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A B S T R A C T   

A novel algebraic procedure for the non-parametric identification of the material model by means of dynamical 
test measurements is proposed. An extended Standard Linear Solid (SLS) material model is taken into account to 
model the material linear visco-elastic behavior. It consists of the series arrangement of fractional Kelvin model 
elements adopting real parameters and integer and non-integer order time differential operators, and of hys-
teretic Kelvin model elements adopting complex parameters and integer order time differential operators. 
Hysteretic Kelvin model elements are introduced to take account of the material hysteretic behavior. The ma-
terial E(j⋅ω) complex modulus, is analytically modeled as the ratio of pseudo polynomials (non-integer power 
terms) in the j⋅ω Fourier variable. A multi-step, iterative, material model identification technique is here pro-
posed to identify the unknown polynomial coefficients and the non-integer exponent values starting from E(j⋅ω)

material discrete estimates from input-output dynamical measurements made on a beam specimen at different ω 
frequency values. Computational, nonphysical SLS elements resulting from the application of the identification 
procedure can be found and eliminated, so that a low order optimal model result. Some results obtained by 
applying the proposed identification technique with real experimental measurements are shown and discussed.   

1. Introduction 

The material uniaxial σ stress v/s ε strain unknown frequency 
function, σ̂/ε̂ = E(j⋅ω), where (̂) refers to the Fourier transform oper-
ator, j =

̅̅̅̅̅̅̅
− 1

√
, and ω is the circular frequency, can be experimentally 

estimated by means of input-output measurements made on a beam 
specimen in stationary forced vibration conditions and in low strain 
response conditions. Dynamic Mechanical Analysis (DMA) test systems 
are generally used for this task [1], and homogeneous, uniform beam 
specimens made with the material under study, excited in a flexural, 
tension or compression experimental set-up under known boundary 
conditions (BC) at the beam ends, are generally taken into account. The 
beam is harmonically excited at a fixed ω frequency value by means of a 
f force in correspondence of a fixed axial position. Both the |f | amplitude, 
the |u| displacement amplitude in correspondence of the same or a 
different axial position, and the displacement Δφ/ω time delay with 
respect to the excitation are measured, so that the complex 
û/f̂ = (|û|/|f̂ |)⋅exp( − j⋅Δφ) frequency response (FRF) ratio can be esti-
mated from measurements made at different ω values. From the 

standard beam linear theory of elasticity û/ f̂ = û/f̂ (E(j⋅ω), ω, geometry,
density, BC ) [2], so that the E(j⋅ω) = E(û/f̂ (ω)) can be estimated from 
û/f̂ (jω) measured values. The contribution of the beam inertial forces 
and of the test instrument elasto-inertial response can also be taken into 
account, in order to increase the accuracy of the E(j⋅ω) estimate, and 
some techniques are known [3,4]. The resulting material E(j⋅ω) estimate 
obtained from a specific DMA test specimen is expected to be consistent 
and can be used to simulate the response of any structure under linearity 
assumptions. Under multiaxial stress-strain conditions, e.g., when solid 
or thin-walled shell structures are taken into account, other material 
parameters should be experimentally estimated, such as the G(j⋅ω) share 
complex modulus from within dynamical measurements in uniaxial 
shear conditions. Nevertheless, in some conditions, i.e., when isotropic 
materials associated to a stationary Poisson coefficient with respect to 
frequency are considered, the material E(j⋅ω) complex modulus only, 
fully describes the material multiaxial σ = D⋅ε stress v/s strain rela-
tionship [5,6]. 

While E(j⋅ωk), ωk ∈ Ω = [ω1,…,ωNx ] estimated discrete values can 
be used as the effective material model in the frequency domain for 
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some engineering tasks, a continuous E(j⋅ω) model is generally needed in 
most engineering applications, e.g. when the relaxation material 
response has to be obtained from E(j⋅ω) or when such discrete material 
model needs to be interpolated or extrapolated outside the Ω frequency 
measurement range. Many different E(j⋅ω) continuous models can be 
found in the scientific literature. A classical approach yields the SLS 
model [7,8] consisting in N (N referring to the SLS model order) linear 
viscoelastic Kelvin elements arranged in series [5,9–11]. Since most 
basic low order models, consisting of N ≤ 2 elements, such as the 
Maxwell, Kelvin, Zener SLS models, show limitations in describing the 
material dynamical behavior when a wide frequency range is taken into 
account, such basic models are generally not consistent when used to 
model both the stress-strain relaxation and the high frequency vibra-
tional behavior of a structure made with the material under study. The 
basic SLS material model parameters that result in an optimal fit for a 
mid to high frequency vibrational process, result in a poor fit for a 
quasi-static dynamical process, e.g., when stress or strain relaxation 
responses are considered [1,3]. The behavior associated with slow and 
fast dynamic response cannot generally be modeled by means of SLS low 
order models. More detailed examples of such limitation are presented 
in Section 2. It also appears that SLS low order models cannot accurately 
model some composite or functionally graded materials (FGM) even in a 
restricted frequency range. High order SLS models consisting of N > 2 
real Kelvin elements [1,5,7] can be used to deal with the previously 
outlined limitations. It appears that, by increasing N, the dynamic 
behavior of some structures made of composite or functionally graded 
materials can be effectively modeled [4,5,7,11–14]. 

It can be found that the E− 1(j⋅ω) strain to stress ratio model derived 
from assuming real Kelvin elements (real, positive elastic and viscous 
parameters) can be expressed as the ratio of two rational polynomial 
functions with real coefficients in the complex j⋅ω variable [3,4,15]. It 
can also be found [3] that, in partial fraction form, real negative poles 
and real positive residues result. 

Nevertheless, it was found by the authors of this paper [3] that 
continuous E− 1(j⋅ω) resulting from an extended low order SLS model 
associated to complex poles and residues may better fit E− 1(j⋅ωk)

experimentally estimated values from testing of non-conventional ma-
terials such as composite and FGM materials. SLS models associated to 
complex poles and residues include hysteretic Kelvin elements, a hys-
teretic Kelvin element being a generalization of the standard Kelvin 
element where both the elastic and the viscous parameters are associ-
ated with complex values. The authors of this paper used this approach 
in some previous works [16] to model the internal shear friction in 
multi-layer composite beam specimens. It must be taken into account 
that a hysteretic model is not physical since it is not causal (non-null 
strain response to a Dirac stress impulse at t < 0 typically results), the 
imaginary part of the time response to a step input and of the free 
vibrational response are not null since E(j⋅ω) ∕= (E(− j⋅ω))*, where ()* is 
the complex conjugate operator. It results that the hysteretic model 
cannot be used to simulate a quasi-stationary behavior (j⋅ω→0), nor the 
free vibrational response of a structure but can be effectively used to 
model the dynamical response of the same structure under a forced 
vibrational excitation as it occurs in most engineering applications 
[17–23]. 

Material models employing fractional derivatives were investigated 
in many works [6,24–30]. It was found that the relaxation behavior of 
some materials, such as most polymers [31], can be optimally modelled 
by means of a low order generalized SLS model employing fractional 
derivative operators. As a result, a reduced number of elements is 
generally needed to accurately fit experimental measurements in both 
quasi-static (relaxation) and high frequency vibrational behavior with 
respect to the SLS approach. In Section 2 the critical comparison be-
tween the expected behavior of a slender beam made of a material 
following a fractional SLS material model and of a SLS material model is 
shown. 

Numerical parametric identification of the parameters of a SLS 
model is a non-trivial task and some techniques were proposed in the 
past [32–36]. It should be outlined that the model identification task 
associated to N > 2 may be difficult from the experimental and 
computational standpoint, since the resulting high number of unknown 
parameters to be identified may require many test measurements in an 
extended Ω range and an ill conditioned system of nonlinear equations 
may result in the identification problem. 

A non-parametric approach, based on the application of the Levy’s 
technique [37], was recently proposed by these authors [4], making it 
possible to identify the optimal N order and the physical parameters 
associated to each SLS element, starting from E(j⋅ωk),ωk ∈ [ω1,…,ωNX ]

experimentally estimated values. Nevertheless, such technique cannot 
be applied to identify an extended SLS model including fractional and 
hysteretic elements. The identification of the parameters of an extended 
SLS model was mainly dealt with nonlinear optimization techniques in 
the past [38–45]. Nevertheless, since the accuracy of the result strongly 
depends on the choice of the starting set of the unknown model 
parameter values needed by the optimization algorithm, the effective-
ness of this approach is low and its application is practically limited to 
the identification of N ≤ 2 low order models [43,44,46]. 

The E− 1(j⋅ω) strain to stress ratio model associated to a fractional SLS 
model can be expressed as the ratio of pseudo polynomials (non-integer 
power terms) in the j⋅ω Fourier variable or the ratio of two polynomials 
in the (j⋅ω)1/D, D ∈ ℕ [47], where the denominator polynomial order is 
greater or at least equal to the numerator polynomial order. The para-
metric identification of the coefficients of E− 1(j⋅ω) polynomials was 
proposed in the past by some researchers. A technique based on the 
Levy’s approach was proposed by Kapp [47], but D and the order of the 
two polynomials is required to be known in advance. The optimal so-
lution is obtained by least squares minimization of the error associated 
with a system of linear equations but the optimal model size does not 
result from the application of this approach, so this technique cannot be 
applied as-is to identify an extended SLS model. 

A material iterative model identification procedure is here proposed. 
The number of both the fractional and hysteretic Kelvin elements, and 
the derivative non-integer order associated to any fractional element 
constituting the extended SLS model to be identified is not a priori 
assumed, meaning that a non-parametric identification procedure re-
sults. The parameters of the fractional and hysteretic Kelvin elements 
can be identified as well. The procedure makes it possible to eliminate 
computational, non-physical results, mainly due to the experimental 
noise in input data and to the signal processing numerical noise, so that a 
minimal model order is generally expected to result. 

Some application test cases are discussed in detail to show the 
effectiveness of the proposed technique. 

2. Dynamical behavior of structures made of materials following 
SLS and fractional SLS models 

A Kelvin model, corresponding to a N = 1 SLS model, is first taken 
into account, its constitutive equation being: 

σ(t) = E0⋅
(

ε(t)+ β
E0

⋅ε̇(t)
)

, (1)  

where ()
•

is the time derivative operator, material σ and ε refer to stress 
and strain in uni-axial conditions, E0, β refer to the elastic and viscous 
Kelvin model parameters. By assuming σ(t ≥ 0) = σ0, σ(t < 0) =

ε(t < 0) = 0, the creep relaxation response ε(t) exponentially converges 
to ε(t = ∞) = σ0/E0, with time constant β/E0[5]. By assuming that the 
τc creep relaxation time satisfies the following condition: 

ε(t = τc) =
σ0

E0
⋅
(

1 − exp
(

− τc⋅
E0

β

))

= 95%⋅ε(t = ∞) = 0.95⋅
σ0

E0
, (2) 
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it follows that β viscous parameter satisfies Eq. (3): 

β =
τc⋅E0

ln(20)
≃

τc⋅E0

3
. (3) 

It can be shown [3,5] that the free response of a uniform homoge-
neous beam structure, whose material model follows Eq. (1), is the sum 
of exponentially decaying harmonic functions with associated natural 
frequency fni and of overdamped exponentially decaying functions. It 
can be found that ηi modal damping ratios linearly vary with respect to 
ωni = 2⋅π⋅fni modal natural frequencies [2]: 

ηi = min
(

ωni ⋅β
2⋅E0

, 1
)

, (4)  

so that the viscous β coefficient should also satisfy Eq. (4): 

β =
2⋅E0⋅ηi

ωni

. (5) 

Combining Eqs. (3,4): 

ηi = min(1.5⋅τc⋅ωni , 1). (6) 

This result is typically not consistent with respect to the behavior of 
structures made of most known viscoelastic materials. As a matter of 
example, if High Density Polyethylene (HDPE) is considered, E0 = 1.08⋅ 
109 Pa and τc ≈ 100 s result, and from Eq. (6), overdamped free vibra-
tions (ηi = 1) analytically result if fni > (3⋅π⋅τc)

− 1
≃ 0.001 Hz holds. In 

our laboratory facility experimental forced vibration input-output 

measurements were made on a uniform HDPE homogeneous beam, 
clamped-free boundary conditions, whose related data are reported in 
Table 1. Test FRF data were locally fitted by means of the circle fitting 
technique [20], and ηi ∈ [0.01,0.04] modal damping ratio values were 
identified as being almost constant in the fni ∈ [0,7k] Hz wide frequency 
range, such result being not consistent with the values deriving from the 
creep time relaxation experimental estimate (Eq. (6)). 

By modeling the HDPE material by means of a fractional Kelvin 
model: 

σ(t) = E0⋅
(

ε(t)+ β
E0

⋅
∂α

∂tα ε(t)
)

; 0 < α < 1, (7)  

the creep relaxation ε(t) response does not coincide with an exponential 
function anymore (Appendix A, Eq. A.1) and also the free response of a 
uniform, homogenous beam specimen is not the sum of underdamped 
and overdamped exponentially decaying harmonic functions anymore. 
The ηi modal damping ratios and ωni circular frequencies of a uniform, 
homogenous beam specimen whose material follows Eq. (7) are not 
defined anymore when fractional derivative operators are adopted, but 
equivalent parameters may be defined as well by means of the procedure 
shown in Appendix A. Such procedure makes it possible to evaluate the 
equivalent damping ratio with respect to a given material model but an 
arbitrary beam structure, so η = η(ω) can be numerically estimated with 
respect to any ω value. 

The equivalent damping ratio estimates η(ω), numerically obtained 
by means of the procedures described in Appendix A, by taking into 
account the different material models reported in Table 2 and the beam 
data in Table 1, are reported and compared with the experimental re-
sults in Figs. 1–2. In all of the example cases reported in Table 2 the 
material model data are consistent with the same HDPE material 
assumption: E0 ≃ 1.08⋅109 Pa and τc ≃ 100 s. 

Fig. 1 shows ηi = ηi(fni = ωni/2π) experimental and numerical results 
found with respect to (A-C) cases. The equivalent damping value esti-
mates significantly increase with respect to frequency in the (A), (B) 
example cases (red and blue curves) related to a SLS model, and mostly 
overdamped free vibrations (ηi = 100%) result. It appears that these 
numerical results are not consistent with respect to the experimental 
evidence (black curve). Even in the (C) example case (SLS model, N = 2, 
green curve), the consistency with the experimental results is only ob-
tained in a limited frequency range (Fig. 1b). Fig. 2 shows ηi = ηi(fni )

experimental and numerical results found with respect to (D-H) cases. 
In (D-G) cases, ηi monotonically increase with respect to ωni , and the 

higher the fractional derivative order the higher the ηi. value results. H 
case appears to better fit experimental data results (Fig. 2b), since 
ηi = ηi(ωni ) is not strictly increasing with ωni circular frequency. It was 
found that structures made of a material following the SLS model, any N 
order, always exhibit high damping or overdamped behavior in the low 
and high frequency range, while a low N order, fractional SLS model can 
effectively be used to fit experimental measurements in a wide frequency 

Table 1 
HDPE beam specimen data.  

Density (kg/m3) Length (m) Width (m) Thickness (m) E0 (Pa) 

945  1.65  0.04  0.011  1.08•109  

Table 2 
Reference SLS model example cases.  

Case Model parameters 

SLS N αi Ei [Pa] βi [Pa•sα] 
(A) 1 1 1.08•109 3.60•108 

(B) 2 
1 
1 

5.40•109 

2.80•1010 
1.95•1011 

8.35•1010 

(C) 2 
1 
1 

1.02•109 

1.05•1010 
3.97•1010 

1.38•105 

Fractional SLS N αi Ei [Pa] βi [Pa•sα] 
(D) 1 0.9 1.08•109 1.70•1010 

(E) 1 0.5 1.08•109 9.75•108 

(F) 1 0.2 1.08•109 1.85•108 

(G) 1 0.1 1.08•109 1.45•108 

(H) 2 
0.1 
0.2 

2.16•109 

2.16•109 
1.10•108 

6.20•108  

Fig. 1. (a) Damping ratio versus natural frequency: HDPE experimental results (black), (A) (red), (B) (blue) and (C) (green) example cases; (b) detail of (a).  
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range. 

3. Extended SLS material model identification from dynamical 
test measurements 

The extended SLS material model taken into account in in this work 
results from a series arrangement of NF fractional Kelvin and NH hys-
teretic Kelvin elements (Fig. 3), so that Eq. (8) holds: 

ε̂ =
∑NF

i=1
ε̂i +

∑NH

s=1
ε̂s ; ε̂i =

σ̂
Ei +(j⋅ω)αi ⋅βi

, ε̂s =
σ̂

Es + j⋅ω⋅βs

ε̂
σ̂ =

1
E(j⋅ω)

=Θ(j⋅ω)=
∑NF

i=1

1
Ei +(j⋅ω)αi ⋅βi

+
∑NH

s=1

1
Es + j⋅ω⋅βs

=
( ε̂

σ̂

)

F
+
( ε̂

σ̂

)

H

,

(8)  

where N = NF +NH is the extended SLS model order. Real valued posi-
tive elastic and dissipative parameters (Ei, βi, i = 1…NF) and non-integer 
differential operators (0 < αi ≤ 1) are assumed in the fractional Kelvin 
elements, and complex valued elastic and dissipative parameters (Es, βs, 
s = 1…NH) are assumed in the hysteretic Kelvin elements. Standard 
Kelvin elements can be modeled with fractional, αi = 1, Kelvin ele-
ments. 

The fractional and hysteretic contributions can be referred to as 

Θ(j⋅ω) = (E(j⋅ω))− 1
=
( ε̂

σ̂

)

F
+
( ε̂

σ̂

)

H
= ΘF(j⋅ω) + ΘH(j⋅ω), (9)  

where Θ(j⋅ωk),ωk ∈ [ω1…ωNx ] NX complex data can be estimated from 
ε̂/σ̂ DMA test measurements, as it was previously outlined in the 
introduction. 

The hysteretic ΘH contribution is non-physical as it was previously 
indicated in the introduction. 

The model identification problem can be stated as follows: find 
model parameters Ei, βi,αi, i = 1…NF, Es, βs, s = 1…NH best fitting the 
following NX nonlinear equations in the unknown model parameters: 

Θk = Θ(j⋅ωk) = ΘF(j⋅ωk) + ΘH(j⋅ωk)

=
∑NF

i=1

1
Ei + (j⋅ωk)

αi ⋅βi
+
∑NH

s=1

1
Es + j⋅ωk⋅βs

, k = 1…NX . (10) 

The ΘF contribution can be expressed as the ratio of two polynomial 
functions of the j⋅ω complex variable, if standard Kelvin elements are 
considered (αi = 1, ∀i), and same result applies with respect to the ΘH 

contribution. Some algebraic techniques, based on the Levy’s approach, 
are known from literature for the identification of the unknown pa-
rameters of the ΘF(j⋅ω) in partial fraction form from experimental 
Θ(j⋅ωk) test measurements [20], and this approach was applied in the 
past by these authors for the identification of the parameters of a SLS 
model [4]. The difference between measured and model estimated 
ΘF(j⋅ωk) values at any measured circular frequency ωk value can be 
modelled by means of a residual polynomial in the j⋅ω complex variable, 
whose optimal order can result from a least square best fit approach. It 
should be outlined that this approach, while meaningful from a math-
ematical fit standpoint is not coherent with respect to the extended SLS 
material model considered in this work. 

A technique able to identify the optimal ΘF(j⋅ω) model fitting 
Θ(j⋅ωk),∀k experimental data is shown. The model error vector ΔΘ 
obtained as the difference between experimental Θ(j⋅ωk) data and 
ΘF(j⋅ωk) data values estimated from the identified model, ∀k, is then 
used to identify the ΘH(j⋅ω) hysteretic model proposed. Two different 
identification techniques are thus proposed in the following sections to 
separately identify the ΘF(j⋅ω) and ΘH(j⋅ω) contributions. 

3.1. ΘF identification 

3.1.1. ΘF model equivalent formulation 
The ΘF model defined in Eq.8 leads to a highly nonlinear equation of 

the αi, Ei, βi model unknown parameters. An equivalent ΘF formulation 
is obtained and proposed here in order to be compatible with the linear 
identification approach that will be described in Section 3.1.2. 

Fractional derivative order is assumed for any ΘF element: 

αi =
ni

D
, i = 1,…,NF, 1 ≤ ni ≤ D (11)  

where ni,D ∈ ℕ, and D value is assumed to be high enough to approxi-

Fig. 2. (a) Damping ratio versus natural frequency: HDPE experimental results (black), (D) (purple), (E) (blue), (F) (green), (G) (red) and (H) (cyan) example cases; 
(b) detail of (a). 

Fig. 3. Extended SLS model.  
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mate αi unknown value, ∀i. From Eqs. (8,11): 

ΘF(j⋅ω) =
∑NF

i=1

1
Ei + (j⋅ω)

αi ⋅βi
=
∑NF

i=1

1/βi

(j⋅ω)
ni
D +

Ei

βi

=
∑NF

i=1

Ri

qni + γi
,

q = (j⋅ω)
1
D, γi =

Ei

βi
, Ri = 1

/
βi,

(12)  

where Ri, γi ∈ ℜ+. Since: 

qni + γi =
∏ni

s=1

(
q − zi,s

)
,

zi,s = (γi)
1
ni ⋅ej⋅π⋅(1+2⋅(s− 1) )

ni , s = 1, ., ni, i = 1, .,NF ;

⃒
⃒zi,s
⃒
⃒ = (γi)

1
ni =

(
Ei

βi

) 1
ni

,

Δarg(zi) = arg
(
zi,s+1

)
− arg

(
zi,s
)
=

2⋅π
ni

, ∀s < ni, i = 1, .,NF ,

(13)  

and: 

Ri

qni + γi
=
∑ni

s=1

ri,s

q − zi,s
,

ri,s = lim
q→zi,s

[
Ri

qni + γi
⋅
(
q − zi,s

)
]

=
Ri

∏ni

ℓ=1
ℓ∕=s

(
zi,s − zi,ℓ

)
. (14) 

From Eq. (12): 

qni + γi

q − zi,s
=
∏ni

ℓ=1
ℓ∕=s

(
q − zi,ℓ

)
, q ∕= zi,s, (15)  

and from Eqs.14–15: 

lim
q→zi,s

(
qni + γi

q − zi,s

)

=
∏ni

ℓ=1
ℓ∕=s

(
zi,s − zi,ℓ

)
=

Ri

ri,s
. (16) 

Function g(q) = qn is defined, so that from Eqs. (12–16) the following 
results can be obtained, ∀i, s: 

g
(
q = zi,s

)
=
(
zi,s
)ni

= − γi; (17)  

dg
dq
(
q = zi,s

)
= ni⋅

(
zi,s
)ni − 1

= ni⋅
(
zi,s
)ni

zi,s
= −

ni⋅γi

zi,s
; (18a)  

dg
dq
(
q = zi,s

)
= lim

q→zi,s

g(q) − g
(
zi,s
)

q − zi,s
= lim

q→zi
s

(
qni + γi

q − zi,s

)

=
Ri

ri,s
. (18b) 

From Eq. (18a-b): 

ri,s = −
Ri⋅zi,s

ni⋅γi
= −

zi,s

ni⋅Ei
,

⃒
⃒ri,s
⃒
⃒ =

1
ni⋅Ei

⋅
(

Ei

βi

) 1
ni
=

1

ni⋅
(
Eni − 1

i ⋅βi
) 1

ni

,

arg
(
ri,s
)
= arg

(
zi,s
)
+ π, ∀s < ni,

Δarg(ri) = arg
(
ri,s+1

)
− arg

(
ri,s
)
=

2⋅π
ni

, ∀s < ni.

(19) 

From Eqs. (12,13) ΘF can be expressed in partial fraction form: 

ΘF =
∑NF

i=1

(
∑ni

s=1

ri,s

q − zi,s

)

=

∑m− 1

ℓ=0
qℓ⋅aℓ

qm+
∑m− 1

ℓ=0

qℓ⋅bℓ⋅
=

qm− 1⋅am− 1+…+a0

qm+qm− 1⋅bm− 1+…+b0
=
∑m

ℓ=1

ri

q − zi
,

m=
∑NF

i=1
ni; r=[r1,…,rm]=

[
r1,1,…,r1,n1 ,…,rNF ,nNF

]
,

z=[z1,…,zm]=
[
z1,1,…,z1,n1 ,…,zNF ,nNF

]
.

.

(20) 

Since ni∈ℕ and Ri, γi ∈ℜ+, it follows that aℓ, bℓ ∈ℜ+, ∀ℓ. 

3.1.2. ΘF non-parametric model identification technique 
It is assumed that Θk measurement test estimates at circular fre-

quency ωk, k = 1,…,NX , are available, and: 

qk = (j⋅ωk)
1/D

. (21) 

The optimal ΘF fractional SLS material model (Eq. (20)) fitting 
measured values can be found by arbitrarily choosing m and by identi-
fying the aℓ and bℓ real unknowns (ℓ = 0…m − 1), best fitting the 
experimentally estimated values: 

Θk =

∑m− 1

ℓ=0
(qk)

ℓ⋅aℓ

(qk)
m
+
∑m− 1

ℓ=0
(qk)

ℓ⋅bℓ

, k = 1…NX . (22) 

A system of NX linear equations in (aℓ, bℓ), 2⋅m unknowns, results: 

∑m− 1

ℓ=0

(qk)
ℓ⋅aℓ −

∑m− 1

ℓ=0

Θk⋅(qk)
ℓ⋅bℓ = Θk⋅(qk)

m
. (23) 

If a large set of test measurements, e.g., NX≫ 2⋅m, and high m value 
is taken into account, the numerical solution of Eq. (23) is expected to be 
ill-conditioned, requiring the pseudo inversion of a high order 
Vandermonde-like coefficient matrix. To increase the system matrix 
condition and improve the computational accuracy of the solution, a 
normalized variable u = (ω/ωNX )

1/D
∈ [0, 1] is introduced: 

uk =
|qk|⃒
⃒qNX

⃒
⃒
, uk ∈ [0, 1],

qk = (j⋅ωk)
1
D = |qk|⋅ej⋅ϕ = uk⋅

⃒
⃒qNX

⃒
⃒⋅ej⋅ϕ

(qk)
ℓ
= (uk)

ℓ⋅
⃒
⃒qNX

⃒
⃒ℓ⋅ej⋅ϕ⋅ℓ; ϕ =

π
2⋅D

. (24) 

From Eq. (23,24): 

∑m− 1

ℓ=0

(uk)
ℓ⋅
⃒
⃒qNX

⃒
⃒ℓ⋅ej⋅ϕ⋅ℓaℓ −

∑m− 1

ℓ=0

Θk⋅(uk)
ℓ⋅
⃒
⃒qNX

⃒
⃒ℓ⋅ej⋅ϕ⋅ℓ⋅bℓ = Θk⋅(uk)

m⋅
⃒
⃒qNX

⃒
⃒m⋅ej⋅ϕ⋅m

∑m− 1

ℓ=0

(uk)
ℓ⋅ej⋅ϕ⋅(ℓ− m)⋅a∼ℓ −

∑m− 1

ℓ=0

Θk⋅(uk)
ℓ⋅ej⋅ϕ⋅(ℓ− m)⋅b

∼

ℓ = Θk⋅(uk)
m
, k = 1…NX ,

a∼ℓ =
⃒
⃒qNX

⃒
⃒ℓ− m⋅aℓ, b

∼

ℓ =
⃒
⃒qNX

⃒
⃒ℓ− m⋅bℓ .

(25)  

where the following linear transformation was used in Eq. (25) for 
computational purposes: 

a = [ a0 … aℓ … am− 1 ]
T
,b = [ b0 … bℓ … bm− 1 ]

T
;

q =
[
(ωNX )

− m/D … (ωNX )
(ℓ− m)/D … (ωNX )

− 1/D
]T

∈ ℜm;

a∼ = diag(q)⋅a, b
∼

= diag(q)⋅b .

(26) 

A linear system of 2⋅NX real equations in the ã, b̃ real unknowns 
results: 
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[
Re(A) − Re(B)

Im(A) − Im(B)

]

⋅

[
a∼

b
∼

]

=

[
Re(O)

Im(O)

]

;

A =

⎡

⎢
⎢
⎣

e− j⋅ϕ⋅m u1⋅ej⋅ϕ⋅(1− m) … (u1)
m− 1⋅e− j⋅ϕ

… … … …

e− j⋅ϕ⋅m uNX ⋅ej⋅ϕ⋅(1− m) … (uNX )
m− 1⋅e− j⋅ϕ

⎤

⎥
⎥
⎦,

B =

⎡

⎢
⎢
⎣

Θ1⋅e− j⋅ϕ⋅m Θ1⋅u1⋅ej⋅ϕ⋅(1− m) … Θ1⋅(u1)
m− 1⋅e− j⋅ϕ

… … … …

ΘNX ⋅e− j⋅ϕ⋅m ΘNX ⋅uNX ⋅ej⋅ϕ⋅(1− m) … ΘNX ⋅(uNX )
m− 1⋅e− j⋅ϕ

⎤

⎥
⎥
⎦,

O = [Θ1⋅(u1)
m … ΘNX ⋅(uNX )

m
]
T
.

(27) 

The ã, b̃ unknown real coefficients can be obtained by least squares 
solving Eq. (27) by means of a Singular Value Decomposition (SVD) based 
technique, so that from Eq. (26) a = (diag(q))− 1⋅ã, b = (diag(q))− 1⋅b̃ 
results as well. 

It should be outlined that since the solution can be found with respect 
to any m assumed value, a = (a)m, b = (b)m . An iterative approach, 
based on the evaluation of the stability of (a)m, (b)m solution is pro-
posed herein [15]. For any m = 1,2,3,…,mmax, the system (z)m poles can 
also be evaluated from (b)m as the m zeros of the following polynomial 
function: 

zm + zm− 1⋅bm− 1 +…+ b0 = 0. (28) 

System (r)m residues can be evaluated from (z)m, (a)m as follows: 

rℓ = lim
q→zℓ

[
∑m

i=1

ri

q − zi
⋅(q − zℓ)

]

=

∑m− 1

i=0
ai⋅(zℓ)

i

∏m

i=1
i∕=ℓ

(zℓ − zi)

. (29) 

The z̃i = [̃zi,1,…, z̃i,ni ]
T
∈ (z)m, r̃i = [̃ri,1,…, r̃i,ni ]

T
∈ (r)m i = 1…(NF)m 

subsets belonging to i-th fractional Kelvin element, αi = ni/D fractional 
order, can be found by means of the procedure reported in Appendix B. 
The z̃i, r̃i elements exhibit constant modulus and constant Δarg() rela-
tive phase (Eqs. (13,19)): 

ni = size
(

z∼i

)

= size
(

r∼i

)
,

Δarg
(

z∼i

)

≃
2π
ni

, Δarg
(

r∼i

)
≃

2π
ni
,

⃒
⃒
⃒
⃒z
∼

i,s

⃒
⃒
⃒
⃒ ≃ const,

⃒
⃒
⃒
⃒r
∼

i,s

⃒
⃒
⃒
⃒ ≃ const, arg

(

z∼i,1

)

≃
π
ni
; ∀s,

arg
(

r∼i,s

)

≃ arg
(

z∼i,s

)

+ π; ∀s.

(30) 

The parameters associated to i-th fractional Kelvin element can be 
identified from Eqs. (13,19): 

Ei =

∑ni
s=1

⃒
⃒̃zi,s
⃒
⃒

ni⋅
∑ni

s=1

⃒
⃒̃ri,s
⃒
⃒
, βi =

1
Ri

= Ei⋅
(

ni
∑ni

s=1

⃒
⃒̃zi,s
⃒
⃒

)ni

, αi =
ni

D
, γi =

Ei

βi
.

(31) 

The identified fractional elements being stable with respect to 
different m values can be selected as the constituents of the extended SLS 
model, while the other identified fractional elements, only resulting 
from the computational evaluation can be discarded. The stability 
approach, commonly used in most modal analysis procedures [20], is 
adopted, making it possible to automatically or manually select stable 
solutions taking into account user defined tolerance values. 

The ΘF(j⋅ω) model {{E1, β1, α1, γ1,R1}, …, {E(NF)m
, β(NF)m

, α(NF)m
,

γ(NF)m
,R(NF)m

}}m is identified, and is compared to {{E1, β1, α1, γ1,R1},…,

{E(NF)m− 1
, β(NF)m− 1

, α(NF)m− 1
, γ(NF)m− 1

,R(NF)m− 1
}}m− 1 by evaluating the sta-

bility with respect to αi, γi, Ri. The stability properties of 
{Ei, βi, αi, γi,Ri}m i-th solution associated with the m-value identification 
step can be associated to a marker according to the Table B1 specifications 
and plotted in the stability graph with respect to χm,i = |Ei/βi|

1/αi fre-
quency abscissa value and m ordinate value. The stability procedure is 
detailed in Appendix B. 

To show the effectiveness of the stability approach, NX = 1000 
simulated measurements are numerically evaluated from (I) (Table 3) 
and (L) (Table 4) test cases, in the ω ∈ [10− 1,103] Hz frequency range. A 

Table 3 
(I) Test case model identification results.  

Reference model Identified model E/E0(j⋅ω)
quadratic error fit  αi Ei [Pa] βi [Pa•sα]  αi Ei [Pa] βi [Pa•sα] 

NF =2 
0.1 9.08•109 6.42•108 

NF =2 
0.1 9.08•109 6.42•108 

2.24 10-6 
0.2 5.25.109 4.95.108 0.2 5.25.109 4.95.108  

Table 4 
(L) Test case model identification results.  

Reference model Identified model E/E0(j⋅ω)
quadratic error fit  αi Ei [Pa] βi [Pa•sα]  αi Ei [Pa] βi [Pa•sα] 

NF =1 0.25 1.08•109 3.85•107 NF =1 0.2 1.08•109 3.86•108 

2.93•10-6 
NH =1 1 

1.58•1011+ 7.50•107+

NH =1 1 
1.58•1010 7.49•107 

+j•6.03.109 +j•1.11.107 +j•1.70.109 +j•1.16.107  

Fig. 4. (I) test case ΘF stability plot, identified stable and unstable solutions 
marked according to Table. B.1. 

S. Amadori and G. Catania                                                                                                                                                                                                                   



Materials Today Communications 35 (2023) 106159

7

stability diagram is shown in Fig. 4 reporting model solutions obtained 
with respect to the (I) test case simulated measurements, identification 
parameters are D = 10, mmax = 20. Two fractional SLS element stable 
solutions are found, corresponding to the NF = 2 identified fractional 
SLS model reported in Table 3, showing an excellent agreement with 
reference values. Fig. 5 shows E(j⋅ω) plot from the Θ(j⋅ωk) simulated 
measurements and the model identified ΘF(j⋅ω) estimate, where the 
error difference between measured and the model identified estimate is 
negligible. 

Fig. 6 reports the stability diagram obtained from model identifica-
tion obtained with respect to (L) test case simulated measurements, 
identification parameters are D = 4, mmax = 10. A single fractional, SLS 
element stable solution is found starting from m = 4, corresponding to 

the NF = 1 identified fractional SLS model reported in Table 4, showing 
a good agreement with reference values. Fig. 7 shows the simulated 
measurements plot and the ΘF(j⋅ω) model identified plot, the error dif-
ference between the two curves being mainly due to the lacking 
contribution of the still unidentified hysteretic model component. 

It should be outlined that a ΘF physical model, being consistent with 
thermodynamic isothermal assumptions, must satisfy the following 
conditions [6]: 

ℜ(Θ(j⋅ω))− 1
≥ 0, ℑ(Θ(j⋅ω))

− 1
≥ 0, 0 < ω < ∞. (32) 

Some more restrictions on the fractional SLS {Ei, βi, αi, γi,Ri}m pa-
rameters should apply from Eq. (32), and their evaluation will be 
considered in our future research. It should be outlined that all of the 
identification results shown in this paper respect the Eq. (32) condition, 
since test data consisting in E(j⋅ωk) material measured estimates appears 
to respect Eq. (32) condition as well. 

3.2. ΘH identification 

3.2.1. ΘH model formulation 
From Eq. (8-9) the hysteretic Kelvin elements contribution is: 

ΘH(j⋅ω) =
∑NH

i=1

1/βi

j⋅ω +
Ei

βi

=
∑NH

i=1

Ri

j⋅ω − zi
;

zi = −
Ei

βi
, Ri = 1

/
βi

, (33)  

where Ei,βi,Ri,zi ∈ ℂ. From Eq. (33), ΘH(j⋅ω) can also be expressed as the 
ratio of two polynomials: 

ΘH =
(j⋅ω)NH − 1⋅cNH − 1 + … + c0

(j⋅ω)
NH + (j⋅ω)

NH − 1⋅dNH − 1 + … + d0
=

∑NH − 1

i=0
(j⋅ω)

i⋅ci

(j⋅ω)
NH +

∑NH − 1

i=0
(j⋅ω)i⋅di

, (34)  

and since Ri, zi ∈ ℂ, it follows that ai, bi ∈ ℂ , ∀i. 

3.2.2. ΘH non-parametric model identification technique 
ΘH(j⋅ω) can be estimated from Eq.10: 

ΔΘk = Θk − ΘF(j⋅ωk) = ΘH(j⋅ωk) =

∑m− 1

i=0
(j⋅ωk)

i⋅ai

(j⋅ωk)
m
+
∑m− 1

i=0
(j⋅ωk)

i⋅bi

, k = 1…NX .

(35) 

The optimal ΘH hysteretic SLS material model fitting ΔΘk values can 

Fig. 5. (I) test case: E(j⋅ω) simulated measurements (black) and identified 
model fit (red). 

Fig. 6. (L) test case ΘF stability plot, identified stable and unstable solutions 
marked according to Table. B.1. 

Fig. 7. (L) test case: E(j⋅ω) simulated measurements (red), (NF=1) fractional 
SLS model fit (black), (NF=1, NH=1) extended SLS model fit (green). 

Fig. 8. (L) test case ΘH stability plot, identified stable and unstable solutions 
marked according to Table. B.1. 
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be found by arbitrarily choosing m and by identifying the ai, bi i =
0…m − 1, complex unknowns, best fitting the ΔΘkvalues. A complex 
system of NX linear complex equations in the 2⋅m, ai, bi, i = 0…m − 1, 
complex unknowns results: 

∑m− 1

i=0
(j⋅ωk)

i⋅ai −
∑m− 1

i=0
ΔΘk⋅(j⋅ωk)

i⋅bi = ΔΘk⋅(j⋅ωk)
m
;

k = 1…NX .

(36) 

To increase the system matrix condition and improve the computa-
tional accuracy of the solution, a normalized variable u = (ω/ωNX ) ∈

[0, 1] is introduced. From Eq. (36): 

Table 5 
Numerical fractional SLS model identification results.  

Case 
Reference model Identified model E/E0(j⋅ω)

quadratic error fit  αi Ei [Pa] βi [Pa•sα] NF αi Ei [Pa] βi [Pa•sα] 

(M) NF =2 
0.3 
0.2 

9.13•108 

6.03•108 
3.37•109 

1.52•108 NF =2 
0.3 
0.2 

9.13•108 

6.03•108 
3.382•109 

1.5203•108 3.6•10-7 

(N) NF =3 
0.5 
0.75 
0.25 

9.21•1010 

1.01•1011 

9.41•108 

1.04•109 

3.11•1011 

8.02•109 
NF =3 

0.5 
0.75 
0.25 

9.21•1010 

1.01•1011 

9.41•108 

8.02•109 

3.11•1011 

8.02•109 
2.15•10-4 

(O)  
(no S/N) NF =2 

0.25 
0.5 

2.25•109 

9.15•108 
4.21•109 

9.31•106 NF =2 
0.25 
0.5 

2.25•109 

9.15•108 
4.20•109 

9.32•106 2.23•10-6 

(O)  
(90 dB S/N) NF =2 

0.25 
0.5 

2.25•109 

9.15•108 
4.21•109 

9.31•106 NF =2 
0.25 
0.5 

2.10•109 

9.35•108 
3.78•109 

1.03•107 1.05•10-2  

Fig. 9. (M) example case: E(j⋅ω) model (red), identified model fit (black).  

Fig. 10. (N) example case: E(j⋅ω) model (red), identified model fit (black).  

Fig. 11. (O) example case: E(j⋅ω) model with 90 dB S/N added noise (red), 
identified curve fit (black). 

Table 6 
specimen experimental data.  

Beam 
specimen Material 

Length 
[m] 

Section 
Area [m2] E0 [Pa] 

Density 
[kg/m3] 

(BS1) 

Loxeal instant 
47 gel® (85 % 
volume ratio) 
and steel 
powder (10 µm 
mean grain size, 
15 % volume 
ratio) mix 

1.75•10− 2 9.02•10− 6 1.70•109 2.00•103 

(BS2) 

Loxeal 31–10® 
(60 % 31- 
component and 
30 % 10- 
component 
volume 
fractions) and 
carbon fibers 
(length 
60–300 µm, 10 
% volume 
fraction) mix 

1.75•10− 2 5.84•10− 6 2.38•109 1.11•103  
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∑m− 1

i=0
(uk)

i⋅(j⋅ωNX )
i⋅ai −

∑m− 1

i=0
ΔΘk⋅(uk)

i⋅(j⋅ωNX )
i⋅bi = ΔΘk⋅(uk)

m⋅(j⋅ωNX )
m

∑m− 1

i=0
(uk)

i⋅a
∼

i −
∑m− 1

i=0
ΔΘk⋅(uk)

i⋅b
∼

i = ΔΘk⋅(uk)
m
,

a∼i = (j⋅ωNX )
i− m⋅ai, b

∼

i = (j⋅ωNX )
i− m⋅bi ; k = 1…NX ,

(37)  

where the following linear transformation was used in Eq. (37) for 
computational purposes: 

Fig. 12. (BS1) test case: E(j⋅ω) measurement data (red), SLS model fit (blue), 
fractional SLS model fit (black), extended SLS model fit (green). 

Fig. 13. (BS2) test case: E(j⋅ω) measurement data (red), SLS model fit (blue), 
fractional SLS model fit (black), extended SLS model fit (green). 

Table 7 
Experimental test cases: extended SLS model identification results.  

Case 
Extended SLS model E/E0(j⋅ω)

quadratic error fit  αi Ei [Pa] βi [Pa•sα] E0 [Pa] τc [s] 

(BS1) 
NF =2 0.1 

0.2 
1.73•109 

1.12•1013 
1.65•109 

2.78•1012 
1.73•109 2.01•1012 6.84•10-3 

NH =2 
1 
1 

3.13•1012-j•2.07•1012 

-3.56•1012-j•2.66•1011 
1.82•109+j•2.69•109 

2.45•108-j•3.37•109 

(BS2) 

NF =2 
0.2 
0.1 

5.977•1010 

2.484•109 
2.672•1010 

1.503•109 

2.38•109 1.69•1010 1.23•10-2 

NH =3 
1 
1 
1 

-1.67•1012-j•7.64•1011 

-1.31•1012-j•1.06•1011 

1.07•1012-j•2.39•1011 

6.84•108-j•1.74•109 

1.52•108+j•1.57•109 

5.87•108+j•2.47•109  

Table 8 
Experimental test cases: SLS model identification results.  

Case 
SLS model E/E0(j⋅ω)

quadratic error fit  αi Ei [Pa] βi [Pa•sα] E0 [Pa] τc [s] 

(BS1) N =3 

1  5.41•109  1.02•106  
3.67•109 1.38•10-1 3.01•10-2 

1 3.42•1010 1.93•108    

1 1.71•1010 1.62•109    

(BS2) N =2 
1  5.18•109  8.92•105  

4.47•109 6.40•10-2 1.31•10-1 

1 3.57•1010 2.48•109     

Fig. A1. τc evaluation for (A1) example case.  

Table A1 
(A1) example case model parameters.   

αi Ei [Pa] βi [Pa•sa] 

NF= 3  
0.3 
0.8 
0.5 

5•1010 

1•1010 

7•1010 

1•108 

5•1010 

3•109  
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a = [ a0 … ai … am− 1 ]
T
,b = [ b0 … bi … bm− 1 ]

T
;

q =
[
(ωNX )

− m … (ωNX )
ℓ− m … (ωNX )

− 1
]T

∈ ℜm;

a∼ = diag(q)⋅a, b
∼

= diag(q)⋅b .

(38) 

From Eq. (37), in compact form: 

[C − D ]⋅
[

a∼

b
∼

]

= L;

a∼ = [ a∼0 … a∼i … a∼m− 1 ]
T
,b
∼

=
[

b
∼

0 … b
∼

i … b
∼

m− 1

]T
,

C =

⎡

⎢
⎢
⎢
⎣

1 … um− 1
1

… … …
1 … um− 1

NX

⎤

⎥
⎥
⎥
⎦
, D =

⎡

⎢
⎢
⎢
⎣

ΔΘ1 … ΔΘ1⋅um− 1
1

… … …
ΔΘNX … ΔΘNX ⋅um− 1

NX

⎤

⎥
⎥
⎥
⎦
,

L =
[

ΔΘ1⋅um
1 … ΔΘNX ⋅um

NX

]T
.

(39) 

The 2⋅m ̃a, b̃ unknown complex coefficients can be obtained by least 

squares solving Eq. (39) by means of a singular value decomposition 
(SVD) based technique, so that from Eq. (38) a = (diag(q))− 1⋅ã, b =

(diag(q))− 1⋅b̃ results as well. Since the solution can be found with 
respect to any m assumed value, it results that a = (a)m, b = (b)m . The 
same iterative approach previously adopted in Section 3.1.2, based on 
the evaluation of the stability of (a)m, (b)m solution is proposed herein. 
For any m = 1,2,3,…,mmax, the system (z)m poles can be evaluated from 
(b)m as the m zeros of the following polynomial function: 

zm + zm− 1⋅bm− 1 +…+ b0 = 0. (40) 

System (R)m residues can be evaluated from (z)m, (a)m as follows: 

Rℓ = lim
j⋅ω→zℓ

[
∑m

i=1

Ri

jω − zi
⋅(j⋅ω − zℓ)

]

=

∑m− 1

i=0
ai⋅(zℓ)

i

∏m

i=1
i∕=ℓ

(zℓ − zi)

. (41) 

The parameters associated to the i-th hysteretic Kelvin element can 
be identified from Eq. (33): 

βi = 1/Ri, Ei = − zi/Ri; i = 1…m . (42) 

The identified hysteretic elements being stable with respect to 
different m values can be selected as the constituents of the hysteretic 
SLS model, while the other identified hysteretic elements, only resulting 
from the computational evaluation, can be discarded. The stability 
approach used in Section 3.1.2, detailed in Appendix B, is adopted, 
making it possible to automatically or manually select stable solutions 
taking into account user defined tolerance values. 

As a matter of example, the ΘH(j⋅ω) identification results obtained 
with respect to the simulated measurements from the (L) model case and 
the ΘF identified model are presented, mmax = 10. The stabilization di-
agram is shown in Fig. 8: a single hysteretic SLS element stable solution 
is found starting from m = 5. The NH = 1 identified hysteretic SLS 
model contribution is reported in Table 4, and the ΘF(j⋅ω)+ΘH(j⋅ω)
model identified curve plot is shown in Fig. 7, showing that an excellent 
agreement with the reference model Θ(j⋅ω) curve plot is obtained. 

4. Numerical validation of the identification procedure 

The identification procedure is applied to three numerical test cases, 
whose model reference parameters are reported in Table 5. NX = 104 

measurements are simulated from the reference models, in the Ω =

[10− 3, 104] Hz frequency range, and numerically generated random 
noise, assuming a S/N = 90 dB signal to noise ratio, is added to simu-
lated measurements with respect to (O) test case. Identification pa-
rameters are: (M) D = 10, mmax = 20, (N) D = 4, mmax = 20, (O) D = 4,
mmax = 10. The identified model results are reported in Table 5, and 
Θ(j⋅ω) curve plot estimates from the reference and the identified model 
are shown in Figs. 9–11: an excellent agreement of the identified models 
with respect to the (M-N) reference models were obtained, and a good 
agreement was also found with respect to the (O) reference model 
simulated measurements with noise. 

5. Experimental test case applications 

Two BS1 and BS2 polymeric composite material beam specimens are 
experimentally tested in flexural forced vibration response condition by 
means of a TA Instruments DMAQ800 system, operating at T = 35 ◦C in 
the multi-frequency and strain control experimental mode with 
clamped-sliding boundary conditions, NX = 202, Ω = [10− 2,2⋅102] Hz. 
The maximum strain value of (0.05 ± 0.01)% was maintained constant 
during the measurement test. The material of the (BS1) specimen is 
obtained by mixing a commercially available ethyl cyanoacrylate 
polymeric resin and an environmentally sustainable steel powder ob-
tained from recycled machining waste chip. The material of the (BS2) 

Fig. A2. Example case (A1):η(ω)estimated values.  

Table B1 
Solution stability conditions.  

Stability evaluation Condition Marker 

Unstable 
⃒
⃒
⃒
(γi)m

(γℓ)m− 1
− 1

⃒
⃒
⃒ > tols,

⃒
⃒
⃒
(Ri)m

(Rℓ)m− 1
− 1

⃒
⃒
⃒ > tols £

γ stability 
⃒
⃒
⃒
(γi)m

(γℓ)m− 1
− 1

⃒
⃒
⃒ < tols,

⃒
⃒
⃒
(Ri)m

(Rℓ)m− 1
− 1

⃒
⃒
⃒ > tols □ 

R stability 
⃒
⃒
⃒
(γi)m

(γℓ)m− 1
− 1

⃒
⃒
⃒ > tols,

⃒
⃒
⃒
(Ri)m

(Rℓ)m− 1
− 1

⃒
⃒
⃒ < tols * 

Full stability 
⃒
⃒
⃒
(γi)m

(γℓ)m− 1
− 1

⃒
⃒
⃒ < tols,

⃒
⃒
⃒
(Ri)m

(Rℓ)m− 1
− 1

⃒
⃒
⃒ < tols  ○  

Fig. B1. ΘF stability plot example, identified stable and unstable solutions, 
marked according to Table. B.1. 
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specimen is obtained by mixing a commercially available epoxy dual 
component resin material Loxeal 31–10® and recycled carbon fibers. 
BS1 and BS2 specimen data are reported in Table 6. 

Since BS1, BS2 specimen material is not homogeneous, the identifi-
cation of the equivalent homogenized material model is here taken into 
account. A calibration procedure, proposed by the authors in previous 
works [4,15]. is applied to the test measurements in order to take into 
account of the dynamic contribution of the instrument frame, and of the 
inertial contribution of the distributed mass of the beam and of the 
moving mass of the instrument force measuring system. E(jωk), ωk ∈ Ω 
discrete material estimates from measurement data are plotted in 
Figs. 12,13. 

The BS1, BS2 optimal extended SLS model was obtained by fitting 
experimental data with the identification procedure described in Section 
3 and in Appendix B. Identification parameters are: (BS1) D = 10, mmax 

= 10 for ΘF(jω) and mmax = 25 for ΘH(jω), (BS2) D = 10, mmax = 20 for 
ΘF(jω) and mmax = 25 for ΘH(jω). Extended SLS models are reported in 
Table 7 and the E(jω) = (ΘF(jω) + ΘH(jω))− 1 continuous extended SLS 
model curve fits are shown in Figs. 12,13 and compared to experimental 
data. 

A SLS model was identified by means of the procedure previously 
presented by these authors [4], and the results are reported in Table 8 
and Figs. 12–13. The identified model was compared to the optimal 
extended material model fit plots. 

From the identified models, E0 is estimated from Eq. (A.7) and τc 
creep relaxation time is estimated by applying the procedure described 
in Appendix A and these results are also reported in Tables 7 and 8. 

6. Conclusions 

A procedure for the non-parametric identification of the extended 
SLS model of the material of an experimentally tested beam specimen 
was proposed in this work. The model takes into account of the equiv-
alent elastic and viscous properties of the material under investigation, 
in a wide dynamical frequency range, from the quasi-static behavior 
(relaxation response) to the low to high frequency vibrational behavior. 

The identification technique proposed in this work is non- 
parametric, since the NF optimal number of fractional Kelvin elements 
is assumed as unknown but can be obtained as a result at the end of the 
identification procedure. The technique is mainly based on an algebraic 
approach, leading to a numerically well-conditioned linear systems of 
equations in the frequency domain, to be solved by least square standard 
SVD procedures, and on the automatic or semi-automatic evaluation of 
stabilization diagrams in order to find the NF optimal model order. 

The SLS model was also extended to take into account of the material 

hysteretic behavior, typically occurring at medium to high test fre-
quencies, in order to better fit test data when the contribution of SLS and 
fractional SLS model elements appears to be ineffective, but a non- 
physical, non-causal material model result and such result may not be 
acceptable in some contexts. 

The identification procedure was tested with respect to some 
numerically generated test data with simulated noise, and results 
showed that the procedure was effective in all of the example cases taken 
into consideration. The procedure is also efficient, since it does not 
require computationally expensive numerical nonlinear optimization 
procedures, but it only deals with the solution of some low order over-
determined systems of linear equations. 

Some experimental test cases dealing with non-conventional com-
posite materials, quite common in some modern engineering applica-
tions, are proposed, showing that a good model fit in the frequency 
domain can be obtained with a limited number of extended SLS material 
model elements and that material creep relaxation can also be effec-
tively estimated from the identified model. Poor results obtained by 
identifying these same experimental data test sets by assuming a SLS 
Kelvin model are reported to justify the proposed identification of an 
extended SLS model. 
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Appendix A. Creep relaxation time and damping ratio estimate 

From Eq. (8), εi(t) strain output response of the i-th element of a N order fractional SLS material model to a σ0 stress step input, assuming the Caputo 
fractional derivative definition holds, is [27,44,48]: 

σ(t) = Ei⋅
(

εi(t) +
βi

Ei
⋅
∂αi

∂tαi
εi(t)

)

= σ0 ; τi =
βi

Ei

εi(t) =
σ0

Ei
⋅
(

1 − Mαi

((

−
t
τi

)αi ))
, (A.1)  

where Mαi () is the Mittag-Leffler function [48]: 

Mαi (z) =
∑∞

k=0

zk

Γ(k⋅αi + 1)
=

αi=1
exp(z), (A.2)  

where Γ() is the gamma function. The total ε(t) strain output response is: 
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ε(t) =
∑N

i=1
εi(t) = σ0⋅

∑N

i=1

[
1
Ei

⋅
(

1 − Mαi

((

−
t
τi

)αi))]

⋅ (A.3) 

If a N order SLS material model is taken into account, αi = 1, ∀i and Eq. (A.4) holds: 

ε(t) =
∑N

i=1
εi(t) = σ0⋅

∑N

i=1

1
Ei

⋅
(

1 − exp
(

−
t
τi

))

. (A.4) 

The τc creep relaxation time can be defined as follows: 

ε(t = τc) = 0.95⋅ε(t→∞) = 0.95⋅
σ0

E0
, (A.5)  

or: 

E0⋅
∑N

i=1

[
1
Ei

⋅
(

1 − Mαi

((

−
τc

τi

)αi))]

= 0.95 , (A.6)  

where: 

E0
− 1 =

⃒
⃒
⃒
⃒
⃒

∑

i
E− 1

i

⃒
⃒
⃒
⃒
⃒
. (A.7) 

As an example, Fig. A1 shows how τc can be estimated from the (A1) material example case (Table A1). 
Free vibration v(t) response of a slender uniform, homogeneous beam specimen made of a N-elements SLS material, normal boundary conditions at 

the beam ends [2,3], excitation and response at the same axial position, can be analytically expressed as: 

v(t) =
∑∞

i=1
Ci⋅exp(λi⋅t) =

∑

r
Δvr(t) , (A.8)  

where an exponentially decreasing harmonic function Δvr(t) results from the contribution of any occurring (λr, λ*
r ), (Cr, C*

r ) complex conjugate pairs 
in v(t): 

Δvr(t) = Creλrt + C*
r eλ*

r t = γr⋅exp( − ηr⋅ωnr ⋅t)⋅ sin
(

ωnr ⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − η2
r

√

⋅t + φr

)

ωnr = |λr|, ηr = −
ℜ(λr)

|λr|
, γr = |Cr|, φr = arg(Cr)

. (A.9) 

It results that ηr damping factors vary with respect of the assumed material order and parameters, and also with respect to the beam specimen 
geometry and boundary conditions. The beam flexural FRF between F̂ transverse excitation and ̂v transverse displacement can be expressed by means 
of the modal approach [3,15]: 

ν̂
F̂
(ω) =

∑∞

i=1

ψi

(j⋅ω)
2
+ k2

i ⋅
ω2

0

Ξ(ω)

≃
∑nm

i=1

ψi

(j⋅ω)2
+ k2

i ⋅
ω2

0

Ξ(ω)

Ξ(j⋅ω) =
∑N

i=1

E0/βi

j⋅ω +
Ei

βi

= E0⋅Θ(j⋅ω)

, (A.10)  

where nm is the number of modal terms approximating ν̂/F̂(ω) when ω ∈ [0,ωmax] is assumed, ki and ψ iresult from the system solution by assuming 
Ξ(ω) = 1 [2,3]. The ω0 circular frequency, specimen related, constant value depends on the beam geometry, E0 and the material density. 

It must be observed that for a N order SLS material model, Eq. (8), Ξ(j⋅ω) can be expressed by means of the ratio of two polynomial functions [4]: 

Ξ(j⋅ω) =
aN− 1⋅(j⋅ω)

N− 1
+ .+ a1⋅(j⋅ω) + a0

(j⋅ω)
N
+ bN− 1⋅(j⋅ω)N

+ .+ b1⋅(j⋅ω) + b0
⋅ (A.11) 

From Eqs. (A.10,A.11): 

ψi

(j⋅ω)2
+ k2

i ⋅ω2
0⋅

1
Ξ(ω)

=
ψi

(j⋅ω)2
+ k2

i ⋅ω2
0⋅
(j⋅ω)

N
+ bN− 1⋅(j⋅ω)N− 1

+ .+ b0

aN− 1⋅(j⋅ω)
N− 1

+ .+ a0

=
ψi⋅
(
aN− 1⋅(j⋅ω)

N− 1
+ .+ a0

)

(j⋅ω)2⋅
(
aN− 1⋅(j⋅ω)N− 1

+ .+ a0
)
+ k2

i ⋅ω2
0⋅
(
(j⋅ω)

N
+ bN− 1⋅(j⋅ω)N− 1

+ .+ b0
) =

ci,N− 1⋅(j⋅ω)
N− 1

+ .+ ci,1⋅(j⋅ω) + ci,0

(j⋅ω)N+1
+ .+ di,1⋅(j⋅ω) + di,0

=
∑N+1

s=1

Ri,s

j⋅ω − pi,s

(A.12) 

The ηi,s damping ratio values can be estimated from pi,s poles as follows [3]: 
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ηi,s = −
Re
(
pi,s
)

ωni,s

, ωni,s =
⃒
⃒pi,s
⃒
⃒, (A.13) 

where any pi,s, p*
i,s complex conjugate pair is associated to ηi,s, ωni,s values, while real pi,s poles are associated to ηi,s = 1. 

Eq. (A.10) results as the sum of rational functions and a partial fraction form results as well: 

ν̂
F̂
(ω) ≃

∑nm

i=1

ci,N− 1⋅(j⋅ω)N− 1
+ .+ ci,1⋅(j⋅ω) + ci,0

(j⋅ω)
N+1

+ .+ di,1⋅(j⋅ω) + di,0
=
∑nm

i=1

∑N+1

s=1

Ri,s

j⋅ω − pi,s
, (A.14)  

so that Eq. (A.14) also results as the ratio of polynomial functions, where the polynomial order of the denominator is greater than the polynomial order 
of the numerator, so that a partial fraction form holds: 

ν̂
F̂
(ω) ≃

c∼0 + c∼1⋅(j⋅ω) + .+ c∼r⋅(j⋅ω)r
+ .

d
∼

0 + d
∼

1⋅(j⋅ω) + .+ d
∼

s⋅(j⋅ω)s
+ .

=
∑

i

Ri

j⋅ω − pi
,

ηi = −
Re(pi)

|pi|
, ωni = |pi|.

(A.15) 

An equivalent ν̂/F̂(ω) FRF expression can be obtained as well by adopting a different approach [4]. From the Euler-Bernoulli homogeneous, 
uniform beam, with normal boundary conditions, the equation of motion in the frequency domain is obtained: 

∂4

∂ξ4 ν̂(ξ,ω) − z4(ω)⋅ν̂(ξ,ω) = 0, z =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ω2

ω2
0⋅Ξ(ω)

4

√

= z(ω,ω0), ω0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅
E0⋅I

ρ⋅S⋅L4

√

; (A.16)  

where ξ = x/L refers to the normalized displacement, L to the beam length, ρ to the density, S to the section area, I to the section moment. The ν̂(ξ,ω)

solution that satisfies Eq. (A.16) is: 

ν̂(ξ,ω) = C1⋅sin(z⋅ξ) + C2⋅cos(z⋅ξ) + C3⋅ sinh(z⋅ξ) + C4⋅cosh(z⋅ξ) (A.17) 

Taking into account of the following boundary conditions, being consistent with a typical test measurement architecture: clamped beam at one end 
(ξ = 0), T = − F shear and null M moment at the opposite beam end (ξ = 1), the terms C1, C2, C3, C4 terms from Eq. (A.17) can be obtained by imposing 
the following conditions, agreeing the previously cited boundary conditions: 

ν̂(0,ω) = 0 ,
1
L

⋅
∂
∂ξ

ν̂(0,ω) = 0 ,

E0⋅I⋅Ξ(ω)
L2 ⋅

∂2

∂ξ2 ν̂(1,ω) = 0 ,
E0⋅I⋅Ξ(ω)

L3 ⋅
∂3

∂ξ3 ν̂(1,ω) = − F.
(A.18) 

The resulting response function at ξ = 1 end is: 

ν̂
F̂
(j⋅ω) = 1

mB⋅ω0.5
0 ⋅ω1.5⋅[Ξ(j⋅ω)]

0.25⋅
(

sin z⋅ cosh z − sinh z⋅ cos z
1 + cos z⋅ cosh z

)

=
1

mB⋅ω0.5
0

⋅Φ
(
ω0,j⋅ω

)
,

Φ
(
ω0,j⋅ω

)
= mB⋅ω0.5

0 ⋅
ν̂
F̂
=

sin(z(ω0,ω))⋅ cosh(z(ω0,ω)) − sinh(z(ω0,ω))⋅ cos(z(ω0,ω))

ω1.5⋅[Ξ(j⋅ω)]
0.25⋅(1 + cos(z(ω0,ω))⋅ cosh(z(ω0,ω)))

,

(A.19)  

where mB is the total mass of the beam. It should be outlined that ν̂/F̂(ω) from Eq. (A.19) corresponds to the exact solution, according to the model 
assumptions. Moreover, it also results that, from Eqs. (A.14,A.19): 

ν̂
F̂
(ω→ωnr ) =

1
mB⋅ω0.5

0
⋅Φ
(
ω0,ω

)
≃

Rr

j⋅ω − pr
+

R*
r

j⋅ω − p*
r
, (A.20)  

and: 

Φ(ω0,ω→ωnr ) ≃
R
∼

r

j⋅ω − pr
+

R
∼*

r

j⋅ω − p*
r
, R

∼

r = Rr⋅mB⋅
̅̅̅̅̅̅
ω0

√
, (A.21)  

where ωnr = |pr| is the natural frequency of a beam vibrational mode associated to a complex conjugate pole pair. 
Starting from ̂ν/F̂(ωk), ωk ∈ Ω measurement range from a known beam specimen, many numerical identification techniques [20], some developed 

by these authors in previous [3,15], can be employed to identify pr, Rr parameters from Eq. (A.20), so that ωnr , ηr values can be found as well. 
Since ωnr , ηr are expected to vary with respect to Ξ(ω) material model and to the beam geometry, E0, ρ values only affecting mB,ω0 values, the pole 

identification technique can be iteratively applied from a Φ(ω̄0,ωk), ωk ∈ Ω discrete set of analytically computed values at different ω̄0 values, so that 
identified ωnr circular frequencies may assume any value in a known range. The ηr values obtained by applying the previously defined identification 
technique are thus associated to ωnr frequency value. 

This same procedure can be used to estimate η(ω) = ηr(ωnr ) for a beam specimen made of a material following a fractional SLS material model. It 
should be outlined that in this case Eq. (A.14) does not hold anymore, since ν̂/F̂(ω) results as the ratio of pseudo-polynomial functions where the 
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exponent associated to each term of these functions is not expected to be integer anymore. By using Eq. (A.14) to approximately fit ν̂/F̂(ω) and Φ(ω0,

ω), η(ω) estimates can be obtained for beam specimens made of a material following a fractional SLS material model. Fig. A2 refer to η(ω) identified 
estimate results related to example case (A1). 

Appendix B. Non-parametric material model identification by the stability diagram approach 

From Θk = Θ(jωk), ωk ∈ Ω discrete measurement set and from Eqs. (10, 12, 20), assuming a NF order fractional SLS model: 

Θ
(

qk = (j⋅ωk)
1
D

)
= Θk,

Θk =
∑NF

i=1

1

Ei + (j⋅ωk)
ni
D ⋅βi

=
∑NF

i=1

Ri

qni
k + γi

=
∑NF

i=1

(
∑ni

s=1

ri,s

qk − zi,s

)

=
∑m

ℓ=1

rℓ

qk − zℓ
, k = 1…NX ,

(B.1)  

where NF ∈ ℕ, D ∈ ℕ, Ei, βi, Ri, γi ∈ ℜ+, ni ∈ ℕ; i = 1…NF are the model parameters to be identified. From Eq. (26-29) zℓ ∈ (z)m, rℓ ∈ (r)m poles 
and residues can be obtained with respect to any m value. The ̃zi = [̃zi,1,…, z̃i,ni ]

T
∈ (z)m, ̃ri = [̃ri,1,…, r̃i,ni ]

T
∈ (r)m i = 1…(NF)m subsets belonging to the 

i-th fractional SLS element, fractional order αi = ni/D, should satisfy Eq. (30). Taking into account of numerical and experimental noise, z̃i, r̃i are 
required to satisfy the following inequality conditions: 
⃒
⃒
⃒
⃒

⃒
⃒̃zi,1
⃒
⃒

⃒
⃒̃zi,s
⃒
⃒
− 1
⃒
⃒
⃒
⃒ ≤ tolr ,

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒arg

(
z̃i,s− 1

z̃i,s

)⃒
⃒
⃒
⃒ −

2π
ni

⃒
⃒
⃒
⃒ ≤ tolph

⃒
⃒
⃒
⃒

⃒
⃒̃ri,1
⃒
⃒

⃒
⃒̃ri,s
⃒
⃒
− 1
⃒
⃒
⃒
⃒ ≤ tolr,

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒arg

(
r̃i,s− 1

r̃i,s

)⃒
⃒
⃒
⃒ −

2π
ni

⃒
⃒
⃒
⃒ ≤ tolph , s = 2, ., ni.

⃒
⃒
⃒
⃒

⃒
⃒arg

(
z̃i,1
)⃒
⃒ −

π
ni

⃒
⃒
⃒
⃒ ≤ tolph,

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒arg

(
r̃i,1

z̃i,1

)⃒
⃒
⃒
⃒ − π

⃒
⃒
⃒
⃒ ≤ tolph

(B.2) 

tolr and tolph tolerance values are associated to the experimental and numerical noise of the specific identification test case considered. The αi 

fractional exponents, Ei average moduli and βi average viscous coefficient values associated to the i-th fractional Kelvin element can be found from Eqs. 
(30,31). The zℓ ∈ (z)m, rℓ ∈ (r)m solutions not satisfying Eq. (B.2) can be associated with a minimum order fractional Kelvin element if the following 
inequality conditions hold: 

||arg(zℓ)| − π| ≤ tolph, |arg(rℓ)| ≤ tolph, (B.3)  

and from Eq. (30,31): 

Ei =

⃒
⃒
⃒
⃒
z̃i,1

r̃i,1

⃒
⃒
⃒
⃒, βi =

1
Ri

=
Ei⃒
⃒̃zi,1
⃒
⃒
, αi =

1
D
, γi =

Ei

βi
. (B.4) 

The (NF)m order, fractional SLS model associated to the previously described m order fitting procedure is expected to include physical and 
nonphysical, computational components if high m values and noisy test measurements are taken into account. 

For m = 1,…,mmax, the (Ei, βi, αi)m solution stability properties are evaluated with respect to (Eℓ, βℓ, αℓ ≡ αi)m− 1; ℓ : minℓ(
⃒
⃒(Ei)m − (Eℓ)m− 1

⃒
⃒). 

Stability conditions are reported in (Table B1). 
The tols choice depends on the numerical and experimental noise associated to the identification procedure. The solutions related to (Ei, βi, αi)m 

fractional element can be plotted in a stabilization diagram by means of the marker defined in Table B1 with respect to ( χm,i = (|Ei/βi|
1/αi )m,m)

coordinates. Fig. B1 refers to a stabilization diagram example. Stable (Ei, βi, αi)m solutions can be automatically or iteratively user selected from any 
column of stable solutions found in the stability plot. The total number of fully stable, selected choices, identifies the NF unknown value. 

The stabilization approach can be easily applied to the ΘH hysteretic SLS model identification procedure as well. 
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