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Abstract

Fraud is a social phenomenon, and fraudsters often collaborate with other fraudsters, taking

on different roles. The challenge for insurance companies is to implement claim assessment and
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improve fraud detection accuracy. We developed an investigative system based on bipartite net-

works, highlighting the relationships between subjects and accidents or vehicles and accidents. We

formalise filtering rules through probability models and test specific methods to assess the existence

of communities in extensive networks and propose new alert metrics for suspicious structures. We

apply the methodology to a real database—the Italian Antifraud Integrated Archive—and compare

the results to out-of-sample fraud scams under investigation by the judicial authorities.

Keywords: Insurance Fraud Detection; Bipartite Networks; Statistically-Validated Networks.

1 Introduction and main challenges

Information and communication technologies allow for the storage of big data in very efficient,

and cost effective, data warehouses. This is also possible by consolidating and integrating data

with different levels of heterogeneity and from a variety of sources, including social media, email,

archives and documents. In the car insurance industry, accident claims offer heterogeneous and

multidimensional data as they include—not being exhaustive—the coded identity of all the

subjects directly involved in an accident. This includes individuals such as, drivers, passengers,

car owners, witnesses, and pedestrians; professionals, such as, doctors and lawyers. There is

also data on car repairs, as well as details about injuries, fatalities, requested amount, property

damage, place and time of the accident, and everything about the vehicles involved.

This variety and volume of data can be properly exploited through large-scale techniques,

integrating ad-hoc mathematical models and fast algorithms in powerful computers capable of

processing enormous amounts of data in short time frames. More specifically, it should be

possible to detect organized insurance frauds with this approach. The aim is to enhance the

predictive power of analytical tools by bringing to the surface hidden interconnections between

subjects and events. Indeed, such interactions are usually buried under noisy or spurious rela-

tionships. We will only be able to dig out the signal content by means of targeted strategies and

appropriate technologies.

The extension of the fraud phenomenon in insurance varies among countries and depends

on how the product classifies: life, health, motor and benefits. Experts1 admit that “detected

and undetected fraud is estimated to represent up to 10% of all claims expenditure in Europe.”

In their annual report—UK Insurance & Long Term Savings Key Facts—the Association of

British Insurer dedicates a section to the fraud phenomenon. In their 2021 report, they allege
1https://www.insuranceeurope.eu/publications/492/the-impact-of-insurance-fraud/
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that “fraudulent motor claims were the most common, with over 58,000 cases in 2019” and they

are valued up to £605m, which is 50% of the total volume of detected cases of attempted claims

fraud in 2019 (The Association of British Insurer, 2021).

The phenomenon is widespread and it goes from one side of the spectrum where opportunists

invent or exaggerate a claim, to the other extreme where highly organized criminal gangs set

up sophisticated motor fraud scams. To this end, in 2012 ABI launched the Insurance Fraud

Register (IFR) to convey all data on known fraudsters in a single database. The database was

equipped with a comprehensive package of analytics used to provide insurance intelligence.

Along the same lines, in 2012 the Italian Parliament passed a bill2 to entrust the IVASS3—

the Italian Institute for the Supervision of Insurance companies—with the “fight against fraud

in the motor liability insurance sector by analyzing and evaluating the information obtained

from the claims data bank”. The bill also gives the IVASS responsibility for managing the

Antifraud Integrated Archive (AIA) an industry-wide data warehouse where insurance companies

are compelled to upload a detailed description of all claims. Unlike IFR, AIA is a repository

collecting information coming from heterogeneous sources about the many actors and aspects

involved in a car accident. These range from the drivers to the injured parties (if any) and

other information recorded includes lawyers, medical examiners, insurance adjusters, witnesses,

the amount claimed, vehicles and many other aspects. It is a comprehensive and exhaustive

register of the claims issued from 2011 onwards, where, however, no explicit information about

fraudsters is given. Any conclusion must rely on statistical analysis and specific analytical tools.4

Since 2011, IVASS developed a set of alerts to signal to its stakeholders unusual levels of some

indicators (e.g., number of accidents of a driver, number of involved injuries, claimed amount).

Typically, these kinds of indicators are binary, measuring the presence or absence of a specific

claim characteristic. An alert is triggered when given thresholds are tripped based on recurrences

and cross-checks criteria.

The scientific literature offers a rich set of statistical tools for identifying insurance fraud

patterns. They can be usefully broken down into two wide classes whose main distinctive fea-

ture is that: they make use of training sets from the fraud and the non-fraud groups (supervised

methods); or they rely on “unlabelled” data where account of frauds, together with their covari-
2Decree-Law No 179/2012, article 21, converted to Law 221/2012 and Law 124/2017.
3Istituto per la Vigilanza sulle Assicurazioni, http://www.ivass.it.
4Note that, being a governmental archive, AIA includes the data collected by all of the insurance companies

operating in Italy and, therefore, it does not suffer from the limitations that companies experience due to the
limited information they have access to, i.e., only the one about accidents in which they are involved.
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ates, are not available (unsupervised methods). Both approaches have pros and cons, and there

is no “fit-all” method. (See, Derrig (2002); Viaene and Dedene (2004) for a review and Belhadji

et al. (2000); Bermúdez et al. (2008); Boyer and Peter (2018); Caudill et al. (2005); Gomes et al.

(2021) for model specifications and implementations.)

As observed, fraud is a social phenomenon and fraudsters often act in collaboration, with

different fraudsters having different roles. Supervised methods, although they add value to the

analysis, show two main drawbacks: first, their calibration is based on a set of known frauds that

are very difficult to obtain, and that are a very small sample with respect to all claims. Second,

they miss a peculiar feature of frauds in motor insurance, namely the existence of “criminal

infrastructures” that also encompass the professional profiles operating in this field. Network

models have been proved to be a successful methodology for identifying social phenomena. In

particular, networks methods are suitable for disentangling complex patterns and for obtaining

hidden signals from large and noisy data sets (Easley and Kleinberg, 2010; Newman, 2010).

In the vehicle insurance context, many software companies offer products implementing social

network analysis to extract fraud patterns from their databases. Nevertheless, scientific literature

lacks a formal and rigorous discussion on the subject matter. To the best of our knowledge, the

sole article interlacing graph theory and insurance fraud is by Šubelj et al. (2011), who describe

a decision support system, to unveil odd network structures in motor insurance claims. Their

approach draws on two basic characteristics of fraudulent behavior: (i) the “collaborative nature”

of fraudsters, involving many different actors, and (ii) continuous innovation in fraud mechanisms

that necessitates a flexible approach, so that “unlabeled relationships” can emerge as soon as

they are committed. A major drawback of Šubelj et al. (2011)’s system is the limited size of the

data samples it can handle. Indeed, Šubelj et al. build networks upon police records. That is

very restrictive since most of the claims do not go through police investigation activities. Indeed,

insurance companies typically prefer to avoid long and uncertain legal proceedings. When a data

warehouse is available—as in our case—suspicious structures have to first be validated by means

of a “filtering” stage, in order that only statistically-significant relationships are kept. This

consideration also follows the line indicated by Bauer et al. (2021), who point to the relevance of

adopting more advanced, data-driven approaches to solve this important problem in insurance.

The main contributions of our paper are threefold. First, we start by building bipartite

networks to highlight the relationships between subjects and accidents or between vehicles and

accidents. This is a general approach that allows for the inclusion of the whole spectrum of
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actors around a claim: from the drivers to the legal professionals. The dense networks obtained

has to be filtered out to cut away those connections that score a low likelihood level with

respect to random chance. In this respect, only structures with very strong ties will appear,

thus signalling potential fraudster groups. Clearly, we are aware that a statistical anomaly

cannot be considered a sentence of guilt. However, on the one hand, statistical anomalies are

already used in the literature to identify suspicious activity in the insurance sector, e.g., Li et al.

(2021) propose a nonparametric method for studying the misrepresentation in insurance data,

which also helps to spot suspicious individuals for the validation purpose. On the other hand,

information about structures with very strong ties in the network is vital for investigating units

as it strongly reduces the—virtually—uncountable number of structures, and, therefore, the cost

and the time needed to liquidate honest claimants.

Second, we formalize the filtering rules through probability models and we also test specific

methods for assessing the existence of communities for very large networks and we propose new

alert metrics for suspicious structures.

Third, we apply the above methodology to a real data warehouse—the AIA—and compare

results to out-of-sample fraud scams assessed by the judicial authorities. We carry over longitu-

dinal analyses from 2011 to the present to assess the persistence of suspicious relationships, and

cross-section analyses for collecting insights about the spatial structures of frauds throughout

Italy.

This paper is organized as follows: Section 1.1 lists the challenges one has to face when deal-

ing with big data in the context of insurance fraud detection. Section 2 introduces the basic

terminology and notation for bipartite networks, which are used to model relationships amongst

the agents of the car insurance system. We also formalize the notation for the statistically-

validated network (SVN) and, in particular, we describe the properties of the Bonferroni SVN,

which is used to adjust for multiple hypothesis testing and allows for the reduction of false pos-

itive links. Section 4 describes, in details, all the steps undertaken for the implementation of

our investigation system. This section includes, too, an out-of-sample analysis comparing a set

of known frauds with a set of accidents randomly picked from the AIA. The conclusions section

6 offers a discussion and rounds off the paper.
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1.1 Main challenges: heterogeneity, non-stationarity, localization effects and

community detection

The whole methodology is tailored to deal with a very large volume of data. Indeed, AIA is a

fully-fledged data warehouse containing detailed information about all the car accidents in Italy

since 2011: AIA recorded detailed information about more than 15 million accidents involving

(with different roles during and after each event) more than 20 million subjects and companies,

at the end of 2017, and it is quickly growing. (see subsection 3.1 for a more precise description).

The complexity of AIA requires specific analytical tools to extract fraudulent patterns and poses

challenges that need to be addressed through an advanced multi-level system. We list below the

main challenges we faced in analyzing AIA during the project development:

Challenge I Curse of dimensionality. The complexity of AIA arises from the combination of

two dimensions: to one extent, the variegate forms of its data that carries the informa-

tion related to each claim; to the other extent, the massive size of records that could

undermine—or make impossible—the application of methods that are effective for small–

medium size samples. Community detection is one such example (see subparagraph 4.2).

Challenge II Data quality. AIA is a complex collection of data coming from several hetero-

geneous sources (data warehouse). The meaningfulness and effectiveness of the decisions

IVASS takes based on the analysis of AIA are strictly dependent on the quality of the raw

data. This data needs to be pre-processed before any analytical method can be applied. In

Section 4.1 we illustrate the steps undertaken to reliably improve the quality of the data

for network analysis.

Challenge III Identification and frequency of frauds. Labelling a claim as fraudulent is not an

easy matter. The investigation units of the insurance companies usually adopt regression

models based on a set of indicators sensitive to the detection of fraud. Their output is an

indicator that a given instance contains elements typical of a fraud. The indicator could

be a continuous one, such as the one we report in Appendix A, according to our model,

or categorical one similar to one we report in Appendix B. Not all the claims deemed as

“anomalous” are then prosecuted. In general, the decision to open an in-depth investigation

depends on the cost of the claim settlement. Once triggers activate an inquiry, negotiations

also start. The possible result is that an agreement is reached and the case is closed, or

that the claimant withdraws their complaint, or that the case is taken to the Court. The
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only information available to IVASS concerns the claim withdrawals–not included in AIA

so far, because of information genericity. However, the number of claim withdrawals is

very small compared to the whole AIA, and they cannot be assumed as confirmed frauds.

Even smaller are the number of frauds assessed by the Court. The acquisition of this kind

of information is not systematic because legal authorities have no obligation to inform

IVASS.

Challenge IV Heterogeneity. The AIA data warehouse is populated with information about

all the actors involved in the “accident/claim chain”: from the claimant to the insurance

adjuster; from the witness to the lawyer; from any injured party to the physician. 5 The

main consequence is that subjects with very few connections (a witness, or an injured)

will “live with” others highly-connected (lawyers or car adjusters). The challenge here

is that any statistical model used to test for anomalies has to account for this kind of

heterogeneity to make sure that actors with a few connections will be marked off as not

being statistically significant.

Challenge V Detecting communities of fraudsters and monitoring their evolution over time.

Strictly linked to Challenge II, our method should be able to correctly maintain the corre-

spondence between nodes and communities of fraudsters detected through different points

in time. In fact, one big community detected today can result in two or more communities

in the future, and, vice versa, two or more communities today can become, subsequently,

an imposing connected component the needs to be monitored and vanquished in the fu-

ture. In Section 5 we present three examples of real and structurally-diverse communities

of fraudsters that are effectively monitored over time by the proposed tool.

Challenge VI Time and space localization. The data contained in AIA includes claims reported

since 2011, and it covers all the accidents that took place in Italy. Any probabilistic model
5One may be tempted to reduce the heterogeneity by excluding professionals, i.e., elements that form many

connections, at a first stage of the analysis, in order to focus on “ordinary people”, that is, people directly involved
in the accidents. Once some clusters of these people are identified, one could then test if some professionals
or companies have anomalous interactions with them, conditional on the identified clusters. Thus, given an
initial cluster of ordinary folks, it could then be amended by additional agents, if appropriate. However, some
professionals (e.g., lawyers and doctors) are at the core of the fraud network and represent the link among
seemingly unrelated accidents and subjects. Eliminating these professionals from the network, in most cases
will reduce our ability to identify structured criminal networks that, in our view, are more relevant than single,
(unstructured) ordinary-folk frauds. Therefore, in principle, no subject or professional can be excluded a priori
from the scam investigation. However, co-occurrences between subjects with specific roles in the same insurance
company are not tested for statistical significance. The rationale, is that, for example, the lawyer and the car
adjusters of the same company are very unlikely to participate in a fraud together.
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or data mining approach working with the whole database will run into a serious issue:

a small “perturbation” (the statistical anomaly) in the calm of the “sea of noise” (the null

hypothesis) will be readily highlighted, even though it is just a “ripple” and not a “tsunami”.

Let us put this in practical terms: two lawyers exercising their activity in the same city

could interact in a significant number of accidents, compared to all accidents in Italy. On

the contrary, if we restrict ourselves on the number of accidents in the environs of the

city, this relationship might lose its anomalous character. Similar examples can be found

in terms of time. Note that, focusing the investigation on ex-ante spatial or temporal

sub-samples of AIA is not a viable solution, since network of fraudsters, though they have

a restricted temporal or spatial perimeter, are not confined to administrative boundaries,

or limited to artificial temporal segments (years, semesters, etc.). Returning to example of

the lawyers, without any spatial restriction, we run the risk that lots of relationships, like

those described, are signalled as anomalies: whereas on a lower scale (region, city, etc.)

these would be considered to be normal.

Challenge VII Homophily. “Similarity breeds connections” McPherson et al. (2001), this is in

synthesis an outline of the concept of homophily. In crimes related to frauds, homophily

plays a relevant role as frauds require a rather high degree of cooperation, coordination,

and, therefore, trust among fraudsters. If not friends, they should be at least acquain-

tances, which suggests that, unless an external factor destroys the relationship, the same

fraudsters are likely to be involved in several frauds together over time.

Challenge VIII Trade-off between parsimony and the effectiveness of the fraud investigation

action. The process of fraud investigation is usually structured upon different levels of

severity. At lower levels, weak requirements are needed to issue an alert. The alleged

fraud is then passed to higher levels of investigation which typically require the direct

involvement of human operators. Anything with human operators is a high-cost activity

that needs to be pursued with parsimony. But, we also need to strike a balance between

in-depth anti-fraud analyses and scarce economic resources.
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2 Methods

2.1 Conceptual Framework

The complex interactions of people and vehicles through accidents find a natural representation

in network modelling. In particular, it is convenient for the purpose of our study to represent

the motor liability system as a bipartite network, where one set of nodes is given by people

(or vehicles) and the other set of nodes consists of accidents. The idea behind the antifraud

detection procedure is made very clear: people do not choose their counterpart when being

involved in an accident. This means that in a fully efficient system, every accident should occur

by chance. This is the null hypothesis of the work, and we search for statistical evidence to

falsify such a hypothesis. In the following sections we give a detailed description of the network

modelling methodology adopted to reach our objective.

2.2 Bipartite Complex Networks

Complex phenomena can be described through the relationships shared by their actors. A

bipartite network is the simplest—and the most natural—way to represent interactions occurring

among the entities of a system. In Fig. 1 we display a bipartite network where the entities of

the system are partitioned into two sets, U and S, and the relationship between any two nodes

of each set is reproduced through a link connecting the two nodes. In this work, U and S refer

to respectively people (vehicles) and accidents. There is an extensive literature on (bipartite)

network methodology and its application to the analysis of social systems. An illustrative, but

not exhaustive, list of papers include: movies and actors Barabási and Albert (1999); Song et al.

(2005); Watts and Strogatz (1998), authors and scientific papers Barabási et al. (2002); Guimera

et al. (2005); Newman (2001), email accounts and emails McCallum et al. (2007), mobile phones

and phone calls Onnela et al. (2007), the criminal-crime relationship for assessing generalist vs

specialist behaviour in crime Tumminello et al. (2013), the GOTCHA! system which is based

on a bipartite graph relating companies and resources (Van Vlasselaer et al., 2017). In graph

theory, a bipartite network is a graph with two sets of disjoint nodes. In the next section, we

provide the basic notation and definitions we will use throughout the paper.

We denote by G(V,E) a graph where V is the set of vertices and E is the set of edges

connecting any couple of vertices vi, vj ∈ V , where i, j = 1, 2, . . . , |V | and (vi, vj) ∈ E, where |V |

is the cardinality of set V . The neighborhood of a vertex vi ∈ V is the sub-graph of G composed
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Figure 1: Bipartite network

of the vertices vj ∈ V and the edges (vi, vj) ∈ E. We denote by N(vi) the neighborhood of vi

and by deg(vi) the degree of vi, i.e., the number of edges incident to the vertex vi. If there are

no loops, deg(vi) coincides with the number of vertices of N(vi), excluding vi itself.

A bipartite graph is characterized by two sets U, S ⊂ V , such that V = U ∪S and U ∩S = ∅;

moreover, ∀i = 1, 2, . . . , |U | and ∀j = 1, 2, . . . , |S| the edge (ui, sj) ∈ E cannot have both vertex

in the same set. We usually denote by G(U, S,E) a bipartite graph and we can represent it by

a |U | × |S| matrix known as bi-adjacency matrix A, where the element aij is one when there is

an edge from vertex ui to vertex sj , and zero otherwise,

(A)ij =

 1, if (ui, sj) ∈ E

0, otherwise.
(1)

The properties of bipartite networks are typically investigated by analyzing the so-called one-

mode network or co-occurrence network. This is a new graph in which there is a link between

two vertices of the set U if they share one or more vertices of the set S. Analogously, elements

of the set S can be “projected” onto the set U , thus producing a new unipartite network.

2.3 Projected networks

The one-mode network is a weighted network, where the weight of a link is set according to a

specific weighing function l : U×U → R. Formally, given the bipartite graph G(U, S,E), the one-

mode graph of U (people or vehicles) with respect to S (events) is the weighted graph denoted

by P(U,F), where U is the set of vertices and F is the set of edges. For any i, j = 1, 2, . . . |U |

and i ̸= j, a link (ui, uj) is set and included in F, if l(ui, uj) > ξ, where ξ ∈ R.

The simplest weighing function imputes to each element of the weighting matrix W a value
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Figure 2: One-mode network

corresponding to the number of co-occurrences between ui and uj , i.e., l(ui, uj) = |N(ui)∩N(uj)|

and ξ = 0:

(W )ij =

 |N(ui) ∩N(uj)|, if N(ui) ∩N(uj) ̸= ∅

0, otherwise.
(2)

Mappings like l(ui, uj) are also know as similarity functions and they play a crucial role in

reducing the connection density of the projected network by filtering out those links that are

considered to be not significant according to given criteria (see Section 2.4).

One-mode networks can be obtained through the projection of both sides of the bipartite

network onto the respective sets. In Figure 2 we show the one-mode projections extracted

from the bipartite network given in Figure 1 when using the co-occurrences similarity function

described above, and where edges with weights higher than one are marked by a bold line.

Depending on the characteristics of the original system, a projected network can also take the

form of a directed graph, i.e. a graph where all the edges are directed from one vertex to another.

For our purposes, however, it will suffice to focus on the undirected graph alone.

2.4 Statistically-validated networks (SVN)

In several real-world applications, the projected network turns out to be dense, that is, the

number of links is orders of magnitude larger than the number of vertices. This kind of density

may hide the topological properties of the system, e.g. the presence of communities and other

emergent properties.

Reducing the number of edges, by keeping those which carry the essential information about

the structure of the system, is, therefore, a crucial part of our analysis. This is particularly true

with respect to the arguments in Challenge I. Indeed, by setting a low value of the threshold, ξ,

can lead to a poor resolution of the network and the analysis of its topological properties can
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be misleading (Kenett et al. (2010), Laloux et al. (1999)).

As highlighted in Challenge IV, we deal with bipartite networks characterized with their

high level of heterogeneity in terms of vertex degree. In this respect, a validation process where

co-occurrences are tested against a unique threshold will lead to filtered networks where nodes

(and their respective links) are validated just because they have high degrees, and, therefore,

sizeable intersections with other nodes are likely to be displayed. In the claim context, that would

mean that, for example, subjects like car adjusters would be over-represented in the validated

network because of their “natural” activity within the claim process. Conversely, nodes with

lower degrees (e.g., drivers) will be excluded a priori, thus removing interactions which can

bring to light hidden anomalous behaviors.

To this end, we describe the co-occurrence between two nodes as a conditional event where

the conditioning evidences are the degrees of both nodes and the total number of elements

in the projecting set of the bipartite network. Formally, given the bipartite graph G(U, S,E),

∀ui, uj ∈ U , we define by

(nij |ni, nj , N), (3)

the conditional co-occurrence, where nij = l(ui, uj) is the unconditional co-occurrence, ni and

nj are, respectively, the degree of ui and uj , and N = |S| is the total number of nodes of the

projecting set S6.

Observe that the conditional co-occurrence (3) has just a symbolic meaning, however, its in-

troduction allows comparisons with the—more substantial—conditional threshold that is defined

as follows:

(ξij |ni, nj , N) = Q(α), (4)

where Q(α) is the right-tail α-quantile of the hypergeometric distribution,

Q(α) = inf

{
q ∈ Z+ : α ≥

min(ni,nj)∑
x=q

Hyper(x|ni, nj , N)

}
, (5)

and,

Hyper(x|ni, nj , N) =

(
ni
x

)(
N−ni
nj−x

)(
N
nj

) . (6)

In practice, to avoid an ad-hoc choice of the acceptance threshold ξ, that would clash with the
6We use the conditional notation to stress the fact that the considered null hypothesis describes nij given the

observed marginals ni, nj , and N , which are treated as parameters of the hypergeometric distribution in Eq. 6).
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resolutions in Challenge I and IV, we benchmark against a random model of the co-occurences

between two nodes, whose distribution function is given by (6). Finally, the level of α is chosen

to guarantee that ξij corresponds to extreme, tail, values of the random variable.

Remark 1. We specifically adopted the Hypergeometric distribution (6) to model the random

co-occurences among vertices. It exactly computes the probability that k co-occurences take

place when nj links depart from node uj and ni links depart from node ui. This is easily

assessed if we describe the event using an urn model where, n = nj marbles are extracted

without replacement from an urn with a total of N = |S| marbles, and in which the urn contains

ni = K marbles with a given property. In this respect, P (X = k) is the probability that the

sample n, drawn without replacement from the urn, shows exactly k marbles with the chosen

attribute. It is worth highlighting that, the Hypergeometric distribution, in addition to being

the exact probability measure, implicitly accounts for the heterogeneity of the set U . Indeed, the

probability of a given intersection depends on the marginal distribution of the set U through the

vertex degree ni and nj . In absence of heterogeneity, that is, if deg(ui) ≃ deg(uj), a binomial

distribution would be sufficient to approximate P (X = k).

Remark 2. Similarity measures that account for the marginal distributions of ui and uj , i.e.

that explicitly make use of ni and nj in their formulas, are not eligible to face the heterogeneity

challenge. For example, given the bipartite graph G(U, S,E) and the associated adjacency matrix

AM×N , where M = |U | and N = |S|, the Pearson correlation coefficient between any two binary

row vectors of A, ρ(Ai, Aj), is a measure of the similarity between nodes ui and uj , where nij

is “adjusted by” the degree of the two nodes, ni and nj . The conditional co-occurence (3) is

explicitly given by

(nij |ni, nj , N) = ρ(Ai, Aj) =
nij − ni nj

N√
ni nj

(
1− ni

N

) (
1− nj

N

) . (7)

If we consider real instances where N ≫ ni, nj , for classes of nodes with almost the same

vertex degree, ni ≃ nj = K, we can approximate the relationship (7) as follows:

ρ(Ai, Aj) ≈
nij
K
. (8)

Equation (8) clearly shows that if we set the threshold ξ to a high level in order to reduce the

complexity of the network, we will very likely be able to exclude (unless nij grows with almost
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the same pace of the vertex degree K) all those nodes which characterize as hubs, i.e. nodes

with a high vertex degree K. In fraud investigation, that would imply the exclusion, a priori, of

subjects like lawyers or car adjusters. Conversely, a low threshold level ξ, calibrated to include

node hubs of peculiar interest, would yield a very dense and uninformative network: even drivers

sharing a single accident will be deemed as significant and so included in the projected network.

Armed with the conditional threshold ξij , inferred from the null distribution Hyper(x|ni, nj , N),

the link (ui, uj) is statistically significant if

(nij |ni, nj , N) ≥ (ξij |ni, nj , N). (9)

It is worth noticing that the validation rule in (9) is possible because both elements are

conditioned to the same set of events, which, eventually, simply turns to verifying that nij ≥ ξij .

Finally, we denote by P(U,Fα) a statistically-validated projected network, where Fα is the

set of links which passed test (9), given the α-quantile of the hypergeometric distribution.

2.5 Multiple hypothesis testing

The validation test obtained from the rule (9) uses the assumption that the null hypothesis of a

random co-occurrence between the couple of nodes (ui, uj) follows a hypergeometric distribution.

An alternative way of presenting the validation test (9) is to express it in terms of p–values.

In this respect, the probability that a value larger than or equal to nij is observed by chance,

under the hypothesis of a random co-occurence (6), is given by:

p–value(nij |ni, nj , N) =

min(ni,nj)∑
x=nij

Hyper(x|ni, nj , N). (10)

The hypothesis H0 postulates that the link between the two nodes ui and uj is a noisy,

random, link following a hypergeometric distribution. We reject such a hypothesis if the p–value

given by the expression (10) is less than a given confidence level α.

More precisely, the p–value given in (10) tests the excess of co-occurrences between any pair

of nodes linked in the projected network, and the test takes fully into account the heterogeneity

of nodes ui and uj , since degree ni and nj correspond to the actual values observed in the real

bipartite network. To claim that the number of co-occurrences nij between nodes ui and uj is

too large to be consistent with the null hypothesis of random co-occurrences, we introduce a
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threshold α of statistical significance to be compared with the p–value.

Using the p–value formulation allows us to better deal with a known limit of statistical

validation when multiple tests are performed.

Indeed, given a projected network P(U,F), the construction of a statistically-validated one-

mode network requires a number of tests which grows with the square of |U |. In particular, in

the worst case, the number of tests amount to TU = |U ||U−1|
2 , and the validated network will

contain as many links as |Fα| < TU . Note that, in general, |U | is very high (order of millions).

Given a significance level α, we then expect that at most the α · 100% of such repeated tests

will falsely reject H0.

There is a wide literature that deals with multiple hypothesis testing (see, for instance,

Wilcox (2016) and the references therein). We control the family-wise error rate (FWER) for

repeated testing: the probability of making at least one Type I Error7.

In our fraud context, the number of tests in the family is given by TU and the FWER controls

the probability that at least one link between two subjects is significant (suspicious fraudulence),

when in reality it is just a random fluctuation.

From now on, with a slight abuse of notation, we will denote by P(U,Fα) a statistically-

validated projected network, where α is the family-wise error rate.

Among the different procedures to control FWER, we choose Bonferroni’s method to validate

our networks. There are two main reasons for such a choice:

• First, Bonferroni makes no assumption about the dependence structure of the p–values.

We cannot exclude the possibility that a certain degree of dependence is to be found in

our p–values. This is due to the validation process of the network which can involve the

same node in different tests.

• Second, as is well-known, Bonferroni’s control is more conservative with respect to other

methods. The lower power of Bonferroni’s control is a desirable property in the fraud

context. Indeed, by falsely accepting the null hypothesis more often, i.e. by deeming a

true link between two subjects as being due to random fluctuations, we further reduce the

complexity of our network and meet the prescriptions arising from Challenge I and VIII.

Needless to say, in fraud management a test with a lower power is preferable since it is

implicitly in consonance with the principle of the presumption of innocence.
7If the tests are independent, the probability that at least one test is falsely rejected, i.e. we make a type I

error, is 1− (1− α)TU . The latter value is virtually equal to 1, even for moderate values of TU .
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Bonferroni’s correction can be obtained as corollary to the Boole’s inequality Wilcox (2016).

Given a statistically- validated one-mode network, P(U,Fα), the true positive links Fα are the

outcomes of the validation tests. The set of links Fα is not known ex-ante, but, as seen above,

we definitely have that |Fα| < TU .

We denote by Lk = Lij the event in such a way that the hypothesis of a random linkage

between (ui, uj) is rejected, while the alternative is true,

Lk = Lij = (pk < αB), (11)

where k ∈ Fα, pk = p–value(nij |ni, nj , N), and αB is the single test Bonferroni’s correction.

To control the FWER at the level α, we need that

P

 ⋃
k∈Fα

Lk

 ≤
∑
k∈Fα

P (Lk) =
∑
k∈Fα

P (pk < αB) < αB |Fα| < α, (12)

The first inequality is the Boole’s inequality and the last inequality holds if we set αB = α/TU .

The Bonferroni correction indicates that, given a univariate global threshold of statistical

significance, α, then the statistical threshold for each single test is αB = α/TU . The Bonferroni

Statistically-Validated Network, or simply the Bonferroni Network (BN), is obtained by filtering

a given real projected network, in order to only keep links that display a statistically-significant

number of co-occurrences.

Notice that, if we substitute for αB in (5), the corresponding conditional threshold is much

higher than the threshold obtained using α, making the acceptance of a conditional co-occurrence

nij more demanding.

A remarkable property of BN, in conjunction with the null hypothesis that random linkages

follow a hypergeometric distribution, is that the co-occurrences nij = 1 are always excluded

from the resulting one-mode networks. Such a property is highly desirable in the fraud context

because all node (subject or vehicle) pairs (ui, uj) that are connected through only one accident

represent common cases in a database of casualties (e.g the accident between two drivers), and

their value is of little significance from an anti-fraud point of view.

In Proposition 1 we prove the general result that allows for the a priori exclusion of all the

co-occurrences nij = 1, leading to a considerable saving in terms of computational time and

storage space.
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Proposition 1. Let be G(U, S,E) a bipartite network and let P(U,F) be the one-mode projection

of U with respect to S. Let also assume that ∀ui, uj ∈ U , and i ̸= j, the null hypothesis

of a random linkage between ui and uj is given by Hyper(nij |ni, nj , N), where ni and nj are,

respectively, the degree of the nodes ui and uj, and N = |S|. Then, a link with co-occurrences

nij = 1 never belongs to the BN P(U,Fα), if

TU ≥ αN, (13)

where TU is the number of test in the family and α is the family-wise error ratio.

Proof. According to the hypergeometric distribution, it is trivial to show that

p–value(nij = 1|ni, nj , N) > p–value(nij = 1|1, 1, N) =
1

N
. (14)

Recall that, a link with co-occurrence nij = 1 is included in the BN if p–value(nij =

1|ni, nj , N) < α
TU

, which, in light of the inequality (14), requires that

α

TU
>

1

N
⇔ TU < αN. (15)

Remark 3. Note that, the inequality (15) is never true for meaningful, real, applications,

so links with co-occurrences nij = 1 are in no circumstance validated. This is clearly shown in

Figure 3 where all the p–values labelled with nij = 1 are beyond Bonferroni’s threshold (the

vertical dashed line)8.

To some extent, the result of Proposition 1 also partially affects co-occurrences nij > 1.

In this case, we cannot exclude a priori co-occurrences nij > 1 or a selected part of them.

However, we observe an appreciable reduction in the number of validated links for small values

of the co-occurrences nij . As shown in Figure 3, a higher number of points (indicating the

p–value frequency) lie to the right of Bonferroni’s threshold as the number of co-occurrences

decreases. Fewer and fewer links are validated as the degree of the co-occurrences gets smaller.
8We perform the statistical validation process over the network of subject-accident for the entire AIA. In

particular, in Figure 3 we report the p-values obtained from testing the presence of links between pairs of
subjects with a number of co-occurences nij ∈ {1, 2, 3, 6, 8}. All tests involving nij = 1 are not statistically
significant (p-values greater than αB = 10−10). Moreover, they represent a considerable proportion of all tests,
meaning that the Bonferroni correction approach leads to a quite efficient procedure in computational terms.
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Figure 3: p–value frequencies for different levels of the co-occurrences nij . The validation process
is carried over a network of subject-accident for the entire AIA. The case nij = 1 shows that all
the p–values are beyond Bonferroni’s threshold. The higher the number of co-occurrences, the
higher the number of links validated.

Such a result is in line with the requirement of Challenge VIII, where the need for an effective

anti-fraud activity comes up hard against limited economic resources. In this respect, it is

arguably preferable to focus on networks with stronger links, by statistically pruning away less

valuable bonds (in a fraudster sense).

3 Data

3.1 The IVASS Antifraud Integrated Archive

The Antifraud Integrated Archive (AIA) is the outcome of the integration of several databases,

managed by both public and private bodies. The Claim Register, managed by IVASS, constitutes

the central core of AIA. Insurance companies upload in real-time the features which identify each

claim. AIA also embodies information from several external databases: vehicle register; driver

license register; insurance coverage database; black box files; insurance expert list; and public

vehicle register.

The feature data of each claim includes drivers and subjects injured (if any), lawyers, medical

examiners, insurance adjusters, witnesses, amount claimed, vehicles and any other person or

company directly or indirectly involved in the accidents. It is outside the scope of the present
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Entity Name Main Attributes Definition

Accident Id Date and place of the
accidentDate of the accident

Place of the accident

Claim Date of claim

Principal claim elementsInsurance company
Claimant Id
Claim status

Subject Claim Claim Id Identification of the subject
filing the claimSubject Id

Subject role

Subject Accident Subject involved Id
Identification of the subject
and vehicle involved in the
accident. The value of the
Subject involved role can be:
driver, pedestrian, passenger

Vehicle plate
Involved subject role
Driver license status
Flag vehicle owner
Subject involved role
Insurance policy status

Claim settlement Amount settled Settlement details of the
claimSettlement date

Subject recipient

Vehicle Plate

Description of the vehichles
involved in the accidents

Type
Model
Brand
Value
Ownership
Damage type

Table 1: A sample of the major data entities along with their attributes. AIA contains 21 tables
and each tuple of data (a single row of the database) has 81 fields.

paper to describe the relationships between objects and information in AIA. Table 1 displays a

broad overview of the main entity types and the available attributes.

Being a data warehouse, AIA is not volatile: in other terms its records are not removed over

time. It recorded 16,050,689 accidents and 21,574,410 subjects involved (not just claimants) at

the end of January 2018, and it is quickly growing in size. Indeed, the corresponding amounts

are, respectively, 18,592,317 (increase of 15.8%), and 23,943,787 (increase of 10.9%), for the end

of February 2019.

The primary object of interest in assessing fraudster scams is the relational information

between subjects and accidents. Likewise, association linkages between vehicles and accidents

provide useful insights about unusual traits in claims. For example, in exploring the subjects vs

19



accidents relation, we are interested in answering the following questions:

• How many subjects in the database are involved in exactly K = 1, 2, . . . accidents?

• How many accidents in the database see exactly K = 1, 2, . . . subjects involved?

Similarly, the vehicles vs accidents relation poses the same questions with vehicles in place of

subjects.

In graph theory, responding to such questions means looking at the degree distributions of the

two sides of a bipartite network. In our context, we build and analyze the degree distributions

of the two sides of the vehicles vs accidents and subjects vs accidents networks.

In Figure 4 we display the distributions of the degree of the vehicles vs accidents network.

The left panel shows the percentage of vehicles with exactly K = 1, 2 . . . accidents, i.e., the

number of links incident in each node of the vehicle’s side of the bipartite network vehicles vs

accidents. The right panel displays the degree distribution seen from the opposite front, i.e.,

the number of links incident in each node of the accident side (see also Figure 1 for a general

representation of bi-partite networks).

We cut the tail of the two distributions to K > 20 for a better scaling of the two figures.

However, a significant number of events (accidents and vehicles) falls in the tails of the distri-

butions. Notice that, such events cannot be excluded a priori as outliers or deemed as frauds.

For example, Figure 4 (left panel) clearly shows that the bulk of vehicles had incurred in 1-2

accidents. Similarly, most of the accidents link 1-2 vehicles (right panel). These observations are

in line with common sense; in fact, a vehicle during its life is expected to have a few accidents,

and, usually, a claim sees two vehicles involved. Less intuitive is, however, the existence of some

vehicles with more than 50 accidents9. The coexistence of a few nodes with a high number of

incident links (central nodes or hubs) with the great majority of nodes having few links is one

of the characteristics of such networks. This wide-range dissimilarity is more pronounced in the

subject-accident network where most of the subjects are involved in 3-5 accidents, (Figure 5,

right panel), while roughly 4,000 subjects are involved in more than 100 accidents, and a few

handfuls register the impressive number of more than 50,000 accidents. Such massive subjects

play a technical role in the claim process. They are lawyers, insurance adjusters, physicians and

all those actors who were not directly involved in the accident.
9Less pronounced are the extreme cases of vehicles involved in a single claim: the highest number of vehicles

involved in a single claim amount to 86, and these types of claims usually concern crashes on the motorway.
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Figure 4: The left panel displays the percentage of vehicles with exactly K = 1, 2 . . . accidents.
The right panel displays the percentage of accidents with exactly K = 1, 2 . . . vehicles involved.
Both distributions are highly skewed (positively): most of the vehicles have few accidents, but
some of them are involved in more than 20. Likewise, most of the accidents link 1 or 2 vehicles,
while a small percentage of accidents involves more than 20 vehicles.

As already mentioned (see Challenge IV in the Introduction), we cannot a priori exclude

subjects, accidents or vehicles in the tail of the distribution. The reason is that it would be

an ad-hoc choice which would eliminate actors who are sometimes involved in frauds. On the

other hand, the inclusion of highly-connected hubs would overshadow the relationships with (and

among) those actors (drivers or witnesses) with few connecting links, who are usually directly

involved in the accidents.

As remarked in Section 2.4, the heterogeneity of node degrees also reverberates in the sta-

tistical validation of the co-occurrences nij . This justifies the use of a probability model, such

as the hypergeometric one, which assesses the over-representation of a given co-occurrence con-

ditionally to the marginal distributions of the node degrees ni and nj .

Heterogeneity is a characteristic of scale-free distributions whose power-law behavior is in the

tails, with exponent 2 ≤ γ ≤ 3, gives rise to divergent moments (second and higher moments).

In real networks, however, moments are always finite. But they can be very high, making them

of little practical use. For a thorough discussion see, for example, Newman (2010).

It is of marginal interest for the analysis carried out in this paper to estimate with high

precision the exponent of the power-law degree distribution of our networks. Although we
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Figure 5: The left panel displays the percentage of subjects involved in exactly K = 1, 2 . . .
accidents. The right panel displays the percentage of accidents in which K = 1, 2 . . . subjects are
involved. The two distributions maintain the same traits of the Accidents/Vehicles distributions,
but with a smoother reduction in the percentage of the events when K becomes large.

are aware that a graphical approach can lead to false conclusions about the true nature of the

phenomenon, we look at the log-log chart of the complementary cumulative distribution function

(CCDF) of the degrees distribution,

F (d) = P (deg(v) ≥ d) , (16)

and we focus our attention on the slope of the line fitting the tail of the CCDF for high values of

the degree. In Figure 6, we display the CCDF of the two networks described above. The purple

bullet dots indicate the data points of the distributions used to estimate the slope of the tails.

As is well known, if a distribution follows a power law with degree γ, its CCDF also obeys a

power law with degree γ − 1.

The estimates of γ range between 2 and 5 showing different degrees of heterogeneity. In

particular, the panels on the left (top and bottom) concerns the subjects vs accidents bipartite

network with a more pronounced power-law behaviour for the degree of the subjects side of

the network. Note that, the order of magnitude in the number of accidents per subject spans

between 1 and 5, and “node hubs” with more than 10,000 accidents attributable to professionals

operating in the insurance sector.
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Figure 6: Complementary cumulative distribution function (CCDF–light blue) and estimate of
the power-law exponent (dashed red line) on the tail of the distribution (purple). The network
heterogeneity springs from the accidents side of the networks, where γ < 3 and there are “node
hubs” with more than 10,000 accidents.

The panels on the right, concerning the vehicles vs accidents bipartite network, show similar

forms of behavior. However, observe that, although γ < 3 for the degree of the vehicles, the

heterogeneity between the two sides of the network is more limited due to the absence of “node

hubs” with huge number of links.

The take-home message is: these kinds of empirical characteristics suggest that when fil-

tering the network to find anomalous patterns, only the heterogeneity of the subject side has

to be taken into account. A noteworthy implication is that the hypergeometric distribution

(10) is a consistent, precise theoretical method for validating node bonds. Indeed, double het-

erogeneity requires more complex probability models, which are often more challenging from a

computational point of view (Puccio et al., 2019; Tumminello et al., 2013).

4 ISAIA: an investigation system for Antifraud integrated activ-

ity in the motor insurance sector

ISAIA (Investigation System for Antifraud Integrated Activity) is a system that implements the

procedures to investigate the existence of networks of fraudsters in the motor-claims sector. The

framework contains various modules whose functionalities are described in Table 2. In Figure 7,
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we illustrate the key relationships among the modules and their role in the fraud assessment

flow.
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Module Function Input Output

Data pre-process-
ing

Analyses of data integrity to remove records that
are unreasonable or anomalous. Removals of
claims where either the subject or the vehicle
appear in white-lists.

Raw AIA records and registers
of the vehicles and subjects

A sub-sample of AIA records,
nearly 90% of the initial data.

SVN builder Builds a SVN projected network using the hy-
pergeometric test with Bonferroni correction
(see Section 2.5)

A list of co-occurrences nij be-
tween the nodes of a bipartite
network

A list of nodes with their val-
idated links

Bipartite SVN
builder

Reconstructs the bipartite network with
statistically-validated links

A list of nodes with their val-
idated links

A bipartite network where
each link, connecting the
nodes of the two layers, is sta-
tistically significant

Community de-
tection module

Determines the communities of a large network
(see paragraph 4.2.1)

A list of nodes with their val-
idated links

A list of communities, with
each community identified by
a list of nodes and their vali-
dated links

Community char-
acterization

Identifies characters that are over expressed
within a given community

A community identified by a
list of nodes and their vali-
dated links

A list of prevailing characters
within a given community

Community prun-
ing

Prunes links of a given community according to
its over-expressed characters (see Section 4.4)

A community identified by a
list of nodes and their vali-
dated links

A list of nodes with their val-
idated links

Dashboard of net-
work indicators

Builds and displays network and community in-
dicators

SVN networks and communi-
ties

A set of numerical indicators
and graphical network repre-
sentation

Table 2: Description of the functions, inputs and outputs of the modules prescribed by ISAIA.
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AIA

Subjects and vehicles 
databases

Data 
pre-processing

List of subjects
 and accidents
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One-mode 
projected network

Community 
extraction

List of 
communities

Bipartite SVN
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Community 
characterization

Community
pruning

Iterative module

End user

User interface Dashboard of 
network

indicators

Figure 7: Map of the workflow relations among ISAIA modules.

4.1 Data pre-processing

ISAIA data pre-processing module is directed to remove two primary sources of data glitches

that can produce misleading results.

One example is the presence of “subject outliers”, i.e., subjects that for their role can be

recipients of hundreds or thousands of accidents, but it would be inconceivable to deem them

fraudsters. Another is the presence of “accident redundancies”, i.e., claims deemed distinct, that

actually concern the same accident and the origin of which is a loosely controlled claim input

procedure.

While subject outliers can be easily removed by carefully designing “white-lists”10 of subjects

to exclude a priori, accident redundancies is a more subtle issue and need a special focus (see

Challenge II).

One of the most common cases is claim duplication due to timestamp mistyping. In partic-

ular, at the end of each working day, new claims are added to the AIA data warehouse after

a screening to assess whether they already exist. Claim records usually need to be updated (a

new witness, a detailed description of the facts around the accidents, a physician report). If the

operator mistypes the date, then the screening procedure files the claim as a new one.

To identify and filter out such claims, we exploit the statistical properties of the accident-
10As an example, white-lists usually include car hire companies, utility companies, municipalities, public trans-

port authorities, public healthcare institutions, etc.
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projected networks deriving from both the accident vs subject and accident vs vehicle networks.

Both networks contain nodes (accidents) whose validated links are, respectively, the number

of subjects and the number of vehicles joining them. If two accidents with a validated bond

belong to both networks, and if their timestamps difference is just one digit (as measured by the

Hamming distance), the two accidents are very likely identical11. Note that, we cannot base our

decision about the integrity of the claim looking only at one projected network. Indeed, a link

with two or more subjects binding two accidents, if validated, could be a fraud even if accidents

very close together in time.

In general, when there is a similar accident in the two validated networks, with only a slight

difference in their attributes (in the above example the timestamp), alarm bells should go off.

It is likely then that these are, in fact, the same accidents repeated for administrative error.

4.2 Network community analysis

Communities are parts of the overall network that contain entities with similar features or that

are closely entangled with each other.

In general, the process of structuring network communities entails two phases: identification

and characterization. As illustrated in Figure 7, once communities are identified, it is critical to

interpret them in terms of the characteristics shared by the elements that constitute organized

groups of suspected fraudsters.

4.2.1 Community detection

Determining all the communities in a system is a very challenging matter (Challenge V). In

recent years, researchers have made substantial progress in identifying communities in complex

networks, and several methods have emerged to accomplish this goal (see Fortunato (2010) for

a review).

In particular, the research on community detection in large bipartite complex networks is very

active. Roughly speaking, there are two approaches used for community detection in bipartite

networks: algorithmic approaches and model-based approaches. The former solves the problem

by applying greedy searches in a heuristic way to optimize an objective function over all possible

partitions of nodes; the second approach fits a generative model to the data to then assess the
11When two accidents involve relatively few people, we directly make sure they share at least 90% of them to

validate the first check and move to the timestamp check.
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relative goodness of fit. For example, Wu et al. (2022) recently showed that the modularity

maximization problem can be reformulated as a spectral problem, while Yen and Larremore

(2020) introduce a Bayesian non-parametric formulation of the Stochastic Block Model and a

corresponding algorithm to efficiently find communities in bipartite networks: see Sun (2021) to

have a rather exhaustive overview of the most recent developments in the subject.

Community detection in large networks is challenging due to the intrinsic nature of the prob-

lem. The most popular approach for community detection is modularity (Girvan and Newman,

2002). The modularity of a community is calculated as the difference between the number of links

observed among community members and its expected value under the hypothesis of random

connectivity (Newman and Girvan, 2004). Though we are aware that recent methods relying

upon Stochastic Block Models may be more efficient than modularity optimization programs to

reveal communities in large complex networks, we choose the latter approach here as a good

tradeoff between efficiency and scientific consolidation.

In principle, modularity should be calculated for all possible partitions (in any number of

communities) of a network’s vertices. The optimal partition is that one corresponding to the

maximum value of the modularity. Community detection is an NP-complete problem, and

many heuristic methods have been devised to provide sub-optimal solutions in polynomial time

(Fortunato, 2010; Newman and Girvan, 2004).

An other alternative approach to modularity optimization relies upon random walk processes

(Rosvall and Bergstrom, 2008). However, since our network is essentially based on co-occurrence,

and no information naturally flows in it, modularity optimization is more suitable. We used a

combination of different heuristics, such as extreme optimization (Duch and Arenas (2005)),

taboo search, etc., and introduced weak constraints on community size as well as, when appro-

priate, on time and geographical corrections.

In this respect, Challenge VI provides some guidelines in the search for parsimonious solutions

by setting weak boundaries on the size of communities. Indeed, organized groups of fraudsters,

made up of thousands of individuals, are unlikely. At the other extreme, focusing on small

communities, made of two or three subjects, is costly and these kinds of investigations cannot

be justified. As a rule of thumb, we set the bounds to identify communities with tens to hundreds

of individuals. A 100 might appear a large number. However empirical evidence indicates that

groups of fraudsters of such a dimension actually exist (Tumminello et al., 2013, 2021).

In Figure 8 we show the distribution by size of the detected communities, which is rather
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Figure 8: Distribution of the size of detected communities.

positively skewed. Communities rarely exceed one hundred vertices in size.

4.2.2 Community characterization and criminal specialization

Singling out groups in a network is not the ultimate goal. A significant issue consists in assigning

to each identified group their dominant characters, i.e., those community attributes that are

over-expressed compared to the whole network and other network communities. For example,

communities may be over-expressed based on the role(s) that subjects of that community played

in the relevant accidents, such as lawyer, doctor, car adjuster, witness and pedestrian. Such an

analysis is relevant from a criminological point of view, since it provides information about the

criminal specializations and the typical behavior of (suspected) fraudsters.

Indeed, the proposed system aims to identify organized groups of fraudsters, given that orga-

nization itself influences the way in which crimes are repeatedly perpetrated (Tumminello et al.,

2013). Organization requires trust and synchronization among perpetrators. Participants typi-

cally play predefined roles, which valorize their attitudes, skills, and competences. Furthermore,

synchronization requires communication among fraudsters, which, they should, nevertheless,

minimize for the sake of secrecy.
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In short, organized frauds, as perpetrated by a given group of subjects, tend to replicate

a specific scheme, in order to maximize effectiveness and to reduce risks. Therefore, learning

about over-represented roles in a community helps to identify the criminal strategy of members,

as well as the key roles played by some of those members.

Also, communities may present an over-expression in terms of time and place where the

associated accidents took place. The time and geographic localization of a community are

important since they help to frame the activity of (suspected) fraudsters.

The same approach used for the validation of links (see Eq.10) is used for associating each

community with one or more over-expressed attribute. In Table 3, we display some results of

community characterization. For example, community 1 includes 152,906 nodes whose accidents

mainly occurred around 2015-2016 and in three over-expressed regions that cover a quite wide

area of the Italian territory: Sardinia (an island classified as the south of Italy), Lombardy

(in the north), and Lazio (in the center). In other words, community 1 is characterized by a

significant fraction of events whose attributes (years and regions) are more frequent than one

should observe in a completely random case (given its size and the distribution of attributes

in the population). On the other hand, community 4 is a smaller community, which does not

show any over-expressed years, but its events are significantly associated with the southern

region of Sicily. It is worth to note that communities reported in Table 3 are very large, as

they include more than 70,000 subjects each. They are reported here not only to explain the

procedure of community characterization, but also to highlight the need of the network pruning

based on link robustness, which is discussed in the next sections. Indeed, all these communities,

which is unrealistic to consider as organized groups of fraudsters, will break into many smaller

communities after the pruning.

In general, denoting by N the number of vertices within the network, Nc the number of

vertices within community c, Nψ the number of vertices in the network that are labeled with

attribute ψ, and Nψ,c the number of vertices of attribute ψ belonging to community c, the

probability linked to Nψ,c is equal to Eq. 6, where x = Nψ,c, Nc = ni, and Nψ = nj . To say

that an attribute ψ is over-expressed for a certain community c, we apply the hypergeometric

test of Eq. 10.

Let us say that Nψ,c is statistically greater than what we would observe in a situation of

completely uniform distribution of attributes in the system. In that case we will say that

attribute ψ is over-expressed, and therefore, characterizes community c. That is, if P (Nobs
ψ,c ≥
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Community ID Size Years over-expressed Regions over-expressed

1 152,906 2015, 2016 SARDINIA, LOMBARDY, LAZIO

2 117,396 2011, 2012 CAMPANIA

3 100,036 2015, 2016 LAZIO

4 73,537 - SICILY

5 71,974 - EMILIA ROMAGNA

Table 3: Example of communities by size (number of nodes), over-expressed years and regions.
A community is characterized by an attribute related to either years, regions, or provinces when
that attribute appears in that community more than it would be if it was randomly distributed
across all the events in the population.

N0.05
ψ,c ) < 0.05, then we will say that attribute ψ is over-expressed in community c, where Nobs

ψ,c

and N0.05
ψ,c are, respectively, the observed and the 95th threshold quantile of the hypergeometric

distribution.

In the particular situation in which communities have few vertices or where the attribute we

study is rare in the system, the hypergeometric test leads to unreliable results due to its discrete

nature. Therefore, in these cases we say that an attribute ψ characterizes community c if at

least 90% of its nodes are of attribute ψ. 12

4.3 Assessing the robustness of links

In the phase of construction of the subjects’ SVN, for each pair of nodes we test the hypothesis

of random co-occurrences. Note that one needs to pay attention and be aware of the effects that

the time- and geo-localization of accidents may have on the rate of false positive links, i.e. links

between subjects that are deemed potentially fraudulent, but who, in reality, were not.

This aspect is apparent, for instance, when two professionals work in the same restricted area.

They could show a lot of co-occurrences because of their normal activity rather than because

of any fraudulent activity. This would be especially so when they operate close to one another.

As a result, these people have a higher likelihood of being involved in the same accidents, in a

certain time window.

To address this issue, we introduce a robustness score (R-score) Rij , computed for each

validated link. Given the pair of subjects i and j,

Rij = log10 T − log10m
∗
ij (17)

12Example: community c has 3 subjects, all witnesses. The test for the value of Nψ,c may not be statistically
significant but, since the attribute ψ =“witness” is the role of all subjects in the community, we say that attribute
witness characterizes community c.
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where T is the total number of accidents in the system regardless of the time and place of

occurrence, and m∗
ij is the minimum value of T such that link between subjects i and j is

statistically validated. Fig.s9 and 10 show the rationale behind, respectively, the computation

and the distribution of the R-score.
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Figure 9: Rationale of the computation of the R-score for two pairs of subjects i and j with
a different intensity of activity. Both the blue solid line and the dashed black line show how
the statistical significance of the link connecting i and j increases (the p-value decreases) as the
total number of events T in the population increases. However they represent two cases with
quite different subject activity intensity: in the first case (blue solid line) subjects i and j have
in common 25 events and have marginal values of, respectively, 1230 and 870; instead in the
second case (black dashed line) subjects i and j have 3 events in common and had, respectively,
5 and 4 accidents. The R-scores are computed according to formula (17).

The lower m∗
ij , i.e. the higher Rij , the more robust the link between subjects i and j will

be. Once the R-score has been assigned to every link in the SVN, decision about whether they

must be discarded or not comes after a community detection procedure.

4.4 Community pruning

Once a first detection of communities is completed, it is possible to associate each of these

communities with a value of overall robustness (R-score):

Rk = log10 T − log10 n
∗
k (18)

where T is the total number of accidents in the system and n∗k the number of accidents

occurred in the place/s and in the year/s that characterize community k.
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We compare the R-score (Rij) in (17) of a link between a generic pair of nodes i and j with

the R-score (Rk) in (18) computed for the community they belong to.

In fact, this kind of measure of the robustness of the overall infrastructure of a community is

a reference point to be aware of the variability of the robustness of internal links. Ultimately, this

approach provides a way to remove links that are not robust compared to other links belonging

to the same community in the network.

Indeed, remembering that m∗
ij is the minimum value of T such that link between subjects i

and j is statistically validated,

Rk −Rij = log10
T

n∗k
− log10

T

m∗
ij

= log10
m∗
ij

n∗k
⇒ 10Rk−Rij =

m∗
ij

n∗k
(19)

On one hand, if m∗
ij < n∗k, then Rk − Rij < 0 meaning that the link between i and j is

very robust and should be kept within community k. On the other hand, if m∗
ij > n∗k, then it

means that the link between i and j is not validated when considering a number of accidents

that exceed the number of accidents characterizing community k. It is, therefore, less robust

than expected within the community. Specifically, we remove the link between nodes i and j if

Rk −Rij > t∗ ∀i ̸= j : {i, j} ∈ community k

The threshold t∗ is fixed to 0.1, that is, when m∗
ij is about 26% greater than n∗k. The choice
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of t∗ is made in order for us to be not too restrictive when deleting links from the validated

network. Also, apparently there is no unique way to choose this threshold.

Eventually, community pruning will bring forth the benefit of reducing potential false pos-

itive links from the validated network. After this step is completed, the community detection

algorithm used before is again performed to find the new community structure in the SVN,

together with the characterization of its communities.

4.5 Bipartite and enlarged SVN

While the BN depicts statistically anomalous relationships between subjects or vehicles, it does

not give explicit information about the accidents these subjects or vehicles were involved in. In

fact, accidents usually represent the units of interest from the viewpoint of authorities to further

investigation activity. Starting from the BN of subjects one can define the bipartite SVN, linking

subjects to the accidents that contributed to the statistical validation of their relationships.

Moreover, if we include all the subjects that were directly involved in the accidents included in

the bipartite SVN, then the resulting network is referred to as the enlarged bipartite SVN. This

leads to an average increase of two people per person.

The approach used for the construction of the BN of subjects, aimed at the detection of

anomalous relationships between subjects, can be replicated to filter the bipartite network

vehicles-accidents in order to detect anomalous relationships between vehicles.

Unlike that of subjects, the BN of vehicles is much less structured as in general a vehicle is

linked to a limited number of subjects (see Tab. 4). Therefore, community detection and the

correction for time-space localization are not needed in this case and the focus is given to small

highly connected components.

Nodes Links Connected Com-
ponents (CC)

Dimension of the
biggest CC

BN of subjects 2,016,505 1,919,897 638,878 651,267

BN of vehicles 112,771 61,311 54,563 12

Table 4: Dimension of SVN of subjects and SVN of vehicles.

The information carried by the BN of vehicles can be usefully integrated with that of BN

of subjects. Its complementary inclusion in the detection of fraud activity will allow for a more

integrated and complete set of knowledge on the complex linkages involved in the system.
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4.6 Network structure and properties

The network structure emerging from the validated relationships among accidents and subjects

(i.e. macro information of the system) improves the quality and efficacy of the antifraud activity

performed by IVASS, which had always been based on accidents individually considered (i.e.

exploiting only the information at the micro level)13.

Table 5 shows a set of network measures and the motivation behind their use. Integrated in-

dicators that summarize the network information and highlight possible anomalies are discussed

in the Appendix B

Relying on the data stored in AIA at the end of February 2019, the number of communities

detected within the BN reached 488,362. Here we set the univariate level of statistical signif-

icance at α = 0.01 and use the Bonferroni correction for multiple hypothesis tests to be very

conservative on the control of false positive links in the validated network. About 60.2% of these

communities is made up of only four nodes (two subjects and two accidents), while about 9,767

communities (the highest 2%) has a number of nodes between 26 and 13,778.

In Table 6 we display the number of communities belonging to each category according

to the macro-groups formed based on the characterization of roles of subjects and time/space

localizations.14.

Further analyses based on machine learning algorithms provide a better discrimination of

the fraudster elements in a network (see Appendix A).

5 Three case studies of detected communities of fraudsters

This paragraph remarks the positive impact ISAIA has on the fraud detection activity performed

by the IVASS. Specifically, we illustrate three empirical case studies of fraudulent organizations,

which are structurally different in terms of link formation, the nature of nodes and scale.

The first case study is related to the data on three fiscal codes belonging to three out of
13SVN approach has been adapted to analyze criminal data already in ref. [Tumminello et al. 2013], though

the original bipartite network was made of criminals linked to crime types, not events (i.e., accidents), like in
the present case. As far as we know, the broad concept of SVN has never been applied before in the insurance
sector, as well as for the sake of fraud detection. Furthermore, the reconstructed “Statistically Validated Bipartite
Network” described in Table 2 represents a new type of SVN, which we devised to link significantly associated
nodes (subjects or vehicles) in the SVN to the events (accidents) that determined such a significant association.
The method we used to detect communities does not . Instead, it is used to Furthermore, the characterization
of the communities in the “Statistically Validated Bipartite Network” is performed by controlling for the FWER,
which extends the method used in [Tumminello et al. 2013] to bipartite networks.

14Communities characterized only by time and/or space attributes show a limited variability in the network
indicators, as shown in Table 6 under column P -NP
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Subject-level indicators

Degree (K) How active a subject is in organizing or participating in
frauds, where s/he may be acting in either a local or more
extended area.

Betweenness centrality its value tells us about how central/marginal the role of a
subject is in the network. It is important to understand
whether a person bridges two or more communities, therefore
plausibly being among the most active as a criminal leader.

Event-level indicators

Degree (H) number of subjects that are involved in a specific event: in
general, the bigger the event, the higher the claim requested
from insurance companies. Furthermore, a high value of the
number of involved subjects indicates a high degree of com-
plexity of the accident, which likely requires a set of coor-
dinated fraudsters, and, therefore, makes the event suitable
for further investigation.

AIA score an integer in the interval [0; 100] that takes into account
information unrelated to the network (information on events
at the micro-level).

Mixed subject-event
indicators
H-K score it summarizes the level of centrality and connectivity of sub-

jects and events lying in the same region of the network.
A high H-K score suggests a persistent level of coordinated
criminal behavior, which helps to identify at once the key
events for the most important subjects (e.g., according to
the degree and/or the betweenness centrality).

Link-level indicators

Robustness score a measure of robustness of links in the statistically-validated
network of subjects (see Section 4.3). This measure allows us
to determine how sensitive the connections are to time and
space localization. A high level of link robustness indicates
that the link is unlikely to be a false positive due to the time-
space localization of events, and subjects’ activity.

Table 5: Motivation of the main network measures.

five components of a family. The father, who had divorced his wife, was the one claiming the

insurance and the ex-wife and one of their children were organizing the fraud.

We first check for the presence of mother and son (and father) in the validated network, and

after that, we observe in how many accidents they were involved. Consequently, we add all the

subjects that were involved in those accidents, obtaining the enlarged bipartite BN.
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P NP P -NP P -NP None Overall

# of communities 15,403 112,103 310 300,564 59,982 488,362

# accidents (average) 58.5 2.3 45.3 3 3 4.6

# subjects (average) 6.2 2.1 10.1 2.2 2.3 2.3

# links (average) 123.2 4.7 97.3 6.2 6.2 9.6

Table 6: Number of communities and average of nodes, subjects and links, according to commu-
nity characterization: professional roles only (P); non-professionals only (NP); both professionals
and non-professionals (P -NP ); only time and/or space attributes (P -NP ); no characterization.

Fig. 11 shows the fraudulent sub-network with accidents involving at least one member of

the family, which highlights the connections between the mother, the father, their three sons

(one of them three-years old), two relatives of the mother and two professionals, specifically a

physician and a technical expert.

The first case study proves that ISAIA is effective with spotting quite small groups of fraud-

sters. Indeed, it is important to notice that the method is able to detect fraudulent organizations

acting on very different scale dimensions, thanks to the SVN approach. In fact, ISAIA manages

to integrate the available information with that which is not a priori known: two out of three

children and two relatives of the mother were not initially claimed by the father. But they

are there in the validated network. Moreover, six out of seven (85.7%) accidents are highly

anomalous in statistical terms and one is associated with a medium level of anomaly.

The second case study consists of a network on a larger scale. The data on this case refers

to nineteen fiscal codes reported by the prosecutor office of an Italian city, and it describes

the fraudulent activity of people belonging to organized crime (Fig. 12). Also in this case, the

integrated indicator manages to associate the majority of accidents with a high level of statistical

anomaly (60% and most of them in the deepest and most connected part of the network), a 20%

of accidents is associated with a medium level, and therefore the remaining 20% with a low level

of statistical anomaly. Note that no accident in the validated network is associated with a null

level of anomaly.

Finally, the third case study consists of a network on an even larger scale. In particular, this

network connects people and accidents involving 313 car plates in the context of a legal identity

theft reported by enforcement authorities. The number of events and subjects linked to the

313 plates are, respectively, 874 and 3,004. When we look at the bipartite validated network,

a group of 1,313 of those subjects are involved in 88,672 car accidents, forming a total of 979
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communities. One of the subjects (marked with a bigger black node in Fig. 13) is linked to

the VAT number of the robbed company, covering a central position/role in the network. The

integrated indicator classifies as high potential frauds the 42.2% of the accidents, while 19.4%

and 38.2% are classified as having, respectively, a medium and a low level of statistical anomaly.

Therefore, starting with external information about a set of claimed subjects/accidents/car

plates, and despite the relatively low proportion of subjects and accidents in the validated net-

work (8.4% and 13.3% of respectively subjects and accidents that are in the validated network),

the method is apparently able to detect frauds. It is also able to integrate them with other

useful information.

5.1 Life-cycle of communities

One interesting point about the usage of ISAIA concerns the temporal domain or evolution of

fraudulent communities.

We evaluated the persistence of the communities being detected in the validated network over

five consecutive months, in particular from September 2019 until January 2020. The validated

network grows monthly by around 2% and its communities are rather persistent over time, as

can be seen from Table 7. The table shows both the Jaccard and the Szymkiewicz-Simpson

coefficients to quantify the overlap of communities in two consecutive months, which are rather

high, slightly above or below 90%, depending on the metrics.15.

Month (a) % variation (b) Jaccard (c) Szymkiewicz-Simpson
10/2019 2.05 0.867 0.938
11/2019 2.07 0.870 0.940
12/2019 1.92 0.872 0.940
01/2020 1.73 0.870 0.938

Table 7: Percentage variation from month t to month t− 1 of the size of the validated network
is in column (a); the Jaccard and the Szymkiewicz-Simpson coefficients are in columns (b) and
(c) respectively.

The principled idea is that any community has to have a starting point, a phase of prolifera-

tion, and a progressive decline, e.g., since fraudsters are discovered. We analyzed the dynamics

of the communities of fraudsters considered in this section. Fig. 14 shows the time series of

the yearly average of the integrated indicator for the three communities of fraudsters reported
15The Jaccard coefficient is the ratio between the intersection and the union of the two sets A and B: J(A,B) =

|A∩B|
|A∪B| . The Szymkiewicz-Simpson coefficient is the ratio between the intersection of the two sets A and B and

the minimum of their sizes: SS(A,B) = |A∩B|
min{|A|,|B|}
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as case studies. The network of family members (in blue) lasts four years, starting in 2012 and

ending in 2015. It is rather cohesive and every accident has a high level of statistical anomaly

leading to a high average value each year of its existence. The fraudulent activity of this commu-

nity suddenly stopped in 2015, following legal prosecution. The organized-criminality network

(in purple) starts in 2011 and its statistical anomaly begins to slightly decrease starting from

2014. That’s because the authorities prosecuted some of the subjects in this community since

then, though the overall network was not dismantled. Finally, the legal identity theft network

(in green) starts in 2014, and again, after about three years of activity and proliferation, its

anomaly begins to decrease in 2017, when some of the people disappeared from the network,

likely for the intervention of the authorities.
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Figure 11: An enlarged bipartite sub-network, which includes accidents involving the reported fraudsters of the first case study. Rectangular nodes
are accidents while circular nodes are subjects. Accidents are coloured in red if they have been assigned a “high” level of statistical anomaly according
to the integrated indicator, and in orange if they have been assigned a “medium” level of anomaly. Subjects in light blue are people involved in the
accidents but that are not directly included in the validated network.
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6 Conclusions

In this work, we developed a novel statistical tool for the detection of communities of fraudsters

that uses micro-level data of subjects and vehicles involved in the same accidents. In particular,

we used a statistically-validated network approach to detect anomalous communities of subjects

and vehicles in AIA, the comprehensive and exhaustive Antifraud Integrated Archive managed

by the Italian Insurance Supervision Authority (IVASS).

The method proved to be very effective in uncovering anomalous patterns among subjects in

the bipartite complex system subjects-accidents and between vehicles in the bipartite complex

system vehicles-accidents. We construct an integrated indicator that synthesizes the information

at node (micro) and network (macro) level to define a degree of statistical anomaly of car

accidents, and so communities, subjects, and vehicles linked to them.

The introduction of the statistically-validated network approach improves the ability of the

model to detect frauds with respect to the case where only the micro-level AIA score is consid-

ered. Based on the evidence that emerges from the new tool, IVASS can inform all the competent

authorities: police and prosecutor offices. In this way fraudulent activities are restrained and

the efficiency of the car insurance market in Italy is improved.

6.1 Remarks

Our methodology is general enough to be applied to similar micro-level datasets, at varying

degrees of detail, as recorded in other countries. The core information required is the one that

allows the system to (i) univocally associate subjects and vehicles with the accidents they were

involved in and (ii) locate accidents both geographically, at least at a regional level, and in time.

Our approach can also deal with incomplete datasets, e.g., the data that a single insurance

company has at hand, though with some caveats. Indeed, an over-expressed co-occurrence of

subjects or vehicles in the same accidents, as revealed in the incomplete dataset, already indicates

a statistical anomaly. The most crucial caveat consists in the control of false negatives, that

is, co-occurrences that are not statistically significant in the incomplete dataset but may be

otherwise in an enlarged dataset.
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Figure 12: An enlarged bipartite validated network with accidents involving the reported fraud-
sters (coloured in black). Rectangular nodes are accidents while circular nodes are subjects.
Accidents are coloured in red if they have been assigned a “high” level of anomaly; in orange if
they have been assigned a “medium” level of anomaly; in light-green if the have been assigned a
“low” level of anomaly. Subjects in light blue are people involved in the accidents who are not
directly included in the validated network.
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Figure 13: An enlarged bipartite validated network with accidents involving the reported car
plates. Rectangular nodes are accidents while circular nodes are subjects. Accidents are in red
if they have been assigned a “high” level of anomaly; in orange if they have been assigned a
“medium” level of anomaly; in light-green if the have been assigned a “low” level of anomaly.
Subjects in light blue are those involved in the accidents, who are not directly included in the
validated network. The black node represents the subject that is linked to the VAT number of
the robbed company.
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Figure 14: Yearly average values of the integrated indicator for the three case studies. The
horizontal dashed black lines represent the thresholds separating low-medium and medium-high
classes of statistical anomaly. The family network (in blue) lasts from 2012 to 2015. The
organized criminality network (in purple) started in 2011, and its statistical anomaly decreased
in 2014. The legal identity theft network (in green) started in 2014 its anomaly was slightly
reduced in 2017.

6.2 Future research: testing triplets

Triadic closure is a social mechanism that lies on the more fundamental concept of homophily (see

Challenge VII), which is relevant for fraud contexts (Rapoport (1953)). Indeed, triadic closure

represents a simple mechanism through which fraudsters learn to work together. Let’s suppose

that fraudster A cooperates, separately, with fraudster B and fraudster C, and nonetheless, B

and C don’t even know each other. Triadic closure suggests that the presence of A as a common

associate provides the opportunity (that B and C come to know each other), the trust (due to

the common trust in A) and the incentive (A may want to perpetrate a fraud with both B

and C together) not to mention the possibility that B and C become associates (in frauds). As

a future research advancement, the presence of a series of frauds in which the same subjects

appear as involved in triplets and triangles of cooperation should both be taken into account to

spot potential frauds in car accidents.
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Appendix

A Machine learning to discriminate frauds

We use machine learning to discriminate fraudulent from random events. The event features

that are deemed useful for the classification problem are listed in Table 5. In particular, we

extract the first four principal components found from this set of features16 and accompany

them with a dummy variable that indicates whether the accidents belong to the SVN or not.

These form the set of explanatory variables of the model.

Several popular machine learning supervised algorithms could be used to deal with this kind

of binary classification problem. Here we consider the logistic regression model, the support

vector machine (SVM), and the random forests.

We run a ten-fold cross-validation by exploiting the information carried by a balanced sample

of 4,566 random and 4,566 fraudulent accidents17 (see Challenge III). The ROC curves of Figure

A.1 show the performance of the logistic model, which works quite well in discriminating fraud-

ulent accidents from the random ones, and this applies to both balanced and unbalanced test

sets. The general performance (AUC) of three widely-used machine learning models is reported

in Table A.1. The random forest reaches a slightly higher out-of-sample AUC of about 0.83-0.84,

followed by the logistic regression and the support vector machine (AUC about 0.80-0.82) for

both balanced and unbalanced test sets.

Area Under the Curve (AUC)
Balanced and Unbalanced test sets

Method 4,566 vs 450 4,566 vs 4,566 4,566 vs 45,000 4,566 vs 450,000

LR 0.803 (0.777-0.822) 0.810 (0.801-0.819) 0.812 (0.802-0.815) 0.812 (0.804-0.815)

SVM 0.809 (0.785-0.827) 0.797 (0.792-0.802) 0.821 (0.810-0.824) 0.822 (0.811-0.824)

RF 0.832 (0.810-0.855) 0.832 (0.828-0.838) 0.843 (0.838-0.849) 0.844 (0.839-0.850)

Table A.1: Out-of-sample AUC through a 10-fold CV. LR=Logistic Regression; SVM=Support
Vector Machine (Radial kernel); RF=Random Forest. For the RF, the optimal model is chosen
based on accuracy maximization, and the optimal value of the number of variables that are
randomly sampled as candidates at each split (tuning parameter mtry) is 2. 95% confidence
intervals (DeLong) are in parentheses.

16We select the optimal number of components through a Random Matrix Theory (RMT) approach; Laloux
et al. (1999).

17The R software has been used for the analysis, and in particular the functions trainControl and train of the
library caret to perform ten-fold CV and to estimate the models.
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Lastly, it is worth noting that we are aware of the fact that, in principle, random events

cannot be a priori deemed as non-fraudulent. Nevertheless, we frame the problem to find a tool

to discriminate fraudulent events from events that might present some elements of frauds with a

certain unknown probability18. In this way we further follow our initial line for which we should

avoid false positives as much as possible19.
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Figure A.1: ROC curves from predicted class probabilities (LR model) in balanced (bottom left)
and unbalanced (top left and right panels) 10-fold CV test sets.

B Integrated indicators

Providing IVASS with an integrated indicator of the statistical anomaly of accidents is an im-

portant step towards the implementation of an effective and efficient anti-fraud task.

Indeed, on the one hand, this kind of indicator will highlight the degree of anomaly of any

accident in a succinct way. On the other hand, the indicator will let the IVASS take swift action,

so that the most anomalous accidents are prioritized and so that targeted investigations can be
18Which we could assume being close to the population counterparty.
19In fact, if some frauds (we would assume they reflect the proportion in the population) were contained in

the control group, then the classifier would be calibrated towards the discrimination of frauds that show even
stronger signs of statistical anomaly.
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put in place by the competent authorities. Moreover, IVASS can proceed to communicate the

integrated indicator to insurers, which will use it as a central driver to develop targeted risk

management policies.

The integrated indicator is calibrated through a balanced supervised analysis, which com-

pares a group of 4,566 accidents that were recognized as frauds by competent authorities after

investigation and a group of 4,566 accidents randomly picked from AIA. These were, in turn,

sampled based on an opportune stratification of AIA according to geographical and time local-

ization reflecting that of fraudulent reported accidents. We deploy the main network measures

of Table 5 to obtain a set of principal components through a spectral decomposition of the

correlation matrix and a reasonable selection of eigenvalues20.

In the activity of fraud detection, one has to face both time and cost constraints, which

force to limit the actual number of anomalous accidents that will eventually be communicated

to insurers, and this has to be done in a succint way. Therefore, it is reasonable to categorize

the indicator into categories of risk.

In particular, we define four categories, namely null, low, intermediate, and high risk of

fraudulent activity21. The four categories are identified through the tertiles of the sample dis-

tribution of the indicator, which is flanked by a check for the presence/absence of the accident

in the validated network (see Tab. B.1). The thresholds are chosen based on the percentiles of

the distribution of the integrated indicator, namely the 33th percentile, that is approximately

the mode of the distribution, and the 66th percentile, that is approximately the value for which

the Matthews Correlation Coefficient (Matthews (1975)) is maximized.

Thresholds a /∈ SVN a ∈ SVN

X(a) ≤ t33rd null low

t33rd < X(a) < t66th low medium

X(a) ≥ t66th medium high

Table B.1: Categories of statistical anomaly according to the value of the integrated indicator
and to whether the accident a belongs to the Bipartite BN or not.

The thresholds are used to associate all accidents of the AIA with a category of statistical
20The number of eigenvalues to extract is chosen relying on the Random Matrix Theory (RMT): in this

application we find that the first four principal components are statistically significant. Refer to Laloux et al.
(1999) for a complete treatment of RMT.

21IVASS already used this communication strategy even before the introduction of statistically-validated net-
works.
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anomaly. In turn, this implies that any community, subject, and vehicles related to these

accidents can also be associated with a level of statistical anomaly. This is possible by applying

an aggregating procedure to the scores of the group of accidents under scrutiny: for instance,

one way of associating a community with a “high” statistical anomaly could be to require that

the community contains a given proportion of accidents with high statistical anomalies.

Carrying out an in-depth investigation of accidents is costly and time consuming. Therefore,

resources should be allocated in an economic and sustainable way. Surely, bigger and more

persistent groups of fraudulent perpetrators should take precedence. For example, only com-

munities that include at least 4 accidents should be of interest. In this case, we say that a

community is statistically highly anomalous when at least 66.7% of its accidents shows a high

score on the integrated indicator. Also, we take into account the presence of accidents that be-

long to two or more communities. Indeed, these multi-community accidents are more frequently

associated with a high score on the integrated indicator, 70% (175,304 out of 250,370) against

a percentage of 54% characterizing the accidents belonging to only one community (1,092,222

out of 2,014,525). In total, 6.1% of communities (29,965 out of 488,362) are associated with a

“high” level of statistical anomaly.
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