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Extensional and Non-extensional
Functions as Processes

Ken Sakayori
University of Bologna and Inria

Davide Sangiorgi
University of Bologna and Inria

Abstract—Following Milner’s seminal paper, the rep-
resentation of functions as processes has received
considerable attention. For pure λ-calculus, the pro-
cess representations yield (at best) non-extensional λ-
theories (i.e., β rule holds, whereas η does not).
In the paper, we study how to obtain extensional

representations, and how to move between extensional
and non-extensional representations. Using Internal π,
Iπ (a subset of the π-calculus in which all outputs are
bound), we develop a refinement of Milner’s original
encoding of functions as processes that is parametric
on certain abstract components called wires. These
are, intuitively, processes whose task is to connect
two end-point channels. We show that when a few
algebraic properties of wires hold, the encoding yields
a λ-theory. Exploiting the symmetries and dualities of
Iπ, we isolate three main classes of wires. The first two
have a sequential behaviour and are dual of each other;
the third has a parallel behaviour and is the dual of
itself. We show the adoption of the parallel wires yields
an extensional λ-theory; in fact, it yields an equality
that coincides with that of Böhm trees with infinite η.
In contrast, the other two classes of wires yield non-
extensional λ-theories whose equalities are those of the
Lévy-Longo and Böhm trees.

I. Introduction

Milner’s work [1], [2] on the encoding of the pure
λ-calculus into the π-calculus is generally considered a
landmark paper in the area of semantics and programming
languages. The encoding of the λ-calculus is a significant
test of expressiveness for the π-calculus. The encoding also
gives an interactive semantics to the λ-calculus, which
allows one to analyse it using the instruments available
in the π-calculus. After Milner’s seminal work, a number
of encoding variants have been put forward (e.g. [3] and
references therein) by modifying the target language (often
to a subcalculus of the π-calculus) or the encoding itself.
The correctness of these encodings is usually supported by
the operational correspondence against a certain evalua-
tion strategy of the λ-calculus and by the validity of the
β-rule, (λx.M)N = M{N/x}. (In this paper, by validity of
a λ-calculus rule with respect to a certain process encoding
{[ · ]}, we mean that {[M ]} ≈ {[N ]} for all instances M = N
of (the congruence closure of) the rule, where ≈ is a basic
behavioural equivalence for the pure processes, such as
ordinary bisimilarity.)

The equality on λ-terms induced by the encoding has
also been investigated; in this equality two λ-termsM and
N are equal when their images are behaviourally equiva-
lent processes. For Milner’s original (call-by-name) encod-
ing, such an equality coincides with the Lévy-Longo tree
(LT) equality [4], [5] (the result is by large independent of
the behavioural equivalence adopted for the processes [6]).
It has also been shown how to recover the Böhm tree (BT)
equality [3], by modifying Milner’s encoding — allowing
reductions underneath a λ-abstraction — and selecting
divergence-sensitive behavioural equivalences on processes
such as must-testing.
Tree structures play a pivotal role in the λ-calculus.

For instance, trees allow one to unveil the computational
content hidden in a λ-term, with respect to some relevant
minimal information. In BTs the information is the head
normal forms, whereas in LTs it is the weak head nor-
mal forms. BT and LT equalities coincide with the local
structures of well-known models of the λ-calculus, such as
Plotkin and Scott’s Pω [7], [8], and the free lazy Plotkin-
Scott-Engeler models [9], [10], [11].
In BTs and LTs, the computational content of a λ-

term is unveiled using the β-rule alone. Such structures
are sometimes called non-extensional, as opposed to the
extensional structures, in which the β-rule is coupled
with the η-rule, M = λx.M x (for x not free in M). In
extensional theories two functions are equated if, whenever
applied to the same argument, they yield equal results.
A well-known extensional tree-structure are BTs with
infinite η, shortly BTη∞s. The equality of BTη∞s coincides
with that of Scott’s D∞ model [8], historically the first
model of the untyped λ-calculus. A seminal result by
Wadsworth [12] shows that the BTη∞s are intimately
related to the head normal forms, as the BTη∞ equality
coincides with contextual equivalence in which the head
normal forms are the observables.
In representations of functions as processes, extension-

ality and the η-rule, even in their most basic form, have
always appeared out of reach. For instance, in Milner’s
encoding, x and λy.x y have quite different behaviours:
the former process is a single output particle, whereas the
latter process has an infinite behaviour and, moreover, the
initial action is an input.

The general goal of this paper is to study extensionality
in the representation of functions as processes. In partic-979-8-3503-3587-3/23/$31.00 ©2023 IEEE



TABLE I
Instances of the abstract encoding

Encoding Parameter (wires) Characterises
AIO I-O wires BT
AP P wires BTη∞
AOI O-I wires LT

ular, we wish to understand if and how one can derive
extensional representations, and the difference between
extensional and non-extensional representations from a
process perspective.

We outline the main technical contributions. We develop
a refinement of Milner’s original encoding of functions,
using Internal π (Iπ), a subcalculus of the π-calculus in
which only bound names may be exported. The encoding
makes use of certain abstract components called wires.
These are, intuitively, processes whose task is to connect
two end-point channels; and when one of the two end-
points is restricted, the wires behave as substitutions.
In the encoding, wires are called ‘abstract’ because their
definitions are not made explicit. We show that assuming
a few basic algebraic properties of wires (having to do with
transitivity of wires and substitution) is sufficient to obtain
a λ-theory, i.e. the validity of the β-rule.
We then delve into the impact of the concrete defini-

tion of the wires, notably on the equivalence on λ-terms
induced by the encoding. In the π-calculus literature,
the most common form of wire between two channels a
and b is written !a(u). b〈u〉 (or a(u). b〈u〉, if only needed
once), and sometimes called a forwarder [13], [14]. In Iπ,
free outputs are forbidden and such a wire becomes a
recursively-defined process. We call this kind of wires I-
O wires, because of their ‘input before output’ behaviour.
Exploiting the properties of Iπ, e.g., its symmetries and
dualities, we identify two other main kinds of wires: the
O-I wires, with an ‘output before input’ behaviour and
which are thus the dual of the I-O wires; and the P
wires, or parallel wires, where input and output can fire
concurrently (hence such wires are behaviourally the same
as their dual).

We show that moving among these three kinds of
wire corresponds to moving among the three above-
mentioned tree structures of the λ-calculus, namely BTs,
LTs, BTη∞s. Precisely, we obtain BTs when adopting the
ordinary I-O wires; LTs when adopting the O-I wires; and
BTη∞s when adopting the P wires. This also implies that
P wires allow us to validate the η-rule (in fact both η and
infinite η). The results are summarised in Table I, where
AX is the concrete encoding in which the X wires are used.
We are not aware of results in the literature that pro-

duce an extensional λ-theory from a processes model, let
alone that derive the BTη∞ equality. We should also stress
that the choice of the wire is the only modification needed
for switching among the three tree structures: the encoding
of the λ-calculus is otherwise the same, nor does it change

the underlying calculus and its behavioural equivalence
(namely, Iπ and bisimilarity).
There are various reasons for using Iπ in our study.

The first and most important reason has to do with the
symmetries and dualities of Iπ, as hinted above. The
second reason is proof techniques: in the paper we use
a wealth of proof techniques, ranging from algebraic laws
to forms of ‘up-to bisimulation’ and to unique solutions of
equations; not all of them are available in the ordinary
π-calculus. The third reason has to do with η-rule. In
studies of the expressiveness of Iπ in the literature [15] the
encoding of the free-output construct into Iπ resembles an
(infinite) η-expansion. The essence of the encoding is the
following transformation (which needs to be recursively
applied to eliminate all free outputs):

a〈p〉 7→ νq (a〈q〉 | q(ỹ). p〈ỹ〉) . (1)

A free output of p is replaced by a bound output, that
is, an output of a freshly created name q (for simplic-
ity, we assume that p is meant to be used only once
by the recipient). The transformation requires localised
calculi [16], in which the recipient of a name may only use
it in output, and resembles an η-expansion of a variable
of the λ-calculus in that, intuitively, direct access to the
name p is replaced by access to the function λỹ. p〈ỹ〉.
A possible connection between Iπ and η-expansion may

also be found in papers such as [17], where η-expanded
proofs (proofs in which the identity rule is only applied to
atomic formulas) are related to (session-typed) processes
with bound outputs only. Yet, the technical link with
our works appears weak because the wires that we use
to achieve extensionality (the P wires of Table I) are
behaviourally quite different from the process structures
mentioned above.
We derive the encoding into Iπ in two steps. The

first step consists, intuitively, in transplanting Milner’s
encoding into Iπ, by replacing free outputs with bound
outputs plus wires, following the idea in (1) above. How-
ever, (1) is only valid in localised calculi, whereas Milner’s
encoding also requires the input capability of names to
be transmitted. Therefore we have to modify the wire
in (1), essentially inverting the two names p and q.
The correctness of the resulting transformation relies on
properties about the usage of names that are specific to
the representation of functions. The second step adopted
to derive the encoding consists of allowing reductions
underneath a λ abstraction; that is, implementing a strong
reduction strategy. This transformation is necessary in
order to mimic the computation required to obtain head
normal forms.
Encodings of strong reduction strategies have appeared

in the literature; they rely on the possibility of encoding
non-blocking prefixes (sometimes called delayed in the
literature) [18], [19], [20], [21], [14], [16], [3], i.e., prefixes
µ : P in which actions from P may fire before µ, as long
as µ does not bind names of the action. The encodings of



non-blocking prefixes in the literature require the names
bound in µ to be localised. Here again, the difficulty was
to adapt the schema to non-localised names. Similar issues
arise within wires, as their definition also requires certain
prefixes to be non-blocking.
Structure of the paper Section II recalls background ma-
terial on λ-calculus and Iπ. In Section III, we introduce
wires and permeable prefixes. In Section IV, we present
the abstract encoding, using the abstract wires, and the
assumptions we make on wires; we then verify that such
assumptions are sufficient to obtain a λ-theory. Section V
defines an optimised abstract encoding, which will be
useful for later proofs. In Section VI, we introduce the
three classes of concrete wires, and show that they satisfy
the required assumptions for wires. In Section VII, we pick
the I-O wires and O-I wires, and prove full abstraction for
LTs and BTs. In Section VIII, we do the same for the
P wires and BTη∞s. Section IX discusses further related
work and possible future developments. For lack of space,
proofs of the main results are only sketched. The reader
may find the details in the full version [22].

II. Background
A tilde represents a tuple. The i-th element of a tuple

P̃ is referred to as Pi. All notations are extended to tuples
componentwise.

A. The λ-calculus
We let x and y range over the set of λ-calculus variables.

The set Λ of λ-terms is defined by the grammar

M ::= x | λx.M | M1M2 .

Free variables, closed terms, substitution, α-conversion
etc. are defined as usual [23]; the set of free variables of M
is fv(M). Here and in the rest of the paper (including when
reasoning about processes), we adopt the usual ‘Baren-
dregt convention’. This will allow us to assume freshness
of bound variables and names whenever needed. We group
brackets on the left; thereforeMNL is (MN)L. We abbre-
viate λx1. · · · .λxn.M as λx1 · · ·xn.M , or λx̃.M . Symbol
Ω stands for the always-divergent term (λx.xx)(λx.xx).

A number of reduction relations are mentioned in this
paper. The (standard) β-reduction relation M −→ N is the
relation on λ-terms induced by the following rules:

[β]
(λx.M)N −→M{N/x}

[µ]
N −→ N ′

M N −→M N ′

[ν]
M −→M ′

M N −→M ′ N
[ξ]

M −→M ′

λx.M −→ λx.M ′

The (weak) call-by-name reduction relation uses only the
β and ν rules, whereas strong call-by-name, written −→sn,
also has ξ; the head reduction, written −→h, is a deter-
ministic variant of −→sn in which the redex contracted is
the head one, i.e., (λy.M0)M1 of λx̃. (λy.M0)M1 · · ·Mn.
Head normal forms are of the form λx̃. y M̃ . As usual, we
use a double arrow to indicate the reflexive and transitive
closure of a reduction relation, as in =⇒ and =⇒h. A term

M has a head normal form N if M =⇒h N and N is the
(unique) head normal form. Terms that do not have a head
normal form are called unsolvable. An unsolvableM has an
order of unsolvability n, if n is the largest natural number
such that M =⇒h λx1 . . . xn.M ′, for n ≥ 0, and some
x1, . . . , xn,M

′. If there is no such largest number, then M
is of order ω. For instance, Ω is an unsolvable of order 0
and λx. Ω of order 1.
We recall the definitions of Lévy-Longo trees and Böhm

trees; then in the equality induced by such trees two terms
are related if their trees are the same (as usual modulo α-
conversion). In contrast, we present the definition of Böhm
tree equality up-to infinite η-expansion as a bisimilarity,
as the proofs exploit this bisimulation-based definition.

Definition II.1 (Lévy-Longo trees and Böhm trees). The
Lévy-Longo tree of M is the labelled tree, LT(M), defined
coinductively as follows:
1) LT(M) = > if M is an unsolvable of order ω;
2) LT(M) = λx1 . . . xn.⊥ if M is an unsolvable of order

n < ω;
3) LT(M) is the tree with λx̃. y as the root and

LT(M1) . . .LT(Mn) as the children, if M has head
normal form λx̃. yM1 · · ·Mn with n ≥ 0.

The definition of Böhm trees (BTs) is obtained from that
of LTs using BT in place of LT, and demanding that
BT(M) = ⊥ wheneverM is unsolvable (in place of clauses
(1) and (2)).

An η-expansion of a BT, whose root is λx̃. y and chil-
dren are BT(M1), . . .BT(Mn), is given by a tree whose
root is λx̃z. y and children are BT(M1), . . .BT(Mn), z.
Informally, an infinite η-expansion of a BT is obtained
by allowing this expansion at each step of the clause (3).
Equality over such trees can be formalised as a bisimilarity
in which (finite) η-expansion is allowed at each step of the
bisimulation game.

Definition II.2 ([24]). A symmetric relation R on λ-
terms is a BTη∞-bisimulation if, whenever M R N , either
one of the following holds:
1) M and N are unsolvable
2) M =⇒h λx1 . . . xl+m. yM1 · · ·Mn+m and N =⇒h

λx1 . . . xl. y N1 · · ·Nn, where xl+1, . . . , xl+m are not
free in y N1, . . . , Nn, and Mi R Ni for 1 ≤ i ≤ n,
and also Mn+j R xl+j for 1 ≤ j ≤ m

3) the symmetric case, where N reduces to a head
normal form with more leading λs.

The largest BTη∞-bisimulation is called BTη∞-
bisimilarity. We also write BTη∞(M) = BTη∞(N)
when M and N are BTη∞-bisimilar.

Example II.1. We have LT(λx. Ω) = λx.⊥, whereas
BT(λx. Ω) = ⊥. For Ξ def= (λxy.xx) (λxy.xx) we have
LT(Ξ) = >, whereas BT(Ξ) = ⊥.
Example II.2. Let J be a term such that J z =⇒h
λy. z (Jy), which is easy to define using a fixed-point



combinator. Intuitively, the term J z can be considered
as the ‘limit of the sequence of η-expansions’

z −→η λz1. z z1 −→η λz1. z (λz2. z1 z2) −→η · · ·

The terms z and J z have different Böhm trees, as BT(z) =
z whereas BT(J z) has infinitely many nodes, the root
being λz1. z. However, BTη∞(J z) = BTη∞(z) as the two
terms can be equated using an infinite form of η-expansion.

B. Internal π-calculus

In all encodings we consider, the encoding of a λ-
term is parametric on a name, i.e., it is a function from
names to π-calculus processes. We also need parametric
processes (over one or several names) for writing recursive
process definitions and equations. We call such parametric
processes abstractions. The actual instantiation of the
parameters of an abstraction F is done via the application
construct F 〈ã〉. Processes and abstractions form the set
of agents. Small letters a, b, . . . , x, y, . . . range over the
infinite set of names. The grammar of Iπ is thus:

A ::= P | F (agents)

P ::= 0 | a(̃b).P | a(̃b).P | νa P (processes)
| P1 | P2 | !a(̃b).P | F 〈ã〉

F ::= (ã) P | K (abstractions)

The operators used have the usual meanings. In prefixes
a(̃b) and a(̃b), we call a the subject. We often abbreviate
νaνb P as (νa, b)P . Prefixes, restriction, and abstraction
are binders and give rise in the expected way to the
definition of free names, bound names, and names of an
agent, respectively indicated with fn(−), bn(−), and n(−),
as well as that of α-conversion. An agent is name-closed
if it does not contain free names. In the grammar, K is a
constant, used to write recursive definitions. Each constant
K has a defining equation of the form K def= (x̃) P , where
(x̃) P is name-closed; x̃ are the formal parameters of the
constant (replaced by the actual parameters whenever the
constant is used). Replication could be avoided in the
syntax since it can be encoded with recursion. However
its semantics is simple, and it is a useful construct for
encodings; thus we chose to include it in the grammar.

Since the calculus is polyadic, we assume a sorting sys-
tem [25] to avoid disagreements in the arities of the tuples
of names carried by a given name and in applications of
abstractions. In Milner’s encoding (written in the polyadic
π-calculus) as well as in all encodings in the paper, there
are only two sorts of names: location names, and variable
names. Location names carry a pair of a variable name
and a location name; variable names carry a single location
name. Using p, q, r, . . . for location names, and x, y, z, . . .
for variable names, the forms of the possible prefixes are:

p(x, q).P | x(p).P | p(x, q).P | x(p).P

This sorting will be maintained throughout the paper.
Hence process transformations and algebraic laws will be
given with reference to such a sorting.
The operational semantics of Iπ is standard [3] (see [22]).

The reference behavioural equivalence for Iπ is (weak)
bisimilarity; it coincides with barbed congruence, assum-
ing image-finiteness. We also use the expansion preorder,
written ., an asymmetric variant of ≈ in which, intu-
itively, P . Q holds if P ≈ Q but also Q has at least
as many τ -moves as P . As usual, µ=⇒ is =⇒ µ−→=⇒, and µ̂=⇒

is µ=⇒ for µ 6= τ and =⇒ otherwise.

Definition II.3 (Bisimilarity and Expansion). A sym-
metric relation R on Iπ-processes is a bisimulation, if
whenever P RQ and P µ−→ P ′, then Q µ̂=⇒ Q′ for some
Q′ with P ′RQ′. Processes P and Q are bisimilar, written
P ≈ Q, if P RQ for some bisimulation R.

A relation R over processes is an expansion if P R Q
implies, whenever P µ−→ P ′ (resp. Q µ−→ Q′), there exists
Q′ (resp. P ′) such that Q

µ=⇒ Q′ (resp. P µ̂−→ P ′) and
P ′ R Q′. Here, µ̂−→ is µ−→ if µ 6= τ and is = or τ−→ if µ = τ .
We say that Q expands P , written P . Q, if P R Q, for
some expansion R.

All behavioural relations are extended to abstractions
by requiring ground instantiation of the parameters.
1) Proof techniques: In the proofs, we often use well-

known algebraic laws, notably laws for private replications,
and up-techniques for bisimilarity, notably bisimulations
up-to expansion and contexts; we use up-to expansion
rather than up-to weak bisimulation as the latter is known
to be unsound. Again, we refer to [22] for details.

We briefly recall the ‘unique solution of equations’
technique [26]. Equation variables X,Y, Z are used to
write equations. The body of an equation is a name-closed
abstraction possibly containing equation variables (that is,
applications can also be of the form X〈ã〉). We use E to
range over expression bodies; and E to range over systems
of equations, defined as follows. In all the definitions, the
indexing set I can be infinite.

Definition II.4. Assume that, for each i of a countable
indexing set I, we have a variable Xi, and an expression
Ei, possibly containing variables. Then {Xi = Ei}i∈I
(sometimes written X̃ = Ẽ) is a system of equations.
(There is one equation for each variable Xi.) A system
of equations is guarded if each occurrence of a variable in
the body of an equation is underneath a prefix.

We write E[F̃ ] for the abstraction obtained by replacing
in E each occurrence of the variable Xi with the abstrac-
tion Fi. This is a syntactic replacement, with instantiation
of the parameters: e.g., replacing X with (x̃)P in X〈ã〉
amounts to replacing X〈ã〉 with P{ã/̃x}.



Definition II.5. Suppose {Xi = Ei}i∈I is a system of
equations. We say that:
• F̃ is a solution of the system of equations for ≈ if for

each i it holds that Fi ≈ Ei[F̃ ].
• The system has a unique solution for ≈ if whenever
F̃ and G̃ are both solutions for ≈, we have F̃ ≈ G̃.

Definition II.6 (Syntactic solutions). The syntactic so-
lutions of a system of equations {Xi = Ei}i∈I are the
recursively defined constants K

Ẽ,i

def= Ei[K̃Ẽ ], for i ∈ I.

The syntactic solutions of a system of equations are
indeed solutions of it. The unique-solution technique relies
on an analysis of divergences. A process P diverges if it can
perform an infinite sequence of internal moves, possibly
after some visible ones (i.e., actions different from τ).
Formally, this holds if there are processes Pi, i ≥ 0, and
some n such that P = P0

µ0−→ P1
µ1−→ P2

µ2−→ . . . and for
all i > n, µi = τ . We call a divergence of P the sequence
of transitions

(
Pi

µi−→ Pi+1
)
i≥0. An abstraction F has a

divergence if the process F 〈ã〉 has a divergence, where ã
are fresh names.

Theorem II.1 ([27]). A guarded system of equations
whose syntactic solutions are agents with no divergences
has a unique solution for ≈.

III. Wires and Permeable Prefixes
We introduce the abstract notion of wire process; and,

as a syntactic sugar, the process constructs for permeable
prefixes. Wires and permeable prefixes will play a central
role in the technical development in the following sections.
We use the notation a ↔ b̄ for an abstract wire; this is,
intuitively, a special process whose purpose is to connect
the output-end of a with the input-end of b (thus a ↔ b̄
itself will use a in input and b in output). We call such
wires ‘abstract’ because we will not give a definition
for them. We only state (Section IV) some behavioural
properties that are expected to hold, and that have mainly
to do with substitutions; approximately:
1) if P uses b only in input, then

νb (a↔ b̄ | P ) & P{a/b}
2) dually, if P uses a only in output, then

νa (a↔ b̄ | P ) & P{b/a}
Further conditions will however be needed on P for such
properties to hold (e.g., in (1), the input at b in P should
be ‘at the top-level’, and in (2), the outputs at a in P
should be ‘asynchronous’.) Special cases of (1) and (2)
are forms of transitivity for wires, with the common name
restricted:
3) νb (a↔ b̄ | b↔ c̄) & (b↔ c̄){a/b} =

(a↔ b̄){c/b} = a↔ c̄.
When (1) holds we say that P is I-respectful with respect
to a ↔ b̄; similarly when (2) holds we say that P is O-
respectful with respect to a ↔ b̄. When (3) holds, for any
a, b, c of the same sort, we say that wires are transitive.

As we have two sorts of names in the paper (location
names and variable names), we will correspondingly deal
with two sorts of wires, location wires and variable wires.
In fact, location wires will be the key structures: definitions
and properties for the variable wires will be adjusted
accordingly, so to guarantee the desired properties of the
location wires.
We write a(̃b) : P and ā(̃b) : P for a permeable input and

a permeable output. Intuitively, a permeable prefix only
blocks actions involving the bound names of the prefix.
For instance, a permeable input a(̃b) : P , as an ordinary
input, is capable of producing action a(̃b) thus yielding
the derivative P . However, in contrast with the ordinary
input, in a(̃b) : P the process P is active and running, and
can thus interact with the outside environment; the only
constraint is that the actions from P involving the bound
names b̃ cannot fire for as long as the top prefix a(̃b) is not
consumed.
Given the two sorts of names that will be used in the

paper, the possible forms of permeable prefixes are:

p(x, q) : P | p̄(x, q) : P | x(p) : P | x̄(p) : P

Moreover, it will always be the case that in a prefix
p(x, q) : P process P uses x only in output and q only once
in input, and conversely for p̄(x, q) : P ; and in x(p) : P
process P uses p only once in input, and conversely for
x̄(p) : P .
We stress that permeable prefixes should be taken as

syntactic sugar; formally they are defined from ordinary
prefixes and wires as follows

p(x, q) : P def= (νx, q) (p(x′, q′). (x↔ x̄′ | q′ ↔ q̄) | P )

x(p) : P def= νp (x(p′). p′ ↔ p̄ | P )

p̄(x, q) : P def= (νx, q) (p(x′, q′). (x′ ↔ x̄ | q ↔ q̄′) | P )

x̄(p) : P def= νp (x(p′). p↔ p̄′ | P )

Such definitions thus depend on the concrete forms of
wires adopted. The definitions behave as intended only
when the processes underneath the permeable prefixes are
respectful. For example, we have

p(x, q) : P p(x,q)−−−−→

(νx′, q′)
(
x′ ↔ x̄ | q ↔ q̄′ | P{x′, q′

/x, q}
)
& P

if P is I-respectful with respect to q′ ↔ q̄ and O-respectful
with respect to x↔ x̄′, for fresh q′ and x′.

Later, when the abstract wires will be instantiated to
concrete wires, we will study properties of I-respectfulness
and O-respectfulness, as well as, correspondingly, proper-
ties of permeable prefixes, in the setting of encodings of
functions.

IV. Abstract Encoding
This section introduces the abstract encoding of λ-terms

into Iπ-processes. We call the encoding ‘abstract’ because



AJxKp
def= x̄(p′) : p↔ p̄′

AJλx.MKp
def= p(x, q) : AJMKq

AJM NKp
def= νq ( AJMKq |

q̄(x, p′) : (!x(r).AJNKr | p↔ p̄′) )

Fig. 1. The abstract encoding A.

it uses the abstract wires discussed in the previous section.
In other words, the encoding is parametric with respect to
the concrete definition of the wires. We then prove that,
whenever the wires satisfy a few basic laws, the encoding
yields a λ-theory.

A. Definition of the abstract encoding
We begin by recalling Milner’s original encoding M of

(call-by-name) λ-calculus into the π-calculus [2], [25]:

MJxKp
def= x〈p〉

MJλx.MKp
def= p(x, q).MJMKq

MJM NKp
def= (νq, x) (MJMKq | q〈x, p〉 | !x(r).MJNKr)

The encoding of a λ-term M is parametric over a port
p, which can be thought of as the location of M , for p
represents the unique port along which M may be called
by its environment, thus receiving two names: (a trigger
for) its argument and the location to be used for the
next interaction. Hence, M (as well as all the encodings
in the paper) is a function from λ-terms to abstractions
of the form (p)P . We write MJMKp as a shorthand
for MJMK〈p〉. A function application of the λ-calculus
becomes, in the π-calculus, a particular form of parallel
combination of two agents, the function and its argument.
An argument of an application is translated as a replicated
server, that can be used as many times as needed, each
time providing a name to be used as location for the
following computation.

In Figure 1 we report the abstract encoding A. There
are two main modifications from Milner’s encodingM:
1) The encoding uses Iπ, rather than π-calculus; for this,

all free outputs are replaced by a combination of
bound outputs and wires.

2) A permeable input is used, in place of an ordinary
input, in the translation of abstraction so to allow
reductions underneath a λ-abstraction. (We thus im-
plement a strong call-by-name strategy.)

We report a few basic conditions that will be required
on wires. The main ones concern the behaviour of wires
as substitutions and transitivity of wires.

Definition IV.1 (Wires). As a convention, we assume
that names a, b, c are of the same sort, either location
names or variable names. Wires a↔ b̄ are processes that
satisfy the following properties:

1) The free names of a ↔ b̄ are a and b. Furthermore,
a↔ b̄ only uses a in input and b in output.

2) If a↔ b̄
µ−→ P for some P , then µ 6= τ .

3) νb (a↔ b̄ | b↔ c̄) & a↔ c̄.
4) νq (p ↔ q̄ | q(x, r) : P ) & p(x, r) : P , provided that

(νx, r )(x ↔ x̄′ | r′ ↔ r̄ | P ) & P{x′, r′
/x, r}, where

x′, r′ are fresh names.
5) νp (p↔ q̄ | p̄(x, r) : P ) & q̄(x, r) : P , provided that

(νx, r )(x′ ↔ x̄ | r ↔ r̄′ | P ) & P{x′, r′
/x, r}, where

x′, r′ are fresh names.
6) νy (x ↔ ȳ | !y(p).P ) & !x(p).P , provided that y /∈

fn(P ) and νp(p′ ↔ p̄ | P ) & P{p′
/p}, where p′ is fresh.

7) νx (x ↔ ȳ | x̄(p) : P ) & ȳ(p) : P , provided that
x /∈ fn(P ) and νp (p ↔ p̄′ | P ) & P{p′

/p}, where p′ is
fresh.

8) x↔ ȳ is a replicated input process at x, i.e. x↔ ȳ =
!x(p).P for some P .

Condition 1 is a simple syntactic requirement. Condi-
tion 2 says that wires are ‘optimised’ in that they cannot
do any immediate internal interaction (this requirement,
while not mandatory, facilitates a few proofs). Law 3
is about the transitivity of wires. Laws 4-7 show that
wires act as substitutions for permeable inputs, permeable
outputs and replicated input prefixes. We do not require
similar laws for ordinary prefixes, e.g., as in

νp (p↔ q̄ | p(x, r).P ) & q(x, r).P

because wires break the strict sequentiality imposed by
such prefixes (essentially transforming an ordinary prefix
into a permeable one: only for the process on the right any
action from P is blocked until the environment accepts an
interaction at q). Condition 8 requires x ↔ ȳ to be an
input replicated processes, and is useful so to be able to
use the replication laws.
Hereafter we assume that p ↔ q̄ and x ↔ ȳ are indeed

wires, i.e., processes that satisfy the requirements of Def-
inition IV.1. We can therefore exploit such requirements
to derive properties of the abstract encoding.
Lemma IV.1 shows that the processes encoding func-

tions are I-respectful with respect to the location wires,
and O-respectful with respect to the variable wires.

Lemma IV.1.
1) νq (p↔ q̄ | AJMKq) & AJMKp
2) νx (x↔ ȳ | AJMKp) & AJM{y/x}Kp

B. Validity of β-reduction
The abstract encoding A validates β-reduction with re-

spect to the expansion relation. This is proved by showing
that substitution of a λ-term M is implemented as a
communication to a replicated server that owns M . In
the proofs of the following statements, Lemma IV.1 is
frequently used.



Lemma IV.2. If x /∈ fv(N), then
νx (AJMKp | !x(q).AJNKq) & AJM{N/x}Kp

Theorem IV.3. If M −→ N , then AJMKp & AJNKp.

Since bisimilarity is a congruence in Iπ and our encoding
is compositional, the validity of β-reduction implies that
the equivalence induced by the encoding is a λ-theory.

Corollary IV.4. Let =π
def= {(M,N) | AJMK ≈ AJNK}.

Then =π is a λ-theory, that is, a congruence on λ-terms
that contains β-equivalence.

Remark IV.1. From a λ-theory, a λ-model can be ex-
tracted [23], hence Corollary IV.4 implies that we can
construct a λ-model out of the process terms. The domain
of the model would be the processes that are in the image
of the encoding, quotiented with bisimilarity. We could not
define the domain of the model out of all process terms
(as in [5], as opposed to the processes in the image of
the encoding) because our proofs rely on Lemma IV.1,
and such a lemma cannot be extended to the set of all
processes.

V. Optimised Encoding
We introduce an optimised version of the abstract en-

coding, which removes certain ‘administrative steps’ on
the process terms. This will allow us to have a sharper op-
erational correspondence between λ-terms and processes,
which will be needed in proofs in later sections. As in
the previous section, we work with abstract wires, only
assuming the requirements in Definition IV.1.

To motivate the need of the optimised encoding, let us
consider the encoding of a term (xM)N :

(νp0, p1) ( x̄(p′0) : p′0 ↔ p̄0
| p̄0(x1. p′1) : (!x1(r1). JMKr1 | p1 ↔ p̄′1)
| p̄1(x2, p2) : (!x2(r2). JNKr2 | p↔ p̄2) )

This process has, potentially (i.e., depending on the con-
crete instantiations of the wires), some initial administra-
tive reductions. For instance, the output at p1 may interact
with the input end of the wire p1 ↔ p̄′1.
In the optimised encoding O, in Figure 2, any initial

reduction of a process has a direct correspondence with
a (strong call-by-name) reduction of the source λ-term.
With respect to the unoptimised encoding A, the novelties
are in the clauses for application, where the case of a head
normal form xM1 · · ·Mn (for n ≥ 1) and of an application
(λx.M0)M1 · · ·Mn with a head redex are distinguished.
In both cases, On〈p0, p,OJM1K · · · OJMnK〉 is used for a
compact representation of the encoding of the trailing
argumentsM1, . . . ,Mn, as a sequence of nested permeable
prefixes and a bunch of replications embracing the terms
Mi.

Analogous properties to those in Section IV for the
unoptimised encoding A hold for O. Using such properties,
and reasoning by induction of the structure of a λ-term,
we can prove that O is indeed an optimisation.

Lemma V.1. AJMKp & OJMKp.

The details about the operational behaviour of OJMKp,
and its operational correspondence with M , are described
in [22]. We only report here the statements of a few
important lemmas.

Lemma V.2. If OJMKp
τ−→ P then there exists N such

that M −→sn N and P & OJNKp.

Lemma V.3. If OJMKp
µ−→ P and µ is an input action,

then µ is an input at p.

Later, when we relate our encoding to trees of the λ-
calculus, the notions of head normal form and (un)solvable
term will be important. Hence some of our operational
correspondence results concern them.

Lemma V.4. Let M be a λ-term. If OJMKp
x(q)−−→ P for

some P , thenM has a head normal form λỹ.x M̃ , for some
(possibly empty) sequence of terms M̃ and variables ỹ with
x /∈ ỹ.

Thus, if OJMKp can perform an output action, then M
is solvable.

Corollary V.5. M is solvable then there are input actions
µ1, . . . , µn (n ≥ 0) and an output action µ such that
OJMKp

µ1==⇒ . . .
µn==⇒ µ=⇒ P , for some P .

By Lemma V.1, Corollary V.5 also holds for A. The
converse of Corollary V.5 will also hold, in all three
concrete encodings that will be studied in the next section.
However we believe the result cannot be derived from the
assumptions on wires in Definition IV.1.
We conclude by looking, as an example, at the unsolv-

able term Ω def= (λx.xx) (λx.xx) .
Example V.1. The process OJΩKp is

νp0( p0(x, q) : x̄(q0) : q̄0(y1, q1) : (!y1(r1).OJxKr1 | q ↔ q̄1)
| p̄0(x1, p1) : (!x1(r1).OJλx.xxKr1 | p↔ p̄1))

The only action OJΩKp can do is a τ -action or an input
at p. Whether the input can be performed or not will
depend on the concrete definition of the wire p ↔ q̄. The
possibility of an input action from an unsolvable of order 0
such as Ω is a major difference between our encoding and
encodings in the literature, where the encoding of such
unsolvables are usually purely divergent processes.

VI. Concrete Wires
We now examine concrete instantiations of the abstract

wires in the encoding A (and its optimisation O). In each
case we have to define the wires for location and variable
names. The location wires are the important ones: the
definition of the variable wires will follow from them, with
the goal of guaranteeing their expected properties. We
consider three concrete wires: I-O wires, O-I wires, and
P wires. The main difference among them is in the order



OJxKp
def= x̄(p′) : p↔ p̄′

OJλx.MKp
def= p(x, q) : OJMKq

OJxM1 · · ·MnKp
def= x̄(p0) : On〈p0, p,OJM1K · · · OJMnK〉

OJ(λx.M0)M1 · · ·MnKp
def= νp0 (p0(x, q) : OJM0Kq | On〈p0, p,OJM1K · · · OJMnK〉)

On〈p0, p,OJM1K · · · OJMnK〉
def= p̄0(x1, p1) : · · · p̄n−1(xn, pn) :

(!x1(r1).OJM1Kr1 | · · · | !xn(rn).OJMnKrn
| p↔ p̄n)

Fig. 2. Optimised encoding. (The number n must be greater than 0 in the last three cases.)

in which the input and output of the location wires are
performed.
Location and variable wires will be defined by means

of mutual recursion. In contrast with the variable wires,
the location wires are non-replicated processes, reflecting
the linear usage of such names. We recall that the choice
of a certain kind of concrete wires (I-O wires, O-I wires,
or P wires) also affects the definition of the permeable
prefixes (as it refers to the wires), including the permeable
prefixes that may be used within the wires themselves.
We will also show de-sugared definitions of the concrete
wires, i.e., without reference to permeable prefixes. We
add a subscript (IO, OI, P) to indicate a concrete wire
(as opposed to an abstract one). For readability, in the
definitions of the concrete wires the name parameters
are instantiated (e.g., writing a ↔

IO
b̄

def= P rather than

↔
IO

def= (a, b)P ).
I-O wires: In the I-O wires, the input of a wire precedes

the output.

p↔
IO
q̄

def= p(y, p1). q̄(x, q1) : (p1 ↔IO
q̄1 | x↔IO

ȳ)

x↔
IO
ȳ

def= !x(p). ȳ(q) : p↔
IO
q̄

Inlining the abbreviations for permeable prefixes (as they
are, in turn, defined using wires, in this specific case, the
I-O wires), we obtain:

p↔
IO
q̄

def= p(y, p1). (νx, q1) (q(x′, q′1). (q1 ↔IO
q̄′1 | x′ ↔IO

x̄)

| p1 ↔IO
q̄1 | x↔IO

ȳ)

x↔
IO
ȳ

def= !x(p). νq (y(q′). q ↔
IO
q̄′ | p↔

IO
q̄)

I-O wires, beginning with an input and proceeding with an
output, are similar to the ordinary wires in the literature,
sometimes called forwarders, and used to prove properties
about asynchronous and localised π-calculi (or encodings
of them) [13], [14], [16], [15]. An important technical
difference, within location wires, is the appearance of a
permeable prefix, in place of an ordinary prefix, and the
inner wire p1 ↔IO

q̄1 that, in a forwarder, would have
p1 and q1 swapped. The reason for these differences is
that location wires are used with processes that are not

localised (the recipient of a location name will use it in
input, rather than in output). The difference also shows
up in the semantic properties: forwarders in the literature
are normally used to obtain properties of O-respectfulness
(Section III), with the input-end of the wire restricted; in
contrast, I-O wires will be used to obtain properties of I-
respectfulness, with the output-end of the wire restricted.
In the definition above of location wires, the permeable

prefix cannot be replaced by an ordinary prefix: the tran-
sitivity of the wires (property 3 in Definitions IV.1) would
be lost.
O-I wires: The symmetry of Iπ enable us to consider

the dual form of (location) wire, with the opposite control
flow, namely ‘from output to input’:

p↔
OI
q

def= q(x, q1). p(y, p1) : (p1 ↔OI
q1 | x↔OI

y)

x↔
OI
y

def= !x(p). ȳ(q) : p↔
OI
q

Remark VI.1 (Duality). If duality is taken to mean the
exchange between input and output prefixes, then the
set of location I-O wires is the dual of the set of O-I
wires. Indeed, the location O-I wires are obtained from
the corresponding location I-O wires by swapping input
and output particles; variable wires, in contrast are left
unchanged. This means that we obtain an O-I wire from
an I-O wire if any input p(̃b) is made into an output p(̃b),
and conversely (moreover, accordingly, the parameters of
the variable wires are swapped).
P wires: In the third form of wire, the sequentiality

in location wires is broken: input and output execute
concurrently. This is achieved by using, in the definition
of location wires, only permeable prefixes.

p↔
P
q̄

def= p(y, p1) : q̄(x, q1) : (p1 ↔P q̄1 | x↔P ȳ)

x↔
P
ȳ

def= !x(p). ȳ(q) : p↔
P
q̄

Without the syntactic sugar of permeable prefixes, the
definition of the location and variable P wires are thus:

p↔
P
q̄

def= (νp1, q1x, y) (p(y′, p′1). (p′1 ↔P p̄1 | y ↔P ȳ′) |

q(q′1, x′). (q1 ↔P q̄′1 | x′ ↔P x̄) |

p1 ↔P q̄1 | x↔P ȳ)



x↔
P
ȳ

def= !x(p). νq (y(q′). q ↔
P
q̄′ | p↔

P
q̄)

The wire p ↔
P
q̄ is dual of itself: due to the use of

permeable prefixes, swapping input and output prefixes
has no behavioural affect.

Lemma VI.1. The I-O wires, O-I wires and P wires
satisfy the laws of Definition IV.1.

Proof. [Sketch] For each kind of wires, the proof is carried
out in two steps. First, we show that the wires are tran-
sitive, using up-to techniques for bisimilarity. Then, the
other laws are proved by algebraic reasoning (including the
use of transitivity of wires). The proofs of transitivity are
the most delicate ones, because of the concurrency allowed
by permeable prefixes, especially in the case of P wires,
and because permeable prefixes are defined in terms of
the wires themselves. For example, unlike for forwarders
in the literature, a wire νq(p↔

P
q̄ | q ↔

P
r̄) can immediately

reduce at the internal name q. Moreover, the derivative

p(p1, y) : r̄(q1, x) : ((νz1, z2) (x↔
P
z̄1 | z1 ↔P z̄2 | z2 ↔P ȳ) |

(νs1, s2) (p1 ↔P s̄1 | s1 ↔P s̄2 | s2 ↔P q̄1))

shows that the reduction has made the chain of wires
longer.

To prove transitivity, we crucially rely on up-to proof
techniques for Iπ, notably ‘expansion up-to expansion and
context’, and several algebraic laws. Thus we show that
the relation with pairs of the form(
a0 ↔P ān+1, (νa1, . . . , an) (a0 ↔P ā1 | · · · | an ↔P ān+1)

)
is an expansion up-to expansion and context. It is unclear
how the proof could be carried out without such proof
techniques. �

Remark VI.2. The duality between I-O wires and O-I wires
also shows up in proofs. For instance, for I-O wires the
proof of law 4 of Definitions IV.1 does not use the premise
of the law (i.e., the respectfulness of P ), whereas the proof
of the dual law 5 does. In the case of O-I wires, the opposite
happens: the proof of law 5 uses the premise, whereas that
of law 4 does not.

In the following sections we examine the concrete en-
codings obtained by instantiating the wires of the abstract
encoding A (Figure 1) with the I-O wires, O-I wires, and
P wires. We denote the resulting (concrete) encodings as
AIO, AOI, and AP, respectively. Similarly OIO, OOI, and OP
are the instantiations of the abstract optimised encoding
O. For instance, in AIO and OIO an abstract wire a↔ b̄ is
instantiated with the corresponding concrete wire a ↔

IO
b̄;

and similarly for O-I wires and P wires.
Having shown that all the wires satisfy the requirements

of Axiom IV.1, we can use, in the proofs about all concrete
encodings (optimised and not) the results in Sections IV
and V for the abstract encoding and its abstract optimi-
sation.

VII. Full Abstraction for LTs and BTs

In this section we consider AIO and AOI, and prove full
abstraction with respect to the BTs and LTs, respectively.
Before that, we discuss the difference between AIO and
AOI on the encoding of unsolvable terms. In the proofs we
exploit the optimised encodings OOI and OIO. Details of
the proofs are given in the full version [22].
We recall that the differences between BTs and LTs are

due to the treatment of unsolvable terms (cf. Section II-A).
BTs equate all the unsolvable terms, whereas LTs distin-
guish unsolvables of different order, such as Ω and λx. Ω.
We begin, as an example, with the terms Ω and λx. Ω. As
we have seen in Example V.1, in the abstract optimised
encoding O process OJΩKp is:

νp0 (p0(x, q) : x̄(q0) : q̄0(y1, q1) : (!y1(r1).OJxKr1 | q ↔ q̄1)
| p̄0(x1, p1) : (!x1(r1).OJλx.xxKr1 | p↔ p̄1)).

Its instantiation with O-I wires, OOIJΩKp, cannot do any
input action: as p ↔ p̄1 becomes the O-I wire p ↔

OI
p1,

the input occurrence of the free name p is guarded by p1,
which in turn is bound by the (permeable) prefix at p0.
Indeed, the only action that OOIJΩKp can perform is (up-
to expansion) OOIJΩKp

τ−→& OOIJΩKp, which corresponds
to the reduction Ω −→ Ω. Hence, OOIJΩKp cannot match
the input action OOIJλx. ΩKp

p(x,q)−−−−→ OOIJΩKq, and the two
processes are distinguished.

In contrast, with I-O wires, processes OIOJλx. ΩKp and
OIOJΩKp are indistinguishable. As before, the former pro-
cess can exhibit an input transition OIOJλx. ΩKp

p(x,q)−−−−→
OIOJΩKq. However now OIOJΩKp has a matching input
transition, because when p ↔ p̄1 is the I-O wire p ↔

IO
p̄1,

the input at p is not guarded. The derivative is

νp0 (p0(x, q) : OIOJxxKq
| p̄0(x1, p1) : (!x1(r1).OIOJλx.xxKr1

| p̄1(x2, p2) : (x2 ↔IO
ȳ | q ↔

IO
p̄2)))

= νp0 (p0(x, q) : OIOJxxKq
| p̄0(x1, p1) : (!x1(r1).OIOJλx.xxKr1

| p̄1(x2, p2) : (!x2(r2).OIOJyKr2 | q ↔IO
p̄2)))

= OIOJΩ yKq

(exploiting the definitions of OIOJyKr2 and x2 ↔IO
ȳ).

In a similar manner, one then shows that OIOJΩKq and
OIOJΩ yKq can match each other’s transitions, and itera-
tively so, on the resulting derivatives.
More generally, only inOOI a termOOIJMKp can perform

an input transition if and only ifM is, or may reduce to, a
function, sayM = λx.M ′, and the input action intuitively
corresponds to consuming the outermost ‘λx’. In addition,
only with OOI a process OOIJMKp is bisimilar to 0 iff the
term M is an unsolvable of order 0. Therefore, we have:



Lemma VII.1. Let M and N be unsolvables of order m
and n respectively, where 0 ≤ m,n ≤ ω. Then OOIJMKp ≈
OOIJNKp iff m = n.

We have discussed above why, in contrast, OIO equates
λx. Ω and Ω. Similarly, OIO equates all the unsolvable
terms.

Lemma VII.2. For any unsolvable term M , we have
OIOJMKp ≈ OIOJΩKp.

Proof. [Sketch] We show that the relation defined as
{(OIOJMKp,OIOJNKp) | M , N are unsolvable} is a bisim-
ulation up-to expansion. For this, we use Lemmas V.2,
and V.3, and exploit the property that, for any unsolvable
M , it holds that OIOJMKp

p(x,q)−−−−→≈ OIOJM xKq, whereM x
is unsolvable since M is so. �

Theorem VII.3. [Full abstraction for LT and BT] For
every λ-terms M and N , we have:
1) LT(M) = LT(N) if and only if AOIJMK ≈ AOIJNK.
2) BT(M) = BT(N) if and only if AIOJMK ≈ AIOJNK.

Proof. [Sketch] The proofs exploit [6], which sets condi-
tions for obtaining full abstraction with respect to LTs
and BTs in an encoding of the λ-calculus into a pro-
cess calculus. The conditions refer to the behavioural
equivalence of the process calculus and to an auxiliary
behavioural preorder contained in the equivalence. Our
proofs go through each such condition, showing that it is
satisfied. Below we report some of the conditions, tailored
to our setting, where the encodings are AOI and AIO,
the calculus is Iπ, behavioural equivalence is ≈, and the
auxiliary preorder is .. Then, we briefly comment on their
proof. We refer to [22] for more details. Some conditions
are common to LTs and BTs, and include:
(i) the encoding validates the β rule with respect to .;
(ii) the encodings of the terms terms Ω, x M̃ , x M̃ ′, and

y M̃ ′′ are pairwise unrelated by ≈, assuming that x 6=
y and that tuples M̃ and M̃ ′ have different lengths.

The conditions specific to LTs are:
LT-i) AOIJMK ≈ AOIJNK, for all unsolvables M , N of

order ω;
LT-ii) for anyM , the term AOIJλx.MK is unrelated by ≈

to AOIJΩK and to any term of the form AOIJx M̃K.

The corresponding conditions for BTs are:
BT-i) AIOJMK ≈ AIOJΩK for all unsolvable M of order

ω;
BT-ii) M solvable implies that the term AIOJλx.MK is

unrelated by ≈ to AIOJΩK and to any term of the
form AIOJx M̃K.

Some of the common conditions can be proved at the ab-
stract level, for A or its optimisation O, and are therefore
valid for both AOI and AIO: for instance, validity of β-
reduction for . is Theorem IV.3; and the behavioural

difference among (the encodings of) Ω, x M̃ , and y M̃ ′′ is
obtained from the operational correspondence results for
the optimised abstract encoding O.
The conditions (LT-i) and (BT-i) are about unsolvable

terms. We have seen (Lemmas VII.1 and VII.2) that OOI
(hence also AOI) satisfies (LT-i) and that OIO (hence also
AIO) satisfies (BT-i). A delicate condition to check is (BT-
ii) for AIO. For this, once more we exploit the optimised
encoding OIO and reason on the number of consecutive
outputs that the processes can perform. �

Remark VII.1. Neither AIO nor AOI validates the η-rule
(i.e., the λ-theories induced are not extensional); this
follows from Theorem VII.3 (specifically, conditions (LT-
ii) and (BT-ii) mentioned in its proof).

VIII. Full Abstraction for BTη∞s
In this section we show that the encoding AP obtained

by instantiating the wires of the abstract encoding A of
Section IV with the parallel wires (the P wires) yields
an encoding that is fully abstract with respect to BTη∞s
(Böhm trees with infinite η-expansion).
We begin by showing that AP induces an extensional

λ-theory. As we know (Section VI) that AP induces a λ-
theory, we remain to check the validity of η-expansion.

Theorem VIII.1. For every M and x /∈ fv(M), we have
APJMKp . APJλx.M xKp.

Proof. The process APJλx.M xKp is

p(x, q) : νr (APJMKr | r̄(x′, q′) : (!x′(r′).APJxKr′ | q ↔
P
q̄′)).

As !x′(r′).APJxKr′ = x′ ↔
P
x̄, we have:

APJλx.M xKp
= νr (APJMKr | p(x, q) : r̄(x′, q′) : (x′ ↔

P
x̄ | q ↔

P
q̄′))

= νr (APJMKr | p↔P r̄) & APJMKp

using Lemma IV.1 (and identifying processes ‘up-to struc-
ture’). �

The above result relies on the use of permeable prefixes,
both in the encoding of λ-abstraction, and within the P
wires.

Corollary VIII.2. Let =π
def= {(M,N) | APJMK ≈

APJNK}. Then =π is an extensional λ-theory; that is, a
congruence on λ-terms that contains β and η-equivalence.

We are now ready to prove that AP is fully abstract
with respect to BTη∞s. We focus on completeness: if
BTη∞(M) = BTη∞(N) then APJMK ≈ APJNK. Sound-
ness will then be essentially derived from completeness,
as BTη∞ equality is the maximal consistent sensible λ-
theory (see e.g. [23]). To show completeness, we rely on
the ‘unique solution of equation’ technique, reviewed in
Section II-B1.



Remark VIII.1 (Unique solutions versus up-to techniques).
Results about encodings of λ-calculus into process calculi,
in previous sections of this paper and in the literature,
usually employ up-to techniques for bisimilarity, notably
up-to context and expansion. In the techniques, expansion
is used to manipulate the derivatives of two transitions so
to bring up a common context. Such techniques do not
seem powerful enough for BTη∞. The reason is that some
of the required transformations would violate expansion
(i.e., they would require to replace a term by a ‘less
efficient’ one), for instance ‘η-expanding’ a term APJzKp
into APJλ y. z yKp. A similar problem has been observed in
the case of Milner’s call-by-value encoding [27].

Suppose R is a BTη∞-bisimulation (Definition II.2).
We define a (possibly infinite) system of equations ER,
solutions of which will be obtained from the encodings
of the pairs in R. There is one equation for each pair
(M,N) ∈ R. We describe how each equation is de-
fined, following the clauses of BTη∞-bisimulation. Take
(M,N) ∈ R and assume ỹ = fv(M,N).
1) If M and N are unsolvable, then, for the right-hand

side of the equation, we pick a non-divergent process
that is bisimilar to the encoding of Ω:

XM,N ỹ = KΩ

For instance, we may choose KΩ
def= (p) p(x, q) : KΩ〈q〉.

2) If M =⇒h λx1 . . . xl+m. zM1 · · ·Mn+m and N =⇒h
λx1 . . . xl. z N1 · · ·Nn, then the equation is:

XM,N ỹ p
def=

p(x1, p1) : · · · pl+m−1(xl+m, pl+m) : z̄(w, q) :

On+m
P

〈
q, pl+m, XM1,N1〈ỹ1〉, . . . , XMn,Nn〈ỹn〉,
XMn+1,xl+1〈ỹn+1〉, . . . , XMn+m,xl+m

〈ỹn+m〉

〉
where ỹi = fv(Mi, Ni) for 1 ≤ i ≤ n,

ỹi = fv(Mi, xi−n+l) for n+ 1 ≤ i ≤ n+m.
and where OrP is the instantiation with P wires of Or
in Figure 2.

3) For the case symmetric to (2), where N reduces to a
head normal form with more leading λ-abstractions,
the equation is defined similarly to (2).

In (1), the use of a divergent-free term KΩ allows us
to meet the condition about divergence of the unique-
solution technique. The right-hand side of (2) intuitively
amounts to having, as a body of the equation, the process
OPJλx1 . . . xl+m. z XM1,N1 · · ·XMn+m,xl+m

K.

Lemma VIII.3. For any M unsolvable, we have:
OPJMKp ≈ OPJΩKp ≈ KΩ〈p〉.

Lemma VIII.4. Let R be a BTη∞-bisimulation and ER
be the system of equations defined from R as above. For
each (M,N) ∈ R, we define FM,N

def= (x̃, p) OPJMKp
and GM,N

def= (x̃, p) OPJNKp, where x̃ = fv(M,N). Then
{FM,N}(M,N)∈R and {GM,N}(M,N)∈R are solutions of ER.

Proof. [Sketch] There are three cases to consider, following
Definition II.2. The case of M and N unsolvables is
handled via Lemma VIII.3. The case of solvable term is
reported in [22] and exploits validity of the η-expansion
(Theorem VIII.1), the results of operational correspon-
dence for the optimised encoding discussed in Section V,
and other algebraic reasoning. �

We also have to show that the system ER of equations
we defined has a unique solution.

Lemma VIII.5. The system of equations ER is guarded
and the syntactic solution of ER is divergence-free. There-
fore, ER has a unique solution.

Proof. The system ER is guarded because all the occur-
rences of a variable in the right-hand side of an equation
are underneath a replicated input prefixing. Divergence-
freedom follows from the fact that the use of each name
(bound or free) is strictly polarised in the sense that
a name is either used as an input or as an output.
In a strictly polarised setting, no τ -transitions can be
performed even after some visible actions because in Iπ
only fresh names may be exchanged. �

Theorem VIII.6 (Completeness for BTη∞). If
BTη∞(M) = BTη∞(N) then APJMK ≈ APJNK.

Proof. Consider a BTη∞-bisimulation R that equates M
and N . Take the system of equations ER corresponding to
R as defined above. By Lemma VIII.4, OPJMK and OPJNK
are (components) of the solutions of ER. Since the solution
is unique (Lemma VIII.5), we derive OPJMK ≈ OPJNK.
We also have APJMK ≈ APJNK (equivalence on the non-
optimised encodings) because of Lemma V.1. �

Theorem VIII.7 (Soundness for BTη∞). If APJMK ≈
APJNK then BTη∞(M) = BTη∞(N).

Proof. Let =π be the equivalence induced by AP and Iπ
bisimilarity. The equivalence =π is a sensible λ-theory
by Corollary IV.4 and Lemma VIII.3. This theory is
consistent: for example we have APJxKp 6≈ APJΩKp. By
completeness (Theorem VIII.6), it contains BTη∞equality.
Then it must be equal to BTη∞ equality because the latter
is the maximal consistent sensible λ-theory [23]. �

IX. Concluding Remarks
In the paper we have presented a refinement of Milner’s

original encoding of functions as processes that is paramet-
ric on certain abstract components called wires. Whenever
wires satisfy a few algebraic properties, the encoding
yields a λ-theory. We have studied instantiations of the
abstract wires with three kinds of concrete wires, that
differ on the direction and/or sequentiality of the control
flow produced. We have shown that such instantiations
allow us to obtain full abstraction results for LTs, BTs,
and BTη∞s, (and hence for λ-models such as Pω, free
lazy Plotkin-Scott-Engeler models and D∞). In the case of



BTη∞, this implies that the encoding validates the η-rule,
i.e., it yields an extensional λ-theory.

Following Milner’s seminal paper [1], the topic of func-
tions as processes has produced a rich bibliography. Below
we comment on the works that seem closest to ours.
We have mentioned, in the introduction, related work
concerning LTs and BTs. We are unaware of results about
validity of the η-rule, let alone BTη∞, in encodings of
functions as processes. The only exception is [28], where a
type system for the π-calculus is introduced so to derive
full abstraction for an encoding of PCF (which implies
that η-expansion for PCF is valid). However, in [28],
types are used to constrain process behaviours, so to
remain with processes that represent ‘sequential functional
computations’. Accordingly, the behavioural equivalence
for processes is a typed contextual equivalence in which
the legal contexts must respect the typing discipline and
are therefore ‘sequential’. In contrast, in our work η is vali-
dated under ordinary (unconstrained) process equivalence
in which, for instance, equalities are preserved by arbitrary
process contexts. (We still admit polyadic communications
and hence a sorting system, for readability — we believe
that the same results hold in a monadic setting.)

In the paper we have considered the theory of the pure
untyped λ-calculus. Hence, our encodings model the call-
by-name reduction strategy. A study of the theory induced
by process encodings of the call-by-value strategy is [27].

Our definitions and proofs about encodings of permeable
prefixes using wires follows, and is inspired by, encodings of
forms of permeable prefixes in asynchronous and localised
variants of the π-calculus using forwarders, e.g. [16], [29].
As commented in the main text, the technicalities are how-
ever different, both because our processes not localised,
and because we employ distinct kinds of wires.

We have worked with bisimilarity, as it is the standard
behavioural equivalence in Iπ; moreover, we could then use
some powerful proof techniques for it (up-to techniques,
unique solution of equations). The results presented also
hold for other behavioural equivalences (e.g., may testing),
since processes encoding functions are confluent. It would
be interesting to extend our work to preorders, i.e., looking
at preorder relations for λ-trees and λ-models.
In our work, we derived our abstract encoding from

Milner’s original encoding of functions. It is unclear how
to transport the same methodology to other variants of
Milner’s encoding in the literature, in particular those that
closely mimics the CPS translations [30], [31].

We have derived λ-tree equalities, in parametric man-
ner, by different instantiations of the abstract wires.
Van Bakel et al. [32] use an intersection type system,
parametric with respect to the subtyping relations, to
(almost) uniformly characterise λ-tree equalities (the trees
considered are those in our paper together with Böhm
trees up-to finite η-expansion and Beraducci trees).
We would like to investigate the possible relationship

between our work and game semantics. In particular, we

are interested in the ‘HO/N style’ as it is known to be
related to process representations (e.g., [33], [34], [35],
[36]). HO/N game semantics for the three trees considered
in this paper have been proposed [37], [38], [39]. The
technical differences with our work are substantial. For
instance, the game semantics are not given in a parametric
manner; and the D∞ equality is obtained via Nakajima
trees rather than BTη∞. Nakajima trees are a different
‘infinite η-expansion’ of Böhm trees, in the sense that
λx̃. y M̃ is expanded to λx̃z0z1 . . . . y M̃ z0z1 · · ·; that is,
trees may be infinitely branching. In processes, this would
mean, for instance, having input prefixes that receive
infinitely-many names at the same time. We would like to
understand whether the three kinds of wires we considered
are meaningful in game semantics. The game semantic
counterpart of process wires are the copycat strategies,
and they intuitively correspond to I-O wires, in that they
begin with an O-move (i.e., an input action). This does
not change even in concurrent game semantics [40], [41].
We are not aware of game models that use strategies
corresponding to the O-I wires or the P wires studied in
our paper.
Similarly, we would like to investigate relationships with

call-by-name translations of the λ-calculus into (pure)
proof-nets [42]. We think that our encoding could be
factorised into the translation from λ-calculus into proof-
nets and a variant of Abramsky translation [18], [19]. In
this way, a P wire for location names would correspond
to an infinitely η-expanded form of the axiom link for the
type o according to its recursive equation o ∼= (!o)⊥ &

o.
Infinite η-expansions of the identity axioms have also been
considered in Girard’s ludics [43], where they are called
faxes. Faxes are different from P wires because faxes satisfy
an alternation condition akin to the locality of π-calculi.
Processes like wires (often called links) appear in

session-typed process calculi focusing on the Curry-
Howard isomorphism, as primitive process constructs used
to represent the identity axiom [44]. Some of our assump-
tions for wires, cf. the substitution-like behaviour when
an end-point of the wire is restricted, are then given as
explicit rules of the operational semantics of such links.
We have studied the properties of the concrete wires

used in the paper on processes encoding functions. We
would like to establish more general properties, on ar-
bitrary processes, possibly subject to constraints on the
usage of the names of the wires. We would also like to see
if other kinds of wires are possible, and which properties
they yield.
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