
� (x) ≤ C2α�

for all x ∈ W and � ∈ N depends on the integer k used to construct the tree U
in the proof of Theorem 1.4. It would be interesting to have better quantitative
information on the dependence of C on the data.

2 - From trees to metric spaces.

We now proceed to deduce Theorem 0.1 in the general context of Ahlfors
regular spaces, from the special tree case. A key role is played by M. Christ’s
dyadic decomposition of metric spaces, which we now recall.

Suppose the environment space (X, ρ) is an Ahlfors regular metric measure
space having dimension Q. It easily follows from Q-regularity that

(2.1) diam(B(x, r)) ≈ r.

Michael Christ gave, in the more general context of metric spaces of homoge-
neous type, a dyadic decomposition of X. We summarize here Christ’s result [2]
in the context of Ahlfors regular spaces.

L emma 2.1. Suppose (X, ρ) is Q-regular and that diam(X) = 1. There
exists a collection { oIka, a ∈ Ak, k ∈ Z} (Ak being a finite set of indices) of open
subsets of X and 0 < δ < 1 and c1, c2 > 0 such that:

(i) HQ
(
X \

⋃
a∈Ak

oIka

)
= 0 holds for all k ≥ 0;
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(ii) if l ≥ k and a ∈ Ak, then for all b ∈ Al either
oI lb ⊆ oIka or oIka∩ oI lb = ∅;

(iii) if l > k and b ∈ Al, then there exists a unique a ∈ Ak such that oI lb ⊆ oIka;

(iv) diam( oIka) ≤ c1δ
k for some constant c1 depending on the metric space;

(v) for all (k, a), there are zka ∈ oIka such that B(zka , c2δ
k) ⊆ oIka.

From inspection of the proof, it is clear that any choice of δ, c2 such that
δ + c2 ≤ 1

4 will work in general.

We can assume that �A0 = 1. From now on we set Ika = oIka and let
T = ∪k≥0

{
Ika : a ∈ Ak

}
. Sometimes we simply write Ika = I ∈ Ak. The set T

has a tree structure, where there is a undirected edge ((k, a), (k+1, b)) = (α, β)
if Ika ⊆ Ik+1

b .
Given δ ∈ (0, 1), we can introduce a distance ρδ on T by assigning the weight

δk to the edge ((k, a), (k + 1, b)), measuring lengths of paths according to the
weight, and defining the distance between two vertices to be the shortest length
of a path joining them, as we did in Section 1, where we had set δ = 1

2 . The
change of parameter has little consequences. The Cauchy sequences are the
same, and so are the completion X and the boundary ∂T . The only difference
is that (∂T, ρδ) and (∂T, ρ1/2) are “snowflake versions” of each other: there is
C > 0 such that, with ρ1/2 = ρ̄,

ρδ(x, y) = Cρ1/2(x, y)
log2(1/δ),

hence,

Bρδ(x, r) = Bρ1/2(x,Crlog2(1/δ)),

diamρδ(U) = diamρ1/2(U)log2(1/δ), and

dimρδ(∂T ) = log2(1/δ)dimρ1/2(∂T ),

statements which are easily verified using the ultrametric property of the dis-
tances ρδ.

We consider the map Λ : ∂T → X, associating to x = {(k, a)}k≥0 ∈ ∂T the
element Λ(x) = ∩k≥0I

k
a ∈ X. As proved in [1], the map Λ is a surjective map

with some nice properties. In particular,

L emma 2.2. (a) Λ : (∂T, ρδ) → (X, ρ) is Lipschitz.

(b) (∂T, ρδ) is Q-regular if (X, ρ) is Q-regular..

(c) For each k ≥ 0 there is a bijection Gk : Sk(o) → Ak so that, if a = Gk(x),
then Ika = Λ(∂T (x)). In this case, we write ∂T (x) = Ĩka .
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A key fact for us is that the map Λ is regular in the sense of G. David and
S. Semmes [3,4].

D e f i n i t i o n 2.3. Let (X, ρ) and (Y, ν) be two metric spaces. A mapping
f : X → Y is said to be regular if it is Lipschitz, and if there is a constant
C > 0 such that for every ball B in Y it is possible to cover f−1(B) by at most
C balls in X with radius equal to C · radius(B).

Once we prove that Λ is a regular map, the main theorem will follow from
the following lemma from [4, Lemma 3.10].

L emma 2.4. Let (X, ρ) and (Y, ν) be metric spaces, and let f : X → Y be
a regular map. If X is Ahlfors-regular of dimension Q, then f(X) is Ahlfors-
regular of dimension Q as well.

It suffices to prove the following.

P r o p o s i t i o n 2.5. (a) The map Λ : ∂T → X is regular.

(b) Let Y ⊂ ∂T a α-regular subspace of ∂T . Then, the map Λ : Y → Λ(Y ) is
regular.

P r o o f. (a) We first prove that there exists a constant c3 > 0 such that,
given any ball B := B(x, r) ⊆ X with δk+1 < r ≤ δk, B ⊆ ∪c3

j=1Ij , where the
Ij ’s are Christ’s cubes with labels in Ak. Consider the set I = {Ij : Ij ∩ B �=
∅, Ij ∈ Ak} and set N := �I. Then, there exist a constant c > 0 and a ball
B′ of radius cδk such that ∪Ij∈IIj ⊆ B′. Now, from Q-regularity and (v) in

Lemma 2.1, we get that for any Ij ∈ I, HQ(Ij) � δQk. Therefore, again by
Q-regularity,

NδQk �
∑
Ij∈I

HQ(Ij) � HQ(B′) � δQk.

Hence, there exists a constant c3 > 0 such that N < c3 < +∞.

For each dyadic cube I in X, denote by Ĩ ⊆ ∂T the corresponding dyadic
cube (and metric cl-open ball) in ∂T . Now we prove that given any dyadic cube
I ⊆ X with I ∈ Ak, the set Ĩ := {Ĩj ∈ Ak : Ĩj ⊆ ∂T such that Λ(Ĩj) ∩ I �= ∅}
has bounded cardinality. Set Ij := Λ(Ĩj) and consider ∪jIj . All the cubes
Ij intersect the given cube I ⊂ X and, reasoning as in the first part of the
prove, we obtain that the number of cubes Ij has to be bounded by an absolute

constant independent of the given cube I. Therefore, the number of cubes Ĩj
has to be bounded as well by an absolute constant, say c4 > 0. To recap, we
proved that any ball B ⊆ X can be covered by at most c3 dyadic cubes whose
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diameter is comparable to the radius of the ball B and to any dyadic cube in
X we associated, by means of Λ, at most c4 dyadic cubes in ∂T with the same
diameter. Recalling that dyadic cubes and balls coincides in ∂T , we conclude
that Λ−1(B) can be covered by at most c3c4 balls in ∂T with radius comparable
to the one of B. This concludes the proof.

(b) Let x ∈ Λ(Y ) and consider the ball B ⊆ Λ(Y ) given by B := B(x, r) ∩
Λ(Y ), where B(x, r) is a ball in X. Then, we want to cover Λ−1(B(x, r)∩Λ(Y ))
with a bounded number of balls in Y whose radius is comparable to the radius
of B. By (a), Λ−1(B(x, r)) can be covered by a finite number of balls Ĩj in ∂T ,
having radius comparable to r. Discard those which do not intersect Y and, for
each ∅ �= Ĩj∩Y � yj , we can take yj to be its center, by the ultrametric property.

Such sets Ĩj ∩ Y form a covering of Λ−1(B(x, r) ∩ Λ(Y )) by boundedly many
balls in Y , having radius comparable to r. and we conclude that Λ : Y → Λ(Y )
is a regular map as wished. �

To finish the proof, consider

0 < α < Q = dimρ(X) = dimρδ(∂T ) = log2(1/δ)dimρ1/2(∂T ).

By Theorem 1.2, there is an Ahlfors regular subspace Y of ∂T with

α

log2(1/δ)
= dimρ1/2(Y ) =

dimρδ(Y )

log2(1/δ)
.

By Proposition 2.5 (b), Λ(Y ) is an α-regular subspace of X, as stated in The-
orem 0.1.

Ac k n ow l e d gm e n t s. It is a pleasure to thank Yuval Peres for directing
us to the reference [7], and Pekka Koskela who made us aware of [8] which was
not cited in an earlier version of our paper.
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