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Abstract—Manipulating deformable linear objects (DLOs) is a
challenging task for a robotic system due to their unpredictable
configuration, high-dimensional state space and complex nonlinear
dynamics. This letter presents a framework addressing the manipu-
lation of DLOs, specifically targeting the model-based shape control
task with the simultaneous online gradient-based estimation of
model parameters. In the proposed framework, a neural network
is trained to mimic the DLO dynamics using the data generated
with an analytical DLO model for a broad spectrum of its pa-
rameters. The neural network-based DLO model is conditioned on
these parameters and employed in an online phase to perform the
shape control task by estimating the optimal manipulative action
through a gradient-based procedure. In parallel, gradient-based
optimization is used to adapt the DLO model parameters to make
the neural network-based model better capture the dynamics of
the real-world DLO being manipulated and match the observed
deformations. To assess its effectiveness, the framework is tested
across a variety of DLOs, surfaces, and target shapes in a series
of experiments. The results of these experiments demonstrate the
validity and efficiency of the proposed methodology compared to
existing methods.

Index Terms—Deformable linear objects, manipulation, shape
control.

I. INTRODUCTION

ROBOTIC solutions involving Deformable Linear Objects
(DLOs) like ropes, cables, hoses, and wiring harnesses

are highly complex, presenting various challenges from two
main perspectives: perception [1] and manipulation [2]. From
a perception standpoint, dealing with DLOs is a tough task.
Their ambiguity can make it difficult to distinguish different
parts of them or to distinguish DLOs from other objects [3],
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Fig. 1. Schematic view of the two phases composing the proposed manip-
ulation framework: 1) training phase for dataset generation and NN training
and 2) online phase for simultaneous estimation of the best action and model
parameters during the shape control task.

especially given their relatively small size [4], [5]. Moreover,
the detection of the full DLO state, including the twist along the
DLO, poses also a challenge [6], [7]. Regarding manipulation,
DLOs prove to be challenging due to their unpredictable con-
figuration behavior, high dimensional state-space, and complex
nonlinear dynamics [2], [7]. Therefore, a deep understanding
of their physical characteristics is essential for predicting and
controlling their shape effectively [8].

In this letter, a manipulation framework exploiting a physical
prior of DLOs dynamics is proposed. In particular, a data-driven
learned model of the DLOs’ dynamics is developed to predict
the DLO behavior under manipulative actions. The prediction is
made using a Neural Network (NN) trained to approximate the
dynamics of a class of DLOs, by conditioning its predictions on
the set of the analytical model parameters.

First, the DLO’s dynamics is modeled by a set of differential
equations describing the DLO as point masses connected by
axial and torsional springs [9], obtaining a so-called analyti-
cal DLO model. Then, the analytical DLO model is used to
generate a comprehensive dataset by systematically sampling a
variety of model parameters, diverse DLO configurations, and
various manipulation actions. Consequently, a neural network
is trained utilizing this generated dataset, as visualized in the
training phase depicted in Fig. 1. Notably, the neural network is
conditioned over the model parameters, such that it can be easily
adapted to match different real-world DLOs.

The obtained neural network model is employed during the
online phase in Fig. 1 to estimate the manipulation actions to
steer the DLO from its initial to a final target configuration,
performing a task commonly referred to as shape control. In this
context, the adoption of the network model is preferred over the
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analytical model due to its computation efficiency, stability, and
scalability.

The proposed method uses a gradient-based approach to es-
timate the best manipulation action to achieve a desired target
configuration, by minimizing the error between the network pre-
diction and the desired DLO configuration. A similar gradient-
based approach is exploited to estimate the model parameters of
the DLO, where the estimation is performed by minimizing the
error between the model prediction and the observed real-world
DLO configuration obtained after a manipulation action.

The proposed framework can directly be applied for the
manipulation of various DLOs on diverse surfaces, thanks to the
data-driven approximation of the DLO dynamics conditioned on
the model parameters. Therefore, there is no need to: 1) generate
every time new task-specific data as in [7], 2) introduce complex
online adaptation controllers as in [2], [10], 3) perform cumber-
some and not intuitive parameters identification procedures as
in [8], [11].

In summary, the contributions of this letter are:
� NN-based DLO dynamics approximation conditioned on

several analytical model parameters allowing adaptability
to different real-world scenarios;

� Efficient gradient-based action prediction and parameters
estimation employing the same learned NN model;

� Experimental validation of the method on different real-
world DLOs and surfaces.

In the following, the related works are discussed in Section II.
The proposed framework is detailed in Section III. The experi-
mental evaluation of the method is provided in Section IV and
the conclusions are drawn in Section V.

II. RELATED WORKS

A. DLO Shape Control Task

The term shape control of DLOs is typically used to refer to
two different manipulation problems targeting the achievement
of a final target shape: 1) the manipulation of a soft DLO with
a sequence of pick and place actions [12], [13], [14], where the
deformation of the DLO is held in place by the friction of the
surface underneath. 2) the manipulation of elastic DLOs with
one or more robotic arms and/or one end of the DLO fixed [2],
[7], [10], [15], [16], where the second arm is used to achieve
better control of the shape, e.g. in the situation where the DLO’s
stiffness and the object exhibit rigid or plastic behavior. The
outcome of the task can be assessed by comparing the achieved
configuration to the target one in two possible ways [17]: by
measuring their relative similarity; by evaluating their absolute
similarity (i.e. a more challenging alternative considering also
the final positioning in space). In this letter, the latter is em-
ployed.

B. Model-Free Approaches

One of the popular approaches to manipulating DLOs is to use
methods that do not require nor create DLO models. Examples of
these methods are those based on expert demonstration. In [18],
shape similarity is used to determine which human demonstra-
tion should be replayed by the robot to achieve the goal. Whereas
in [19], human expertise was used to learn the DLO manipu-
lation policy. This kind of policy can be also learned without
supervision in a reinforcement learning paradigm, however, it is
typically done only in simulation [17], which limits the potential

application to the real DLOs. To approach this reality-gap and
improve the robustness, authors of [20], [21], [22] focused on the
online adaptation of the DLO control strategy. In the case of [22],
the parameters of the controller were adjusted online based on
the tracking error. Whereas in [20], [21], the control law relies
on the Jacobian that locally approximates how the movement
of the grippers affects the DLO. These methods, which utilize
local approximations of DLO motions and online adaptation of
controller parameters, have the potential to enhance the system’s
manipulation abilities in the context of model-free approaches.
Nevertheless, model-based approaches can typically strengthen
the system’s robustness through its better generalizability to
diverse scenarios.

C. Learned DLO Models

The literature related to learning-based methods can be di-
vided by the type of DLO to be manipulated. Concerning the
manipulation of soft DLOs like ropes with pick and place actions,
in [13] an image-based predictive DLO model is learned in a
self-supervised manner. Instead, in [14], the image of the DLO is
embedded in the latent space with linear dynamics imposed on it.
Differently, [12] proposes learning the DLO dynamics in state-
space while enforcing the physic priors via a biLSTM architec-
ture modeling the DLO as a chain-like mass-spring system. In
all these works, manipulation actions are sampled randomly and
the best one is selected considering suitable cost functions. On
the contrary, a gradient-based approach for estimating the best
action is proposed in this work, where also a rotation component
is estimated. In this way, a more complex manipulation action
can be executed with respect to the simpler linear displacement
operation. Regarding the manipulation of elastic DLOs, several
works proposed a learning-based framework to predict the DLO
dynamics. In [2], [7], [10] the DLO dynamic is approximated
with data-driven approaches trained using simulation data. In [2]
the authors propose an online adaptation of the DLO model to
compensate for the reality gap. Similarly, in [10] a linear residual
model is estimated online.

D. DLO Analytical Models and Physical Parameters

Many different physical models of DLOs have been proposed
in the past [8], ranging from simpler mass-spring [9] and energy-
based models to more accurate but computationally demanding
elastic-rod, dynamic splines, and finite element models [8].
Other than the selection of a specific model, the choice of the
integration method is crucial to achieve a good trade-off between
simulation accuracy and efficiency, and different integration
approaches like Runge-Kutta and symplectic have been pro-
posed [23]. As opposed to the mentioned force-based methods,
a differentiable position-based simulation of DLOs is proposed
in [11] where the integration steps are avoided leading to a more
efficient and stable simulation.

Despite the many models available, their application in robotic
systems is usually marginal due to the high computational cost
and sensitivity to the choice of physical and simulation param-
eters. Indeed, their estimation is a cumbersome task, as can be
seen in [8] where the physical model parameters are constantly
adjusted to make the simulation results approach the experi-
mental ones. Alternatively, in [11], the differentiability of the
framework is exploited for the estimation of model parameters.
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Fig. 2. DLO analytical model representation.

However, the process is quite slow and can not be performed in
an online framework.

Learning-based methods usually employ a DLO simulator
to collect training data, where the simulator is generally con-
structed based on one of the mentioned DLO models. However,
only a few learning-based works pay attention to DLO parame-
ters. In [14] and [7] the DLO parameters employed in the simu-
lator are estimated by optimizing the simulation against a small
set of real samples, employing a sampling-based method [14] or
a differential evolution strategy [7].

Compared to the parameters estimation procedures of [7],
[8], [11], [14], this letter proposes an efficient gradient-based
procedure which can seamlessly be performed online during the
execution of the shape control task.

III. METHOD

The proposed framework focuses on shaping DLO toward
a desired target. Simultaneously, during task execution, the
framework also estimates the model parameters to enhance its
ability to capture the dynamics of the actual manipulated DLO.
The framework exploits two different phases (see Fig. 1), namely
a training phase and an online phase. In the first one, the neural
network-based DLO model is trained to mimic the behavior of
the analytical DLO model for a wide range of its parameters.
While in the online phase, the trained NN model is used to
predict actions and simultaneously optimize the parameters so
that the NN model predictions, which are conditioned on these
parameters, match the observed behavior of the DLO.

The DLO analytical model is introduced in Section III-A, and
the DLO state representation is detailed in Section III-B. The NN
model is presented in Section III-C whereas the gradient-based
estimation of the action and model parameters is discussed
in Section III-D. Finally, the shape control task with online
parameters adaptation is presented in Section III-E.

A. Analytical Model

A DLO can be physically modeled via a set of nodes having
proper mass and axial springs connecting the nodes to create
a serial chain [9], as shown in Fig. 2. In addition, the bending
stiffness of the DLO is modeled by placing a torsional spring
at each node. To improve the stability of the model, a viscous
friction proportional to the velocity of the node is included as a
damping term.

The dynamics of the generic node i can be written as:

mip̈i = −kdṗi + fsi + f bi , (1)

where p is the node coordinates, kd a damping constant, fs
i the

force due to the axial effects and f b
i the forces due to the bending

effects. The axial effects fs
i are computed as:

fsi = −ks(li − l0i )ui + ks(li+1 − l0i+1)ui+1, (2)

where li and l0i are the current and initial lengths of link i
respectively, while ui represent the unit vector of node i. With
reference to Fig. 2, the bending effect can be written as:

f bi = kb
βi−1

li sinβi−1
ui × (ui−1 × ui)

− kb
βi

li sinβi
ui × (ui × ui+1)

− kb
βi

li+1 sinβi
ui+1 × (ui × ui+1)

+ kb
βi+1

li+1 sinβi+1
ui+1 × (ui+1 × ui+2), (3)

where

βi = arctan
||ui+1 × ui||
〈ui+1,ui〉

represents the angle between ui and ui+1.
The manipulation action executed on the DLO model is

parametrized as a pick-and-place operation executed on the edge
of the DLO, i.e. between two consecutive nodes. The decision
to perform actions at the edge level is primarily influenced by
the physical design of the gripper. In fact, the gripper does not
interact with the DLO at a single node, but it engages with
the DLO in a manner that can be more accurately described as
the movement of the segment between two consecutive nodes.
The DLO action parameters vector is defined by

a = [α, δx, δy, δθ], (4)

where α denotes the index of the edge to grasp, δx and δy are the
linear displacements applied to the selected edge {pα,pα+1}
and δθ is the rotation applied to the initial edge orientation. The
effect of the action introduced above is simulated using forward
Euler method applied to the discretized version of (1).

B. DLO Perception and State Representation

Since the DLO’s dynamics is based on a mass-spring-damper
system, an appropriate representation according to the chosen
model is utilized. The DLO state V is represented as a sequence
of n 2D points in the Cartesian space, i.e. V ∈ Rn×2. In the
simulation, each node represents the position of the simulated
masses. The 2D coordinates of the DLO in the real scenario
are obtained using RT-DLO [1], an algorithm for real-time DLO
perception, where the input image is provided by a fixed 3D
vision sensor. From the acquired point cloud, the workspace
plane is segmented out to obtain the DLOs points in the scene.
These points are then projected on the image plane by utilizing
the camera’s intrinsic parameters obtaining a binary mask of the
DLO in the scene. The binary mask is forwarded to RT-DLO that
performs the modeling of the DLO as a line graph representation
of the DLO, i.e. a sequence of nodes and edges, as shown in
Fig. 1. Therefore, the node coordinates in the line graph represent
the state V .

C. Neural Network Model

A NN is used to approximate the analytical DLO model,
significantly improving computational efficiency. Indeed, the
complexity of the analytical DLO model (1)–(3) affects its
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Fig. 3. Sequence of k = 5 dataset samples generated with the simulated DLO.
Vin in red, Vout in blue and action in green.

performance and makes using it in an online framework chal-
lenging. Instead, a NN can be trained to accurately replicate
the DLO dynamics by exploiting a dataset of DLO movements,
which can be generated offline using the analytical DLO model.
Thanks to the use of a relatively small neural network, a constant
and short inference time is obtained which is more than an
order of magnitude smaller than the time needed to evaluate the
analytical DLO model. While the analytical model can be hard
to differentiate, the NN model is easily differentiable wrt the
parameters, improving the possibility of optimizing all relevant
tasks.

1) Dataset Generation: The dataset is generated by simu-
lating the analytical DLO model subjected to a set of random
actions. Each data sample consists of the DLO initial and final
configurations, the performed action, and the employed model
parameters. The DLO initial and final configurations are sets of
2D points characterizing the DLO state, i.e. Vin and Vout, while
the action is described by parameters introduced in (4).

The DLO axial deformation is assumed to be negligible for
the purposes of this work, thus the coefficient ks is kept fixed to
a high value. Instead, the damping term kd, the bending term kb,
the length of the DLO, and the mass of the DLO change within
predefined ranges. In particular, both the length and the mass
are assumed to be known quantities since they can usually be
measured. Eventually, the DLO length can be estimated online
using the perception algorithm and the mass can be measured
using force sensors mounted on the robot. The other two terms
are instead difficult to measure, so they are estimated online.

Aiming to learn a general DLO model, both the action and
model parameters are drawn from a broad range of values cover-
ing the expected real-world variability. In particular, each value
is sampled from a uniform distribution with specific boundaries,
except for the edge index which is sampled from a discrete
uniform distribution.

To generate the dataset, the physical parameters are set to
random values from the physically plausible ranges, and the
simulated DLO is initialized with an almost linear initial config-
uration. Then, a set of k actions is sampled and the behavior
of DLO is simulated after applying them sequentially. This
procedure is exploited in order to build a diversified dataset in
terms of DLO configuration complexity. In Fig. 3 an example
sequence is shown. After the execution of each action, a dataset
sample is saved containing the reached DLO configuration,
the initial DLO configuration, the model parameters, and the
performed action.

2) Data Augmentation: To improve the training efficiency
and generalization capabilities of the NN model, several aug-
mentation and normalization strategies are implemented on the
data. The idea is to exploit the symmetries in the DLO data to
reduce the amount of information the NN has to learn.

The normalization is performed by finding a transformation
that makes Vin aligned to the x-axis and mean-centered, and
applying it to normalize both Vin and Vout. This transformation

Fig. 4. Neural network architecture.

is composed of the translation equal to the negative geometrical
center of the Vin and rotation that is required to make the first
principal component of the points Vin aligned to the x-axis. The
nodes are ordered from negative to positive x values by flipping
Vin and Vout along the rows if necessary. The action index α
is adjusted accordingly. In addition, the action parameters are
scaled to be within the [0,1] range for α and [−1, 1] range for
the displacements. The model parameters are also normalized
within the [0,1] range.

3) Neural Network Architecture: The neural network archi-
tecture is based on a set of Linear layers followed by ReLU
activation functions. In detail, the network is composed of four
main blocks illustrated in Fig. 4: the action block, the physical
parameters block, the DLO block, and the prediction block. The
input of the network is the initial configuration of the DLO
Vin, the action parameters a, and the model parameters p. The
length is not provided as input since it is implicit from Vin,
thus p denotes only the model parameters provided as input, i.e.
p = [m, kb, kd]. The output of the network, denoted as Ṽ , is the
sequence of predicted changes of the 2D DLO coordinates from
the initial configuration. The final predicted DLO configuration
Vpred is expressed as

Vpred = F(Vin, a, p) = Ṽ (Vin, a, p) + Vin. (5)

The network is trained to minimize the mean squared error
between the predicted Vpred and the expected Vout final configu-
rations.

D. Gradient-Based Estimation of Action and Parameters

The trained NN model is used to estimate both the next
manipulation action and the parameters that allows for accurate
approximation of the observed DLO behavior. These two estima-
tion procedures are performed using numerical optimization of
the loss function between two DLO states. This loss is computed
as the sum of L2 norms between corresponding points among
the two states and can be defined by

D(V1, V2) =

n∑

i=1

‖V1,i − V2,i‖. (6)

An illustration of this idea is provided in Fig. 5. Since the NN
model is intrinsically differentiable, a gradient-based approach
can be used for the optimization of the above-mentioned loss
function. In addition, thanks to the possibility of performing the
optimization in batch, the mentioned gradient-based optimiza-
tion can be performed quite efficiently.
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Fig. 5. Gradient-based action and DLO parameters estimation.

1) Action Estimation: For the best action estimation given
the current DLO state Vin and the model parameters p, the
action parameters a minimizing the difference between the NN
prediction F(Vin, a, p) and the target shape Vtgt, i.e. the goal
to be reached in the shape control task, are sought. While this
can be easily done using gradients for the edge displacement
parameters, this is not the case for the edge index. Thus, the
efficient batch processing capabilities of the NN model are em-
ployed, and n− 1 optimizations are executed simultaneously,
with the assumption that the edge index is held constant in each
of them. Finally, the best action among the ones evaluated for
each edge is selected. This optimization procedure can be in
general described by

a∗ = argmin
a

D(F(Vin, a, p), Vtgt), (7)

where a∗ denotes the action that maximally reduces the differ-
ence between Vin and Vtgt according to the used NN model F .
However, as mentioned, in practice first are performed n− 1
optimizations of the form

a∗j = [j, argmin
δx,δy,δθ

D(F(Vin, [j, δx, δy, δθ], p), Vtgt)], (8)

where a∗j denotes the best action obtained for the fixed edge
index j, and then the best action a∗ is sought from the a∗j by

a∗ = argmin
a∗
j for j∈{1,2,...,n−1}

D(F(Vin, a
∗
j , p), Vtgt). (9)

2) Parameters Estimation: Similarly to actions, the model
parameters are estimated by searching for the ones that minimize
the difference between the NN prediction Vpred and the observed
DLO state Vout. This optimization can be written by

k∗b, k
∗
d = argmin

kb,kd

D(F(Vin, a, p), Vout) (10)

where k∗b, k
∗
d denotes the optimal values of the bending and

damping coefficients, and p = [m, kb, kd]. Since the mass m
can be measured, it is not optimized but measured and provided
as input to the NN model.

E. Shape Control Task With Online Parameters Adaptation

To improve the manipulation capabilities of the robotic system
in the case of the shape control task for a real previously unseen
DLOs, an approach that utilizes both model-based DLO shape
control and the online model parameters adaptation is proposed.
This can be achieved by jointly using the gradient-based action
and parameters optimization routines developed in Section II-
I-D. In Algorithm 1, the proposed method is detailed. If there
is no prior knowledge, the model parameters kd and kb can
be initialized at the midpoint of the range used in the dataset
generation, see Section III-C1. Therefore, given a target shape

Algorithm 1. Online Adaptation.

Vtgt, the robotic system iterates (line 5) executing a sequence
of manipulation actions until the error between the current
observed state Vout and the target shape Vtgt computed according
to (6) is below a user-defined threshold εth.

At each iteration, the camera system is first used to capture a
new sample from the scene and process it via the perception
system described in Section III-B, thus obtaining an initial
configuration (line 3). Then, the best action to move the DLO
toward the target configuration is computed (line 6) according
to (7), and the result of the performed action on the real system
is observed (line 8). The interaction with the real system is
saved (line 9) into a task dataset, which is initialized empty
at the beginning of the task. The task dataset is used for the
best parameters estimation performed following (10) (line 10).
Finally, the configuration error is updated (line 11) by comparing
the achieved shape to the target one.

IV. EXPERIMENTS

The manipulation framework of Section III is evaluated in the
context of a shape control task, with a robotic setup composed a
Panda Robot equipped with a parallel-jaw gripper, a Photoneo
Motioncam3D statically mounted on the robotic cell, and a
selection of ropes and surfaces.

Three ropes are used in the experiments: a white rope (0.45m,
0.02kg, 0.01m diameter); a black rope (0.42m, 0.05kg, 0.014m
diameter); and a red rope (0.50m, 0.02kg, 0.005m diameter).
Note, the black rope is the stiffest one, while the red rope
exhibits a higher degree of bending elasticity compared to the
white rope. Additionally, two planar surfaces with different
physical properties are used: a cloth and a cardboard surface.
The cardboard is smoother and more slippery than the cloth.

The experiments were executed employing as hardware an
Ubuntu PC equipped with an Intel CPU i7-12700H clocked at
2.3GHz and an Nvidia GPU 3050Ti.

A. Optimization Details

The NN model (Section III-C) is trained on a dataset of
DLO manipulation samples, obtained by the analytical model
(Section III-A), comprising about 275K elements. The dataset
is generated by employing the following boundary values for
action and model parameter ranges. Regarding the action, α ∈
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Fig. 6. Experimental robotic setup comprising different ropes and surfaces (a)
Target shapes achieved with the red rope on the cardboard surface (b).

[0, 15]; δx and δy are confined at±0.10m; and δθ is within±π/4
rad. Concerning the model parameters, the damping coefficient
kd ∈ [3, 30] Ns/m; the bending coefficient kb ∈ [0.05, 1.0] N/m;
the DLO length within [0.15, 0.50]m; the mass within [0.02, 0.1]
kg.

1) NN Model Training: A 90-10% split is employed to orga-
nize the dataset into training and validation sets. The network is
trained for 100 epochs (batch size 128, learning rate 5× 10−5).
The final weights are selected as the ones having the minimum
mean squared error validation loss.

2) Action and Parameters Estimation: The gradient-based
action estimation of Section III-D is performed for 500 opti-
mization steps employing a learning rate of 0.005. Regarding
the estimation of the parameter, the optimization is performed
for 3000 steps with a learning rate of 0.01. In both cases, an
early stopping procedure is implemented in case of the earlier
convergence. The tanh and sigmoid activation functions are
employed to limit the normalized action and model parameters,
respectively, to the ranges of [−1, 1] and [0,1] (Section III-C2).
This ensures to obtain denormalized values consistent with the
boundaries employed in the dataset.

B. Shape Control Task With Online Parameters Estimation

The shape control task involves the manipulation of four
distinct target shapes: the U, A, S and I shapes (see Fig. 6(b)).
Notably, the A shape differs from the U shape by requiring a
more pronounced bending in its central region. Conversely, the
S shape is characterized by two opposing and symmetric bends.
The I shape is used to evaluate the situation of zero curvature
target, where the I target is rotated by 90deg with respect to
the initial configuration. The reachability of all these shapes
was ensured by rearranging the ropes between the target and
initial configurations using a single human arm restricted to the
motions available to the robot.

The task is performed following the online adaptation ap-
proach introduced in Section III-E. The initial DLO configura-
tion Vin is a straight line. The initial model parameters kd, kb are
selected around the mid values of their ranges in the dataset, i.e.
kd = 14 and kb = 0.5. The task is executed for each target shape
Vtgt on each planar surface 5 times. The execution of the task
is terminated once the error computed according to (6) between
Vout and Vtgt is below 0.01m.

The results of the experiments are provided in Fig. 7, where,
within each subplot of a specific rope, columns illustrate the
task execution for specific target shapes, while rows provide

an analysis of error and model parameters. In detail, the first
row focuses on the mean error, with a dashed horizontal line
denoting the 0.01m threshold marking the completion of the
task. The second and third rows delve into the examination
of the bending parameter kb and the damping parameter kd
respectively. Here, the dashed lines represent the estimated
model parameters derived from all samples across all repetitions
performed for a given shape. These values, in essence, serve as
potential reference values for the specific parameters.

Analyzing the x-axis in the plots, iteration 0 represents the
initial condition with a straight DLO configuration and model
parameters at their initial values. An action is then executed by
the robotic system, updating the observed DLO configuration.
Model parameters are recalculated based on a single data sample,
resulting in updated values at manipulation iteration 1. This iter-
ative process continues until the specified termination condition
is met. At manipulation iteration m, the parameter estimation is
based on m data samples.

Examining the plots in Fig. 7, it is worth noting that similar
bending parameters are consistently estimated for each specific
rope on the cloth surface, regardless of the chosen target shape.
The parameters estimated on the cardboard surface exhibit a
higher degree of variability, indicating the presence of more
complex dynamics due to increased slippage. The estimation
of the damping term is less stable. In general, different pairs of
kd and kb values are estimated for the same rope on different
surfaces, highlighting the adaptation processes. The estimated
bending parameters comparison confirms significantly different
physical properties between the three ropes and that the black
rope is the stiffest one, as initially predicted. For instance, on the
cloth surface, the reference bending values are approximately
0.06 and 0.08 for the white and red ropes and about 0.19 for the
black rope.

To gain a deeper insight into the impact of the online model
parameters estimation, Fig. 8 presents a comparison among
mid-range, online estimated, and best parameters. The latter
refers to those estimated at the end of each task repetition,
while the mid-range to the ones from which online estimation
starts. These parameter setups were compared using the mean
prediction error, denoted as D(Vpred, Vout), computed after each
iteration of the shape control task across all the target shapes.
The plots illustrate how, within just a few iterations, the proposed
method attains parameters that yield a mean error between Vpred
andVout comparable to the best scenario, and in most of the cases
significantly better than for the mid-range parameters.

C. Comparison With State-of-The-Art

The NN model of Section III-C3, and here shortly denoted as
NN, is subjected to a comparative analysis against several pre-
viously proposed architectures concerning DLO dynamics pre-
diction. These include the bi-directional LSTM (BiLSTM) [12],
the interaction-network bi-directional LSTM (INBiLSTM) [7],
the graph neural network architecture (GNN) [10], and the RBF
network [2]. To ensure a fair comparison, a comparable number
of parameters is employed across all the networks. The goals
of this section are: i) to compare different neural network-based
DLO models, ii) to show that the proposed approach to DLO
modeling with conditioning on parameters and online adaptation
is architecture-agnostic, iii) to compare the performance of the
proposed adaptation of the input model parameters against the
direct adjustment of the neural network weights, as in [2].
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Fig. 7. Outcomes of the shape control task involving online adaptation of model parameters, conducted across various rope types and surfaces. Average results
across five repetitions per task (standard deviations confidence region intervals).

Fig. 8. Comparing prediction errors using mid-range, online, and best model
parameters across ropes and surfaces.

The analysis is carried out on the data obtained in the shape
control task of Section IV-B on the cloth surface, by computing
the mean prediction error. A 4-fold cross-validation approach
is used. Fold 1 employs the data of the U shape for parameters
estimation and the data of the A, S, and I shapes for forward
prediction error. The same holds for sets 2, 3 and 4 for shapes
A, S and I respectively.

1) Fixed vs Conditioning Parameters: To validate the choice
of a NN model conditioned on the model parameters, a new
dataset of 275K samples is generated with fixed mid-range
parameters (kd = 14, kb = 0.5, mass of 0.02kg, and length
in [0.4, 0.5]m). The comparison is performed by optimizing
the models using three different approaches: 1) the mid-range
dataset without considering parameters (no params (fixed mid-
range)); 2) the varied parameters dataset of Section IV-A without
considering parameters (no params (varied)); 3) using modified
architectures that incorporate model parameters as input (con-
ditioning params). Notably, the latter case implies estimating
the parameters according to Section III-D before evaluating the
prediction error. This is performed either employing the same
shape for both estimation and prediction (conditioning params
(*)) or with the introduced 4-fold cross-validation procedure
(conditioning params (**)). The results are shown in Fig. 9. The
plots show that conditioning the models on the parameters allows
to achieve better accuracy than with the model that is trained to
be robust to the range of the parameters (no params (varied)),
or only with fixed parameters (no params (fixed mid-range)),
for all considered architectures. Moreover, this is true also when
optimized and tested for different shapes (compare conditioning
params (*) and (**) cases, see also Section IV-C2). Additionally,

Fig. 9. Prediction error for fix (no params) vs conditioning parameters across
different models. For the latter, the symbol (*) denotes that the same shape is
used for parameters estimation and forward prediction error, whereas with (**)
the 4-fold cross-validation approach is denoted. With fixed mid-range and varied
the two employed datasets are indicated.

Fig. 10. Mean prediction error (log scale) of the input parameters (ours) vs
neural network weights (RBF [2]) update, evaluated on the same shape (*) or
on different shapes (**).

since all architectures show similar accuracy, a simpler and faster
fully connected NN model is preferable (see Section IV-C3).

2) Parameters vs Weights Update: Prior work proposed to
directly update the weights of the model to achieve online adap-
tation [2]. In this section, a comparison against this approach
is established in Fig. 10, where fold refers to the 4-fold cross-
validation approach. Fig. 10 shows that updating the network
weights directly, as proposed in the RBF approach [2], leads
to overfitting to the specific target shape, resulting in a loss
of generality (compare (*) and (**) cases). In contrast, when
the model parameters update is considered, as employed in
the proposed approach (NN), a higher level of generalization
is observed, resulting in consistent outcomes across various
tasks, regardless of the specific task performed during parameter
estimation.

3) Architecture Efficiency: To provide an insight about
the considered DLO model architecture efficiency, the time
to perform forward and backward passes is measured: NN
0.20/0.65ms; BiLSTM0.48/0.98ms; INBiLSTM0.75/1.42ms;
GNN 0.63/1.05 ms. Taking into account the time complexity of
each architecture, it can be concluded that the proposed simple
NN model emerges as the most favorable.
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D. Limitations

The proposed framework exhibits several limitations. First,
the action is predicted over a 1-step horizon, in contrast to other
approaches [10], [12]. Nevertheless, the current gradient-based
action estimation can be expanded to a N -step horizon using the
same batch approach. However, encompassing all possibilities
would result in an exponential growth of the task. Therefore,
the introduction of sampling-based, Top-K, or other techniques
is necessary to constrain the prediction task scale. Moreover,
our approach is also a forward model of the DLO, so it can
be used in any MPC-like framework to enable manipulation
planning in longer horizons. The second limitation is related to
the fixed number of nodes, e.g. 16 in this work, which would
necessitate the generation of new data and the retraining of a new
network with adapted dimensions if modified. A third limitation
is to assume the DLO dynamics negligible during manipulation.
Indeed, the analytical model provides a full trajectory of the DLO
response to the pick-and-place action. However, the current NN
model only captures the final response.

V. CONCLUSION

The proposed manipulation framework solves shape con-
trol tasks with plane contact involving a range of real-world
DLOs and different contact surfaces. The framework exploits
an online model parameter estimation procedure to adapt the
NN model predictions to the specific DLO being manipulated.
The efficiency of the proposed NN model approximating the
DLOs’ dynamics is exploited both in the actions and parameters
estimation routines, and has been proven compared to other
architectures. In future works, the proposed NN model will be
tested in the context of branched deformable linear objects, i.e.
wiring harnesses. Additionally, the extension of the proposed
framework to a dual-arm manipulation and to manipulation in
presence of environmental obstacles will be investigated.

REFERENCES

[1] A. Caporali, K. Galassi, B. L. Žagar, R. Zanella, G. Palli, and A. C. Knoll,
“RT-DLO: Real-time deformable linear objects instance segmentation,”
IEEE Trans. Ind. Informat., vol. 19, no. 11, pp. 11333–11342, Nov. 2023.

[2] M. Yu, K. Lv, H. Zhong, S. Song, and X. Li, “Global model learning for
large deformation control of elastic deformable linear objects: An efficient
and adaptive approach,” IEEE Trans. Robot., vol. 39, no. 1, pp. 417–436,
Feb. 2023.

[3] A. Caporali, M. Pantano, L. Janisch, D. Regulin, G. Palli, and D. Lee,
“A weakly supervised semi-automatic image labeling approach for de-
formable linear objects,” IEEE Robot. Automat. Lett., vol. 8, no. 2,
pp. 1013–1020, Feb. 2023.

[4] K. P. Cop, A. Peters, B. L. Žagar, D. Hettegger, and A. C. Knoll,
“New metrics for industrial depth sensors evaluation for precise robotic
applications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021,
pp. 5350–5356.

[5] A. Caporali, K. Galassi, and G. Palli, “Deformable linear objects 3D shape
estimation and tracking from multiple 2D views,” IEEE Robot. Automat.
Lett., vol. 8, no. 6, pp. 3852–3859, Jun. 2023.

[6] P. Kicki, A. Szymko, and K. Walas, “DLOFTBs–fast tracking of de-
formable linear objects with B-splines,” in Proc. IEEE Int. Conf. Robot.
Automat., 2023, pp. 7104–7110.

[7] Y. Yang, J. A. Stork, and T. Stoyanov, “Learning differentiable dynamics
models for shape control of deformable linear objects,” Robot. Auton. Syst.,
vol. 158, 2022, Art. no. 104258.

[8] N. Lv, J. Liu, and Y. Jia, “Dynamic modeling and control of deformable
linear objects for single-arm and dual-arm robot manipulations,” IEEE
Trans. Robot., vol. 38, no. 4, pp. 2341–2353, Aug. 2022.

[9] N. Lv, J. Liu, X. Ding, J. Liu, H. Lin, and J. Ma, “Physically based real-time
interactive assembly simulation of cable harness,” J. Manuf. Syst., vol. 43,
2017, pp. 385–399.

[10] C. Wang et al., “Offline-online learning of deformation model for cable
manipulation with graph neural networks,” IEEE Robot. Automat. Lett.,
vol. 7, no. 2, pp. 5544–5551, Apr. 2022.

[11] F. Liu, E. Su, J. Lu, M. Li, and M. C. Yip, “Robotic manipulation of
deformable rope-like objects using differentiable compliant position-based
dynamics,” IEEE Robot. Automat. Lett., vol. 8, no. 7, pp. 3964–3971,
Jul. 2023.

[12] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state esti-
mation for manipulating deformable linear objects,” IEEE Robot. Automat.
Lett., vol. 5, no. 2, pp. 2372–2379, Apr. 2020.

[13] R. Lee, M. Hamaya, T. Murooka, Y. Ijiri, and P. Corke, “Sample-efficient
learning of deformable linear object manipulation in the real world through
self-supervision,” IEEE Robot. Automat. Lett., vol. 7, no. 1, pp. 573–580,
Jan. 2022.

[14] W. Zhang, K. Schmeckpeper, P. Chaudhari, and K. Daniilidis, “Deformable
linear object prediction using locally linear latent dynamics,” in Proc. IEEE
Int. Conf. Robot. Automat., 2021, pp. 13503–13509.

[15] R. Lagneau, A. Krupa, and M. Marchal, “Automatic shape control of
deformable wires based on model-free visual servoing,” IEEE Robot.
Automat. Lett., vol. 5, no. 4, pp. 5252–5259, Oct. 2020.
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