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ON A BREZIS-OSWALD-TYPE RESULT FOR DEGENERATE

KIRCHHOFF PROBLEMS

STEFANO BIAGI AND EUGENIO VECCHI

Abstract. In the present note we establish an almost-optimal solvability result
for Kirchhoff-type problems of the following form

−M
(
∥∇u∥2L2(Ω)

)
∆u = f(x, u) in Ω,

u ≩ 0 in Ω,

u = 0 on ∂Ω.

where f has sublinear growth and M is a non-decreasing map with M(0) ≥ 0.
Our approach is purely variational, and the result we obtain is resemblant to
the one established by Brezis and Oswald (Nonlinear Anal., 1986) for sublinear
elliptic equations.

1. Introduction

Let Ω ⊆ Rn be a non-empty, bounded and connected open set with sufficiently
smooth boundary ∂Ω. The aim of this short note is to prove an optimal solvability-
type result which is somehow complementary to [1]: see Remark 1.1 for a compar-
ison between our result and the one in [1]. In particular, we are interested in the
following Kirchhoff problem

(1.1)


−M

(
∥∇u∥2L2(Ω)

)
∆u = f(x, u) in Ω,

u ≩ 0 in Ω,

u = 0 on ∂Ω.

We immediately fix the standing assumptions on both the Kirchhoff function M
and the nonlinearity f .

(f1) f : Ω× [0,+∞) → R is a Carathéodory function.
(f2) f(·, t) ∈ L∞(Ω) for every t ≥ 0.
(f3) There exists a positive constant c > 0 such that

|f(x, t)| ≤ c(1 + t) for a.e.x ∈ Ω and every t ≥ 0.

(f4) For a.e.x ∈ Ω, the function t 7→ f(x, t)

t
is strictly decreasing in (0,+∞).

(M) M : [0,+∞) → R is a non-negative, non-decreasing and continuous function
such that M(s) > 0 for every s > 0. For a future reference, we set

M(0) = m0 ≥ 0.
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As is customary in the literature, if m0 > 0 (hence, M(s) ≥ m0 > 0 ∀ s ≥ 0), we
say that M is non-degenerate; if, instead, m0 = 0, we say that M is degenerate.
We stress right now that our technique does not allow us to consider Kirchhoff
functions which are degenerate on an interval [0, t0), see Remark 2.3.

Remark 1.1. We observe that all the assumptions (f1)-to-(f4) are trivially sat-
isfied in the particular case of power-type linearities f(x, u) = uθ, with 0 ≤ θ < 1:
this has been considered in [1], where the authors prove existence and uniqueness
of a solution by means of sub/supersolution methods, but with a non-increasing
M, which is usually not the standard assumption in the applications. We want to
stress that the proof in [1] is heavily based on comparison principles whose validity
for Kirchhoff functions M having non-decreasing behaviour (like ours) may fail to
hold without some extra assumption, see e.g. [2, 11, 9]. For instance, it is proved
in [7, Proposition 2] that the comparison principle holds, provided that M is any
non-decreasing function (no sign assumption is required) and the map

t 7→ tM(t)

is non-increasing, but this is clearly an assumption incompatible with (M). In this
perspective, we highlight that we do not require any additional assumption on any
of the maps tαM(t) (with α ̸= 0). We also notice that, in working with an explicit
nonlinearity (as is done in [1]), there is no need to look for optimal solvability as in
the present paper. Keeping this aim in mind, it is therefore kind of natural to look
for a variational approach when M is non-decreasing and/or possibly degenerate.
We recall that there exists a huge literature concerning variational methods for
Kirchhoff problem, see e.g. [20, 3, 15, 21, 16] and the references therein for a
definitely non exhaustive list of contributions.

In what follows, we will exploit the variational nature of the problem, in order
to provide necessary and sufficient conditions for solvability of (1.1) in the spirit of
the celebrated paper [6] by Brezis and Oswald. To this aim, owing to assumption
(f4), we introduce the following functions:

a0(x) := lim
t↓0

f(x, t)

t
a∞(x) := lim

t↑+∞

f(x, t)

t
(for x ∈ Ω).

Remark 1.2. We explicitly notice that, since we do not require any bound on the
map t 7→ f(·, t)/t near t = 0, the function a0(·) can be unbounded from above: more
precisely, by assumptions (f2) and (f4) we have

+∞ ≥ a0(x) = lim
t↓0

f(x, t)

t
≥ f(x, 1) ≥ −∥f(x, 1)∥L∞(Ω) > −∞.(1.2)

On the other hand, by assumption (f3) we have

(1.3) |a∞(x)| = lim
t→+∞

∣∣∣f(x, t)
t

∣∣∣ ≤ lim
t→+∞

c(1 + t)

t
= c.

We also point out that, again by assumption (f4), one has a∞(x) ≤ a0(x) for every
x ∈ Ω (with the usual convention that −∞ < z < +∞ for all z ∈ R).

Definition 1.3. Let the above assumptions and notations be in force. We say that
a function u ∈ H1

0 (Ω) is a weak solution of (1.1) if

(1.4)

∫
Ω
M
(
∥∇u∥2L2(Ω)

)
⟨∇u,∇φ⟩ dx =

∫
Ω
f(x, u)φdx ∀ φ ∈ H1

0 (Ω),
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and u ≥ 0 a.e. in Ω and |{x ∈ Ω : u(x) > 0}| > 0 (here and throughout, | · | denotes
the n-dimensional Lebesgue measure of a measurable set, while ⟨·, ·⟩ denotes the
standard scalar product in Rn).

As commonly exploited in the literature, weak solutions to the equation in (1.1)
can be obtained as critical points of the functional

(1.5) JM(u) :=
1

2
M
(
∥∇u∥2L2(Ω)

)
−
∫
Ω
F (x, u) dx, u ∈ H1

0 (Ω),

where M and F are primitives of M and f respectively, that is,

M(s) =

∫ s

0
M(ζ) dζ and F (x, t) =

∫ t

0
f(x, s) ds.

We explicitly stress that, in order to define F (x, t) also for negative t (so that the
functional JM is well-posed on H1

0 (Ω)), following [6] we agree to set

(1.6) f(x, t) = f(x, 0) for t ≤ 0.

Remark 1.4. We explicitly highlight, for a future reference, that

F (x, t+) ≥ F (x, t) for a.e.x ∈ Ω and t ∈ R.

To prove this fact (in the meaningful case when t ≤ 0 and t+ = 0) we first observe
that, by exploiting assumptions (f2)− (f4), we have

f(x, t) =
f(x, t)

t
· t ≥ f(x, 1)t ≥ −∥f(x, 1)∥L∞(Ω)t ≡ −cf t,

for a.e.x ∈ Ω and 0 ≤ t ≤ 1;

this, together with assumption (f1), ensures that f(x, 0) ≥ 0. As a consequence of
this last fact, and taking into account (1.6), we then obtain

F (x, t) =

∫ t

0
f(x, s) ds = f(x, 0)t ≤ 0 = F (x, t+) ∀ t ≤ 0.

Remark 1.5. In the local and linear case M(s) = 1 (and hence M(s) = s) consi-
dered in [6], there is a direct relation between the variational formulation of

−∆u = f(x, u)

and the minimization problem

inf
u∈H1

0 (Ω)
JM(u) = inf

u∈H1
0 (Ω)

(1
2

∫
Ω
|∇u|2 −

∫
Ω
F (x, u) dx

)
.

More precisely, when we test the equation appearing in problem (1.1) with the weak
solution u ∈ H1

0 (Ω) itself (provided it exists), we obtain∫
Ω
|∇u|2 dx =

∫
Ω
f(x, u)u dx,

and the operator part ∫
Ω
|∇u|2 dx
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coincides with M(∥∇u∥2L2(Ω)) = ∥∇u∥2L2(Ω) in the minimization problem.

This is no more true in the case when one considers different M : in fact, using
the weak solution u ∈ H1

0 (Ω) as a test function for the equation in (1.1), we get

M(∥∇u∥2L2(Ω))

∫
Ω
|∇u|2 dx =

∫
Ω
f(x, u)u dx,

but the operator part does not coincide with M(∥∇u∥2L2(Ω)), that is,

M(∥∇u∥2L2(Ω))

∫
Ω
|∇u|2 dx ̸= M(∥∇u∥2L2(Ω)).

As already anticipated, our aim in this note is to obtain optimal conditions for the
existence of a unique weak solution (in the sense of Definition 1.3) to problem (1.1).
To state our main result in this direction, we need to introduce a notion which is the
extension to our setting of the original definition in [6]: if a : Ω → R = R ∪ {±∞}
is any measurable function, we define

Λ(a) := inf
v∈H1

0 (Ω)\{0}

M
(
∥∇v∥2L2(Ω)

)
−
∫
{v ̸=0} a(x)v

2

∥v∥2
L2(Ω)

 .

Remark 1.6. Due to the key role played by the numbers Λ(a0) and Λ(a∞) in our
main result, see Theorem 1.7 below, here we list for a future reference some basic
properties of Λ(a), when a : Ω → R is a generic measurable function.

(1) Being defined as the infimum of a subset of R, Λ(a) always exists in R;
moreover, we have Λ(a) = +∞ if and only if a(x) = −∞ for a.e.x ∈ Ω.

(2) If a, b : Ω → R are measurable functions such that a ≤ b a.e. on Ω, it follows
from the very definition of Λ(·) that Λ(b) ≤ Λ(a) in R.

(3) Assume that there exists some number m ∈ [0,+∞) such that a ≥ −m for
almost every x ∈ Ω. Owing to assumption (M), and choosing an arbitrary
‘admissible’ function v ∈ H1

0 (Ω), v ̸≡ 0, we then get

Λ(a) ≤
M
(
∥∇v∥2L2(Ω)

)
∥v∥2

L2(Ω)

+m < +∞.

As a consequence, if a is bounded from below (as is the case of a0, see (1.2)),
we derive that Λ(a) ∈ [−∞,+∞).
Analogously, if we assume that a(x) ≤ m for almost every x ∈ Ω (i.e., a is
bounded from above), again by assumption (M) we have

M
(
∥∇v∥2L2(Ω)

)
−
∫
{v ̸=0} a(x)v

2

∥v∥2
L2(Ω)

≥ −m ∀ v ∈ H1
0 (Ω) \ {0},

so that Λ(a) ≥ −m > −∞. As a consequence, if a is bounded from above
(as is the case of a∞, see (1.3)), we derive that Λ(a) ∈ (−∞,+∞].
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(4) In the particular case when M is non-degenerate, that is, M(0) = m0 > 0,
it follows from the very definition of Λ(a) that

Λ(a) ≥ inf
v∈H1

0 (Ω)\{0}

{
m0∥∇v∥2L2(Ω) −

∫
{v ̸=0} a(x)v

2

∥v∥2
L2(Ω)

}

= inf
v∈H1

0 (Ω)
∥v∥L2(Ω)=1

{
m0∥∇v∥2L2(Ω) −

∫
{v ̸=0}

a(x)v2
}

= λ1(−m0∆− a),

(1.7)

where λ1(−m0∆ − a) is the first eigenvalue of −m0∆ − a (with Dirichlet
boundary condition), as defined in [6].

Analogously, if we assume that the Kirchhoff function M is bounded from
above by some m1 ∈ (0,+∞) (i.e., M(s) ≤ m1 for all s ≥ 0), we get

Λ(a) ≤ λ1(−m1∆− a).

We explicitly observe that, if M is non-degenerate (that is,M(0) = m0 > 0)
and if a ≤ 0 almost everywhere in Ω, from (1.7) we derive that

Λ(a) ≥ λ1(−m0∆− a) ≥ m0λ1(−∆) > 0,

where λ1(−∆) denotes the first Dirichlet eigenvalue of L = −∆ in Ω.

The main result. Taking into account all the definitions and notations introduced
so far, we are able to state the main result of this note.

Theorem 1.7. Let Ω ⊂ Rn be a bounded and connected open set with smooth
boundary ∂Ω. Moreover, assume that f satisfies assumptions (f1)-to-(f4) and that
M satisfies assumption (M). Then, the following holds.

(1) If there exists a weak solution to (1.1), then it is unique, bounded and
strictly positive in Ω; in addition, we necessarily have Λ(a0) < 0.

(2) If one has Λ(a0) < 0 < Λ(a∞), then there exists a weak solution to (1.1),
which is therefore unique, bounded and strictly positive in Ω.

Remark 1.8 (Sharpness of Theorem 1.7). We explicitly highlight that, despite its
statement, Theorem 1.7 is almost sharp: more precisely, due to the nature of the
problem, and differently from [6], one can find weak solutions of (1.1) even if

Λ(a∞) = 0,

both in the degenerate case (m0 = 0) and in the non-degenerate case (m0 > 0). In
order to illustrate this fact, we consider the following examples.

(1) In Euclidean space Rn (with n ≥ 1), let B1 ⊆ Rn denote the unit ball with
centre x0 = 0, and let u0 be the function defined as follows:

u0(x) = 1− ∥x∥2 (x ∈ B1).

A direct computation shows that this function u0 ∈ C2(B1) is a (classical)
solution of problem (1.1), where M and f are given, respectively, by

f(x, t) ≡ 8n|B1|
n+ 1

; M(s) = s (hence, M(s) = s2/2).
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It is then immediate to see that the constant function f satisfies assum-
ptions (f1)-to-(f4), and the Kirchhoff function M(s) = s satisfies assump-
tion (M). On the other hand, in the present context we have

a∞(x) = lim
t↓+∞

f(x, t)

t
≡ 0,

and a standard homogeneity argument shows that

Λ(a∞) = Λ(0) = inf
v∈H1

0 (B1)
v ̸=0

{
∥∇v∥4L2(Ω)

2∥v∥2
L2(Ω)

}
= 0.

(2) In Euclidean space Rn (with n ≥ 1), let ∅ ̸= Ω ⊆ Rn be a bounded and
connected open set with smooth boundary, and let λ1 = λ1,−∆(Ω) > 0 be
the first Dirichlet eigenvalue of L = −∆ in Ω (obtained as the minimum of
the Rayleigh quotient). Moreover, let

0 < ε < λ1

be arbitrarily fixed. Owing the result established in [6], we know that there
exists a (unique) weak solution u0 ∈ H1

0 (Ω) ∩ L∞(Ω) of
−∆u = ε(1 + u) in Ω,

u ≩ 0 in Ω,

u ≡ 0 in ∂Ω.

(note that, with reference to the notation in [6], we have λ1(−∆−a0) = −∞
and λ1(−∆− a∞) = λ1 − ε > 0); as a consequence, for every β > 0 we see
that this function u0 is a weak solution of problem (1.1), with

• f(x, t) = ε(1 + β∥∇u0∥2L2(Ω))(1 + t);

• M(s) = 1 + βs (hence, M(s) = s+ βs2/2).

We explicitly stress that, even if f depends on ∥∇u0∥2L2(Ω), this is a strictly

positive real number which is by now fixed.
Now, if we choose the parameter β > 0 in such a way that

ε(1 + β∥∇u0∥2L2(Ω)) = λ1

(note that is is always possible, since ε < λ1), we have

a∞ = lim
t↓+∞

f(x, t)

t
= ε(1 + β∥∇u0∥2L2(Ω)) = λ1,

and a simple homogeneity argument shows that, in this case,

Λ(a∞) = inf
v∈H1

0 (Ω)\{0}

M
(
∥∇v∥2L2(Ω)

)
−
∫
{v ̸=0} a∞(x)v2

∥v∥2
L2(Ω)


= inf

v∈H1
0 (Ω)

v ̸=0

{
∥∇v∥2L2(Ω) +

β
2 ∥∇v∥4L2(Ω)

∥v∥2
L2(Ω)

}
− λ1 = 0.

On account of Remark 1.8, we can say that our Theorem 1.7 is almost sharp, in
the sense that we cannot hope for the condition Λ(a0) < 0 < Λ(a∞) to be both
necessary and sufficient for the existence of a weak solution of (1.1). However, if
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we restrict our attention to a particular class of nonlinearity f and if M is non-
degenerate, we can easily obtain the following optimal solvability result.

Corollary 1.9. Let the assumptions and the notation of Theorem 1.7 be in force.
Assume, in addition, that M is non-degenerate and that a∞ ≤ 0 a.e. in Ω. Then,
there exists a weak solution of problem (1.1) if and only if

Λ(a0) < 0.

Proof. Since M is non-degenerate and since a∞ ≤ 0 a.e. in Ω, from Remark 1.6-(4)
we know that Λ(a∞) > 0; hence, Theorem 1.7 shows that

∃ a weak solution of problem (1.1) ⇐⇒ Λ(a0) < 0.

This ends the proof. □

We highlight that the sign assumption a∞ ≤ 0 a.e. in Ω in the statement of
Corollary 1.9 is actually a sign assumption on the nonlinearity f .

We further notice that Corollary 1.9 allows us to obtain optimal solvability condi-
tions for the problem considered in [9] (and stated in Example 1.10 below), without
the additional assumption that t 7→ tM(t) is invertible.

Example 1.10. Let Ω ⊆ Rn be a bounded and connected open set with smooth
boundary ∂Ω, and let M : [0,+∞) → [0,+∞) satisfy assumption (M). Moreover,
let λ ∈ R and p ∈ (0, 1) be fixed. We assume that M is non-degenerate, that is,

M(0) = m0 > 0,

and we consider the following problem

(P)


−M(∥∇u∥2L2(Ω))∆u = λup in Ω,

u ≩ 0 in Ω,

u ≡ 0 on ∂Ω.

Then, we claim that this problem admits a solution if and only if λ > 0.
To prove this claim we first observe that, if λ ≤ 0, problem (P) cannot have

solutions by the classical Weak Maximum Principle. In fact, if we assume by con-
tradiction that there exists a weak solution u ∈ H1

0 (Ω) of (P) (in the sense of
Definition 1.3), by standard Elliptic Regularity (and since M is non-degenerate) it
is readily seen that u ∈ C2(Ω); then, recalling that λ ≤ 0 and M > 0, we get

−∆u =
λup

M(∥∇u∥2
L2(Ω)

)
≤ 0 in Ω.

On the other hand, since u ≡ 0 on ∂Ω, by the Weak Maximum Principle we
conclude that u ≤ 0 in Ω, and this is in contradiction with the fact that u ≩ 0.

If, instead, λ > 0, it is immediate to recognize that the function

f(x, t) = λtp

satisfies all the assumptions (f1)-to-(f4); moreover, we have

a0(x) := lim
t↓0

f(x, t)

t
= +∞, a∞(x) := lim

t↑+∞

f(x, t)

t
= 0.

We are then entitled to apply Corollary 1.9, showing that problem (P) is solvable
if and only if Λ(a0) < 0. On the other hand, since a0 ≡ +∞ we have

Λ(a0) = −∞ < 0,
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and hence there exists a solution of (P) for every λ > 0.

We stress once again that we are able to establish an optimal solvability result in
the case of sublinear Kirchhoff problems with a general nonlinearity and with the
proper monotonicity behaviour of M , Our technique is so simple that we believe it
can be adapted to slightly different settings like p-Kirchhoff operators or fractional
Kirchhoff operators, possibly with a few modifications for the uniqueness part.

We close this introduction with a brief recall of a few other results dealing with
Brezis-Oswald-type problems. The first generalization to the p-Laplacian case with
Dirichlet boundary conditions is obtained in [8]. Subsequently, the case of the
p-Laplacian (in particular p = 2) with Robin boundary conditions has been con-
sidered in [10]. Moving to the nonlocal world, in [13] the case of the fractional
p-Laplacian has been recently fully addressed, while partial results (optimal only
in the linear case p = 2) has been obtained in [19] for the fractional p-Laplacian in
presence of nonlocal Robin boundary conditions. In the previous cases, the frac-
tional (p)-Laplacian is defined on the whole of Rn via the Cauchy principal value;
existence results in the case of nonlocal operators defined in bounded domains are
obtained in [17]. In addition, we mention [4, 5], where the mixed local–nonlocal
case has been fully treated. Finally, concerning the uniqueness part, we mention
[14] for a class of integro-differential operators and [18] for a non–smooth setting.

The paper is organized as follows:

• in Section 2 we collect some preliminary results, mostly well-known in the
literature concerning Kirchhoff problems, which will be exploited in the
proof of Theorem 1.7;

• using the results in Section 2, we prove Theorem 1.7 in Section 3.

Acknowledgments. We warmly thank the anonymous referee for the careful
reading of the paper, and for some precious comments leading to this final and
improved version of the manuscript.

2. Preliminary results

In this section we collect a few immediate results which already appear in the
wide literature concerning Kirchhoff problems.

To begin with, we prove the following result whose proof closely follows a pretty
classical truncation method. For sake of completeness, we present all the details.

Proposition 2.1. Let u ∈ H1
0 (Ω) be a weak solution of problem (1.1) with f sati-

sfying only assumption (f1)-to-(f3). Then, u ∈ L∞(Ω).

Proof. To begin with, we arbitrarily fix δ ∈ (0, 1) and we set

ũ := δu.

Then, recalling that u solves (1.1) (hence, u ̸≡ 0 in Ω), we have

κu

∫
Ω
⟨∇ũ,∇v⟩ dx = δ

∫
Ω
f(x, u)v dx ∀ v ∈ H1

0 (Ω),(2.1)

where we have used the shorthand notation

κu := M
(
∥∇u∥2L2(Ω)

)
> 0.
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We explicitly stress that the strict inequality κu > 0 follows from assumption (M),
both in the degenerate and in the non-degenerate case, since u ̸≡ 0.

Now, for every k ≥ 0, we define Ck := 1− 2−k and

vk := ũ− Ck, wk := (vk)+ := max{vk, 0}, Uk := ∥wk∥2L2(Ω).

We explicitly point out that, in view of these definitions, one has

(a) ∥ũ∥2L2(Ω) = δ2 ∥u∥2L2(Ω);

(b) w0 = v0 = ũ (since C0 = 0 and ũ ≥ 0 in Ω);

(c) vk+1 ≤ vk and wk+1 ≤ wk (since Ck < Ck+1).

We then observe that, since u ∈ H1
0 (Ω) and 0 ≤ wk ≤ ũ, we have wk ∈ H1

0 (Ω); we
are then entitled to use the function wk as a test function in (2.1), obtaining

κu

∫
Ω
|∇wk|2 dx = κu

∫
Ω
⟨∇ũ,∇wk⟩ dx = δ

∫
Ω
f(x, u)wk dx.

From this, by exploiting assumption (f3) (and since wk ≥ 0), we obtain

κu

∫
Ω
|∇wk|2 dx ≤ c δ

∫
Ω
(1 + u)wk dx ≤ c

∫
Ω
(1 + ũ)wk dx,(2.2)

since δ < 1. To proceed further we note that, for every k ≥ 1, one has

(2.3) ũ(x) < (2k − 1)wk−1(x) for x ∈ {wk > 0},

and the inclusions

(2.4) {wk > 0} = {ũ > Ck} ⊆ {wk−1 > 2−k}

hold true for every k ≥ 1. By combining (2.3)-(2.4) with (2.2), and by taking into
account that wk ≤ wk−1 a.e. in Ω, for every k ≥ 1, we get

(2.5)

κu

∫
Ω
|∇wk|2 dx ≤ c

∫
{wk>0}

(1 + ũ)wk dx

≤ c

∫
{wk>0}

[
wk−1 + (2k − 1)w2

k−1

]
dx

≤ c

∫
{wk−1>2−k}

[
2kw2

k−1 + (2k − 1)w2
k−1

]
dx

≤ c 2k+1

∫
{wk−1>2−k}

w2
k−1dx

≤ c 2k+1

∫
Ω
w2
k−1dx = c 2k+1Uk−1.

We now estimate from below the term Uk−1 in the right-hand side of (2.5). To this
end we first observe that, as a consequence of (2.4), we get

Uk−1 =

∫
Ω
w2
k−1 dx ≥

∫
{wk−1>2−k}

w2
k−1 dx

≥ 2−2k
∣∣{wk−1 > 2−k}

∣∣ ≥ 2−2k
∣∣{wk > 0}|.

(2.6)

Choosing an exponent p ∈ (2, 2∗) (with the convention that 2∗ = ∞ if n = 1, 2), by
Hölder’s inequality (with exponents p/2 and p/(p−2)) and the Sobolev Embedding
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Theorem, from (2.5)-(2.6) we obtain the following estimate:

Uk = ∥wk∥2L2(Ω) ≤
(∫

Ω
wp
k dx

)2/p ∣∣{wk > 0}
∣∣1−2/p

≤ cp

∫
Ω
|∇wk|2 dx ·

∣∣{wk > 0}
∣∣1−2/p

≤ cp

( c

κu
2k+1 Uk−1

) (
22kUk−1

)1−2/p

= c′
(
21+2(1−2/p)

)k−1
U

2−2/p
k−1 (with c′ :=

c

κu
22+2(1−2/p) cp),

(2.7)

for every k ≥ 1, where cp > 0 is the constant in the Sobolev Embedding Theorem
(which may also depends on the n-dimensional measure of Ω).

Recalling that p > 2, estimate (2.7) can be re-written as

Uk ≤ c′Bk−1U1+α
k−1 ,

where

B := 21+2(1−2/p) > 1 and α := 1− 2/p > 0

Hence, from [12, Lemma 7.1] we get that Uk → 0 as k → +∞, provided that

U0 = ∥ũ∥2L2(Ω) = δ2∥u∥2L2(Ω) < (c′)−1/αB−1/α2
.

As a consequence, if δ > 0 is small enough, we obtain

0 = lim
k→+∞

Uk = lim
k→+∞

∫
Ω
(ũ− Ck)

2
+ dx =

∫
Ω
(ũ− 1)2+ dx.

Bearing in mind that ũ = δu (and u ≥ 0), we then get

0 ≤ u ≤ 1

δ
a.e. in Ω,

from which we conclude that u ∈ L∞(Ω). □

Proposition 2.2. Let u ∈ H1
0 (Ω) be a weak solution of problem (1.1) (according

to Definition 1.3). Then, the following assertions hold:

• u ∈ W 2,p(Ω) for all p ∈ [1,+∞) (hence, u ∈ C1,α(Ω) for all α ∈ (0, 1));

• u(x) > 0 for every x ∈ Ω;

• ∂νu(x) < 0 for every x ∈ ∂Ω.

Proof. First of all we observe that, since u ∈ H1
0 (Ω) is a weak solution of (1.1),

from assumption (M) we have

κu := M
(
∥∇u∥2L2(Ω)

)
> 0;

as a consequence, u is also a weak solution of

(2.8) −∆u =
f(x, u)

κu
, in Ω.

In view of (2.8), and since we already know from Proposition 2.1 that u ∈ L∞(Ω),
by arguing exactly as in [6] we deduce that x 7→ f(x, u(x)) ∈ L∞(Ω), and hence

u ∈ W 2,p(Ω) ∀ 1 ≤ p < ∞.

Moreover, by [6, Lemma 1] we infer that u > 0 in Ω and ∂νu < 0 on ∂Ω. □
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Remark 2.3. We notice that the above argument cannot be run in presence of a
more degenerate Kirchhoff function M , e.g., vanishing on some interval of the form
[0, s0] for some s0 > 0.

The previous Proposition 2.2, together with the proper monotonicity of M , plays
a major role in the proof of the uniqueness.

Proposition 2.4. The problem (1.1) has a unique weak solution.

Proof. Let u1, u2 ∈ H1
0 (Ω) be two weak solutions of problem (1.1). As in [6], thanks

to Proposition 2.2, we can consider

φ1 :=
u22
u1

− u1

as test function in the equation solved by u1, and

φ2 :=
u21
u2

− u2

as test function in the equation solved by u2. Recalling that

∇φ1 = 2
u2
u1

∇u2 −
u22
u21

∇u1 −∇u1, and ∇φ2 = 2
u1
u2

∇u1 −
u21
u22

∇u2 −∇u2,

we then sum the equations up, finding∫
Ω
(f(x, u1)φ1 + f(x, u2)φ2) dx

=

∫
Ω
M
(
∥∇u1∥2L2(Ω)

)
⟨∇u1,∇φ1⟩ dx+

∫
Ω
M
(
∥∇u2∥2L2(Ω)

)
⟨∇u2,∇φ2⟩ dx

= −M
(
∥∇u1∥2L2(Ω)

)∫
Ω

∣∣∣∣∇u1 −
u2
u1

∇u1

∣∣∣∣2 dx

−M
(
∥∇u2∥2L2(Ω)

)∫
Ω

∣∣∣∣∇u2 −
u1
u2

∇u2

∣∣∣∣2 dx

+
(
M
(
∥∇u1∥2L2(Ω)

)
−M

(
∥∇u2∥2L2(Ω)

))∫
Ω

(
|∇u2|2 − |∇u1|2

)
dx

≤
(
M
(
∥∇u1∥2L2(Ω)

)
−M

(
∥∇u2∥2L2(Ω)

))∫
Ω

(
|∇u2|2 − |∇u1|2

)
dx ≤ 0,

because M is non-decreasing. Therefore, as in [6],∫
Ω

(
f(x, u1)

u1
− f(x, u2)

u2

)
(u22 − u21) dx ≤ 0,

which, together with (f4) shows that u1 = u2, for a.e. x ∈ Ω. □

Remark 2.5. We stress that the previous variational proof seems to work only
with M non-decreasing.

3. Proof of Theorem 1.7

In this section we will prove Theorem 1.7. We have already showed that if there
exists a weak solution of problem (1.1), it must be unique.

Proposition 3.1. Assume that there exists a weak solution u ∈ H1
0 (Ω) of problem

(1.1). Then, we have Λ(a0) < 0.
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Proof. By definition of Λ(a0), we have

(3.1) Λ(a0) ≤
M
(
∥∇u∥2L2(Ω)

)
−
∫
Ω a0(x)u

2

∥u∥2
L2(Ω)

;

moreover, since u ≩ 0 in Ω (as u is a weak solution of problem (1.1), see Definition
1.3), by definition of a0 and assumption (f4) we also have

(3.2)

∫
Ω
f(x, u)u dx <

∫
Ω
a0(x)u

2 dx.

On the other hand,

(3.3) M
(
∥∇u∥2L2(Ω)

)
=

∫ ∥∇u∥2
L2(Ω)

0
M(s) ds ≤ M

(
∥∇u∥2L2(Ω)

)
∥∇u∥2L2(Ω),

and hence, combining (3.1) with (3.2) and (3.3), we get

Λ(a0) <
M
(
∥∇u∥2L2(Ω)

) ∫
Ω⟨∇u,∇u⟩ dx−

∫
Ω f(x, u)u dx

∥u∥2
L2(Ω)

= 0,

where the last inequality follows by choosing v = u in (1.4) (recall that, by assump-
tion, u is a weak solution of problem (1.1)). This closes the proof. □

Remark 3.2. We notice once again that the non-decreasing assumption made on
M plays a key role in (3.3), allowing to relate (towards the proper direction) the
variational definition of Λ(a0) and the weak formulation of (1.1).

To prove the existence of a weak solution of problem (1.1), we now follow the
scheme of the proof in [6].

Proposition 3.3. The functional JM defined in (1.5) is sequentially weakly lower
semicontinuous with respect to the H1

0 -topology.

Proof. Assume that un → u weakly in H1
0 (Ω). As in [6], thanks to (f3), by Fatou

Lemma we have that

(3.4) lim sup
n→+∞

∫
Ω
F (x, un) dx ≤

∫
Ω
F (x, u) dx.

Now, the L2-norm is trivially w.l.s.c., and therefore we use thatM is non-decreasing
and continuous to get

(3.5)
M
(
∥∇v∥2L2(Ω)

)
≤ M

(
lim inf
n→+∞

∥∇vn∥2L2(Ω)

)
= lim

n→+∞
M
(
inf
k≥n

∥∇vk∥2L2(Ω)

)
≤ lim inf

n→+∞
M
(
∥∇vn∥2L2(Ω)

)
,

where in the last step we used that

inf
k≥n

∥∇vk∥2L2(Ω) ≤ ∥∇vk∥2L2(Ω),

for every k ≥ n. Combining (3.4) and (3.5) we get the desired conclusion. □

Proposition 3.4. Assume that Λ(a∞) > 0. Then, the functional JM defined in
(1.5) is coercive on H1

0 (Ω).
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Proof. Let us assume by contradiction that there exists a sequence {un} ⊂ H1
0 (Ω)

such that

∥un∥H1
0 (Ω) → +∞, as n → +∞

and JM(un) ≤ C, for some C > 0. Exploiting the growth assumption (f3), we get

(3.6)
1

2
M
(
∥∇un∥2L2(Ω)

)
≤ C +

∫
Ω
F (x, un) dx ≤ C + 2c

∫
Ω
(1 + u2n) dx.

On the other hand, by definition of M and using the fact that M is non-decreasing,
we have that

(3.7)
M
(
∥∇un∥2L2(Ω)

)
=

∫ ∥∇un∥2
L2(Ω)

0
M(s) ds ≥

∫ ∥∇un∥2
L2(Ω)

1
M(s) ds

≥ M(1)
(
∥∇un∥2L2(Ω) − 1

)
→ +∞,

as n → +∞. Combining (3.6) and (3.7), we can then define tn := ∥un∥L2(Ω) which
is such that

tn → +∞, as n → +∞.

We further define the sequence vn := un
tn

for which the following holds:

∥vn∥L2(Ω) = 1, ∥un∥H1
0 (Ω) ≤ C;

as a consequence, since H1
0 (Ω) is a Hilbert space, we can infer the existence of a

function v ∈ H1
0 (Ω) such that vn converges to v weakly in H1

0 (Ω), strongly in L2(Ω)
and almost everywhere in Ω. Moreover, ∥v∥L2(Ω) = 1.

We now turn to estimate (3.6), where we now write un = tnvn and we further
divide each side by t2n, finding

1

2t2n

∫ t2n∥∇vn∥2
L2(Ω)

0
M(s) ds ≤ 1

t2n

∫
Ω
F (x, tnvn) dx+

C

t2n
.

With a change of variable (s = t2nσ), the left hand side becomes

1

2t2n

∫ t2n∥∇vn∥2
L2(Ω)

0
M(s) ds =

1

2

∫ ∥∇vn∥2
L2(Ω)

0
M(t2nσ) dσ.

Since tn → +∞ as n → +∞ there exists n0 ∈ N such that

1

2

∫ ∥∇vn∥2
L2(Ω)

0
M(t2nσ) dσ ≥ 1

2

∫ ∥∇vn∥2
L2(Ω)

0
M(σ) dσ =

1

2
M
(
∥∇vn∥2L2(Ω)

)
for every n ≥ n0. This implies that

(3.8)
1

2
M
(
∥∇vn∥2L2(Ω)

)
≤
∫
Ω

F (x, tnvn)

t2n
dx+

C

t2n
, for every n ≥ n0.

Now, by arguing exactly as in [6] (proof of (24)) (which is legitimate, since assertion
(24) in [6] only concerns F ), we also have that

lim sup
n→+∞

∫
{v>0}

F (x, tnv
+
n )

t2n
dx ≤ 1

2

∫
{v>0}

a∞(x)v2 dx.
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Thus, taking the lim inf in (3.8), and recalling (3.5), we get

(3.9)

0 ≥ lim inf
n→+∞

(1
2
M
(
∥∇vn∥2L2(Ω)

)
−
∫
Ω

F (x, tnvn)

t2n
dx
)

≥ 1

2

(
M
(
∥∇v∥2L2(Ω)

)
−
∫
{v>0}

a∞(x)v2 dx

)

≥ 1

2

(
M
(
∥∇v+∥2L2(Ω)

)
−
∫
{v>0}

a∞(x)(v+)2 dx

)

≥ Λ(a∞)

2
∥v+∥2L2(Ω) ≥ 0,

where the latter is consequence of the assumption made on Λ(a∞), while the third
inequality is due to the non-decreasing behaviour of M .

With (3.9) at hand, we can easily complete the proof of the proposition: indeed,
since we are assuming Λ(a∞) > 0, from (3.9) we derive that v+ ≡ 0 a.e. in Ω; from
this, since all the inequalities in (3.9) are actually equalities, we obtain

1

2

(
M
(
∥∇v∥2L2(Ω)

)
−
∫
{v>0}

a∞(x)v2 dx

)
= 0

⇐⇒ M
(
∥∇v∥2L2(Ω)

)
= 0 ⇐⇒ ∥∇v∥2L2(Ω) = 0,

where we have also used the fact that M(s) > 0 for all s > 0. Summing up, we
conclude that v = 0 a.e. in Ω, which is in contradiction with the fact that

∥v∥L2(Ω) = 1.

This ends the proof. □

Proposition 3.5. Assume that Λ(a0) < 0. Then, there exists φ ∈ H1
0 (Ω) such

that

JM(φ) < 0.

Proof. By definition of Λ(a0), there exists φ ∈ H1
0 (Ω), φ ̸≡ 0 such that

(3.10) M
(
∥∇φ∥2L2(Ω)

)
−
∫
{φ̸=0}

a0(x)φ
2 dx < 0.

We then claim that we can assume φ ∈ L∞(Ω) and φ ≥ 0 a.e. in Ω. In fact, taking
into account that |φ| ∈ H1

0 (Ω) \ {0} and ∇|φ| = ∇φ a.e. in Ω (recall that ∇φ = 0
a.e. on the set {φ = 0}), from (3.10) we find

M
(
∥∇|φ|∥2L2(Ω)

)
−
∫
{φ̸=0}

a0(x)φ
2 dx < 0,

and thus we can assume φ ≥ 0 (by possibly replacing φ with |φ|). As regards the
assumption φ ∈ L∞(Rn), for every k ∈ N we define

φk = min{φ, k}.

Since 0 ≤ φk ≤ φ, we have φk ∈ H1
0 (Ω); moreover, since

∥∇φk∥L2(Ω) ≤ ∥∇φ∥L2(Ω)
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(which is a trivial consequence of the identity ∇φk = ∇φ · 1{φ<k} a.e. in Ω) and
since the function M is non-decreasing, again from (3.10) we get

M
(
∥∇φk∥2L2(Ω)

)
≤ M

(
∥∇φ∥2L2(Ω)

)
<

∫
{φ̸=0}

a0(x)φ
2 dx.

On the other hand, since a0 is bounded from below (see (1.2)), we are entitled to
apply the Fatou Lemma, thus obtaining∫

{φ ̸=0}
a0(x)φ

2 ≤ lim inf
k→+∞

∫
{φ̸=0}

a0(x)φ
2
k;

thus, we can find k > 0 large enough so that

M
(
∥∇φk∥2L2(Ω)

)
<

∫
{φ̸=0}

a0(x)φ
2
k =

∫
{φk ̸=0}

a0(x)φ
2
k.

Summing up, by replacing φ with φk, we can also assume φ ∈ L∞(Ω).

Now we have established the claim, we can proceed with the proof of the propo-
sition. To this end we observe that, arguing as in [6], once again because it involves
only the function F , we have the following estimate

lim inf
ε→0+

∫
Ω

F (x, εφ)

ε2
dx ≥ 1

2

∫
{φ̸=0}

a0(x)φ
2 dx.

Therefore, there exist 0 < ε0 << 1 such that

M
(
∥∇φ∥2L2(Ω)

)
−
∫
Ω

F (x, εφ)

ε2
dx < 0,

for every ε ∈ (0, ε0). On the other hand,

(3.11)
M
(
∥∇φ∥2L2(Ω)

)
=

∫ ∥∇φ∥2
L2(Ω)

0
M(s) ds

(σ=ε2s)
=

∫ ∥∇(εφ)∥2
L2(Ω)

0
M
( σ

ε2

) dσ

ε2

≥ 1

ε2
M
(
∥∇(εφ)∥2L2(Ω)

)
,

where in the last step we used the monotonicity of M , together with the fact that
1
ε2

> 1 (being ε < ε0 < 1). In particular, this implies that

JM(εφ)

ε2
< 0, for every ε ∈ (0, ε0).

This closes the proof. □

By combining all the results established so far, we can prove Theorem 1.7.

Proof (of Theorem 1.7). We prove assertions (1)-(2) separately.

(1) If there exists a weak solution u ∈ H1
0 (Ω) \ {0} of problem (1.1), we know from

Proposition 2.4 that this u is unique; moreover, from Propositions 2.1-2.2 we infer
that u ∈ L∞(Ω) and u > 0 (a.e.) in Ω. Finally, by Proposition 3.1 we get

Λ(a0) < 0,

and this ends the proof of assertion (1).

(2) If Λ(a0) < 0 < Λ(a∞), we derive from Propositions 3.3-3.4 that JM possesses
a minimum point, say v ∈ H1

0 (Ω); on the other hand, since JM (0) = 0, it follows
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from Proposition 3.5 that v ̸≡ 0 in Ω. Setting u = v+ ≩ 0, we then have

JM (u) = JM (v+) =
1

2
M
(
∥∇v+∥L2(Ω)

)
−
∫
Ω
F (x, v+) dx

≤ 1

2
M
(
∥∇v∥L2(Ω)

)
−
∫
Ω
F (x, v+) dx

(by Remark 1.4)

≤ JM (v) = min
φ∈H1

0 (Ω)
JM (φ),

and this shows that u is also a minimum point for JM . Recalling that any minimum
point of JM is a weak solution of the PDE driving (1.1), we can then conclude that
u is a weak solution of problem (1.1) (as u ≧ 0). This ends the proof. □

Remark 3.6. The assumption that M is non-decreasing has been crucially ex-
ploited in several steps. We briefly summarize where and what is the difference
with respect to [6], where M(s) = 1 and M(s) = s.

• Proposition 2.4 to get uniqueness;
• (3.5) to get the weakly lower semicontinuity of JM. In [6] this follows
because of w.l.s.c. of the norm;

• (3.3) to prove that Λ(a0) < 0, (3.7) to get the coercivity of JM and (3.11).
In [6], these steps naturally follows because of the linear nature of the
operator, see Remark 1.5.

On the other hand, the two-sided bound in assumption (f3) is needed only to ensure
that the functional JM is differentiable, so that its minimum points are actually
weak solutions of the PDE driving (1.1); in particular, all the results in this paper
not exploiting this fact hold by requiring the one-side bound

(⋆) f(x, t) ≤ c(1 + t),

as in the paper by Brezis-Oswald [6]. The main issue in establishing Theorem 1.7
under the weak assumption (⋆) in the present context is to show that any minimum
point u of JM can be assumed to be globally bounded, thus ensuring that u is a
weak solution of the PDE driving (1.1); this is done in [6] via a suitable truncation
argument, which seems not applicable when M(s) ̸≡ 1.
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