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Abstract

We present a thorough implementation of the two-stage framework proposed in [A. Cicone,
M. Huska, S.H. Kang and S. Morigi, JOT: a Variational Signal Decomposition into Jump, Os-
cillation and Trend, IEEE Transactions on Signal Processing, 2022]. The method assumes as
input a 1D signal represented by a finite-dimensional vector in RN . In the first stage the signal
is decomposed into Jump (piece-wise constant), Oscillation, and Trend (smooth) components,
and in the second stage the results are refined using residuals of other components. We pro-
pose an efficient numerical solution for the first stage based on alternating direction method of
multipliers, and a solid algorithm for the solution of the second stage.

Source Code

The Matlab source code and documentation for this algorithm are available from the web page
of this article1. Usage instructions are included in the README.txt file of the archive.

Keywords: signal decomposition; variational model; non-convex optimization; jumps; trend;
oscillating signals; ADMM

1 Introduction

Given a composite signal, the objective of signal decomposition is to extract and separate meaning-
ful semantic features such as, for example, trend, oscillating, and impulse features. The problem of
estimating underlying trends in time series data or signals arises in a variety of disciplines including
macroeconomics, geophysics, financial time series analysis, social sciences, biological and medical
science. Many trend filtering methods have been proposed, and most of them are linear filtering;
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see [2] for a survey of linear filtering methods in trend estimation. Many advances in signal process-
ing often aim to analyze the signal in terms of oscillating or non-oscillating features via frequency
analysis. Time-Frequency analysis methods, such as Short Time Fourier Transform, wavelet, Syn-
chrosqueezing wavelet [4], Hilbert Huang Transform, or IMFogram [1], can fail when abrupt changes
and jump discontinuities appear in the signal. We propose a nonconvex variational model for signal
decomposition where a sparsity-inducing regularizer is introduced to allow for effectively extracting
the impulse features from harmonic and highly oscillating parts of the original signal. This approach
is motivated by image decomposition started from the seminal work of Y. Meyer [7]. In particular
in [5], the authors extended the idea to decompose the given image into a piecewise-constant part, a
harmonic part, and a noisy part.

In [3], a variational framework separating the given signal into Jump, Oscillation, and Trend
(JOT) is proposed, and in this work, we present a thorough description of the implementation of the
JOT algorithm. The main idea is to model a given finite-length discrete signal f ∈ RN as

f = v∗ + w∗ + n∗, (1)

where v∗ ∈ RN represents a piecewise-constant (sparse-derivative) component, w∗ ∈ RN is a smooth
low-oscillating function, and n∗ ∈ RN contains zero-mean high-oscillations of the signal, which can
include additive white noise, as well as meaningful oscillatory components.

This paper is organized as follows. In Section 2, we present the two-stage algorithm. The first
stage is described in Section 2.1, and the second stage in Section 2.2. In each subsection, we present
both the variational model and the related algorithmic details. In Section 2.3 parameter selection
strategies are discussed. In Section 3 we present the numerical experiments.

2 The JOT Decomposition Framework and Implementation

The workflow of the proposed framework is illustrated in Figure 1. Given a composite signal f
as input, the first stage separates it into the components v̄, w̄, n̄, which are then further refined in
v∗, w∗ and n∗ as result of the second stage. Each signal v̄, w̄, n̄, v∗, w∗ and n∗ is presented in red and
superposed against the ground truth signals in blue to show the effects of each stage.

Figure 1: Decomposition workflow for a signal f .
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2.1 Stage 1: Three-Component Signal Decomposition

Given the signal f , according to the decomposition model (1), the first step of the signal decompo-
sition framework is performed via the following non-convex minimization problem

{v̄, w̄, n̄} ← arg min
v,w,n∈RN

J (v, w, n), (2)

J (v, w, n) := 1

2
∥v + w + n− f∥22 + γ1

N∑
j=1

ϕ (∥(Dv)j∥; a) +
γ2
2
∥Hw∥22 +

γ3
2
∥n∥4H−1 ,

where the non-negative parameters γ1, γ2, and γ3 are appropriately selected to balance the energies
in the minimizing function J . The first is the fidelity term imposing consistency with the observed
signal f ; the second term penalizes discrete derivative of v to promote piece-wise constant component;
the third term is designed to penalize the second order derivative to capture the smooth w component.
Finally, the fourth energy norm, which approximates Meyer’s G-norm [7], is aimed to recover highly
oscillating components in n. In particular,

� the operators D and H represent first and second-order derivatives, respectively. The first-
order difference of an N -point signal x is approximated by forward finite difference scheme and
represented in matrix-vector form as Dx where D is the matrix

D =


−1 1

−1 1
. . . . . .

−1 1

 ∈ R(N−1)×N . (3)

Analogously, the second-order difference operator H is approximated by the finite central dif-
ference scheme and represented in matrix vector form as Hx where H is the matrix

H =



−1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1


∈ RN×N . (4)

The matrices D and H are discrete approximations of the first and second derivatives, respec-
tively, with Neumann homogeneous boundary conditions.

Different boundary conditions can be adopted according to the signal morphology. For example,
in the case of data periodicity, the periodic boundary condition is more appropriate. The
algorithm described in Section 2.1.1 is independent of the selected boundary conditions.

� the function ϕ(·; a) : [0,+∞)→ [0, 1] is a re-parameterized and re-scaled version of the minimax
penalty, a non-convex sparsity promoting function, defined as

ϕ(t; a) =

{
−a

2
t2 +
√
2a t for t ∈

[
0, ā

)
,

1 for t ∈
[
ā,+∞

) (5)

with ā =
√
2/a being the point of transition from quadratic to constant. The parameter a in

ϕ(·; a) affects the degree of non-convexity, such that ϕ(·; a) tends to ℓ0 pseudonorm for a→∞.
For a = 0, the penalty in (5) is defined as ϕ(t; a) = |t|.
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An oscillatory component n, which belongs to the negative Sobolev space H−1(Ω), presents min-
imal ∥ · ∥H−1 norm defined as

∥n∥H−1 = inf


√∑

i

|gi|2
∣∣ n = DTg

 ≈ ∥g∥2, (6)

where D is defined in (3) and DT is the adjoint operator.

2.1.1 ADMM-based Solution of Stage 1

To proceed with the numerical solution for (2) we substitute n (2) withDTg from (6), and we resort to
the variable splitting technique to deal with the non-differentiability of the non-convex penalty term
ϕ(·; a). By introducing the auxiliary variable t :=Dv ∈ RN , we formulate the following constrained
optimization problem

{v∗, w∗, g∗, t} ← arg min
v,w,g,t

J (v, w, g, t), s.t. t = Dv,

J (v, w, g, t) = γ1

N∑
j=1

ϕ (∥tj∥2; a) +
γ2
2
∥Hw∥22 +

γ3
2
∥g∥42 +

1

2

∥∥f − (v + w +DTg)
∥∥2

2
. (7)

We present the details of the ADMM-based iterative algorithm for the minimization of (7).
The corresponding augmented Lagrangian functional for the optimization problem reads as

L(v, w, g, t; ρ) =γ1

N∑
j=1

ϕ (∥tj∥2; a) +
γ2
2
∥Hw∥22 +

γ3
2
∥g∥42

− ⟨ρ, t−Dv⟩+ β

2
∥t−Dv∥22 +

1

2

∥∥f − (v + w +DTg)
∥∥2

2
, (8)

where β > 0 is a penalty scalar parameter, and ρ ∈ RN represents the vector of Lagrange multipliers
associated with the linear constraint t = Dv.

To simplify notations, in the following we denote by x := (vT , wT , gT )T the (3N)-dimensional
column vector formed by stacking the three optimization variables v, w, g ∈ RN . We then consider
the following saddle-point problem:

Find (x∗, t∗, ρ∗) ∈ R3N× RN× RN

s.t. L(x∗, t∗; ρ) ≤ L (x∗, t∗; ρ∗) ≤ L (x, t; ρ∗), ∀(x, t, ρ) ∈ R3N× RN× RN . (9)

An ADMM-based iterative scheme is applied to approximate the solution of the saddle-point
problem (8)–(9). Having zero-initialized vectors t(0) and ρ(0), the k-th iteration of the proposed
alternating iterative scheme reads as follows

x(k+1) = argmin
x∈R3N

L(x, t(k); ρ(k)), (10)

t(k+1) = argmin
t∈RN

L(x(k+1), t; ρ(k)), (11)

ρ(k+1) = ρ(k) − β(t(k+1) −Dv(k+1)). (12)

For the x-subproblem (10), the first-order optimality conditions read as
(v(k+1) + w(k+1) +DTg(k+1) − f) +DTρ(k) − βDT (t(k) −Dv(k))

(w(k+1) + v(k+1) +DTg(k+1) − f) + γ2H
THw(k+1)

D(DTg(k+1) + v(k+1) + w(k+1) − f) + 2γ3
∥∥g(k+1)

∥∥2

2
g(k+1)

= 0

= 0

= 0

. (13)
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By replacing the nonlinear term
∥∥g(k+1)

∥∥2

2
in the third equation with the value at the previous

iteration k, (13) reduces to the following linear system of equations

Lx(k+1) = y, (14)

where

L =

 I + βDTD I DT

I I + γ2H
TH DT

D D DDT + 2γ3
∥∥g(k)∥∥2

2
I

 , y =

 f + βDT (t(k) − 1
β
ρ(k))

f
Df

 , (15)

which is solved for x(k+1) = ((v(k+1))T , (w(k+1))T , (g(k+1))T )T . The block in L containing the dis-
cretized operatorHTH slightly worsens the conditioning of the linear system. A suitable approximate
solution of (14) is determined by solving the following regularized system of equations

(L+ κI)x(k+1) = y, (16)

with a small scalar parameter κ > 0, that allows the system to be efficiently solved by applying an
iterative preconditioned conjugate gradient linear solver.

The t-subproblem (11) can be written omitting the constant terms as

t(k+1) = argmin
t∈RN

{
γ1

∑
j

ϕ(|tj|; a)− ⟨ρ, t⟩+
β

2
∥t−Dv∥22

}
. (17)

The minimization problem in (17), rewritten in component-wise form, is equivalent to the following
N independent 1-dimensional problems of the form

t
(k+1)
j = argmin

t∈R

{
1

λ
ϕ(|t|; a) + 1

2
∥t− qj∥22

}
, j = 1, . . . , N, (18)

with λ = β/γ1 and qj = (Dv(k))j + ρ
(k)
j /β. Necessary and sufficient conditions for strong convexity

of the cost functions in (18) are demonstrated in [6]. In particular, the problems in (18) are strongly
convex if and only if the following condition holds

a < λ =⇒ β > aγ1 =⇒ β = τaγ1, for τ ∈ R, τ > 1. (19)

Under the assumption (19), the unique solutions of problems in (18) can be obtained in closed form
as

t
(k+1)
j = min(max(ν − ζ/|qj|, 0), 1) qj, (20)

where ν =
λ

λ− a
and ζ =

√
2a

λ− a
.

We remark that the condition on β defined in (8) only ensures the convexity conditions (19) of
t-subproblem (18), but does not guarantee convergence of the overall ADMM scheme. The proposed
two-block ADMM-based minimization algorithm is summarized in Algorithm 1.

2.2 Stage 2: Residual Aided Refinement

Since the regularization parameters γ1, γ2, γ3 strongly depend on the signal morphology, in practice
the three resulting components from stage 1 may be slightly mixed: some trend can be found in v̄,
and some noise (highly oscillating behaviour) in the smoothed component w̄. The trend contribution
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Algorithm 1: Stage 1 Decomposition

input : f
output : v̄, w̄, n̄ components
parameters: ā, γ1, γ2, γ3, τ
Generate discrete operators D in (3) and H in (4).
a = 2/ā2, β = τaγ1
while k < iter and r > th do

x(k+1) ← solve (L+ κI)x(k+1) = y, using L, y in (15) subproblem for x = (v, w, g)

t(k+1) ← compute (20) subproblem for t

ρ(k+1) = ρ(k) − β(t(k+1) −Dv(k+1)) subproblem for ρ

Update L in (15)
r = ∥x(k+1) − x(k)∥/∥x(k)∥
k = k + 1

Get {v̄, w̄, g} from x
n̄ = DTg

in v̄ should be extracted and added to w̄, as well as the noise, mistakenly introduced into w̄, should
then be added to n̄, as is illustrated in the diagram scheme in Figure 1.

Therefore, the goal of this second stage is to refine the results v̄, w̄, n̄ obtained from stage 1 to
satisfy the specific application target when needed. We remark that stage 2 can be eventually not
necessary in case the results from stage 1 are already of acceptable quality.

Refinement of v̄. The refined v∗ component is obtained from v̄, solution of problem (7), by
subtracting residual parts

v∗ = v̄ − rv,

where rv is carried out by filling in v̄ the intervals corresponding to the jumps with piece-wise
constant samples (hence named inpainting). In particular, having a partitioning C = {Ci} of v̄
domain such that, in an alternating manner, the sub-intervals Ci, represent jump and non-jumps,
under the assumption that C1 is not a jump, rv is defined as follows

rv =

{
v̄|Ci

if i odd
0.5(mean(v̄)|Ci−1

+mean(v̄)|Ci+1
) if i even.

(21)

In this way, over odd-indexed Ci, i.e. away from the jump sub-intervals, rv = v̄, while inside jumps
our goal is to obtain a piece-wise constant inpainting for the even-indexed Ci. This can be directly
achieved by setting the rv values to the constant mean value of the surrounding sub-intervals.

The following two steps describe in detail our approach to building the set C and rv, and Figure 2
shows the main ingredients of our procedure for two exemplary samples (column-wise) extracted from
v̄ (first row).

1. Partition of v̄ into sub-intervals C = {Ci}.
We compute the second order derivative z = DTD v̄, reported in the second row of Figure 2,
which has the following behavior: z is zero where the signal is flat, numerically z ≤ 10−4, while
z zero-crosses the x-axis in correspondence of jump discontinuities.

We then partition the domain of v̄ into sub-intervals {C̄i} bounded by the zero-crossings of
signal z.

Then, we analyse the behavior of v̄ over C̄i in order to generate C considering the following
rules:
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v̄1 v̄2

z = DTDv̄1 z = DTDv̄2

C = {C1, . . . , C9} C = {C1, . . . , C7}

rv1 rv2

Figure 2: Details of the inpainting of rv on two signals v̄1, v̄2. The sub-intervals C2, C4, C6 and C8 define four jumps
(red), while C7 (blue) contains negligible jump in v̄1 (left). The sub-intervals C2, C4, C6, identify three jumps in the signal
v̄2 where C4 contains a composite jump (right).

� Two adjacent sub-intervals C̄k, C̄k+1 are unified into the sub-interval Ci if they satisfy∣∣mean(v̄)|C̄k
−mean(v̄)|C̄k+1

∣∣ < thv, (22)

where thv > 0 is the maximum variation in v̄ allowed as negligible jump, as illustrated in
Figure 2 (first column, third row) where C̄k and C̄k+1 were joined into C7.

� When C̄k, C̄k+1 do not satisfy (22), the jump may be composed by one or more sub-
intervals. Therefore, starting from C̄k, which is assumed to be a non-jump sub-interval,
we seek for the nearest non-jump sub-interval C̄k+j that is∣∣∣mean(v̄)|C̄k

−mean(v̄)|C̄k+j

∣∣∣ < thv. (23)

This indicates that the in-between sub-intervals C̄k+1, . . . , C̄k+j−1 can be joined into a
single sub-interval. This situation is illustrated in Figure 2 (second column, third row)
where C̄4, C̄5 were joined into C4.

Thus, we finally get a sequence of sub-intervals C = {Ci} where, conventionally, the first
sub-interval C1 does not belong to a jump, and the sub-intervals with even index represent
jumps.

2. Setup rv
The values of rv are obtained according to (21) and the mean(rv) is subtracted to not alter
mean(v∗) w.r.t. v̄ as illustrated in Figure 2 (last row).
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Refinement of w̄. The spurious trend eventually included in rv in (21) should be added to
w̄. The final component w∗ is then computed by smoothing the signal w̄ + rv, which may contain
spurious oscillatory residual, via solving the following optimization problem

w∗ = arg min
w∈RN

1

2
∥w − (w̄ + rv)∥22 + α∥Dw∥22, (24)

where the regularization parameter α > 0 controls the level of smoothness of w∗. The smoothing
quadratic minimization problem (24) is a convex optimization problem whose unique minimizer is
explicitly given by imposing the first optimality conditions which lead to the solution of the following
linear system of equations

(IN + αDTD)w = w̄ + rv, (25)

with symmetric positive definite coefficient matrix.

Refinement of n̄. The n̄ component from stage 1 is updated by adding to it the highly oscillating
residual from w∗, computed as rw and the residual from stage 1 r̄

n∗ = n̄+ rw + r̄, (26)

where r̄ = f − v̄ − w̄ − n̄, and rw is given by

rw = (w̄ + rv)− w∗. (27)

In case the signal f contains additional components besides the three considered here, the residual
r̄ should not be added in (26).

Algorithm 2 summarizes the main steps in stage 2. The user can freely decide according to the
application if stage 2 needs to be performed entirely or only for a selected set of components; this is
controlled via flag variables in the implementation.

Algorithm 2: Stage 2: Refinement

input : v̄, w̄, n̄ components, r̄ = f − v̄ − w̄ − n̄ residual
output : v∗, w∗, n∗ components
parameters: thv, α
Generate discrete operator D in (3)
Solve inpainting problem for v∗

z = DTD v̄
Compute the set {C̄i} from z
Generate the set {Ci} from {C̄i} and v̄
set rv according to (21)
v∗ = v̄ − rv

Solve smoothing problem for w∗

Solve (25) for w∗

rw = w̄ + rv − w∗

Refinement for n∗

n∗ = n̄+ rw + r̄
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2.3 Parameter Selection

In this section we describe in detail the strategies used for parameter selection assuming the range
of f to be similar to the examples presented. A general rule-of-thumb for fine-tuning the parameters
is provided with examples in Section 3.1.

The fixed parameters of stage 1 are:

� iter = 1500, the maximum number of ADMM iterations as stopping criterion,

� th = 10−6, the solution relative change as stopping criterion,

� κ = 10−7, the scalar parameter in (16). In case the linear system (16) becomes unstable, the
user is welcome to increase its value,

while the parameters that the user can modify are

� γ1, γ2, γ3 > 0, regularization parameters,

� τ > 1 in (19) related to the β parameter proportionally (in the range 1.1− 50, default 10),

� ā, the expected minimal jump height (default 0.3).

In order for the contributions of each regularization term to be balanced, one should aim to set
γ1, γ2, γ3 approximately to the inverse of their respective penalty term values such that to balance
the contribution of the three terms. In the following, we provide a description of how to estimate
these values.

The value ā indicates the minimal height value above which every jump |(Dv)i| > ā becomes
penalized equally, therefore, we propose the user to set ā as the expected minimal jump height,
eventually observed from the input data, from which we estimate a automatically as a = 2/ā2.

Consequently, if every jump in v identified as non-zero derivative |(Dv)i| > 0 also satisfies
|(Dv)i| > ā, the resulting value of the v-regularization term will become the number of non-zero
derivatives in v, i.e. the number of jumps. Therefore, we propose to set γ1 to

γ1 = 1/number of expected jumps.

The w-regularization term is represented by squared ℓ2 norm of second-order derivatives Hw of
a relatively smooth component. In general the squared ℓ2 norm is a small number, therefore the γ2
value needs to be relatively high. We propose γ2 > 10.

Differently from the w penalty, for the g-regularization term, its penalty values grow more rapidly
with N , therefore we suggest using small values of γ3, i.e. of order at most 10−1.

Table 1 lists the optimal parameter values for the signals presented in Section 3. Finally, we note
a successful decomposition is not driven by the precision of values γ1, γ2, and γ3 in the model (7),
but rather by mutual ratios between the parameters themselves.

A general rule of thumb for adjusting the parameters based on the visual inspection of the
decomposition obtained is described in Section 3.1.

The parameters of stage 2 are:

� thv > 0 threshold for negligible jump in v̄.

� α > 0 smoothness regularization parameter for w∗ (in the range (0, 1]).
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Stage 2 performs the alignment of jumps in v̄, the smoothing of w̄ + rv and adds the remaining
residual to n̄.

The threshold thv is the maximum variation in v̄ allowed between the mean v̄ values at sub-
intervals adjacent to a jump. In case the value thv is smaller than a possible negligible jump, the
effect on v∗ is that not all jumps would be aligned. Otherwise, if the value thv is greater than an
edge forming the jump, these may be then included in rv and consequently worsen each v∗, w∗ and
n∗ w.r.t. v̄, w̄, n̄ of stage 1.

The parameter α forces the smoothness of w∗ and its value, although normalized to signal length,
depends on how much the user wants to further smooth the component w̄. The higher α, the
smoother resulting w∗ component. In case the α value is too large, the refinement of w̄ may produce
the so-called over-smoothed(-regularized) component w∗, and consequently worsening n∗.

3 Numerical Experiments

We present examples that showcase the proposed JOT model when applied to the study of non-
stationary signals.

In Table 1 we report the optimal values of the parameters used in the experiments.

f1 f2 f3 f4 f5
(N = 1024) (N = 4451) (N = 4096) (N = 20000) (N = 2051)

ā 0.20 0.20 0.45 0.35 0.35
γ∗
1 5e-2 5e-2 2e-1 1e-2 2.5e-2

γ∗
2 1e+3 2.5e+1 1e+4 5e+5 5e+1

γ∗
3 5e-2 1e-2 5e-2 5e-8 5e-5
τ 10 10 50 50 10

thv 0.25 0.25 0.25 - 0.25
α 0.4 1e-4 0.4 - 1e-4

Table 1: Parameter values used in experiments. Stage 1 first block, stage 2 second block.

In Table 2, we report the signal to noise ratio (SNR) values of the resulting components for the
synthetic input signals f1, f2 and f3 after both stage 1 and stage 2, computed as

SNR(x, y) = 10 log10
∥y −mean(y)∥22
∥y − x∥22

,

for a proper comparison of the resulting components with the ground truth; due to the equivalency
of solutions J (v, w, n) = J (v+ t, w− t, n), we shift the components (v, w) by a constant t, such that
the mean values of v̄ and v∗ correspond to the mean of the ground truth component v.

SNR(v̄, v) SNR(w̄, w) SNR(n̄, n) SNR(v∗, v) SNR(w∗, w) SNR(n∗, n)
f1 8.57 6.66 5.63 25.19 30.06 14.01
f2 15.45 13.61 11.25 29.37 27.78 21.44
f3 9.54 14.77 2.58 30.67 39.23 16.75

Table 2: Signal to noise ratio for f1, f2 and f3 components after stage 1 and stage 2 w.r.t. ground truth components.

In Figures 3–7 we report in the first row the input signal f , in the second row the resulting
components v̄, w̄, n̄ of stage 1 and in the third row (if present) the refined components v∗, w∗, n∗ of
stage 2 in red color. Over-posed in black color the ground-truth components when known.
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(f1) input

Stage 1: (v̄) jumps (w̄) trend (n̄) noise

Stage 2: (v∗) jumps (w∗) trend (n∗) noise

Figure 3: Decomposition results of the JOT method: (first row) the given signal f1; (second row) the results of stage
1: jumps v̄, the trend w̄ and noise n̄ are separated from the given signal f1; (third row) stage 2: the components after
refinement over-imposed with the ground truth in black.

(f2) input

Stage 1: (v̄) jumps (w̄) low frequency (n̄) high frequency

Stage 2: (v∗) jumps (w∗) low frequency (n∗) high frequency

Figure 4: Decomposition results of the JOT method: (first row) the given signal f2; (second row) the results of stage
1: jumps v̄, the trend w̄ and noise n̄ are separated from the given signal f2; (third row) stage 2: the components after
refinement over-imposed with the ground truth in black.
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(f3) input

Stage 1: (v̄) jumps (w̄) trend (n̄) high frequency

Stage 2: (v∗) jumps (w∗) trend (n∗) high frequency

Figure 5: Decomposition results of the JOT method: (first row) the given signal f3; (second row) the results of stage
1: jumps v̄, the trend w̄ and noise n̄ are separated from the given signal f3; (third row) stage 2: the components after
refinement over-imposed with the ground truth in black.

(f4) input

Stage 1: (v̄) jumps (w̄) trend (n̄) high frequency

Figure 6: Decomposition results of the JOT method: (first row) the given signal f4; (second row) the results of stage 1:
jumps v̄, the trend w̄ and high frequency n̄ are separated from the given signal f4.

(f5) input

Stage 1: (v̄) jumps (w̄) low frequency (n̄) high frequency

Stage 2: (v∗) jumps (w∗) low frequency (n∗) high frequency

Figure 7: Decomposition results of the JOT method: (first row) the given signal f5; (second row) the results of stage 1:
jumps v̄, the trend w̄ and high frequency n̄ are separated from the given signal f5; (third row) stage 2: the components
after refinement.
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3.1 Effect of Penalty Parameters γ1, γ2, γ3

In this section we revisit the parameter selection. In particular, we discuss the possible decomposition
results in case the values of the parameters γ1, γ2 and γ3 are either too large or too small w.r.t. the
optimal values reported in Table 1.

The effects discussed in the rest of this section are illustrated for the f3 input signal, Figure 5
first row. The visual effect that we expect is that, for each component v̄, w̄, n̄, if the corresponding
regularization parameter γ1, γ2, γ3 is too large, residuals that are pushed away from one component
can appear in one or both remaining components. On the other hand, if the parameter value is too
small, the corresponding component can absorb parts of the other two components.

As illustrated in Figure 8 first row, for too large values of γ1, many piece-wise constant jumps are
lost, since they are pushed into the n̄ component. The second row of Figure 8 shows the effect of γ1
too small, the corresponding energy term is too low and some oscillations from n̄ were absorbed as
piece-wise constant jumps into v̄.

γ1 large(10γ∗
1) (v̄) (w̄) (n̄)

γ1 small(10−1γ∗
1) (v̄) (w̄) (n̄)

γ2 large(104γ∗
2) (v̄) (w̄) (n̄)

γ2 small(10−2γ∗
2) (v̄) (w̄) (n̄)

γ3 large(10γ∗
3) (v̄) (w̄) (n̄)

γ3 small(10−2γ∗
3) (v̄) (w̄) (n̄)

Figure 8: Effect of the parameter values on the decomposition results. From top to bottom: decomposition results in case
the values of γ1, γ2, and γ3 are too high and too low, respectively, with respect to the optimal values reported in Table 1.

The effect of the γ2 value is reported in the third and the fourth rows of Figure 8. Large values
of γ2 force the minimization of the second order derivatives in w̄ and tend to push the smooth trend
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into v̄ as a stair-case effect. On the other hand, small values of γ2 can absorb parts of the piece-wise
constant jumps as well as oscillations from n̄.

In case the γ3 value is too large, the overall variance of data captured in n̄ is decreased, see n̄
amplitudes in Figure 8, fifth row, compared to the amplitudes in Figure 5, left column. The residual
from n̄ is captured by w̄ in this case. On the other hand, for small values of γ3, Figure 8 sixth row,
the highest-amplitude piece-wise constant jumps from v̄ are captured in n̄.

We notice that when a component x absorbs parts of a component y, the situation can be caused
either by γx being too small or γy being too large. The decision of which parameter to tune should
be done w.r.t. to the third component. For example, v̄ in the second row of Figure 8 absorbed parts
of w̄, thus either γ1 is too small or γ2 too large. However, here v̄ absorbed part of n̄ as well, thus it
would be more sensible to increase γ1 value rather than decreasing γ2.
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