Preparation and characterization of self-healing PVA-H₂SO₄ hydrogel for flexible energy storage

Giada D'Altri^a, Lamyea Yeasmin^{a,e}, Valentina Di Matteo^a, Stefano Scurti^a, Angelica Giovagnoli^a, Maria Francesca Di Filippo^d, Isacco Gualandi^{a,b}, Maria Cristina Cassani^{a,b}, Daniele Caretti^{a,b*}, Silvia Panzavolta^d, Erika Scavetta^a, Mariangela Rea^d, Barbara Ballarin^{a,b,c*}

^aDepartment of Industrial Chemistry "Toso Montanari", Bologna University, Via Risorgimento 4, I-40136, Bologna, Italy. *UdR INSTM of Bologna*

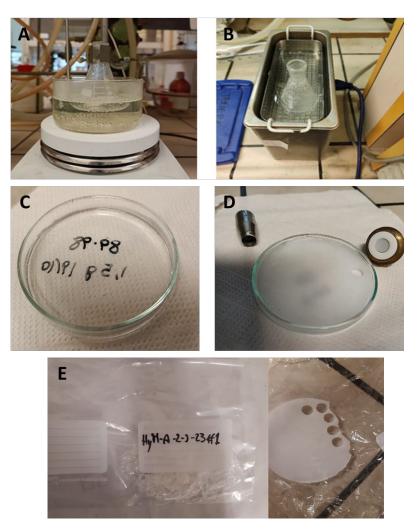
^bCenter for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy.

^cCenter for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy.

^dDepartment of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126, Bologna, Italy.

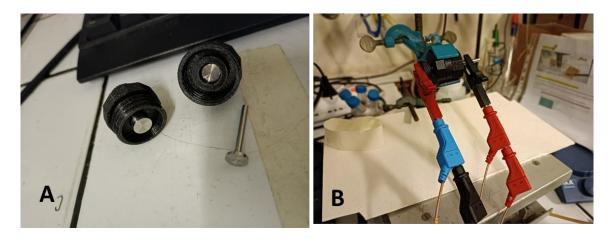
^ePolitecnico di Torino, Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy

*To whom correspondence should be addressed. E-mail: <u>barbara.ballarin@unibo.it</u> (B.B), tel: +39 051 2093704; <u>daniele.caretti@unibo.it</u> (D.C.), tel: +39 051 209xxxx.


Supporting Information

PANI-PAMPSA Preparation	2
PVA based Hydrogel preparation	3
Characterization	4

Preparation of PANI-PAMPSA


In a 1 L round bottom flask, 300 mL of demineralized water was added, then 2.54 mL of aniline and 58.0 g of PAMPSA were added and stirred for 1 h at room temperature. Successively, 5.8 g of ammonium persulfate (APS) was dissolved in in 25 mL of distilled water, with a fixed aniline to APS molar ratios of 1 and was slowly added dropwise to the stirred suspension. The flask was cooled to 0 °C in an ice bath for 6 h. After 24 h the polymeric suspension, containing the 3.5 % PANI_PAMPSA, was ready.

Preparation of Hydrogel membranes

Figure S1. PVA-H₂SO₄ hydrogel preparation: A) PVA powder dissolution in 1.0 M H₂SO₄ at 70°C under vigorous stirring; B) ultrasound treatment to eliminate bubbles; C) hydrogel solution before and D) after 3 freeze-thaw cycles; E) hydrogel membrane storage.

Characterization

Figure S2. A) Swagelok type cell with a 316 stainless steel caps of 1.0 cm diameter; B) configuration for electrochemical measurements.

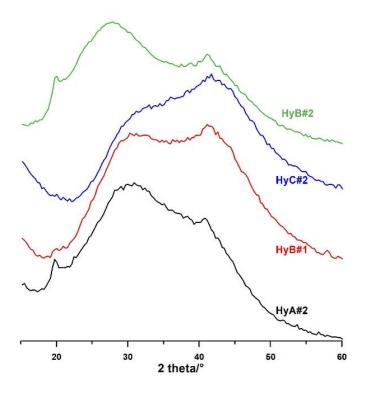
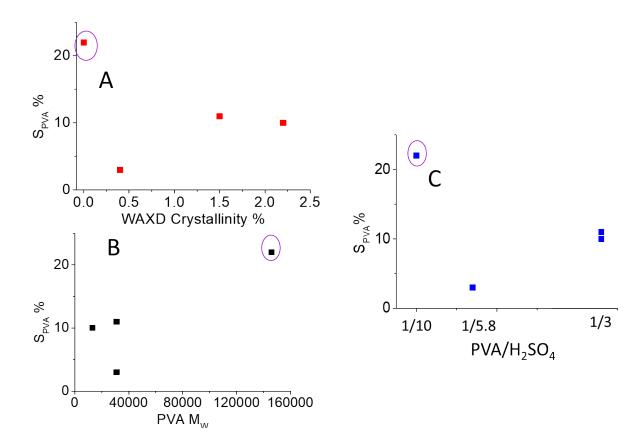



Figure S3. X-Rays diffraction patterns of the investigated samples.

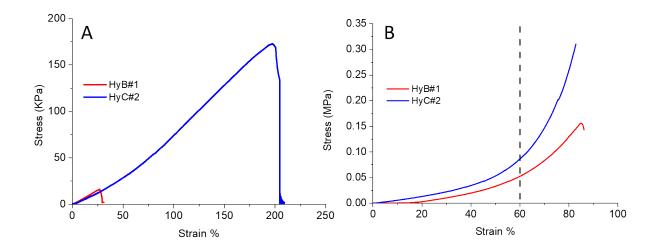
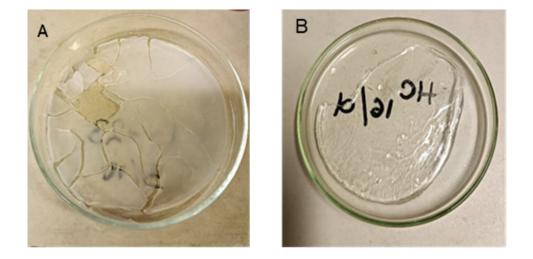


Figure S4. SPVA as a function of: A) WAXD Crystallinity %; B) PVA Mw and C) PVA/H₂SO₄ w/w ratio


Table S1. T _a values of	PVA hydrogels for each	freeze-thaw cycle.

Sample	Cycle- Tg (°C) *	
	II-24	
HyA#2	III-26	
	IV-29	
	I-38	
HyB#1	II-42	
	III-42	
	I-37	
HyB#2	II-41	
	III-43	
HyC#2	I-42	
	II-42	
	III-42	

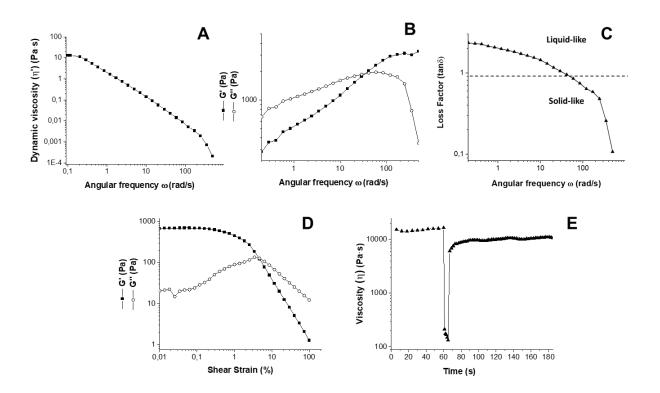

*Evaluated using the midpoint of the step-change

Figure S5. A) Tensile stress/strain curves and B) compression stress/strain curves for HyB#1 and HyC#2.

Figure S6. Pictures of the hydrogels after 3 months of storage in cling film for food at room temperature: A) HyA#2 and B) HyC#2.

Figure S7. A) Dynamic viscosity (□') versus angular frequency curve; B) Frequency sweep of PVAbased hydrogel; C) Tanδ versus angular frequency curve; D) Amplitude sweep curves of PVA-based hydrogels; E) 3ITT test.

Sample	Specific Capacitance	Current density	Ref
	(mF cm ⁻²)	(mA cm ⁻²)	
PPH ₀₀₃	602	1.0	1
PH-A	237	0.5	2
PANI-PVA	260.1	0.5	3

Table S2. Specific capacitance and Current density for PANI-PVA based supercapacitors.

* PPH_{003} = PVA/PANI hydrogel with the molar ratio of Maba to aniline equal to 0.03; PH-A = PANI-PVA hydrogel.

References

- Zou, Y.; Chen, C.; Sun, Y.; Gan, S.; Dong, L.; Zhao, J.; Rong, J. Flexible, All-Hydrogel Supercapacitor with Self-Healing Ability. *Chem. Eng. J.* 2021, *418*, 128616. https://doi.org/10.1016/j.cej.2021.128616.
- (2) Zhao, J.; Cao, L.; Lai, F.; Wang, X.; Huang, S.; Du, X.; Li, W.; Lin, Z.; Zhang, P. Double-Cross-Linked Polyaniline Hydrogel and Its Application in Supercapacitors. *Ionics* 2022, *28*, 423–432. https://doi.org/10.1007/s11581-021-04251-2.
- Lai, F.; Fang, Z.; Cao, L.; Li, W.; Lin, Z.; Zhang, P. Self-Healing Flexible and Strong Hydrogel Nanocomposites Based on Polyaniline for Supercapacitors. *Ionics* 2020, *26*, 3015– 3025. https://doi.org/10.1007/s11581-020-03438-3.