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Abstract: Typical hemolytic uremic syndrome (HUS) is mainly caused by Shiga toxin-producing
Escherichia coli (STEC) releasing Shiga toxin 2 (Stx2). Two different structures of this AB5 toxin have
been described: uncleaved, with intact B and A chains, and cleaved, with intact B and a nicked A
chain consisting of two fragments, A1 and A2, connected by a disulfide bond. Despite having the
same toxic effect on sensitive cells, the two forms differ in their binding properties for circulating cells,
serum components and complement factors, thus contributing to the pathogenesis of HUS differently.
The outcome of STEC infections and the development of HUS could be influenced by the relative
amounts of uncleaved or cleaved Stx2 circulating in patients’ blood. Cleaved Stx2 was identified and
quantified for the first time in four out of eight STEC-infected patients’ sera by a method based on
the inhibition of cell-free translation. Cleaved Stx2 was present in the sera of patients with toxins
bound to neutrophils and in two out of three patients developing HUS, suggesting its involvement in
HUS pathogenesis, although in association with other bacterial or host factors.

Keywords: hemolytic uremic syndrome; cleaved Shiga toxin 2a; Shiga toxin-producing Escherichia coli

Key Contribution: The cleaved form of Stx2 was found for the first time in sera from patients infected
by Shiga toxin-producing Escherichia coli.

1. Introduction

Typical hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy, present-
ing with hemolytic anemia, thrombocytopenia, and acute renal failure, which occurs as a
severe sequela of Shiga toxin-producing Escherichia coli (STEC) gastrointestinal infections [1–4].
These pathogenic bacteria release potent exotoxins called Shiga toxins (Stx) as major virulence
factors [1–4]. The syndrome is also termed eHUS for enterohemorrhagic E. coli associated HUS.

During the pathogenesis of HUS, before the toxins act on the target endothelial cells of
the kidney, several Stx forms are transported in the bloodstream: (i) soluble Stx [5,6]; (ii) Stx
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bound to circulating cells (neutrophils, monocytes, erythrocytes and platelets) exposing the
receptors globotriaosylceramide (Gb3Cer) [7–10] and Toll-like receptor 4 (TLR4) [1,5], even-
tually inducing the formation of leukocyte–platelet aggregates and pathogenic extracellular
vesicles; and (iii) Stx associated with blood-cell-derived microvesicles [5,10]. The latter form is
considered the main factor for the transition from bloody diarrhea to HUS in approximately
15% of STEC-infected patients, especially children under 3 years, with a mortality rate of
3–5% [1,3,10–12]. These extracellular vesicles can attack renal target cells by delivering Stx
and other pathogenic factors, such as tissue factor and/or activated complement components
which concur with HUS pathogenesis [13–17].

Stx are a family of AB5 bacterial toxins consisting of two main types, Stx1 and Stx2,
and several subtypes in each type [18]. Stx2a is the major subtype associated with the
development of HUS in humans [19]. Stx consists of a single 32 kDa-A chain non-covalently
bound to five identical B chains (7.7 kDa each), forming a pentameric ring (uncleaved Stx,
Figure 1A) [1,20]. The A chain is a proenzyme that is enzymatically cleaved at arginine
residues 247/248 or 250/251 (Stx2/Stx1) by proteases resulting in two fragments linked
by a disulfide bond: A1, the 27.5 kDa enzymatically active fragment, and the 4.5 kDa
A2 fragment connected to the B pentameric ring (cleaved Stx, Figure 1B) [21,22]. Under
reducing conditions, the disulfide bond is broken, usually within cells, permitting the
enzymatically active A1 fragment to express its deadenylating activity on 28S rRNA in
ribosomes, resulting in a decreased ribosomal affinity for eukaryotic elongation factors
(eEF1 and eEF2) and leading to an irreversible arrest of translation [1,2,21–23]. Another
intracellular target of Stx is DNA in chromatin that is serially deadenylated, leading to the
formation of nuclear apurinic sites [1,2,10]. In target cells, the proteolytic cleavage of the A
chain can occur during the retrograde transport of the toxin, by the protease furin, which
recognizes the sensitive region (Arg247/248-X-X-Arg250/251), which is the consensus
motif also recognized by trypsin [22]. However, a cleavage activity, although different, has
also been found in the intestinal mucus [24,25] or can be induced by bacterial proteases
released after the lysis of bacteria [1,2].
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Figure 1. Structure of Stx2. (A) Native form composed of an A chain non-covalently bound to five
identical B chains; (B) cleaved form composed of A1 and A2 fragments linked by a disulfide bound.
The A2 fragment is connected to the B pentameric ring. (C) Cleaved and reduced form.

Both cleaved unreduced Stx2a, which has a single nick in the A chain, resulting in
fragments A1 and A2 being connected by a disulfide bridge, and uncleaved Stx2a (Figure 1)
have recently been found to be biologically active as they intoxicate human cells expressing
Gb3Cer (Vero and Raji cells) similarly, but functionally differently [26]. Indeed, they have
different binding properties for circulating cells and host serum components as well as
differing in the formation of leukocyte/platelet aggregates [26]. Cleaved Stx does not bind
to human neutrophils via TLR4 or to the same receptor present on monocytes and platelets,
while it is capable of binding to complement factor H; uncleaved toxins show contrary
features and stimulate the formation of aggregates between leukocytes and platelets [26].
The lack of interaction of the cleaved form of Stx with human neutrophils suggests that the
binding site for neutrophils is probably very close to the A subunit cleavage site but does not
correspond to the active site of the toxin. In addition, the formation of neutrophil/platelet
and monocyte/platelet aggregates induced by the uncleaved form indicates that TLR4 has
an important role in this process, given that all the involved cells express this receptor.
Concerning the human serum amyloid P component (HuSAP), cleaved and uncleaved Stx2
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seem to have the same behaviors. Indeed, both forms interact with this blood protein [26],
which prevents their binding to Gb3Cer receptor [27–29] and promotes their interaction
with TLR4 [1,26].

To sum up, these observations suggest that Stx must be uncleaved to bind human
neutrophils, since these cells do not express the Gb3Cer receptor. The other circulating
cells involved in toxin binding (platelets and monocytes) can interact with both forms, as
they express both Gb3Cer and TLR4. These multiple blood interactions, which markedly
differ depending on the toxin form (uncleaved or cleaved), are relevant to the pathogenesis
of HUS.

Although the structure, the mechanism of action and the different properties of the two
forms of the toxin are well known, whether the A subunit is still intact or already cleaved
when the holotoxins enter the bloodstream and challenge the human blood components
is unclear. In addition, it remains to be established whether the cleaved form of Stx2a
can be found in the blood of STEC-infected patients. The outcome of STEC infections
and the consequent onset of HUS could therefore be influenced by the percentages of
uncleaved or cleaved toxins circulating in patients’ blood, since the two forms of toxin
could produce different amounts of leukocyte/platelet aggregates and, likely, different
amounts of pathogenic microvesicles. Thus, the characterization of the structure of the
toxins present in the blood of patients could be useful for a better understanding of the
mechanisms underlying the pathogenesis of HUS.

2. Results
2.1. The Detection Tool: A Luminometric Cell-Free Translation System (LCFTS)

To detect the cleaved form of Stx2a in STEC-infected patients’ sera, a luminometric
cell-free translation system (LCFTS) was used. The assay was based on rabbit reticulocyte
lysate reconstituted with human ribosomes that translate added synthetic mRNAs coding
for luciferase [30]. In this system, the two forms of Stx2a (trypsin-cleaved and uncleaved)
showed different behaviors when a reducing agent (DTT) was added, i.e., under these
conditions the trypsin-cleaved Stx2a boosted its activity, whereas the uncleaved Stx2a
activity was not affected. Indeed, the high concentrations of DTT in the assay break up
the disulfide bridge between the two fragments of cleaved toxin (Figure 1C), allowing the
A1 fragment which strongly inhibits protein synthesis to be released. The concentrations
of trypsin-cleaved toxin measured by this method were very similar to those determined
in patients by ELISA assays (2–6 ng/mL, approximately 30–90 pM) [30]. At those con-
centrations, uncleaved Stx2a had no effect on the translation system. The behavior of the
system is exemplified by the experiments depicted in Figure 2: the addition of mixtures
of uncleaved and trypsin-cleaved Stx2a (Figure 2, red circles) to the system at a constant
total Stx2a concentration (40 pM) induced translation inhibitions that are dependent on the
concentration of cleaved Stx2a only.

2.2. Detection of the Cleaved form of Stx2a in STEC-Infected Patients’ Sera by LCFTS

As shown in Table 1, sera from eight STEC-infected patients were analyzed for the
determination of the cleaved form of the toxin using LCFTS. The diagnosis of STEC infection
was confirmed by means of the identification of the gene encoding Stx2 in fecal extracts,
by isolation of the STEC strain from the stool samples or by the detection of serum Stx2
by ELISA. The presence of cleaved Stx2a was observed in four out of eight sera, and its
concentration was calculated as described in [30] and compared to that obtained by ELISA.
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for different ratios of the two forms of the toxin were added to LCFTS at constant Stx2 concentration
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Table 1. Detection of cleaved Stx2a in STEC infected patients’ sera.

Pt * Sex Age
(y)

Clinical
Symptoms

E. coli
Serogroup

Toxin
Type

RT-PCR
Stx2
Gene

Stx2 by
ELISA

(ng/mL)

Cleaved Stx2
by LCFTS
(ng/mL)

Neutrophil-
Bound Stx2

1 f 1.7 BD, D, H, P, HUS O26 Stx2 + 3.36 2.90 +

2 f 5.6 BD, D, P, HUS O157 Stx2 + 3.37 11.45 +

3 m 8.3 BD, H, P, HUS O127 Stx2 + 2.41 - +

4 f 10.2 BD, D, P O145 Stx2 − 2.23 1.98 +

5 m 10.2 BD O8 Stx2 + 2.38 - −
6 m 3.3 BD, D, P nd Stx2 − 2.13 - −
7 m 6.4 H, P O127 Stx2 + 3.00 8.27 +

8 m 5.7 D, H, P O127 Stx2 + 3.02 - +

* Clinical and microbiological features of 8 STEC-infected patients: sex (3 females and 5 males); age (median
5.7 years, range 1.7–10.2 years); clinical symptoms as bloody diarrhea (BD, 6/8) and/or diarrhea (D, 5/8),
hematuria (H, 4/8), proteinuria (P, 7/8), hemolytic uremic syndrome (HUS, 3/8); E. coli serogroup determination;
toxin type according to the presence of the gene encoding Stx2 in fecal extracts identified by real time-polymerase
chain reaction (RT-PCR) or by direct identification of the toxin type in serum by enzyme-linked immunosorbent
assay (ELISA, ng/mL); cleaved Stx2 identified by luminometric cell-free translation system (LCFTS, ng/mL);
neutrophil-bound Stx2 (6/8).

The concentration of cleaved toxin, calculated according to LCFTS, was lower than
the total concentration detected by ELISA in two out of four cases while in the remaining
two patients the observed concentration of the cleaved toxin was higher. This could be
explained by considering the different features of the two methods (Figure 3) and that
the B-pentamer of Stx2 binds to Gb3Cer [31], the A chain is recognized by TLR4 [10] and
HuSAP interacts with both subunits [29], as shown in Figure 4.
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Figure 3. Different forms of Stx2a bound to different receptors/serum factors are recognized by ELISA
or by the luminometric cell-free translation system (LCFTS) as described in Materials and Methods.
The diagram shows different toxin forms based on the bound molecule (HuSAP, TLR4 or Gb3Cer),
the soluble (bound to serum factors) or particulated (microvesicle (MV)-associated) condition and
the status (cleaved or uncleaved) of the A chain. Each specific toxin form is either detected (green)
or not detected (red) by the specific assay (ELISA, LCFTS), as experimentally demonstrated (filled
rectangles) or as inferred according to its features (red rectangles with step lines).
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Figure 4. Ribbon diagram of Stx2 reproduced with permission from Fraser et al. [31] with modi-
fications. The five B-subunits are orange, cyan, green, yellow and blue; putative Gb3Cer-binding
sites on the B-pentamer are marked with magenta numbers. The A subunit is red, with the active
site corresponding to magenta letter A. The cysteine residues forming the bond between A1 and A2
fragments are depicted in yellow. The binding site for TLR4 is located in the A1 fragment, whereas
HuSAP interacts with both subunits, although the specific amino acids of the toxin involved in such
bindings have not been determined.

The toxin is recognized both in uncleaved and cleaved form by ELISA; however, the
capturing antibody binds to the B pentamer, and consequently the soluble toxin is identified,
as well as those toxin molecules interacting with TLR4 on the surface of microvescicles. In
contrast, it is conceivable that the toxin bound to microvesicles through Gb3Cer/B chains
interactions (Figure 4) is not recognized by the B-chain-interacting capturing antibody of
the ELISA (Figure 3).

It is worth noting that Stx2a bound to Gb3Cer could be cleaved or uncleaved (Figure 3).
By using LCFTS, when the toxin is bound via the B chain pentamer to the Gb3Cer expressed
by microvesicles of platelet or monocyte origin, it exposes the A subunit which, if present
in cleaved form, is documented by the system, similarly to soluble cleaved Stx2a. On
the other hand, Stx2a bound to TLR4 via its A subunit is always uncleaved. For these
reasons, the concentration of cleaved toxin in some patients turns out to be greater than the
concentration of toxin detected by ELISA, i.e., the latter assay could underestimate the total
Stx2a amount due to the lack of detection of the Gb3Cer-bound cleaved toxin (Figure 3). In
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conclusion, given the different forms of the toxin and the extreme variety of toxin-binding
factors in blood (Figures 3 and 4), the determinations obtained by ELISA or LCFTS only
approach the total amount of Stx2a. For this reason, the combined information obtained by
ELISA and LCFTS provides the best picture.

A time-course analysis of cleaved Stx2 detection was performed in two patients
(Figure 5) when they were symptomatic. The results showed a lack of detection over time
in patient 8 and an early one-day peak of cleaved Stx2 followed by a lack of detection for
3 days in patient 7. These results suggest that the proper detection of cleaved Stx2 would
require early and repeated determinations in each patient. Unfortunately, time-course
analyses were not performed in patients 1-6 due to low amounts of sera.
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Figure 5. Time-course analysis of cleaved Stx2 detection in two STEC-infected patients. Stx2 on
neutrophils (black) was detected by indirect flow cytometric analysis, the amount of Stx2 (blue)
in patients’ sera was measured by ELISA and the amount of cleaved Stx2 (red) was measured by
LCFTS. The presence of clinical manifestations such as diarrhea (solid horizontal line) and protein-
uria/hematuria (red horizontal lines or red arrows) was also shown. Numbers at the top of each
panel identify the patient listed in Table 1.

3. Discussion

The outcome of STEC infections and the onset of HUS could be influenced by the
percentages of toxins present in uncleaved or cleaved form circulating in the patient’s blood,
as in other toxin-mediated diseases. Bacillus anthracis protective antigen and toxin A from
Clostridium difficile changed their properties and their contributions to disease development
after proteolytic cleavage, as in the case of Stx2a [32,33].

By using the newly developed method, LCFTS, we identified the cleaved form of Stx2a
in 50% of eight STEC-infected patients’ sera. The cleaved form of the toxin was present
in two out the three patients who developed HUS and in two out of five who recovered,
suggesting that there is not a clear correlation between the presence of this form of the toxin
in serum and the onset of HUS. However, cleaved Stx2a may act in cooperation with other
pathogenic factors (including uncleaved Stx2a), so that the relative amounts of the different
factors, rather than their mere presence, may play a role in triggering HUS or in modulating
the severity of symptoms. Regardless of any speculation, since the cleaved form of the toxin
has only been characterized in vitro, its detection in the blood of STEC-infected patients
seems to be a relevant finding which may open perspectives for more extensive studies.

Bloody diarrhea, watery diarrhea, hematuria and proteinuria were found both in the
patient group with the cleaved form of the toxin and in the patient group in which it was
not detected. A common feature of all the patients with the cleaved form of Stx2a was the
presence of the neutrophil-bound toxin (Table 1). Since the binding of Stx2a to neutrophils
is only possible if the toxin is not cleaved, the presence of the cleaved form of Stx2a in
patients with neutrophil-bound Stx2 suggests two hypotheses: (i) the toxin enters into the
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circulation from the gut uncleaved, at least in part, in order to bind to neutrophils, and/or
(ii) it is cleaved after binding to neutrophils.

Another hypothesis is that part of the toxin may be cleaved in an earlier phase by some
bacterial proteases and is released into the bloodstream already in the cleaved form. In this
case, it can only recognize the Gb3Cer receptor expressed by circulating cells and therefore
only binds to platelets and monocytes even though, given its properties, it stimulates
the formation of leukocyte–platelet aggregates to a lesser extent. Alternatively, since
microvesicles have the same features as the cells from which they derive, those formed by
monocytes and platelets can have Stx2a bound to Gb3Cer via the B chain pentamer, leaving
the toxin A chain exposed and available for subsequent cleavage by host serum proteases.
Finally, host intestinal proteases could also be responsible for the cleavage of toxins before
their release in blood. Recently, two serine proteases, trypsin and chymotrypsin-like
elastase 3B, have been identified as possible candidates that can induce the cleavage of
Stx2a in the gut [34]. Given the complexity of these scenarios, the identification and the
source of protease/s inducing the toxin cleavage needs further investigation.

4. Conclusions

The application of LCFTS has proved to be a useful tool for studying and obtaining
more information on the presence of the cleaved form of Stx2a in patients and on the
possible relationship with clinical symptoms. However, whether it contributes to HUS
onset and to what extent remains to be clarified. To better understand the role of the cleaved
form of Stx2a in the pathogenesis of HUS, it will be necessary to perform targeted kinetic
studies with repeated determinations over time to investigate the evolution of the clinical
symptoms in STEC-infected patients and, at the same time, the appearance of cleaved Stx2a
in sera.

5. Materials and Methods
5.1. Stx2a Purification

Stx2a was produced from strain C600φ933W, an E. coli K12 strain containing the
bacteriophage carrying the Stx2a gene of the STEC EDL 933 strain, which was supplied
by Dr. Alison O’Brien (Department of Microbiology and Immunology, Uniformed Ser-
vices University of the Health Sciences, Bethesda, MD, USA), and isolated according
to [35]. Briefly, the toxin was purified starting from the ammonium sulfate-precipitated
proteins of the culture supernatant by passage through a receptor analogue affinity column
(1.5 cm × 0.6 cm, 1 mL total volume) in which bovine serum albumin (BSA) linked to a
terminal galabiose (Galα1-4Galβ-O-spacer—BSA, Glycorex, Lund, Sweden) was coupled
to cyanogen bromide-activated Sepharose. To remove any trace of contaminant endotoxin,
Stx2a was applied to ActiClean Etox columns (Sterogene Bioseparations, Carlsbad, CA,
USA). The Stx2a preparation was quantified by a Lowry assay and assayed using Limulus
Pyrogen Plus amebocyte lysate (Cambrex, Walkersville, MD, USA), demonstrating the
presence of a low amount of LPS (0.73 ng/mg Stx2a).

5.2. Cleavage of Stx2a

To obtain the cleaved form of Stx2a, the toxin (4 µg) was treated with 50 ng of trypsin
(1 mg/mL in 0.1 mM HCl, diluted to 0.05 ng/mL with PBS) in 10 µL PBS pH 7.5 and
incubated for 1 h at 37 ◦C. Then, to inactivate trypsin, 0.7 ng of the trypsin inhibitor
phenylmethylsulfonyl fluoride (PMSF, 1 mg/mL dissolved in absolute ethanol and diluted
to 0.7 µg/mL with water) was added and incubated for 10 min at 37 ◦C [26,30].

5.3. Human Samples from STEC-Infected Patients

Serum samples from 8 STEC-infected patients (5 males and 3 females, median age
5.7 years), 3 with overt HUS, were collected and stored at −20 ◦C. Parents of the children
gave their informed consent for inclusion before they participated in the study. The
study was conducted in accordance with the Declaration of Helsinki, and the protocol
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was approved by the Ethics Committee of the Fondazione IRCCS Ca’ Granda Ospedale
Maggiore Policlinico, Milan, Italy (18 May 2010). The detection of Stx genes in enrichment
cultures of feces using real-time PCR and the isolation of STEC strains and the search
for antibodies to lipopolysaccharide (LPS) were performed as described in [36–39]. Stx
bound to neutrophils was detected by indirect flow cytometric analysis in the presence of
monoclonal antibodies to Stx1 and Stx2 (Stx1–13C4, Stx2-BB12; Toxin Technology, Sarasota,
FL, USA) [5].

Stx2 present in patients’ sera was quantified by a specific improved enzyme-linked
immunosorbent assay (ELISA), as previously reported [40]. Briefly, the ELISA-based
method was specifically designed for the detection of Stx2 in serum samples. Since this
toxin interacts with several blood factors, including HuSAP, a preincubation step of sera
with the chaotropic agent guanidinium chloride (200 mM) was performed to dissociate the
toxin from the bound molecules. Subsequently, monoclonal (Stx2-2) and polyclonal (Stx2-
pAb) antibodies against Stx2 were used in the ELISA. Each sample was run in duplicate.
Patients’ sera were also used for the detection of the cleaved form of Stx2a. Control
serum samples were obtained from three adults and used in the study after obtaining
informed consent.

5.4. Detection of the Cleaved Form of Stx2a in Serum Samples from STEC-Infected Children by LCFTS

The detection of the cleaved form of the toxin was performed according to a published
methodological paper [30]. Briefly, human serum samples were treated with immobilized
protein G to remove an endogenous cell-free translation inhibitor, and 5-fold concentrated
by centrifugation on Centricon 30 [30]. Then, the obtained samples were applied to a
luminometric acellular translation system derived from rabbit reticulocyte lysate, fraction-
ated, and reconstituted with human ribosomes that translate synthetic exogenous mRNA
encoding the enzyme luciferase (Renilla reniformis) [30]. Each experiment was performed in
duplicate. The system is able to discriminate the two forms of Stx2a based on their different
inhibitory effects on protein synthesis under reducing conditions (80 mM DTT), since the
IC50 values are in the picomolar range for the trypsin-cleaved toxin and in the nanomolar
range for the uncleaved toxin [30].
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