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Abstract
A multi-step, iterative technique for the local non-parametric identification of the standard linear solid (SLS) material model 
employing fractional order time differential operators is presented. Test input data consists of a set of identified material 
complex modulus values estimated at different frequency values, obtained from input–output experimental measurements 
made on a material specimen by means of forced harmonic excitation and from experimental measurements made on the 
same specimen in quasi-static relaxation conditions. The proposed technique is mainly based on an algebraic procedure lead-
ing to the solution of an overdetermined system of linear equations, in order to get the optimal value of the model unknown 
parameters. The procedure is non-parametric, since the SLS model order is initially unknown. The optimal model size can 
be found by evaluating the stability properties of the solution associated to any model size and by automatically discarding 
computational, non-physical contributions. The identification procedure is first validated by means of numerically simulated 
test data from within known model examples, and then it is applied to some experimentally obtained test data associated to 
different materials.

Keywords  Fractional material model · Non-parametric identification · Relaxation test · Forced vibrational test

Introduction

The multi-axial σ stress versus ε strain tensor material model 
requires some assumptions to be made with respect to the 
material behavior, e.g., local plane or stress deformation, 
isotropic or anisotropic material, among all (Timoshenko 
et al. 1974; Tschoegl 1989). If an isotropic material is taken 
into account, at least two parameters are needed to identify 
the material multiaxial σ = σ(ε) model. These two independ-
ent parameters can be chosen among the E(ω) Young’s mod-
ulus, the v(ω) Poisson coefficient, and the G(ω) shear modu-
lus, ω being to the angular frequency. Uniaxial stress and 
shear dynamical tests can be made to obtain the numerical 

estimates of these material parameters by using standard 
experimental measuring systems (Waterman 1977; Tschoegl 
1989; Hilton 2017; Leon and Chen 2019).

This paper is focused on a technique for the E(ω) 
model identification from within uniaxial stress measure-
ments. If the Poisson coefficient is assumed to be station-
ary with respect to frequency and known in advance, as 
it occurs in many engineering applications, then the full 
material σ = σ(ε) model identification only results from 
the E(ω) model identification. It can be outlined that the 
technique proposed herein may be adopted, in principle, 
to identify G(ω) from within uniaxial shear measure-
ments as well. Experimentally estimated E(ω) values 
can be obtained by means of input–output dynamic and 
quasi-static measurements (Findley et al. 1989; Swami-
nathan and Shivakumar 2009; Placet and Foltete 2010) 
on structural material specimens, in different uniaxial 
experimental set-ups (Menard 2008; Amadori and Cata-
nia 2017). Input–output frequency response functions 
(FRFs) can be obtained by harmonically exciting a speci-
men in forced vibration conditions at a known excita-
tion frequency. The applied force, the response ampli-
tude, and its time delay with respect to the excitation are 
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measured in correspondence of known axial positions. 
From the measured FRF data, E(ω) can then be estimated 
by taking into account of the beam specimen  mechani-
cal model (Timoshenko et  al. 1974, Read and Dean 
1978, McAninch et al. 2015, Schalnat et al. 2020). The 
dynamic contribution of the beam distributed inertia, of 
the mobile measuring subsystem lumped inertia, and of 
the instrument frame-fixture system should also be taken 
into account, and a calibration procedure, proposed by 
these authors in a previous work (Amadori and Catania 
2022), can be used to accomplish this task.

Commercially available FRF dynamic measuring systems 
typically work in a limited Ω = [fmin = 0.1, fmax = 300] Hz fre-
quency range. Nevertheless, a wide experimental frequency 
range is generally needed to improve the accuracy and the 
application range of the material model to be identified, 
but E(ω) estimates at f < fmin cannot be practically obtained 
from dynamical measurements because of experimental 
time limitations. Quasi-static measurements can be used 
and processed in order to estimate E(ω) in the low [0, fmin] 
frequency range. Known algorithms (Kwon et al. 2016) can 
be employed to convert compliance data, obtained from 
quasi-static creep measurements in the time domain, into 
E(ω) values in the frequency domain.

When dealing with anisotropic materials, it should be out-
lined that more than two material parameters are generally 
required to model the linear multi-axial σ stress versus ε 
strain tensor material, e.g., twenty-one material parameters 
in the general anisotropic case, reducing to nine in the ortho-
tropic case and to five material parameters in the transversely 
isotropic case. It can also be found that some relationships 
between these parameters, expressed by means of inequali-
ties, may also apply because of thermodynamic constraints 
(Bagley and Torvik 1986). The experimental estimate of 
these anisotropic material parameters from within dynamical 
I/O measurements may be a complex task, since the material 
properties such as the principal orthotropy directions may 
vary pointwise in the bulk material. Non-standard measur-
ing apparatus involving non-standard experimental specimen 
geometries, a large number of experimental dofs as well as 
optical full-field measuring sensors and digital processing 
techniques were proposed for this task (Chen et al. 2016; 
Schemmann et al. 2018; Fu et al. 2020). Once the value of 
the material parameters is experimentally found in a wide 
frequency range, the identification procedure proposed in 
this work can be generalized and applied to model these 
materials estimated parameters as well.

In this work, the E(ω) complex modulus is modeled by 
means of the fractional SLS material model assumption. 
According to Ferry (1961), the SLS model does not provide 
any insight into the underlying microscopic material physics. 
It should be outlined that such a material mechanical model 
only describes its macroscopic behavior and that different 

equivalent mechanical models can be adopted as well for the 
same purposes. Molecular and microscopic-based material 
models can be considered as well (Ferry 1961; Hill 1972) for 
some materials such as metal polycrystals, but their application 
to the dynamical simulation of the behavior of structures made 
of the material under study typically requires strong assump-
tions and high computational efforts, making such engineering 
applications practically unfeasible.

The identification of a fractional SLS material model is a 
more challenging task than the identification of a standard SLS 
model. Some approaches, mainly based on the use of nonlin-
ear optimization fitting techniques, were proposed in the past 
(Pritz 2003; Papoulia et al. 2010; Katicha and Flintsch 2012; 
Katsourinis and Kontou 2019): the model order is assumed to 
be a priori known, and the resulting optimal model parameter 
solution strongly depends on the initially assumed value of the 
optimization unknown parameters. Some researchers formu-
lated strategies for evaluating the initial choice of the unknown 
parameters by tentatively extrapolating it from experimental 
measurements, but such strategies did not show to be general 
enough to be adopted in any context and typically require that 
low-order fractional SLS material models only should be con-
sidered (Pritz 2004; Katicha and Flintsch 2012; Katsourinis 
and Kontou 2019).

It can be found that the E(ω) fractional SLS material 
model can be expressed as the ratio of two pseudo-polyno-
mial functions where non-integer powers of the (j‧ω) variable, 
j =

√
−1 , are dealt with. A parametric algebraic technique 

based on Levy’s approach was proposed in the past (Kapp 
et al. 2020) to identify the coefficients of the rational pseudo-
polynomials, whose maximum order is assumed to be known 
in advance. Nevertheless, the optimal model order and the 
value of the parameters associated to each fractional SLS ele-
ment do not result from the application of this approach.

In this work, a novel procedure able to effectively identify the 
optimal fractional material model from within E(ω) experimen-
tal estimates in a wide frequency range, covering a quasi-static 
behavior, is proposed. A fractional SLS material model is taken 
into account, but no a priori assumption is made on the derivative 
fractional order associated to each fractional SLS element and 
on the number of fractional SLS elements, so that a local non-
parametric identification procedure results. A procedure able to 
estimate the E(ω) contribution in the low frequency range from 
within creep relaxation measurements is also described.

Non‑parametric identification 
of the fractional SLS material model

Fractional SLS material model assumptions

The fractional SLS material model taken into account 
in this work is depicted in Fig. 1. It is composed of N 
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fractional Kelvin elements arranged in series, where N 
is also assumed to be the model order. The i-th fractional 
Kelvin element is defined by the Ei elastic parameter, the ηi 
fractional viscous parameter, and the γi non-integer, frac-
tional differentiation order. In the time domain, the εi(t) 
strain response associated to the i-th SLS element satisfies 
the following differential equation:

and when a σ0 stress step is applied, i.e., σ(t < 0) = 0 and 
σ(t ≥ 0) = σ0, εi(t) is (Koeller 1984; Katicha and Flintsch 
2012)

(1)�(t) = Ei ⋅

(
�i(t) +

�i
Ei

⋅

��i
(
�i(t)

)
�t�i

)

(2)�i(t) =
�0
Ei

⋅

(
1 −M�i

((
−

t

�i

)�i
))

; �i =

(
�i
Ei

) 1

�i

.

M�i
() refers to the classic Mittag–Leffler function, coin-

ciding with the exponential function if γi ≡1 (Gorenflo et al. 
2014):

where Γ() is the gamma function. The total J(t) = ε(t)/σ0 
creep compliance can be estimated as follows:

In the frequency domain, by applying the (̂) Fourier trans-
form operator to Eq. 1,

From Eq. 5, the 𝜀̂(𝜔)∕ 𝜎̂(𝜔)  material strain–stress rela-
tionship is

Some assumptions are made: the Ei elastic and ηi viscous 
parameters are real positive-valued parameters, and the γi 
exponent is also real-valued, �i ∈ ]0, 1] . A standard Kelvin 
element results if γi = 1, and a Hooke element results if γi = 0.

It is assumed that γi is approximated by a fractional value:

ni, Λ ∈ ℕ and Λ is assumed to be high enough to fit any γi 
unknown exponent value, i = 1,…,N. From Eqs. 6 and 7,

Since
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Fig. 1   Fractional SLS model
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the i-th term from the Eq. 8 sum can also be expressed in 
partial fraction form as follows:

so that the following E−1(𝜔) = 𝜀̂(𝜔)∕ 𝜎̂(𝜔)  equivalent 
strain–stress relationship of a N order fractional SLS model 
results

(10)
Υi

pni + �i
=

Υi

ni∏
r=1

(p − zi
r
)

=

ni�
r=1

�i
r

p − zi
r

,
A Υ set of fractional SLS material parameters, 

� = {�i
r
, zi

r
, ni, i = 1, ...,N, r = 1, ..., ni}   results from Eq. 11, 

being fully equivalent to the Ξ set, Ξ = {ni, Ei, ηi, i = 1,…,N} 
from Eq. 6. From Eq. 11, Θ(p) can be expressed in partial frac-
tion form and as the ratio of two polynomials, in the p complex 
variable, or as the ratio of two pseudo-polynomials with frac-
tional order exponents, in the imaginary (j‧ω) variable:
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where from Eqs. 8, 10, and 12, since Ei, �i ∈ ℜ+:

The z pole and υ residue fractional SLS model sets are

Identification of the � parameter set 
of the fractional SLS material model

An algebraic technique able to identify the � fractional SLS 
model parameters from E−1(ωk) = Θ(pk) = Θk, k = 1,…,Nem 
measurement estimates, �k ∈ � = [�1, ...,�Nem

] , is now 
introduced. The algebraic approach proposed by Levy (1959) 
is here adopted.

From Eq. 12,

(13)
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]
,
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A system of Nem linear equations in (α, β), 2‧m real 
unknowns, results

where m is assumed to be unknown at the identification 
stage.

From Eq. 16, a Vandermonde-like linear system in the α, β 
unknowns results, so that an ill-conditioned numerical problem 
may result if m is high or if max(ω)/min(ω) is high as well. 
The computational accuracy of the Eq. 16 system solution can 
be improved by introducing a normalized u real variable:
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Combining Eqs. 12–15,
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Since from Eq. 16 �i, �i ∈ ℜ, ∀i , in compact form, a lin-
ear system of Nem complex equations in real unknowns results

From Eq. 20, a linear system of 2‧Nem real equations in 
2‧m real unknowns results as well:

The {χ, μ} unknown parameters can be obtained by 
least squares solving of Eq. 21 by means of a singular 
value decomposition (SVD) based technique, and {α, β} 
unknowns result as well:

The {α, β} = {α, β}m solution can be found in principle 
with respect to any m assumed value. The �m = {�, �}  
associated poles and residues can be found as well by 
means of the following steps. The zi poles are the m zeros 
of the following polynomial function:

and the υi, i = 1,…,m system residues can be evaluated as 
follows:
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Identification of the Ξ parameter set 
of the fractional SLS material model

From Eqs. 9 and 10,

and from Eqs. 10 and 26,

A new Ψ(p) function can be defined as follows:

It follows that
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and from Eqs. 27–29,

The following result can be obtained:

and from Eqs. 8 and 31,

It results that the modulus and argument of any υi pole 
satisfy the following conditions from Eqs. 9 and 32:

The Ei, ηi material model element parameters are thus 
found to satisfy the following conditions as well (Eqs. 8–9, 
31–33):
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Equation 34 defines the relationship between the Υm 
and Ξm parameter sets.

The  {�i,�i
} ∈ {�,�}m pole and residue subset, associ-

ated to the i-th fractional SLS material model element with 
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{
�i, �i

}
  

identified sets by using the results found in Eqs. 8 and 34:

Defining {�,�}m = {{�
1
,�

1
}, ..., {�

i
,�

i
}, ...} , the {�,�}m   

pole and residue elements from {�,�}m  that does not belong 
to {�,�}m   result from {�,�}m = {{�,�}m, {�,�}m}.

The {�i,�i} ∈ {�,�}m  poles and residues associated to 
the ni = 1 fractional SLS material model elements must sat-
isfy, by means of the same previously indicated tolerance 
values, the following conditions:

The Ei, ηi, γi model element parameters can be found from 
Eq. 36, ηi = 1:
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Fig. 2    Stability plot example
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A Ξm set of model parameters, correspond-
ing to Nm fractional SLS elements, is found: 
�m = {(E1, �1, �1), ..., (ENm

, �Nm
, �Nm

)} . It must be outlined 
that since the solutions obtained from Eqs. 36 and 38 sat-
isfy the Eqs. 35 and 37 conditions, most of the computa-
tional solutions, i.e., the ones not associated to a physical 
material behavior, are virtually eliminated by following this 
approach. Nevertheless, different Nm order, material physical 
solution sets can be obtained with respect to any arbitrarily 
assumed m value, and the optimal N material model order is 
still not known at this stage.

Identification of the optimal material model order

The N optimal order value can be found by performing the 
identification approach, discussed in previous sections, for 
m = 1,…,mmax.

The solution stability of the {Ei, �i, �i}m ∈ �m   param-
eter set related to i-th element is evaluated with respect to 
any element of Ξm-1. The {Ei, �i, �i}m ∈ �m solution is stable 

(38)Ei =
|||||
zi
1

�i
1

|||||
, �i =

Ei

|||zi1
|||
, �i =

1

Λ
.

with respect to {Es, �s, �s}m−1 ∈ �m−1  if (γi)m = (γs)m-1 and 
(Ei, ηi,)m approximately coincides with (Es, ηs,)m-1 by means 
of a user-defined tolerance. This stability evaluation can 
be automatically performed. A stability plot graphical pro-
cedure can also be used to show the effectiveness of this 
procedure, and an example of a stability plot is shown in 
Fig. 2. The (Ei, ηi, γi)m solutions are plotted with respect 
to the (E∕�)1∕ � = (Ei

/
�i)

1∕ �i abscissa and to the m ordi-
nate value, by means of a graphical symbol associated to its 
stability properties. The meaning of the different symbols 
employed is detailed in Table 1, i.e., a stable solution must 
satisfy the previously defined conditions with respect to (γ, 
E, η), e.g., a (γi, Ei) locally stable solution must satisfy the 
stability conditions with respect to (γ, E), a (γi, ηi) locally 
stable solution must satisfy the stability conditions with 
respect to (γ, η), and a plotted unstable solution satisfies the 
stability conditions with respect to γ only. The total number 
of stable (Ei, ηi, γi), i = 1,…,N, selected element solutions 
coincide with the optimal N material model order.

E−1(j·ω) experimental estimates 
from forced vibration and creep relaxation 
measurements

In this work, material E−1(ω) experimental estimates are 
obtained from both forced vibration test and creep relaxa-
tion test data. Uniform slender beam specimens, homo-
geneously made of the material under study, were tested 
by means of a TA Instruments DMAQ800 system (Fig. 3) 
in flexural, clamped sliding equivalent boundary condi-
tions and in isothermal conditions. In the forced vibration 
tests, beam applied force and displacement output were 
both measured at the mobile beam specimen end, and the 
maximum applied strain is taken constant by means of a 

Table 1   Ξm solution stability conditions

Stability condition Graphical marker

Stable solution ◊
(� ,E) locally stable solution *
(� , �) locally stable solution ○
Unstable solution  × 

Fig. 3    Experimental measure-
ment test system
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closed loop control strategy. The value of the maximum 
applied strain is taken low enough to satisfy the assump-
tion of linear material behavior with respect to any mate-
rial under test.

E−1(ω) complex modulus estimates are obtained in the 
ΩH = [0.1, 200] Hz discrete frequency set from input–out-
put FRF data by means of the previously cited calibration 
procedure presented by these authors, taking into account 
the dynamic contribution of the beam distributed inertia, 
of the mobile measuring subsystem lumped inertia and of 
the instrument frame system.

Creep measurements are made by applying a step excita-
tion at the mobile beam specimen end, L being the beam 
length. Both excitation and response are measured in the 
[0, tmax] discrete time set, NC discrete values, where tmax is 
chosen at the measurement stage depending on the expected 
material creep behavior. σmax(ti,x = L) = σ0 flexural maxi-
mum axial stress and εmax(ti,x = L) flexural maximum axial 
strain measurements are estimated at the mobile beam end 
by means of the previously cited calibration procedure, and 
Ji = J(ti) = εmax(ti,L)/σ0, i = 0,…, NC-1, compliance test data 
are estimated as well.

E−1(ωk), k = 1,…,NL, complex modulus estimates in the 
low frequency range can be estimated from J(t) creep com-
pliance discrete data by means of the following procedure, 
mainly based on the algorithm developed by Evans et al. 
(2009) and here adapted to the case of solid viscoelastic 
materials.

By Fourier transforming the J(t) response to a unitary 
step:

(39)Ĵ(�) =
1

j ⋅ � ⋅ E(�)

but Ĵ(�) cannot be numerically estimated from discrete J(t) 
measured values since J(t) is not absolutely integrable over 
the time interval [− ∞, ∞]. By applying the Fourier trans-
form operator to J��

(t) = d2J(t)∕dt2 instead, the convergence 
of the Fourier operator can be easily obtained:

From Eq. 40, by substituting the numerical estimate of 
J
′′(
ti
)
 from Ji, i = 0,…,NC-1 creep time relaxation compli-

ance discrete test data, the following formula can be adopted 
to obtain E−1(ωk) complex modulus estimates for any ωk 
angular frequency:

It must be outlined that both the [0, ..., ti, ..., tNC−1
]   time 

set and the [�1, ...,�k, ...,�NL
]  frequency set do not need to 

be uniformly spaced.

Application examples

Identification from numerically simulated 
measurements

Two NC1 and NC2 simulated measurement test cases, 
obtained from within analytical known model data whose 
reference parameters are reported in Table 2, are used to 
validate the identification procedure.

A set of NH = 200 measurements are numerically simu-
lated in the medium to high ΩH = [0.1, 200] Hz frequency 

(40)Ĵ��(�) =
j ⋅ �

E(�)

(41)

E−1
(
�k

)
=

1

j ⋅ �k

⋅

(
NC−1∑
i=1

(
Ji − Ji−1

ti − ti−1

)
⋅

(
e−j⋅�k ⋅ti−1 − e−j⋅�k ⋅ti

))
; J0 = 0, t0 = 0.

Table 2   Numerical test cases
NC1 test case Model parameters Reference model (IM)H identi-

fied model
(IM)F 

identified 
model

N 2 1 2
γi 0.33

0.66
0.66 0.33

0.66
Ei [Pa] 7.3∙108

1.1∙109
8.935∙108 5.95∙108

8.89∙108

ηi [Pa∙sγi] 1.69∙1010

3.78∙107
2.944∙107 1.43∙1010

2.96∙107

E0

/
E(�) mean quadratic error 6.3∙10−2 4.9∙10−5

NC2 test case γi 0.25
0.5

0.25 0.25
0.5

Ei [Pa] 5.9∙1010

7.4∙1010
5.55∙1010 5.56∙1010

6.39∙1010

ηi [Pa∙sγi] 1.35∙1010

2.08∙1012
1.28∙1010 1.29∙1010

1.96∙1012

E0

/
E(�) mean quadratic error 6.1∙10−2 7.6∙10−4
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Fig. 4   a NC1 test case: E−1(ωk) 
numerical estimate (blue), 
E−1(ω) model fit estimate from 
the (IM)H (red) and the (IM)F 
(green) identified models. 
b NC1 test case: E−1(ωk) 
numerical estimate (blue), 
E−1(ω) model fit estimate from 
the (IM)H (red) and the (IM)F 
(green) identified models, fk ∈
[0, 5‧10−4] Hz

a

b

Fig. 5    NC1 test case: Ji numeri-
cal estimates (blue), J(t) model 
fit estimate from the (IM)H (red) 
and the (IM)F (green) identified 
models
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Fig. 6   a NC2 test case: E−1(ωk) 
numerical estimate (blue), 
E−1(ω) model fit estimate from 
the (IM)H (red) and the (IM)F 
(green) identified models. 
b NC2 test case: E−1(ωk) 
numerical estimate (blue), 
E−1(ω) model fit estimate from 
the (IM)H (red) and the (IM)F 
(green) identified models, fk ∈
[0, 5‧10−3] Hz

a

b

Fig. 7    NC2 test case: Ji numeri-
cal estimates (blue), J(t) model 
fit estimate from the (IM)H (red) 
and the (IM)F (green) identified 
models
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range by means of Eq. 3. E(ωk) estimates, NL = 200, in 
the ΩL = [10−6, 0.1] Hz frequency range, are obtained by 
applying Eq. 41 to NC = 1000, tmax = 105  s, numerically 
simulated Ji compliance measurements (Eq. 4). Random 
numerical noise was added to the simulated measurements, 
S/N = 120 dB average signal-to-noise ratio.

Table 2 reports the identification results obtained with 
respect to the NC1 and NC2 test cases. (IM)H refers to the 
identification results obtained with respect to the test data 
in the partial ΩH frequency range, while (IM)F refers to the 
identification results obtained with respect to the test data 
in the full ΩF = {ΩL,ΩH} frequency range.

The following parameters of the previously described 
identification procedure were chosen for the NC1 test case: 
Λ = 6, mmax = 18 for both the (IM)H and (IM)F identifi-
cation steps. The following parameters of the previously 
described identification procedure were chosen for the 
NC2 test case: Λ = 4, mmax = 15 for both the (IM)H and 
(IM)F identification steps.

Figures 4a and b show the E−1(ωk) virtual measurement 
test data versus the analytically estimated values from the 
identified (IM)H and (IM)F models, NC1 test case. Figure 5 
shows the J(ti) creep compliance virtual measurement 
test data versus the analytically estimated values from the 
identified (IM)H and (IM)F models, NC1 test case.

Figures 6a and b show the E−1(ωk) virtual measurement 
test data versus the analytically estimated values from the 
identified (IM)H and (IM)F models, NC2 test case. Figure 7 
shows the J(ti) creep compliance virtual measurement 
test data versus the analytically estimated values from the 
identified (IM)H and (IM)F models, NC2 test case.

Table 3   Beam specimens data

Material Length [m] Section area [m2] Density [kg/m3]

EC1 1.785∙10−2 1.7∙10−5 1.02∙103

EC2 1.785∙10−2 9.3∙10−6 1.15∙103

Table 4    Experimental test 
cases EC1 material (IM)H identified model (IM)F identified model

N 4 5
γi 0.5

0.5
1
1

0.5
0.5
1
1
1

Ei [Pa] 5.426∙106

9.262∙107

9.013∙109

8.588∙109

5.025∙106

1.037∙106

6.266∙109

1.189∙1010

2.465∙1010

ηi [Pa∙sγi] 1.784∙107

4.092∙106

2.131∙107

7.396∙106

1.667∙107

3.404∙106

1.435∙107

1.395∙107

2.094∙107

E0

/
E(�) mean quadratic error 2.695∙10−2 3.557∙10−4

EC2 material (IM)H identified model (IM)F identified model
N 1 5
γi 0.25 0.25

0.5
0.5
0.5
1

Ei [Pa] 1.181∙109 1.518∙109

7.163∙1010

2.316∙109

4.707∙1011

1.591∙1012

ηi [Pa∙sγi] 5.813∙108 5.657∙108

3.127∙1011

6.888∙109

3.529∙1010

2.505∙109

E0

/
E(�) mean quadratic error 5.79e∙10−3 8.7∙10−2
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An excellent agreement of the identified models 
with respect to the vir tual measurement data was 
obtained for both test cases in the frequency and in 
the time domain when the full Ω frequency range is 
taken into account.

Identification from experimental measurements

Two experimental test cases, referring to the EC1 and EC2 
materials, are considered. The EC1 material was obtained 
by mixing a commercially available epoxy dual component 
resin, Loxeal 31–10®, and recycled carbon fibers (length 
60 to 300 μm) with the following volume ratios: 30% for 
31 component, 60% for 10 component, and 10% for recycled 
carbon fibers. The EC2 material was obtained by mixing a 
commercially available epoxy dual component resin mate-
rial, Milliput®, with the 66–33% volume ratios between the 
hardener and the resin component.

The tested specimens data are reported in Table 3. The 
test temperature was held uniform, T = 35 °C, during all 
experimental test steps.

With respect to the EC1 material, J(t) creep compliance 
measurements were done according to the following test 
parameters: NC = 48 logarithmically spaced time values, 
tmax = 2.9·103 s, σ0 = 5·104 Pa. With respect to EC2 mate-
rial, J(t) creep measurements were done according to the 
following test parameters: NC = 45 logarithmically spaced 
time values, tmax = 1.68·103 s, σ0 = 5·104 Pa. For both the 
EC1 and EC2 materials under test, E−1(ω) estimates in the 
low ΩL = [10−6, 0.1] Hz frequency range, NL = 110 not uni-
formly spaced frequency values were obtained by means of 
Eq. 41 from the Ji estimates.

For both the EC1 and the EC2 test materials, E−1(ω) esti-
mates were obtained from forced flexural vibration measure-
ments in the medium to high ΩH = [0.1, 200] Hz frequency 

Fig. 8   a EC1 test case: E−1(ωk) 
experimental measurement 
(blue), E−1(ω) model fit 
estimate from the (IM)H (red) 
and the (IM)F (green) identi-
fied models. b EC1 test case, 
E−1(ωk) experimental measure-
ment (blue), E−1(ω) model fit 
estimate from the (IM)H (red) 
and the (IM)F (green) identified 
models, fk ∈[0,0.1] Hz

a

b
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Fig. 9    EC1 test case: Ji experi-
mental measurements (blue), 
J(t) model fit estimate from 
the (IM)H (red) and the (IM)F 
(green) identified models

Fig. 10   a EC2 test case: 
E−1(ωk) experimental measure-
ment (blue), E−1(ω) model fit 
estimate from the (IM)H (red) 
and the (IM)F (green) identi-
fied models. b EC2 test case: 
E−1(ωk) experimental measure-
ment (blue), E−1(jω) model fit 
estimate from the (IM)H (red) 
and the (IM)F (green) identified 
models, fk ∈[0,0.1] Hz

a

b
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range, NH = 202 not uniformly spaced frequency values, 
0.05% maximum strain.

Table 4 reports the identification results obtained with 
respect to the EC1 and EC2 test cases. (IM)H refers to the 
identification results obtained with respect to test data in the 
partial ΩH frequency range, while (IM)F refers to the identifi-
cation results obtained with respect to the test data in the full 
ΩF = {ΩL,ΩH} frequency range. The following parameters of 
the previously described identification procedure were chosen 
for the EC1 test case: Λ = 4, mmax = 25 for both the (IM)H and 
the (IM)F identification steps. The following parameters of the 
previously described identification procedure were chosen for 
the EC2 test case: Λ = 4 mmax = 25 for both the (IM)H and the 
(IM)F identification steps.

Figure 8a and b show the E−1(ωk) experimental meas-
urement test data values versus the analytically estimated 
values from the identified (IM)H and (IM)F models, EC1 
test case. Figure 9 shows the Ji creep compliance experi-
mental measurement test data values versus the analyti-
cally estimated values from the identified (IM)H and (IM)F 
models, EC1 test case.

Figure 10a and b show the E−1(ωk) experimental meas-
urement test data values versus the analytically estimated 
values from the identified (IM)H and (IM)F models, EC2 
test case. Figure 11 shows the Ji creep compliance experi-
mental measurement test data values versus the analyti-
cally estimated values from the identified (IM)H and (IM)F 
models, EC2 test case.

In both the experimental test cases proposed, the identi-
fied model fits are in good agreement with the experimental 
data, and it must be outlined that the (IM)F model identifica-
tion results show a significant improvement in accuracy with 
respect to the (IM)H model identification results in both the 
frequency and the time domain.

Conclusions

A technique for the experimental identification of the E(ω) frac-
tional SLS material model, made up of a series arrangement 
of Kelvin elements with fractional time derivative operators, is 
presented. The technique is non-parametric since the number of 
SLS elements is not assumed to be a priori known, but it can be 
obtained from the identification procedure.

The Levy algebraic approach is adopted to obtain a 
well-conditioned system of linear equations in the fre-
quency domain that can be solved by a least square SVD-
based procedure. A stability approach is adopted to obtain 
the optimal material model order.

Nonphysical solutions resulting from computational 
and experimental noise can be automatically discarded, 
so that a minimum order SLS fractional model is expected 
to result by applying the proposed technique.

The identification procedure was first validated by means 
of two numerical test cases in a wide frequency, not uniformly 
spaced, frequency range, and accurate identification results 
were obtained. Numerical noise was added to check the robust-
ness of the identification procedure. The procedure was then 
applied by means of experimental data estimates in a wide 
frequency range, obtained from forced vibration measurements 
and from creep compliance measurements. Two experimen-
tal test cases related to some composite polymeric materials 
were considered, and the identified equivalent material models 
showed to effectively fit the experimental measurements in 
both the frequency and the time domain.
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Fig. 11    EC2 test case: Ji 
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(blue), J(t) model fit estimate 
from the (IM)H (red) and the 
(IM)F (green) identified models
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