
A Simple Method for Predicting NH Variability in Active Galactic Nuclei

Isaiah S. Cox1 , Núria Torres-Albà1 , Stefano Marchesi1,2,3 , Xiurui Zhao4 , Marco Ajello1 , Andrealuna Pizzetti1 , and
Ross Silver5

1 Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
2 Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, via Gobetti 93/2, I-40129 Bologna, Italy

3 INAF-Osservatorio Astronomico di Bologna, Via Piero Gobetti, 93/3, I-40129 Bologna, Italy
4 Center for Astrophysics—Harvard-Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

5 NASA-Goddard Space Flight Center, Code 660, Greenbelt, MD 20771, USA
Received 2023 June 5; revised 2023 October 6; accepted 2023 October 7; published 2023 November 21

Abstract

The unified model of active galactic nuclei (AGNs) includes a geometrically thick obscuring medium to explain the
differences between type I and type II AGNs as an effect of inclination angle. This medium is often referred to as
the torus and is thought to be “clumpy” as the line-of-sight column density, NH, has been observed to vary in time
for many sources. We present a method which uses a variation in the hardness ratio to predict whether an AGN has
experienced NH variability across different observations. We define two sets of hard and soft bands that are chosen
to be sensitive to the energies most affected by changes in NH. We calculate hardness ratios for Chandra and
XMM-Newton observations of a sample of 12 sources with multiple observations, and compare the predictions of
this method to the NH values obtained from spectral fitting with physically motivated torus models (borus02,
MYTorus, and UXCLUMPY). We also provide a calibrated correction factor that allows comparison between
Chandra and XMM-Newton observations which is otherwise not possible due to differences in the instrument
response functions. The sensitivity of this method can be easily adjusted. As we decrease the sensitivity, we find
that the false positive rate becomes small while the true positive rate remains above 0.5. We also test the method on
simulated data and show that it remains reliable for observations with as few as 100 counts. Therefore, we conclude
that the method proposed in this work is effective in preselecting sources for variability studies.

Unified Astronomy Thesaurus concepts: X-ray active galactic nuclei (2035); Seyfert galaxies (1447); Active
galactic nuclei (16); High energy astrophysics (739); X-ray astronomy (1810)

1. Introduction

Active galactic nuclei (AGNs) are powered by the accretion
of gas onto supermassive black holes and are among the most
luminous sources in the Universe, emitting across the entire
electromagnetic spectrum. The unified model for AGNs
includes an obstructing torus surrounding the accretion disk
(Antonucci 1993; Urry & Padovani 1995). Depending on the
structure and orientation of the torus, the broad line region
(BLR) of the accretion disk may be obscured, resulting in a
type II AGN (see, e.g., Hickox & Alexander 2018 for a recent
review). It was originally thought that this obscuring medium is
uniform, however, Krolik & Begelman (1988) suggested that
this is unlikely. Recent studies of the line-of-sight column
density, NH,los (hereafter simply NH), show variability in AGNs
over timescales ranging from hours (e.g., Elvis et al. 2004) to
years (e.g., Markowitz et al. 2014). These studies, along with
IR spectral energy distribution fitting models (e.g., Nenkova
et al. 2008), support the idea of a “clumpy” obscuring medium,
perhaps made of individual clouds.

Studying the variability in NH allows us to constrain
properties about the obscuring torus structure such as the
density, shape, size, and radial distance of the clouds (Risaliti
et al. 2005; Maiolino et al. 2010; Markowitz et al. 2014;
Marchesi et al. 2022; Pizzetti et al. 2022). For example,
variability on timescales of �1 day originates at �10−3 pc (i.e.,

within the BLR), while monthly and yearly variability likely
originates at parsec scales (i.e., in the torus). On the other hand,
Laha et al. (2020) looked at a sample of 20 type II AGNs and
found that 13/20 showed no significant variability in NH at all,
suggesting that the obscuration may be coming from even
larger distances associated with the host galaxy. Thus, these
studies can provide information about the location of the
absorber and the cloud distribution within it.
However, at present, most properties of these clouds remain

poorly understood, in large part due to the paucity of sources
with known NH variability available to study. Typically, the
way to study NH variability for AGNs with multiple
observations is to use some variation of an absorbed power-
law model to fit the X-ray spectrum (e.g., Laha et al. 2020).
Perhaps an even better way is to use a physically motivated
torus model (e.g., Murphy & Yaqoob 2009; Baloković et al.
2018; Buchner et al. 2019). Some recent examples include
Marchesi et al. (2022), Silver et al. (2022), Pizzetti et al.
(2022), Lefkir et al. (2023), Kayal et al. (2023), and Torres-
Albà et al. (2023). However, these methods are time consuming
when applied to sources with multiple observations, and thus
are not practical for a very large sample of blindly selected
sources, especially when over half the sources in these samples
tend to show no variability (e.g., Markowitz et al. 2014;
Hernández-García et al. 2015; Laha et al. 2020). For this
reason, very few comprehensive studies have been performed
to date. In fact, the most complete sample of cloud occultation
events to date observed only 12 individual events (Markowitz
et al. 2014), and is still used to calibrate clumpy torus models
(e.g., Buchner et al. 2019).
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X-ray data are becoming much more abundant than in the
past and could become even more so with future missions such
as AXIS (Mushotzky et al. 2019), Athena (Nandra et al. 2013),
HEX-P (Madsen et al. 2019), and Star-X (Saha et al. 2017;
Saha & Zhang 2022). Presently, data are being released from
the eROSITA instrument (Predehl et al. 2021), which is
expected to detect millions of X-ray point sources, each being
observed over timescales ranging from months to years (e.g.,
Brunner et al. 2022; Salvato et al. 2022). Marchesi et al. (2020)
showed that 90% of the sources detected by AXIS and Athena
would be first-time detections in X-rays. Therefore, it is
imperative to develop methods to sift through this vast amount
of data to pick out observations that are likely to show NH

variability. Once these sources are found, they can be studied in
depth with the standard spectral modeling techniques.

A simple measurement that can be used is the hardness ratio
(HR). The HR is a very common measurement that is often
interpreted as the X-ray “color” of a source, since it indicates
the amount of high-energy (hard) photon counts relative to the
low-energy (soft) counts. Because photoelectric absorption is
strongly energy dependent, soft X-rays are more likely to
interact than hard X-rays. Consequently, large HR values
typically indicate high NH values. However, this is not a simple
1:1 relation due to reprocessing effects not related to line-of-
sight obscuration.

Previously, HRs have been used for AGNs as an indicator of
Compton thickness (e.g., Iwasawa et al. 2011; Torres-Albà
et al. 2018). Variability in the HR has also been used to classify
AGNs (e.g., Peretz & Behar 2018) as well as indicate
variability in their spectral shape (e.g., Hernández-García
et al. 2013; Connolly et al. 2016), including eclipsing events
in individual sources (e.g., Risaliti et al. 2009a; Torricelli-
Ciamponi et al. 2014; Pietrini et al. 2019; Gallo et al. 2021;
Grafton-Waters et al. 2023). However, depending on the choice
of the “hard” and “soft” bands, it can be difficult to disentangle
intrinsic variability in coronal emission and line-of-sight
obscuration (e.g., Risaliti et al. 2009a; Caballero-Garcia et al.
2012; Torricelli-Ciamponi et al. 2014; Pietrini et al. 2019).
Furthermore, while the soft/hard bands typically used in
catalogs are good for distinguishing between obscured and
unobscured sources (e.g., Hernández-García et al. 2013;
Marchesi et al. 2017; Peca et al. 2021), they are not so
effective at detecting variability in already obscured sources
with NH� 1022 cm−2 (see Figure 2).

The Chandra and XMM-Newton missions have produced a
large number of AGN observations, which provide the
opportunity to study the obscuration variability in a given
source across time. The literature is lacking systematic studies
that have been tailored for detecting variability in obscured
sources to search these large data sets. Due to the different
shapes of instrument responses, a direct comparison between
telescopes is not possible without a correction method, making
the search for NH variability in archival observations
significantly harder. Chandra observations will be system-
atically softer than XMM-Newton observations, so a correction
must be applied before performing comparisons between the
instruments. Peretz & Behar (2018) provided a method of
correcting for instrumental differences by dividing the count
rate in each energy channel by the effective area in that
channel, but this requires extracting spectra for each
observation.

In this paper, we present an HR method for predicting the
variability of NH between two observations of an obscured
AGN. We provide the results as applied to a small sample of
carefully analyzed sources as well as simulated data. This
method is specifically optimized for detecting NH variability in
obscured sources and allows for comparisons between Chandra
and XMM-Newton observations without needing to extract a
spectrum. The layout is as follows: in Section 2 we describe the
sample of sources and the modeled NH values used. In
Section 3, we describe our method of predicting variations in
the modeled NH values using HRs as well as the correction
factors applied to Chandra data. In Section 4 we discuss various
ways to interpret the reliability of our method and present the
results. In Section 5, we present the reliability of the method on
samples of simulated spectra for various count levels. We
summarize our findings in Section 6.

2. Sample and Data

2.1. Sample

The sample used to test this method consists of 12 sources
with multiple observations across Chandra, XMM-Newton, and
NuSTAR. These sources are studied extensively by Torres-
Albà et al. (2023), using the AGN torus models borus02
(Baloković et al. 2018), MYTorus (Murphy & Yaqoob 2009),
and UXCLUMPY (Buchner et al. 2019), to obtain accurate
values of NH at each epoch. The sources are shown in Table 1
along with the best-fit NH values found with each of the three
models for the Chandra and XMM-Newton observations. Three
sources had multiple NuSTAR observations and their informa-
tion is shown in Table 2. Several sources were found to have
observations that vary significantly in NH, while others showed
no variability. Therefore, this sample has the diversity required
to test the predictive power of our HR method (see
Section 3.1).

2.2. Data

This analysis uses observations from XMM-Newton,
Chandra, and NuSTAR. For the XMM-Newton observations,
only the data from the EPIC pn camera (Strüder et al. 2001) are
considered due to its higher effective area. All the Chandra
observations were obtained using the ACIS-S camera (Garmire
et al. 2003) with no grating. The Chandra observations range
from cycle 1 to cycle 20. However, the degradation in
sensitivity with time does not affect our analysis (see
Figure 1) because we ignore energies below 2 keV, where
the sensitivity is most significantly reduced.
Chandra observations may also be affected by vignetting

when the source is observed off axis.6 In particular, for
sources farther than 5′ from the center, there may be a
significant softening of the spectrum due to stronger vignetting
at higher energies. All of the observations used in this work
have the sources of interest within 5′ of on axis. Figure 1 also
shows simulated data for an off-axis source (2 8 from the
center) and the relative sensitivity is not significantly reduced
until >8 keV where Chandra is already dominated by
background counts. We conclude that the effects from effective
area degradation or off-axis sources should not impact this
method significantly.

6 See Figure 6.6 in the Chandra Proposer’s Observatory Guide, https://cxc.
harvard.edu/proposer/POG/html/index.html.

2

The Astrophysical Journal, 958:155 (17pp), 2023 December 1 Cox et al.

https://cxc.harvard.edu/proposer/POG/html/index.html
https://cxc.harvard.edu/proposer/POG/html/index.html


We use data from the FPMA detector for the three sources
with multiple NuSTAR observations. We note that there is
no substantial difference between the counts observed with

FPMA and FPMB, so we choose to consider only FPMA to
avoid slightly higher background rates in the FPMB
detector.

Table 1
Sample Details of the Chandra and XMM-Newton Data

Source Name Telescope NH
HRs

MYTorus borus02 UXCLUMPY HR1 HR2

3C 105 Chandra 0.45 0.05
0.08

-
+ 0.46 0.04

0.04
-
+ 0.49 0.09

0.03
-
+ 0.89 ± 0.02 0.10 ± 0.07

XMM-Newton 0.39 0.04
0.05

-
+ 0.39 0.03

0.03
-
+ 0.39 0.03

0.02
-
+ 0.91 ± 0.03 0.00 ± 0.05

3C 452 Chandra 0.55 0.03
0.03

-
+ 0.52 0.03

0.02
-
+ 0.44 0.02

0.03
-
+ 0.75 ± 0.01 0.16 ± 0.03

XMM-Newton 0.52 0.03
0.03

-
+ 0.49 0.03

0.01
-
+ 0.46 0.02

0.02
-
+ 0.69 ± 0.01 0.10 ± 0.01

IC 4518 A XMM-Newton 1 0.21 0.02
0.02

-
+ 0.21 0.01

0.02
-
+ 0.21 0.06

0.08
-
+ 0.70 ± 0.02 0.02 ± 0.03

XMM-Newton 2 0.31 0.03
0.04

-
+ 0.33 0.03

0.03
-
+ 0.32 0.02

0.01
-
+ 0.70 ± 0.02 0.14 ± 0.02

NGC 788 Chandra 0.79 0.08
0.08

-
+ 0.62 0.05

0.06
-
+ 0.59 0.03

0.04
-
+ 0.78 ± 0.02 0.34 ± 0.04

XMM-Newton 0.82 0.08
0.08

-
+ 0.65 0.04

0.05
-
+ 0.62 0.02

0.06
-
+ 0.81 ± 0.01 0.32 ± 0.02

NGC 3281 Chandra 1.04 0.17
0.17

-
+ 0.76 0.10

0.10
-
+ 0.76 0.06

0.08
-
+ 0.84 ± 0.02 0.47 ± 0.05

XMM-Newton 1.16 0.16
0.17

-
+ 0.86 0.10

0.09
-
+ 0.89 0.07

0.06
-
+ 0.82 ± 0.01 0.38 ± 0.02

NGC 612 Chandra 1 1.29 0.22
0.29

-
+ 1.27 0.13

0.18
-
+ 0.88 0.13

0.11
-
+ 0.92 ± 0.04 0.56 ± 0.10

Chandra 2 1.39 0.22
0.28

-
+ 1.55 0.14

0.19
-
+ 1.06 0.13

0.05
-
+ 0.87 ± 0.03 0.63 ± 0.06

XMM-Newton 0.90 0.10
0.11

-
+ 0.89 0.02

0.02
-
+ 0.91 0.13

0.11
-
+ 0.89 ± 0.02 0.50 ± 0.03

NGC 7319 Chandra 1 0.46 0.04
0.04

-
+ 0.47 0.04

0.04
-
+ 0.47 0.05

0.04
-
+ 0.88 ± 0.01 0.27 ± 0.04

Chandra 2 0.46 0.03
0.03

-
+ 0.47 0.03

0.03
-
+ 0.46 0.05

0.03
-
+ 0.87 ± 0.01 0.22 ± 0.02

XMM-Newton 1 0.87 0.05
0.05

-
+ 0.87 0.05

0.06
-
+ 0.84 0.08

0.07
-
+ 0.84 ± 0.01 0.34 ± 0.02

NGC 4388 Chandra 1 0.71 0.03
0.03

-
+ 0.71 0.03

0.04
-
+ 0.66 0.05

0.08
-
+ 0.80 ± 0.01 0.35 ± 0.02

Chandra 2 0.91 0.05
0.05

-
+ 0.93 0.04

0.05
-
+ 0.90 0.03

0.04
-
+ 0.74 ± 0.01 0.34 ± 0.02

XMM-Newton 1 0.37 0.01
0.01

-
+ 0.36 0.01

0.02
-
+ 0.33 0.01

0.01
-
+ 0.805 ± 0.007 0.14 ± 0.01

XMM-Newton 2 0.235 0.003
0.003

-
+ 0.231 0.003

0.003
-
+ 0.211 0.003

0.002
-
+ 0.719 ± 0.003 −0.017 ± 0.005

XMM-Newton 3 0.267 0.004
0.004

-
+ 0.260 0.004

0.004
-
+ 0.243 0.003

0.003
-
+ 0.777 ± 0.004 0.072 ± 0.006

3C 445 Chandra 1 0.26 0.01
0.03

-
+ 0.23 0.01

0.01
-
+ 0.22 0.01

0.02
-
+ 0.54 ± 0.01 0.09 ± 0.02

Chandra 2 0.33 0.03
0.03

-
+ 0.30 0.01

0.01
-
+ 0.25 0.02

0.02
-
+ 0.50 ± 0.02 0.01 ± 0.03

Chandra 3 0.32 0.03
0.03

-
+ 0.28 0.01

0.01
-
+ 0.24 0.01

0.01
-
+ 0.51 ± 0.01 0.03 ± 0.02

Chandra 4 0.33 0.03
0.03

-
+ 0.28 0.01

0.01
-
+ 0.25 0.01

0.01
-
+ 0.53 ± 0.01 0.09 ± 0.02

Chandra 5 0.31 0.02
0.02

-
+ 0.27 0.01

0.01
-
+ 0.26 0.01

0.01
-
+ 0.53 ± 0.01 0.10 ± 0.02

XMM-Newton 0.28 0.03
0.03

-
+ 0.24 0.01

0.01
-
+ 0.20 0.01

0.01
-
+ 0.53 ± 0.01 -0.02 ± 0.01

4C+29.30 Chandra 1 0.72 0.16
0.16

-
+ 0.68 0.06

0.14
-
+ 0.61 0.11

0.10
-
+ 0.82 ± 0.05 0.26 ± 0.13

Chandra 2 0.65 0.06
0.06

-
+ 0.65 0.03

0.06
-
+ 0.61 0.04

0.04
-
+ 0.87 ± 0.02 0.15 ± 0.06

Chandra 3 0.59 0.05
0.05

-
+ 0.60 0.01

0.05
-
+ 0.55 0.02

0.04
-
+ 0.87 ± 0.01 0.20 ± 0.03

Chandra 4 0.60 0.05
0.06

-
+ 0.60 0.02

0.05
-
+ 0.56 0.02

0.04
-
+ 0.88 ± 0.01 0.21 ± 0.04

Chandra 5 0.62 0.06
0.07

-
+ 0.58 0.02

0.05
-
+ 0.54 0.02

0.03
-
+ 0.88 ± 0.01 0.20 ± 0.03

XMM-Newton 0.87 0.19
0.18

-
+ 1.08 0.11

0.04
-
+ 0.98 0.10

0.08
-
+ 0.82 ± 0.03 0.13 ± 0.04

NGC 833 Chandra 1 0.21 0.06
0.07

-
+ 0.19 0.05

0.05
-
+ 0.16 0.03

0.04
-
+ 0.74 ± 0.05 0.24 ± 0.11

Chandra 2 – − − − −
Chandra 3 0.33 0.05

0.06
-
+ 0.34 0.06

0.07
-
+ 0.28 0.03

0.05
-
+ 0.71 ± 0.05 0.12 ± 0.14

Chandra 4 0.27 0.05
0.05

-
+ 0.27 0.05

0.05
-
+ 0.22 0.04

0.04
-
+ 0.71 ± 0.06 0.02 ± 0.15

Chandra 5 0.28 0.04
0.05

-
+ 0.29 0.06

0.05
-
+ 0.24 0.04

0.04
-
+ 0.77 ± 0.03 0.25 ± 0.09

NGC 835 Chandra 1 0.89 0.14
0.25

-
+ 0.88 0.14

0.28
-
+ 1.04 0.19

0.18
-
+ 0.62 ± 0.15 0.12 ± 0.35

Chandra 2 0.86 0.14
0.32

-
+ 0.85 0.14

0.33
-
+ 0.94 0.16

0.24
-
+ 0.66 ± 0.14 0.30 ± 0.30

Chandra 3 0.31 0.03
0.02

-
+ 0.30 0.02

0.03
-
+ 0.28 0.03

0.04
-
+ 0.78 ± 0.02 0.17 ± 0.04

Chandra 4 0.32 0.03
0.03

-
+ 0.32 0.03

0.03
-
+ 0.31 0.04

0.04
-
+ 0.79 ± 0.03 0.24 ± 0.06

Chandra 5 0.33 0.03
0.03

-
+ 0.32 0.03

0.03
-
+ 0.32 0.03

0.03
-
+ 0.78 ± 0.02 0.11 ± 0.05

XMM-Newton 1.53 0.26
1.07

-
+ 1.48 0.23

1.50
-
+ 1.35 0.02

0.05
-
+ 0.55 ± 0.06 0.18 ± 0.08

Note. The best-fit NH values for all three models are in units of 1024 cm−2. The errors show the 90% confidence interval for NH and the 68% confidence interval for the
HR. For details of the observations, see Torres-Albà et al. (2023).
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3. Method

3.1. Hardness Ratio (HR)

We define the HR to be

H S

H S
HR , 1=

-
+

( )

where H and S are the net counts (see Equation (2)) in the hard
and soft bands, respectively. We use two sets of energy bands

HR : Soft 2 4 keV , Hard 4 10 keV
HR : Soft 4 6 keV , Hard 6 10 keV .

1

2

( – ) ( – )
( – ) ( – )

These bands were chosen to optimize the ability to detect
changes in NH due to torus structure by focusing on the energy
range most sensitive to changes in absorption around

Nlog 22 24H ~( ) – . In previous studies, the bands used are
typically (0.5–2) keV for soft and (2–10) keV for hard. We find
that these bands are not ideal for detecting changes in
obscuration of already obscured sources with NH> 1022 cm–2

(see Figure 2). This is because the soft counts are all absorbed
even at moderate obscuration levels, so there is no sensitivity at
NH� 1023 cm−2. By focusing the hard and soft bands on the
energies most affected by NH variability in the region of
interest, the variability is more likely to be detected by the HR.

Furthermore, ignoring energies <2 keV allows for comparison
between all cycles of Chandra observations by avoiding the
temporal degradation of sensitivity at soft energies.
The second HR, HR2, is needed to break a degeneracy

present due to the increased importance of the reflection
component in sources with high obscuration (see Figure 2).
Above a certain NH, all of the primary soft counts are absorbed,
leaving only the reflected counts visible. Since the reflection
component does not depend on the line-of-sight NH, these
highly obscured sources show softer HR1 as NH is increased,
which decreases the sensitivity of HR1 in this NH region and
ultimately strips it of its predictive power entirely. According to
our simulations using the borus02 model, this occurs at
NH∼ 3× 1023 cm−2 for AGNs with photon index, Γ= 1.9;
average torus column density, NH,tor= 1024 cm−2; inclination
angle cos 0.71;incq =( ) and covering factor cf = 0.67 (values
based on the results by Zhao et al. 2021 using a sample of
∼100 obscured AGNs having broadband X-ray coverage).
Since HR2 is shifted to higher energies, it remains sensitive to
NH variability at and beyond this limit as seen in Figure 2. It is
important to note that these specific curves should only be
taken as indicative since they are meant to represent an
“average” AGN, and most individual sources will differ from
these simulated data. However, the trends in Figure 2 should
apply for any given source, because the average torus
properties are not expected to change on the same timescales
as the line-of-sight NH (see, e.g., Marchesi et al. 2022).
The net counts in each band are obtained from the

reprocessed event file of Chandra observations and the cleaned
pn event file for XMM-Newton observations. The source and
background regions were set according to the procedure
described in Torres-Albà et al. (2023). The CIAO 4.13
command dmextract was used to obtain the total counts in
the source and background regions. The net counts is then
calculated by

n n n A A , 2net tot bkg src bkg= - ( ) ( )

where Asrc is the area of the source region and Abkg is the area
of the background region.
The errors on the total and background counts are calculated

following the methods for Poisson statistics in Gehrels (1986).
The approximate upper and lower single-sided limits for a
measured number of counts n is given by Equations (9) and

Table 2
Sample Details for the NuSTAR Data

Source Name Telescope NH HR
MYTorus borus02 UXCLUMPY

3C 105 NuSTAR 1 0.45 0.07
0.08

-
+ 0.45 0.03

0.03
-
+ 0.44 0.08

0.03
-
+ 0.41 ± 0.04

NuSTAR 2 0.39 0.06
0.06

-
+ 0.39 0.03

0.06
-
+ 0.40 0.07

0.03
-
+ 0.35 ± 0.03

NGC 7319 NuSTAR 1 2.17 0.26
0.36

-
+ 2.11 0.22

0.26
-
+ 0.71 0.15

0.25
-
+ 0.38 ± 0.06

NuSTAR 2 1.78 0.34
0.34

-
+ 1.73 0.32

0.30
-
+ 0.98 0.17

0.14
-
+ 0.39 ± 0.04

NGC 4388 NuSTAR 1 0.30 0.01
0.01

-
+ 0.29 0.02

0.02
-
+ 0.26 0.02

0.02
-
+ 0.21 ± 0.01

NuSTAR 2 0.219 0.005
0.004

-
+ 0.214 0.005

0.004
-
+ 0.195 0.003

0.003
-
+ 0.16 ± 0.004

Note. The best-fit NH values are in units of 1024 cm−2. The errors show the 90% confidence interval for NH and the 68% confidence interval for the HR. For details on
observations, see Torres-Albà et al. (2023).

Figure 1. Simulated data of an on-axis source emitting a flat power law (Γ = 0,
norm = 1) as seen with the ACIS-S camera for cycles 1, 10, 17, and 23. An off-
axis source (2 786 from the center) is observed in cycle 9 as well.
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(14) in Gehrels (1986)
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for a confidence level of 84.13%. This corresponds to the 1σ
confidence interval for the number of counts. These limits are
calculated for ntot and nbkg and the error δn is taken to be the
average difference7 between the measured count and the upper
and lower bounds

n
n n n n

2
. 4u l

2 2
d =

- + -( ) ( ) ( )

The total error on the net counts is then

n n n . 52
net

2
tot

2
bkgd d d= + ( )

This net count error is propagated through to the HR to get
the 68% confidence error on the HR

H S
S H H SHR

4
, 62

4
2 2 2 2d d d=

+
+

( )
[ ] ( )

where H and S are the net counts, nnet, in the “hard” and “soft”
bands respectively.

3.2. Cross-instrument Comparison

The ability to compare observations across multiple instru-
ments is essential to maximize the opportunities for variability
detection. Many AGNs do not have multiple observations taken
by the same instrument, so to study them over large periods
requires comparing observations from multiple telescopes. Our
sample would have only 43 pairs of observations if we were to
avoid cross-instrument comparisons, as opposed to the 72 pairs
we have, given a proper comparison between instruments.

It is clear that this method should work when comparing
Chandra observations with different Chandra observations, but
it is not as simple when comparing Chandra with XMM-
Newton. In this case, the differences in the instrument response
functions make it impossible to compare the raw HRs between
instruments meaningfully (Park et al. 2006; Peretz &
Behar 2018). Therefore, a method must be developed to
correct for these differences.
In order to overcome the difficulty in comparing Chandra to

XMM-Newton observations, we must account for the differ-
ences in the shapes of the instrument response. In particular, the
steep decline of the ACIS-S response with respect to the EPIC
pn response beyond ∼4 keV and the lack of response in ACIS-
S beyond ∼7 keV. This is shown in Figure 3. Figure 4 shows
data simulated with the borus02 model for NH values ranging
from 9× 1021 to 8× 1023 cm−2. As expected, the HRs
measured by Chandra are systematically softer than those
measured by XMM-Newton, especially HR2.

Figure 2. Calculated HRs for data simulated using the borus02 model for a
range of NH values. HR2 continues to increase beyond NH ∼ 3 × 1023 cm−2

whereas HR1 loses sensitivity and eventually decreases. Neither is sensitive to
changes in NH beyond NH ∼ 3 × 1024 cm−2 given the selected average torus
properties.

Figure 3. Spectra simulated for Chandra and XMM-Newton using the same
method as in Figure 1. This is equivalent to the shapes of the responses for the
ACIS-S and EPIC pn cameras, respectively. The red lines show the data on an
absolute scale and the black lines show a normalized scale. The Chandra data
have a much lower response in the hard band (4–10 keV) than pn, which need
to be corrected.

Figure 4. Uncorrected HRs for 20 spectra simulated with borus02
(Γ = 1.9; Nlog 24H,avg =( ) ) for different levels of obscuration. The shaded
error bars represent individual spectra while the solid error bars represent the
mean values for the 20 spectra at a given NH. The colors red, blue, orange,
green, purple, and yellow represent NH = (0.9, 10, 30, 50, 70, 80) × 1022 cm–2,
respectively. The black line connects Chandra simulated data and the red line
connects XMM-Newton simulated data.

7 The asymmetry is very small or nonexistent in every case.
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To correct for this difference, we multiply the counts by
correction factors in four different energy bands each 2 keV
wide. These correction factors are calculated as the ratio of the
count rate in each band of the EPIC pn response to the ACIS-S
response shown as the red lines in Figure 3. The factors we
obtain are

C
C
C

C

1.957,
2.363,
5.508,
15.369. 7

2 4keV

4 6keV

6 8keV

8 10keV

=
=
=
=

-

-

-

- ( )

The HR and error are calculated in the same way as before,
however, the hard counts are now the sum of the corrected
counts in the bands contained in the hard band. For example,
let a be the net counts in 2–4 keV, b the net counts in 4–6 keV,
and so on. The total corrected counts are then T1=
Caa+ Cbb+ Ccc+Cdd for HR1 and T2= Cbb+Ccc+
Cdd for HR2, where Ci is the correction factor corresponding
to the appropriate band. Now, the HRs are

C b C c C d C a
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C c C d C b
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Similarly, the errors are
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The results with these correction factors used on the
simulated data are shown in Figure 5. This is an improvement
in both HR1 and HR2 with all the corrected Chandra HRs being
consistent with XMM-Newton HRs within the errors.

We also performed a test for model dependence. We
simulated data for all combinations of photon index Γ= 1.6,
1.9, and 2.2 and Nlog 22, 23, and24H,avg =( ) . The results
show that there is no difference in the efficacy of these
correction factors based on the model parameters. We conclude
that these corrections are valid for the entire range of photon
indices and reflection strengths that we expect to see. Thus,
applying these corrections will allow us to compare a Chandra
observation to a XMM-Newton observation for a given source
more reasonably.

3.3. NuSTAR

There are three sources in our sample with multiple
NuSTAR observations and we applied a modified version of
our method to these. The energy bands used to define the HR
for the NuSTAR observations are

HR : Soft 3 8 keV , Hard 8 24 keV .nu ( – ) ( – )

Since the soft band in this definition covers most of the photons
typically absorbed by even highly obscured AGN (<10 keV;
Koss et al. 2016), there is no need to introduce a second set to
break degeneracies.

3.4. Prediction of NH Variability

It is clear from Figure 2 that the HR should depend on NH. In
this analysis, we flag a pair of observations as variable by
calculating the χ2 of each pair of HR values assuming no
variability. That is

HR

HR

HR

HR
, 10a

a

b

b
HR
2

2

2

2

2
c

m
d

m
d

=
-

+
-( ) ( ) ( )

where δHR is the 1σ error and μ is the mean HR of the two
observations a and b. The source is flagged as variable if

HR
2

c
2c c> . For example, if we consider a threshold

2.706c
2c = , the source is flagged as variable if 2.706HR

2c >
for either HR1 or HR2. This value corresponds to a significance
level of α= 0.1. Thereby, we say that the observations are not
consistent with each other at the 90% confidence level.
We compare these flagged observations to the “true” variable

observations in Torres-Albà et al. (2023). Torres-Albà et al.
(2023) obtained 90% confidence intervals for NH and these are
considered variable if the confidence regions do not share any
common NH values. We decide to use a simple discrepancy in
the NH confidence regions because the asymmetric errors
complicate the χ2 calculation.
We recognize that χ2 statistics do not necessarily apply in

this instance, and therefore the significance level for variability
in the HR likely does not correspond to the same significance
level for variability in NH. However, as is discussed below, this
quantity proves to be a reliable measure and is furthermore
easily changed to adjust the sensitivity of our predictions.

4. Results and Discussion

4.1. XMM-Newton and Chandra Results

In total, we had 72 pairs of observations to test our method
on and each observation has an NH value from each of the three
models. Since this is a binary classification (variable or not
variable), a confusion matrix is one of the best ways to analyze
the reliability of the method (Stehman 1997). We consider a

Figure 5. Same as Figure 4 but with the correction factors in Equation (7)
applied.
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true positive (TP) to be when our method predicts variability
and the NH values show variability. A false positive (FP) is
when our method predicts variability, but the NH values are
consistent with each other. A true negative (TN) and false
negative (FN) are defined similarly.

4.1.1. Accuracy, Precision, and Recall

The simplest measure of reliability would be accuracy,
which is defined as the total number of correct predictions
divided by the total number of predictions. In terms of
confusion matrix values

accuracy
TP TN

TP TN FP FN
. 11=

+
+ + +

( )

The accuracies for each of the three models are shown in
Table 3.

Accuracy can be a useful first approximation to the reliability
of a method, however, it can hide particular behaviors that are
important to note before applying this method to a larger
sample. For example, if the sample contains mostly nonvariable
observations, then a good accuracy can be obtained by simply
never predicting variability. The prevalence quantifies how
biased the original sample is toward variable or nonvariable
observations and is defined as

prevalence
TP FN

TP TN FP FN
. 12=

+
+ + +

( )

If the sample contains more variable sources than nonvariable,
then prevalence> 0.5. The prevalence for each of the three
models is 0.57, 0.42, and 0.49 for borus02, MYTorus, and
UXCLUMPY, respectively. Therefore, the sample used here is
reasonably balanced, however, in the actual application of this
method, the prevalence will not be known.

Precision and recall can be used to supplement the
information given by the accuracy. These measures can
provide a more nuanced interpretation of the results when
considered along with accuracy. Precision is a measure of how

good the classifier is at avoiding FPs and is defined as

precision
TP

TP FP
. 13=

+
( )

Recall is a measure of how good the classifier is at finding TPs
and is defined as

recall
TP

TP FN
. 14=

+
( )

The precision and recall for the three models are also shown in
Table 3.
Ideally, both of these values would be as close to 1 as

possible. However, realistically, this is not achievable and one
might want to prioritize one metric over the other. For example,
if studying NH variability in a large sample of sources is the
primary goal, precision might be valued over recall to avoid

Table 3
Accuracy, Precision, and Recall in Determining Variability, Using NH values from Each of the Three Models for Selected Threshold c

2c Values

Accuracy

Model 2.706c
2c =( ) 3.841c

2c =( ) 6.635c
2c =( ) 7.879c

2c =( ) 10.828c
2c =( ) 19.511c

2c =( )

borus02 0.76 0.75 0.72 0.72 0.71 0.64
MYTorus 0.69 0.74 0.79 0.79 0.81 0.74
UXCLUMPY 0.74 0.72 0.81 0.81 0.79 0.72

Precision

Model 2.706c
2c =( ) 3.841c

2c =( ) 6.635c
2c =( ) 7.879c

2c =( ) 10.828c
2c =( ) 19.511c

2c =( )

borus02 0.77 0.78 0.84 0.86 0.92 0.94
MYTorus 0.59 0.63 0.74 0.76 0.83 0.82
UXCLUMPY 0.68 0.68 0.84 0.86 0.92 0.94

Recall

Model 2.706c
2c =( ) 3.841c

2c =( ) 6.635c
2c =( ) 7.879c

2c =( ) 10.828c
2c =( ) 19.511c

2c =( )

borus02 0.83 0.78 0.63 0.61 0.54 0.39
MYTorus 0.87 0.87 0.77 0.73 0.67 0.47
UXCLUMPY 0.86 0.80 0.74 0.71 0.63 0.46

Figure 6. ROC curves for all three models. The threshold χ2 used in
calculating the TPR and FPR increases from right to left along the lines. The
stars represent the location of two of the threshold c

2c values shown in the
tables and confusion matrices. The gray dotted line represents a theoretical
classifier with no predictive value. A larger distance from this line represents a
more reliable classifier.
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carefully fitting the X-ray spectra of observations that are not
variable. On the other hand, if working from a smaller sample,
FPs might not be as inconvenient. In this case, one would want
to prioritize recall to make sure most of the variable sources are
actually flagged. Furthermore, if the HRs are changing, this
means that the spectral shape is changing and could indicate
something interesting even if it does not happen to be a
changing NH. For example, changes in the photon index are
typically associated with variability of the AGN Eddington
ratio, with higher accretion rates corresponding to a softer
X-ray spectrum (Lu & Yu 1999; Shemmer et al. 2008; Risaliti
et al. 2009b).

4.1.2. Receiver Operating Characteristic

Similar to precision and recall, one can define the false
positive rate (FPR) and true positive rate (TPR). The FPR is the
ratio of FPs to the total number of actual negatives and is
defined as

FPR
FP

FP TN
. 15=

+
( )

The TPR is the ratio of TPs to total actual positives and is
equivalent to recall (Equation (14)). In receiver operating
characteristic (ROC) curves, the TPR is plotted against the FPR
and therefore again provides a measure of how sensitive we are
to TPs and how resistant we are against FPs (Fawcett 2006). A
perfect classifier would be at the point (0, 1) while a random
classifier would be along the line TPR = FPR. The curve is
obtained by varying the decision threshold.

Figure 6 shows the ROC curves for each of the three models.
Different c

2c values were used to change the flagging sensitivity
and obtain the ROC curves. The values used are c

2c = [0.016,
0.455, 2.706, 3.841, 6.635, 7.879, 10.828, 19.511], which
correspond to confidence levels of [10%, 50%, 90%, 95%,
99%, 99.5% 99.9%, 99.999%]. The stars point out the location
of the 2.706c

2c = and 10.828c
2c = results for each of the

models. Here we see that at the 90% confidence level, the TPR
is over ∼0.8 while the FPR is under ∼0.4. This is
representative of the high recall and average precision shown in
Table 3. Interestingly, one can increase c

2c and the FPR still
decreases faster than the TPR, representative of the high
precision and average recall in Table 3.

In general we see that for all combinations the predictive
value is much better than random guessing. A quantity that
measures the overall reliability of the classifier is the area under
the ROC curve (AUC). We calculate AUC = 0.82, 0.81, and

0.84 for borus02, MYTorus, and UXCLUMPY, respectively.
These values indicate a good classifier for this purpose.
More usefully in some circumstances, we note that as the

threshold is increased up to 10.828c
2c > , corresponding to a

confidence level of 99.9%, the FPR becomes small while the
TPR remains >0.5. Specifically, at 10.828c

2c = , (FPR,
TPR) = (0.06, 0.54), (0.10, 0.63), and (0.06, 0.59) for
borus02, MYTorus, and UXCLUMPY, respectively. This
means that by decreasing our sensitivity to variability, we can
reduce the number of FPs to almost zero, and still be able to
detect more than half of the positive cases. This can be very
useful in creating a sample of observations that are almost
certain to show variability in NH. See Appendix A for the
confusion matrices.

4.2. NuSTAR Results

The results for the three NuSTAR sources are shown in
Figure 7. These plots show the best-fit NH value obtained from
the UXCLUMPY model against the single HR defined in
Section 3.3 for NuSTAR data.
The predictions are correct for all three sources. For 3C 105,

the value for the HR fit is 1.56HR
2c = , indicating no

variability, and indeed, there is no NH variability measured
between the observations. Similarly, for NGC 7319,

0.02HR
2c = . For the variable source NGC 4388, 52.4HR

2c = ,
indicating large variability. These predictions are not included
in the results shown in Table 3 or Figure 6 since the prediction
method is not the same.
Although the sample size is very small, the NuSTAR HR

seems to be better at predicting NH variability. It would not be
surprising if this is the case, considering the energy bands we
are able to use with NuSTAR might be better aligned to detect
changes in line-of-sight absorption in z∼ 0 obscured AGNs.
This could be due to the fact that increasing NH only
significantly affects the 3–8 keV band, which leads to a
predictable increase in HRnu. On the other hand, for HR1 and
HR2, an increase in NH affects both energy bands differently
depending on the amount of absorption and reflection, leading
to a less predictable change in the HRs.

5. Simulations

To verify the reliability of this method, we apply it to
samples of simulated spectra with different model configura-
tions and count levels. For simplicity, we use the borus02
model to simulate XMM-Newton spectra for NH values ranging
from NH= 1023 cm−2 to NH= 1.1× 1024 cm−2 in increments
of 5× 1022 cm−2, which is the range of values to which we are

Figure 7. Direct comparison of the best-fit NH values from UXCLUMPY to the NuSTAR HR. As can be seen, the HR is able to predict NH variability in NGC 4388 and
nonvariability in 3C 105 and NGC 7319.
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interested in applying the method. The photon index is Γ= 1.9,
the average torus column density is NH,avg= 1024 cm−2, and
the covering factor is cf = 0.67, as they were in Section 3. We
also consider two different inclination angles, cos 0.05incq =( ) ,
representing an edge-on torus and cos 0.71incq =( ) , represent-
ing the average inclination angle for a large sample of sources
with inclination angles distributed randomly. We consider six
different brightness levels in which the total number of counts
in the 2–10 keV band range from ∼100, 500, 1000, 5000,
10,000, and 20,000.

Figure 8 shows the results in the HR1−HR2 plane for spectra
with ∼1000 counts, which is the typical number of counts in
our sample observations discussed above. This indicates that
our method can detect small variability (∼5× 1022 cm−2) in
lower-obscuration sources. For the highest-obscuration sources
considered here, a change in NH of closer to ∼5× 1023 cm−2 is
needed for a reliable detection (see Figure 10). Furthermore,
this plot indicates that while there is some scatter in the HRs at
a given NH, the method is reliable at avoiding FPs (see
Figure 9). The results for the other count levels and the edge-on
case are shown in Appendix B. As expected, the method
improves when the observations have higher counts. The edge-
on case shows similar results regarding the dependence on

count levels. However, the shape of the NH dependence is
different because the soft counts from reflection off of the far
side of the torus are no longer present and the spectrum does
not soften for highly obscured scenarios.
A plot of the FPR as a function of NH for three different

threshold c
2c values is shown in Figure 9. The same plot is

shown for the different count levels in Appendix B. It is clear
that the level of obscuration does not have a large impact on the
FPR. Furthermore, the FPR is roughly the same regardless of
the number of counts or the inclination angle as can be seen
from the plots in Appendix B. This is likely due to the fact that
as the counts decrease and the scatter increases, the errors also
increase at the same rate, yielding a constant FPR. An
interesting thing to note on these results is that the FPR for
the simulated data is lower than the FPR for the Torres-Albà
et al. (2023) sample. We have identified two potential
explanations for this and we expect some combination is
responsible for the discrepancy. First, in our simulations, we
consider only variability in NH. In the real observations, other
parameters may vary that can affect the HR, leading to an
increase in the FPR over the simulated case. We will explore
this in detail in a future publication (I. S. Cox et al. 2023, in
preparation) to see which parameters are most important and

Figure 8. The HR1 and HR2 values along with the associated 68% errors for simulated spectra with 1000 counts in the 2–10 keV energy range. The colors represent
different NH values starting at NH = 1023 cm−2 and ending at NH = 1.1 × 1024 cm−2 in increments of NH = 5 × 1022 cm−2. The 10 colors shown cycle through in the
same order. There are 100 spectra simulated for each NH value. The HRs change predictably with NH along the trend lines, so there is no confusion. The left panel
shows the case for an inclination angle θinc = 45°, which is the typical inclination angle expected for a random distribution of orientations. The right panel shows the
edge-on case with θinc = 87°.

Figure 9. The FPR as a function of the NH for three different threshold c
2c values. The left panel shows inclination angle θinc = 45°. The right panel shows inclination

angle θinc = 87°. The blue line uses a threshold c
2c of 2.706, corresponding to 90% confidence. The FPR is 20% for all levels of obscuration in both cases. For the

higher threshold c
2c values, the FPR drops essentially to zero.
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try to quantify how prevalent these effects can be. Second, in
the definition of FPR in Equation (15), the “true” and “false”
predictions are relative to the NH values obtained through
spectral fitting. This process is not infallible as determining NH

variability by spectral fitting can itself have FNs. That is, NH

variability may be detected by our HR method while not being
detected with spectral fitting. This would result in a nominal FP
in the HR method, increasing the FPR.

In Figure 10, we show the TPR as a function of the change in
NH between two observations, ΔNH. The typical variability for
the Torres-Albà et al. (2023) sample is shown as the vertical
dashed line. This plot shows that at the “typical” variability
(ΔNH∼ 2.3× 1023 cm−2) and “typical” count level (∼1000),
we would expect to see a TPR of ∼0.8 at 90% confidence.
Furthermore, with only 100 counts, we expect to detect ∼30%–

50% of sources with typical variability (depending on the
inclination angle) and with 500 counts, ∼60%–90%. These
values are roughly consistent with the value obtained from the
sample analysis above. The TPR is better in the edge-on case
for a given count level and threshold c

2c . This is likely due to
the fact that photons from the far side of the torus are not
contaminating the spectrum, and only the part of the torus
responsible for absorption in the line of sight is visible. This
would increase the sensitivity of changes in absorption over the
case where parts of the torus that do not contribute to
absorption are nonetheless contributing photons. However, we
do not expect this geometry to affect the FPR, and this is
confirmed by the simulations.

6. Summary and Conclusion

In this work, we introduced a method to predict variability in
line-of-sight NH for an AGN, without having to perform
difficult and time-consuming spectral modeling, or even extract
a spectrum. This method would allow the user to sift through
many X-ray observations to quickly flag sources that are most
likely to experience NH variability. These flagged sources can
then be studied further by performing a full spectral fitting
analysis to obtain accurate NH values.

To do this, we used variability in the HR as a proxy for
variability in NH, which is commonly done. Two different HRs
were defined to account for a possible degeneracy in highly
obscured scenarios. Furthermore, a method to “correct” HRs

from Chandra observations to match XMM-Newton observa-
tions using only easily obtainable counts was developed. This
method can likely be used in many situations where one would
like to compare HRs from different instruments without having
to extract spectra. However, in this study, it has only been
tested with Chandra and XMM-Newton in the 2–10 keV
energy range.
We flag a pair of observations as variable if the χ2

fit,
assuming no variability, is larger than a given threshold which
can be set to a desired sensitivity. We first tested this prediction
method on a sample of 12 sources with NH values determined
through in-depth spectral analysis that used self-consistent
physical tori models and a careful treatment of reflection. The
ROC curve indicates that this method is effective at classifying
variable versus nonvariable sources. Furthermore, the ability to
adjust the sensitivity with the threshold χ2 value can allow the
user to create a sample of sources that almost certainly have
variability in the line-of-sight NH, however, this will be far
from a complete sample. On the other hand, one could
construct a sample containing almost all of the variable sources,
while having to deal with a fair number of FPs. Using this
method in its most conservative setting can also provide us an
approximate lower limit on the fraction of local AGNs that
display variable obscuration.
We also tested the method on simulated data with a range of

count levels. We found that the reliability measures on the
simulated data were consistent with the real data sample, except
for a lower FPR, which is explained in Section 5. We found
that the ability to detect variability decreases as the number of
counts decrease (as expected) but the method remains better
than random guessing for observations with as few as 100
counts.
We conclude that this method is an effective way to predict

absorption variability between two observations of a given
AGN. The fact that the sensitivity of this method can easily be
adjusted to suit the requirements of a particular project makes
this a very flexible tool to preselect samples of sources for
absorption variability studies. We reiterate, this method is not
to be used as a substitute for measuring the NH via spectral
fitting. Rather, it is only an indicator of variability between two
observations.
In a future paper (I. S. Cox et al. 2023, in preparation), we

will apply this method to a larger sample of sources with

Figure 10. The TPR as a function of ΔNH. The left panel shows inclination angle θinc = 45°. The right panel shows inclination angle θinc = 87°. The colors show
different count levels and the line styles show different sensitivity levels. This plot shows that the TPR increases with the number of counts andΔNH. For observations
with 5000 counts (orange line), we would expect to detect all variable events at 90% confidence, or a threshold c

2c of 2.706 (solid line) in both cases.
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unknown NH values. We will flag sources with a variable HR
and study those with careful spectral fitting. Along with further
constraining the physical parameters of the obscuring medium
surrounding the AGN, this upcoming study will greatly
improve the statistics in this work. Therefore, we will be able
to understand the reliability of this method better before being
overwhelmed with the amount of data from upcoming
missions.
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Appendix A
Confusion Matrices

Figures 11–13 show the confusion matrices for all three
models with the three different sensitivity levels shown in
Table 3. The diagonal of these matrices shows the correct
predictions while the top right contains the FPs (nonvariable
sources classified as variable) and the the bottom left contains
the FNs (variable sources classified as nonvariable).

Figure 11. Confusion matrices for all three models at the 90% confidence level ( 2.706c
2c = ). These show that the method is good at avoiding FNs, meaning that most

of the variable sources in a sample will be flagged. However, this comes at the expense of flagging as variable more sources that are not variable (top right).

Figure 12. Confusion matrices for all three models at the 99% confidence level ( 6.635c
2c = ). These show that at this sensitivity, the method does a decent job overall

at flagging variable sources while avoiding nonvariable sources.
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Appendix B
Simulations

Figures 14 and 15 show the same thing as Figures 8 and 9
for the remaining count levels studied (100, 500, 5000,
10,000, and 20,000 counts). Figure 14 shows that the ability
to distinguish different column densities with the HR values
increases significantly as the count level increases. However,

Figure 15 shows that the FPR is roughly independent of the
number of counts, as expected from the discussion in
Section 5. Since the FPR remains low even for observations
with much fewer counts than those in the Torres-Albà et al.
(2023) sample, it is likely that this method would still be able
to place a lower limit on the fraction of variable sources in a
sample regardless of the typical number of counts of the
observations.

Figure 13. Confusion matrices for all three models at the 99.999% confidence level ( 19.511c
2c = ). The small number of FPs (top right) show that, at this sensitivity,

almost none of the nonvariable sources in a sample will be flagged. However, this comes at the expense of not selecting a larger number of variable sources
(bottom left).
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Figure 14. The HRs of simulated spectra for a range of NH values and different count levels. All spectra here were simulated as described in Section 5. The colors are
the same as in Figure 8.
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Figure 14. (Continued.)
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Figure 15. The FPR as a function of NH for three different threshold c
2c values and different count levels. The details are described in Figure 9.
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