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DETAILS OF FIRST-PRINCIPLES
CALCULATIONS

Here we provide additional details of our density-
functional theory (DFT) calculations and the random-
phase approximation (RPA). As specified in the main
text, DFT calculations were performed using VASP [1, 2],
adopting the PBEsol exchange-correlation functional [3],
as well as the rSCAN meta-GGA [4] and the HSE06 hy-
brid functional [5, 6]. For the calculations using PBEsol
we employed the standard projector augmented wave
(PAW) potentials for O and Sr, with the Sr 4s and 4p
semicore states treated as valence states, and the GW
PAW potential for Ti with the 3s and 3p semicore states
included in the valence. For all other calculations we em-
ployed the GW potentials for each element (note that in
the case of oxygen, the O GW new potential which pos-
sesses d-projectors was used). Tight convergence cri-
teria were imposed in all DFT calculations by setting
the plane-wave cutoff to 700 eV, including a small Pulay
stress correction of −2.7 to −4.7 kbar due to the finite
plane-wave basis set size. We used a 8×8×8 Monkhorst-
Pack k-mesh to sample the Brillouin zone of the primitive
cubic cell consisting of 5 atoms (space group Pm3̄m),
while a 6× 6× 6 k-mesh ensures similar convergence for
the primitive tetragonal cell containing 10 atoms (space
group I4/mcm). The conventional cells of the cubic and
tetragonal structures are shown in Fig. S1. Structural op-
timizations were performed until the forces were smaller
than 0.2 meV/Å. Spin-orbit coupling was neglected, as it
was found to have no impact on the phonon instabilities
and the associated potential energy surfaces.

The RPA calculations were performed using the low-
scaling algorithm of Ref. [7]. The plane-wave cutoff was
set to 650 eV, while the energy cutoff for the response
function was 433 eV. To facilitate smoother convergence
of the RPA correlation energies, we employed a cosine
window function to smoothly cut off the contributions
from the largest 20% wave vectors components in the
response function. The number of imaginary time and
frequency grid points for calculating the independent-
particle polarizability was set to 12. Due to the large
computational cost of RPA calculations and especially
RPA forces, the Brillouin zone was sampled using a
6×6×6 k-grid for the primitive cubic cell and a 4×4×4

FIG. S1. Ball-and-stick model of the (a) cubic and (b)
tetragonal conventional unit cell of strontium titanate. The
gray arrows in (b) indicate AFD rotations of the oxygen oc-
tahedra.

k-grid for the tetragonal cell. These settings yield a rela-
tive energy accuracy of better than 0.2 meV/atom. Since
the RPA correlation energies converge very slowly with
the energy cutoff, an extrapolation procedure to the infi-
nite basis set limit is usually employed [8]. In this work,
the equilibrium RPA volumes were calculated using the
extrapolated energies following this procedure, by fit-
ting energy versus volume data with a Birch-Murnaghan
equation of state. As shown in Fig. S2, using the non-
extrapolated energies would result in an overestimation
of the optimized volumes by 0.4%. In order to train our
RPA-based MLFF, however, the non-extrapolated ener-
gies must be considered. This ensures consistency be-
tween energies and forces. To account for the infinite ba-
sis set limit, a small pressure of 8 kbar was then applied
to the system, restoring the correct equilibrium volumes.

MLFF TRAINING AND VALIDATION

The details of the kernel-based MLFF model adopted
and its implementation can be found in Refs. [9, 10].
The model follows the Gaussian approximation potential
(GAP) approach [11], where each atomic energy contri-
bution is expressed as a linear combination of kernel func-
tions. The kernel measures the similarity between local
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FIG. S2. Energy versus volume curves for (a) cubic and (b)
tetragonal SrTiO3 calculated using the RPA. The filled circles
are the non-extrapolated energies, while the empty circles are
the extrapolated ones. The solid and dashed lines are the
respective fits using the Birch-Murnaghan equation of state.
The vertical lines indicate the experimental (gray) and RPA
(colored) equilibrium volumes. The energies are given per
formula unit (f.u.) and are shifted to the minimum values. In
(b) the volume refers to the pseudo-cubic unit cell.

atomic environments. Here it was taken as the polyno-
mial kernel calculated from the dot product of normal-
ized descriptors vectors followed by an exponentiation by
ζ = 4. Similarly to Ref. [12], we used supercells contain-
ing 320 atoms and a 2×2×2 k-mesh in order to train the
initial MLFF based on PBEsol data. For the on-the-fly
training, the molecular dynamics (MD) simulations were
performed in two steps. First, starting from a 4 × 4 × 4
supercell of the cubic structure (320 atoms), we gradu-
ally heated the system from a temperature of 150 K to
350 K in 150 ps, letting the volume fluctuate at ambient
pressure. Then, we further trained the MLFF by starting
from a tetragonal structure and heating it from 10 K to
150 K for another 150 ps. First-principles calculations
are only performed for a small fraction of the MD steps,
here 626 in total. These structures were selected on the
basis of the predicted Bayesian error in the forces, which
measures the uncertainty of the MLFF predictions: when
this error is large, first-principles calculations are per-
formed, and the results added to the training dataset. In

this way, a robust training dataset is efficiently created.
To represent the local environment around each atom,
we used separable two- and three-body descriptors [10]
calculated using a Gaussian broadening of 0.2 Å for the
atomic distribution function and a cutoff radius of 6 Å.
We found the use of a relatively small broadening to be
necessary to accurately describe the soft phonon modes.
Up to 22 spherical Bessel functions (for the angular quan-
tum number l = 0) and Legendre polynomials of order
up to l = 4 were employed to expand the atomic dis-
tributions. Energies, forces and stress components were
weighted equally when solving the Bayesian regression
problem to determine the fitting coefficients.

To train the rSCAN and RPA-derived MLFFs we used
a ∆-learning procedure [13]. A new set of training struc-
tures was generated on the fly during MD simulations
with the same setup as for the original training set but
using smaller cells. 100 training structures containing
40 atoms (10 atoms) were collected, and for each struc-
ture we computed the difference ∆ between the rSCAN
and PBEsol (RPA and PBEsol) energies and forces. An
MLFF, denoted MLFF-∆, was fitted to reproduce such
differences for both rSCAN and the RPA, using descrip-
tors with a lower spatial resolution of 0.5 Å and 8 radial
basis functions. Then, the PBEsol data for all the 626
structures in the original training set were ‘corrected’ by
adding the differences predicted by MLFF-∆, both at the
rSCAN and RPA level. This step allows to finally train
an rSCAN and RPA-derived MLFF using the updated
training data. Note that in the case of rSCAN the differ-
ences in the stress tensors were also calculated, but not
for the RPA, and therefore they were not included in the
MLFF-∆ fitting in the latter case. Indeed, we tested that
the stress tensor could be accurately predicted from the
energy and force data alone.

To assess the accuracy of our MLFFs, Fig. S3 shows
the comparison between the energies and forces calcu-
lated for test datasets directly from AI calculations and
using the corresponding MLFFs trained to reproduce
PBEsol, rSCAN and the RPA. For PBEsol and rSCAN,
the test dataset consists of 150 structures of 320 atoms
sampled between 10 and 300 K [panels (a) and (b)]. As
reported in the main text, the RMSEs in the energies and
forces are, respectively, 0.18 meV/atom and 0.037 eV/Å
for PBEsol, and 0.22 meV/atom and 0.040 eV/Å for
rSCAN. For the RPA, we used a test set of 25 struc-
tures of 10 atoms each sampled at temperatures up to
350 K. PBEsol data for the same structures are also re-
ported for comparison [panels (c) and (d)]. The RMSEs
in the energies and forces are similar for PBEsol and the
RPA, namely 0.71 meV/atom and 0.031 eV/Å (PBEsol),
and 0.56 meV/atom and 0.033 eV/Å (RPA). The larger
error in the calculated energies per atom as compared to
calculations in the larger supercells is due to simple error
propagation with respect to the system size [13].

We further tested the accuracy of the MLFFs by com-



3

puting some key physical properties and comparing them
to direct ab initio calculations. Namely, from Table SI we
see that the structural parameters, AFD and FE mode
frequencies, and energy differences between the cubic and
tetragonal phase predicted by the MLFFs are all in ex-
cellent agreement with the ab initio ones. The phonon
dispersions computed using rSCAN and the associated
MLFF are shown in Fig. S4(b) and (c) for cubic and
tetragonal SrTiO3, respectively. For PBEsol (not shown)
we observe a similar level of agreement. Direct RPA cal-
culations yielding the phonon frequencies at the Γ and R
point of the cubic Brillouin zone are shown in Fig. S4(a),
and are in very good agreement with the prediction from
the MLFF-RPA. Finally, the potential energy surfaces
(PES) obtained by diplacing the atoms in the tetragonal
unit cell along the FE soft modes are reproduced very
accurately by the MLFFs (see Fig. 1(a) and (e) in the
main text). Fig. S6 and S8 show the agreement for the
2D PES calculated using MLFF-rSCAN and directly us-
ing rSCAN.

SSCHA CALCULATIONS

The SSCHA method is based on a quantum variational
principle in the free energy F [14]:

FH ≤ FH [H] = FH +

∫
dR
[
V (R)−V(R)

]
ρH(R) (S1)

where H is the ‘true’ Hamiltonian of the system, with
potential energy V , and H is a trial Hamiltonian which
is taken to be harmonic with the harmonic potential V.
Here we denote with R the full set of atomic positions
of the system, Ri,α (bold notation indicates a vector or
a tensor, i is an atom index, and Greek symbols indicate
Cartesian coordinates), and with R the average atomic
positions. The quantum probability distribution ρH(R)
associated to H depends explicitly on the average atomic
positions R and on the auxiliary force constants Φ, ρR,Φ.
It has a Gaussian form, allowing the integral in Eq. (S1)
to be calculated exactly.

The SSCHA method performs a stochastic minimiza-
tion of Eq. (S1) as follows. First, starting from the har-
monic dynamical matrices and an unperturbed supercell
structure, an ensemble of configurations is obtained by
randomly displacing all the atoms in the given supercell
according to the Gaussian distribution corresponding to
the harmonic phonons at a specified temperature. After
calculating the energies and forces for each configuration,
the anharmonic free energy and its gradient are com-
puted stochastically, and the minimization is performed
using a preconditioned gradient descent approach [15].
During the minimization, the average positions of each
atom Ri as well as the auxiliary force constants ma-
trix Φ are updated. By means of importance sampling,

the ensemble of configurations generated with the ini-
tial Gaussian distribution is exploited for the stochastic
minimization until it is no longer representative of the
updated probability distribution [15]. Here we set the
threshold for the Kong-Liu effective sample size to 25%
of the initial size. A new ensemble is then generated using
the updated distribution, and the procedure is repeated
until the free energy is minimized. Note that a more
efficient evaluation of the stochastic integrals could be
performed via the method recently proposed in Ref. [16].

To reach the anharmonic ground state at zero kelvin,
we generated 6 ensembles of 1500 configurations each us-
ing supercells containing 320 atoms for the cubic struc-
ture (4 × 4 × 4 replica of the 5-atom unit cell) and 270
atoms for the tetragonal structure (3 × 3 × 3 replica of
the 10-atom unit cell). For each subsequent temperature
considered (in steps of 25 K), one additional ensemble
was sufficient to minimize the free energy when starting
from the effective harmonic force constants and atomic
positions obtained at the preceding temperature. To ac-
curately compute the free-energy differences between the
cubic and tetragonal phase as a function of temperature
[see Fig. 3(c) in the main text], we adopted the same
270-atom supercell also for the cubic phase.

The anharmonic phonon frequencies are obtained from
the diagonalization of the (mass-scaled) free energy Hes-
sian ∂2F/(∂Ri,αRj,β) calculated at the equilibrium con-
figuration. This formally corresponds to the static ap-
proximation of the anharmonic SSCHA self-energy [17].
The Hessian of the free energy is given by:

∂2F

∂R∂R = Φ + Φ(3)Λ(0)
(
1−Φ(4)Λ(0)

)−1
Φ(3), (S2)

where Φ(3) and Φ(4) are the effective SSCHA third-
and fourth-order force constants, calculated as stochas-
tic averages using the usual Gaussian distribution ρR,Φ,
while Λ(0) is readily obtained from the effective harmonic
SSCHA phonons [17]. We found that in the range of
temperatures considered, the contribution coming from
Φ(4) can be safely neglected, as often found in other
works [15, 18]. The stochastic calculation of the free en-
ergy Hessian requires a larger number of configurations
than for the free energy. Converged results were obtained
by using 5000 configurations for each temperature (in-
creased to 8000 for the points shown in Fig. 3(d) in the
main text). Overall, these settings ensure that the com-
puted anharmonic phonons are accurate within 0.5 meV.
As a final assessment of the accuracy of the MLFFs,
we performed a SSCHA minimization directly from first
principles using the PBEsol exchange-correlation func-
tional and a 40-atom cubic supercell. The resulting
anharmonic phonons are in excellent agreement with
the ones computed using the MLFF. In particular, the
strongly renormalized FE and AFD phonons agree within
less than 0.3 meV.



4

TABLE SI. Structural parameters for cubic and tetragonal SrTiO3, energy differences between the two phases (∆Ec-t) and
AFD and FE phonon instabilities in the cubic phase. θz indicates the rotation angle of the octahedra around the z axis in
the tetragonal phase. The energy differences and the volumes are reported per formula unit, with ∆Ec-t calculated at the
experimental volumes for the RPA. The results from the MLFFs are compared to the corresponding ab initio calculations
(MLFF-PS indicates the MLFF trained on PBEsol) and to the experimental data [19, 20]. The values of c/a in parenthesis are
results at 0 K after taking into account the effects of anharmonicity and quantum fluctuations.

PBEsol MLFF-PS rSCAN MLFF-rSCAN HSE06 RPA MLFF-RPA Expt.

Cubic

a (Å) 3.8934 3.8929 3.8988 3.8989 3.8931 3.9040 3.9040 3.900

∆Ec-t (meV) 4.5 4.7 1.7 2.1 0.15 3.2 2.9

ωFE (meV) 8.4i 7.6i 10.4i 9.9i 15.8i 20.1i 17.4i

ωAFD (meV) 9.2i 9.5i 7.1i 7.9i 8.4i 8.1i 8.4i

Tetragonal

a (Å) 3.8848 3.8845 3.8934 3.8936 3.8910 3.8966 3.896

c/a 1.0050 1.0050 (1.0042) 1.0032 1.0030 (1.0021) 1.0013 1.0048 (1.0032) 1.001

V (Å3) 58.92 58.91 59.21 59.20 58.99 59.48 59.45 59.19

θz (°) 5.0 5.0 3.9 3.9 2.7 4.4 2.1

FIG. S3. Comparison between the (a, c) energies and (b, d) forces for test datasets obtained directly from AI calculations
and using the corresponding MLFFs. In (a) and (b) the AI calculations were performed using the PBEsol (black) and rSCAN
(red) DFT functionals, while in (c) and (d) we considered PBEsol (black) and the RPA (orange) with a reduced test set. In
(a) and (c) the energies are shifted to the minimum energy in each dataset E0. The lines are a guide to the eye.
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FIG. S4. (a) Phonon dispersions of cubic SrTiO3 calculated using different functionals (PBEsol and rSCAN) and the RPA,
including long-range dipole-dipole interactions. In the case of the RPA, the MLFF was used to compute the phonon dispersions
along high-symmetry lines in the Brillouin zone. A direct RPA calculation was performed for a body-centered cubic cell
containing 10 atoms, which yields the phonon frequencies at the Γ and R points of the simple cubic Brillouin zone. (b, c)
Comparison between the AI phonon dispersions calculated using rSCAN and the corresponding MLFF results for (b) cubic
and (c) tetragonal SrTiO3. Negative values denote imaginary frequencies.

FIG. S5. 2D potential energy surfaces for tetragonal SrTiO3 calculated at fixed volumes using the MLFF trained on PBEsol.
Each point corresponds to a configuration where the atoms are displaced along a ferroelectric soft mode, and shear strain is
applied to the unit cell. The mode amplitude and the c/a ratio are indicated on the x and y axis, respectively. In panels (a)-(c)
the ferroelectric mode is the A2u mode, and in panels (d)-(f) it is the doubly degenerate Eu mode. The volume in (b) and (e)
is the equilibrium one. In (a) and (d) the volume is compressed by 0.75%, and in (c) and (f) it is expanded by 0.75%. The
horizontal lines indicate the equilibrium value of c/a at each volume.
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FIG. S6. Same as Fig. S5, but using the MLFF trained on rSCAN.

FIG. S7. Same as Fig. S5, but using the MLFF trained on the RPA. Note the wider range of mode amplitudes on the x axis.
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FIG. S8. Same as Fig. S5, this time obtained directly from DFT calculations using the rSCAN functional. The comparison
with Fig. S6 confirms the accuracy of the MLFF trained on rSCAN. Similar calculations using PBEsol yield a comparison of
the same quality with the MLFF results in Fig. S5.

FIG. S9. Temperature-dependent phonon dispersions calculated using the SSCHA and the MLFF trained on (a, b) PBEsol
and (c, d) rSCAN data. The volumes are the zero-temperature ones, with the c/a ratio minimizing the temperature-dependent
anharmonic free energy. Panels (a) and (c) are for the cubic phase, and panels (b) and (d) for the tetragonal one (only the
high-symmetry ΓM line in the Brillouin zone is shown for the latter). The harmonic results are shown as dashed lines. In (d),
the light blue line corresponds to 75 K instead of 100 K.
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FIG. S10. Analysis of the effects of anharmonicity in the c lattice parameter elongation and lattice expansion within rSCAN.
(a) AFD and (b) FE soft modes as a function of temperature. The orange circles are the same results reported in Fig. 3 in the
main text, where the effects of anharmonicy on the lattice elongation (c/a ratio) are taken into account. The pink squares are
obtained with c/a fixed to the harmonic 0 K value, with the effect of artificially flattening the temperature dependence of the
A1g and Eg energies, and the brown diamonds correspond to calculations allowing for the full anharmonic lattice expansion.
We find a thermal expansion coefficient at room temperature of 2.46×10−5 K−1, in excellent agreement with the one extracted
from experimental data [20]. In this case, the AFD transition temperature is smaller (71 K) and the phonon energies slightly
decrease. As in Fig. 3 in the main text, experimental measurements are also reported, and the dashed vertical lines indicate
the experimental Tc. The empty symbols in the negative frequency region in (a) represent imaginary phonons obtained when
the symmetry of the structure is kept cubic across the whole temperature range. (c) Equilibrium c/a ratio obtained at fixed
volume (orange) and after taking into account volume expansion (brown). The pink data show the equilibrium harmonic value.
(d) Close-up of the FE soft mode in the tetragonal phase showing the splitting into the A2u (empty symbols) and Eu (filled
symbols) branches. The colors have the same meaning as in panels (a)-(c). If the c/a ratio is fixed to the harmonic 0 K
value, the sign of the splitting is the opposite. This conclusion holds also for RPA and PBEsol. Note that if only the c lattice
parameter is allowed to fluctuate, while keeping the in-plane lattice vectors fixed, we find an elongated lattice and a softer A2u

frequency (not shown), in line with the results of Ref. [21]. However, this is akin to modelling epitaxially strained SrTiO3 [22]
rather than the equilibrium structure.
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FIG. S11. Inverse of the dielectric function plotted against the square of the temperature up to 200 K. The dielectric function is
estimated from the Lyddane-Sachs-Teller relation, assuming that the temperature dependence only comes from the soft phonon
frequency (calculated from the RPA) and aligning the 0 K value to the experimental one [23]. As shown by the black (linear
fit) and light blue (square-root fit) lines, the measured T 2 dependence of the inverse dielectric function at low temperatures
is reproduced, followed by the linear T regime [24]. Our data do not capture the minuscule non-monotonic behavior of the
dielectric function observed in Ref. [24], as this would require to resolve the temperature-dependent soft phonon frequencies
with better than 0.1 meV accuracy.
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FIG. S12. Ferroelectric PES of BaTiO3 calculated by displacing the atoms in the cubic phase along one of the FE modes.
Results obtained using the LDA, PBEsol, rSCAN and HSE06 functionals are shown, as well as the RPA, all at the experimental
lattice parameter. The well depth is related to the transition between the paraelectric cubic phase and the FE tetragonal one.
As discussed in the main text, previous calculations predicted too low transition temperatures Tc. Neglecting quantum effects,
a Tc of 275 K was obtained using the LDA (after applying a negative pressure to compensate for the underestimation of the
lattice constant) [25], while using PBEsol Tc is about 182 K [26], as compared to the experimental value of 393 K. Note that
quantum effects would lower the predicted Tc by about 30 K [25]. These results imply that the energy barrier for the transition
is underestimated. Relating the computed transition temperatures to the calculated PES, our results indicate that the RPA
would restore good agreement with the experiment, while HSE06 would yield a too large Tc.
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