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Social and emotional experiences differently shape individual’s

neurodevelopment inducing substantial changes in neurobiological substrates

and behavior, particularly when they occur early in life. In this scenario,

the present study was aimed at (i) investigating the impact of early social

environments on emotional reactivity of adolescent male and female rats and

(ii) uncovering the underlying molecular features, focusing on the cortical

endocannabinoid (eCB) and glucocorticoid systems. To this aim, we applied

a protocol of environmental manipulation based on early postnatal socially

enriched or impoverished conditions. Social enrichment was realized through

communal nesting (CN). Conversely, an early social isolation (ESI) protocol was

applied (post-natal days 14–21) to mimic an adverse early social environment.

The two forms of social manipulation resulted in specific behavioral and

molecular outcomes in both male and female rat offspring. Despite the

combination of CN and ESI did not affect emotional reactivity in both sexes, the

molecular results reveal that the preventive exposure to CN differently altered

mRNA and protein expression of the main components of the glucocorticoid

and eCB systems in male and female rats. In particular, adolescent females

exposed to the combination of CN and ESI showed increased corticosterone

levels, unaltered genomic glucocorticoid receptor, reduced cannabinoid

receptor type-1 and fatty acid amide hydrolase protein levels, suggesting that

the CN condition evokes different reorganization of these systems in males

and females.

KEYWORDS

early social isolation, endocannabinoids, HPA axis, adolescence, communal nesting

Frontiers in Cellular Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2023.1270195
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2023.1270195&domain=pdf&date_stamp=2023-12-20
https://doi.org/10.3389/fncel.2023.1270195
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncel.2023.1270195/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1270195 December 20, 2023 Time: 12:3 # 2

Rullo et al. 10.3389/fncel.2023.1270195

1 Introduction

Early social and emotional experiences influence the
neurodevelopment of individuals by affecting neurochemical
substrates and behavior. Evidence exists that adequate social
stimuli during the early stages of post-natal life are crucial for
developing appropriate social, emotional, and cognitive skills
while adverse social experiences negatively affect neurobehavioral
development (Cirulli et al., 2010; Lomanowska et al., 2011).
Accordingly, early life experiences shape synaptic plasticity in
the prefrontal cortex (PFC) and induce life-long behavioral
and persistent neurobiological changes that may increase the
vulnerability to psychiatric diseases later in life (Edwards et al.,
2003; Gibb et al., 2007; Wright et al., 2009; Spinhoven et al., 2010;
Kolb et al., 2012; Teicher and Samson, 2013).

The hypothalamic-pituitary-adrenal (HPA) axis activation, and
the consequent glucocorticoid release, is the most common
physiological response to stressful stimuli (e.g., maternal
separation, early social isolation) (Hill and McEwen, 2010).
Glucocorticoids regulate ongoing HPA axis activity through a
negative feedback loop that leads to stress response termination.
However, a concerted activation of other endogenous systems
is required for HPA axis regulation (Hill and Tasker, 2012).
In this regard, preclinical and clinical studies highlighted that
endocannabinoid (eCB) signaling is also necessary for the
regulation of stress responses (Hillard, 2014; Morena et al.,
2016; Maldonado et al., 2020). Indeed, it has been reported
that eCB signaling disruption results in an excessive HPA axis
activation, increased anxiety behavior and reduced responsiveness
to rewarding stimuli (Morena et al., 2016; Micale and Drago, 2018).
In this frame, it has been hypothesized that endocannabinoids
(eCBs) act as co-regulators of glucocorticoid function in several
stress-related brain regions (Hill and McEwen, 2009; Hillard,
2014). However, the exact molecular mechanisms by which
environmental factors (i.e., maternal care, social context and stress
exposure) can influence the interplay between glucocorticoid and
eCB systems and the emotional development of individuals are not
yet completely understood (Meyer et al., 2018; Franks et al., 2020).

We therefore investigated the impact of different forms of early
social environment (i.e., social enrichment or social deprivation)
on emotional reactivity and the consequent molecular alterations in
plasmatic corticosterone levels, glucocorticoid and eCB systems of
juvenile rats [postnatal day (PND) 35]. In particular, we assessed the
gene and protein expression of glucocorticoid receptor (GR) and of
two main components of the eCB system, the cannabinoid receptor
type-1 (CB1R) and the fatty acid amide hydrolase (FAAH) (Trezza
et al., 2012; Di Marzo and Piscitelli, 2015; Lu and Mackie, 2021).

We applied a protocol of environmental manipulation based
on housing rats in either social enriched or social impoverished
conditions early in life, compared to standard housing conditions.
Social enrichment was realized through communal nesting (CN),
consisting of housing together three pregnant rats that, upon
delivery, would keep their pups together and share care-giving
till weaning, a condition that provides a highly stimulating social
environment to the developing pup, thereby affecting depressive-
and anxiety-like responses later in life (Branchi and Alleva, 2006;
Branchi, 2009; Cirulli et al., 2010). Conversely, to mimic an
adverse early social environment, an early social isolation (ESI)

protocol was applied during PND 14-21, an age range comparable
to childhood in humans (Chini and Hanganu-Opatz, 2021). The
environmental manipulations used in the present study, i.e., both
ESI and CN, have been reported by previous studies to elicit
behavioral, emotional and physiological alterations in adolescent
rats (Bratzu et al., 2023) and adult mice (Cirulli et al., 2010; Lo
Iacono et al., 2015; Catale et al., 2020) of both sexes. The aim
of our study was to investigate the impact of ESI and CN in
the rat male and female offspring during adolescence, a critical
time window for brain maturation. Given the central role of PFC
in cognitive, social, and emotional process (Dixon et al., 2017),
and since endocannabinoid signaling is clearly implicated in the
glucocorticoid-mediated negative feedback inhibition of the HPA
axis in PFC (Hill and Tasker, 2012; Peters and Naneix, 2022),
molecular investigations focused on this brain area. It is worth
noting that PFC undergoes sensitive maturational processes during
development and, as such, it is particularly vulnerable to early life
events (Peverill et al., 2019; Smith and Pollak, 2020). In addition,
PFC is also crucial for sensorimotor gating, a brain function
differently affected by CN and/or ESI in a sex- and age-dependent
manner (Bratzu et al., 2023). Since early postnatal experiences
and rearing conditions can induce sexually dimorphic changes in
CB1R expression, endocannabinoids and/or corticosterone levels
(Brown and Grunberg, 1995; Suárez et al., 2009, 2010; Viveros
et al., 2009; Dow-Edwards et al., 2016; Ramírez-López et al., 2017;
Portero-Tresserra et al., 2018; Caradonna et al., 2022; Tran et al.,
2022; Walker et al., 2022) we assessed the effects of CN or ESI in
both female and male offspring to detect potential sex differences.
Furthermore, the potential impact of CN condition on the effects of
early social isolation has been assessed.

2 Materials and methods

2.1 Animals and nesting conditions

Wistar rats (Charles River Laboratories, Italy) weighing
250 ± 15 g were mated overnight. Pregnant rats assigned to the
standard housing condition (SH) group were individually housed
in Macrolon cages (40× 26× 20 cm; l x w x h), while pregnant rats
assigned to the CN condition were housed in groups of 3 in larger
Macrolon cages (62 × 44 × 22 cm; l x w x h). Both experimental
groups were kept under controlled conditions (temperature 20–
21◦C, 55–65% relative humidity and 12/12 h light cycle with lights
on at 07:00 h). Food and water were available ad libitum. Newborn
litters found up to 17:00 h were considered to be born on that day
(PND 0). One pup per litter, from different litters per treatment
group, was randomly used in each behavioral experiment and not
re-used in subsequent behavioral experiments, in order to avoid the
so-called “litter effect” (Jiménez and Zylka, 2021).

Sample size (n) was based on our previous experiments and
power analysis performed with the software G∗Power 3.1. In
particular, the following number of animals was used for each
experiment:

(1) Maternal behavior: number of dams SH = 10 and CN = 12.
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(2) Isolation-induced USVs: Males: PND 5: SH = 16, CN = 12;
PND 9: SH = 16, CN = 12; Females: PND 5: SH = 16, CN = 12;
PND 9: SH = 16, CN = 12.

(3) EPM test: Males: SH-CTRL = 8, SH-ESI = 8, CN-CTRL = 8,
CN-ESI: 8; Females: SH-CTRL = 8, SH-ESI = 7, CN-
CTRL = 8, CN-ESI: 8.

Concerning the biochemical experiments, blood and tissue
samples were taken from 6 animals per group from a separate batch
of rats used only for molecular studies.

The sample size for each experiment is also indicated in the
figure legends. The experiments were approved by the Italian
Ministry of Health (authorization n. 612/2020-PR) and performed
in agreement with the ARRIVE (Animals in Research: Reporting In
Vivo Experiments) guidelines (Kilkenny et al., 2010), the guidelines
of the Italian Ministry of Health (D.Lgs. 26/14) and the European
Community Directive 2010/63/EU.

2.2 Experimental design

2.2.1 Early social isolation procedure
The protocol of environmental manipulation of rats was

based on housing the animals in either social enriched or
social impoverished conditions from birth to weaning (PND
0–21), compared to standard housing conditions (see timeline,
Figure 1A). Social enrichment was realized through CN, an
experimental procedure that consists of housing together three
pregnant rats to hold their pups and share maternal care until
weaning, as described above. Social deprivation consisted of a
short period of social isolation (early social isolation, ESI) during
the third postnatal week, an age range that in the laboratory
rat is characterized by the maturation of social, sensory, motor
and cognitive abilities and in which reconfigurations of neuronal
structure and synaptogenesis occur in the brain (Branchi, 2009;
Lister et al., 2013).

Therefore, rats were subjected to one of the following
environmental conditions:

(1) Standard Housing (SH): male and female offspring born
from rat dams mated individually with a male. After 1 week
of mating, the female was isolated and left undisturbed
until delivery. Twenty-four h after birth, the litter was
reduced to 8 animals (4 males and 4 females) that were left
undisturbed until weaning.

(2) Communal Nesting (CN): male and female offspring born
from rat dams exposed to the CN procedure, i.e., 3 females
were housed together with a male (Gracceva et al., 2009). The
male was removed 1 week after mating and the 3 females
were left undisturbed in the same cage until delivery. In the
CN group, to approximate at naturalistic condition, deliveries
were not synchronous, and pups were born within a range
of 7 days in each female trio. Twenty-four h after birth, the
progeny was randomly reduced to 24 animals (12 males and
12 females) that were left undisturbed until weaning.

(3) Standard Housing and Early Social Isolation (SH + ESI): male
and female offspring born from rat dams mated in the SH
conditions. From PND 14 to PND 21, rats were removed from

the nest and singly housed in a cage with clean bedding for
30 min/day. The cage was placed on a heating pad kept at 30◦C
in order to prevent hypothermia.

(4) Communal Nesting and Early Social Isolation (CN + ESI):
male and female offspring born from rat dams mated as in
CN conditions. From PND 14 to PND 21, an ESI protocol was
applied, in which each pup was singly removed from the nest
and placed in a cage with clean bedding for 30 min/day.

On PND 21, pups from all experimental groups were weaned
and housed in groups belonging to the same environmental
condition. The behavioral experiments were carried out with
female and male offspring from all experimental groups at PND
35 (adolescence).

2.3 Behavioral tests

2.3.1 Maternal behavior observations
Maternal behavior was assessed daily in the colony room, from

PND 2 to PND 13, by well-trained experimenters, blinded to
experimental groups, and occurred at regular intervals of 3 min
in 3 sessions of 72 min each during the light phase (09:00 a.m.,
01:00 p.m., 05:00 p.m.), as previously described (Colucci et al.,
2020). Literature data indicate that maternal behavior is high
during the light phase and declines during the dark phase of the
light/dark cycle (Champagne et al., 2003; van Hasselt et al., 2012).
In fact, during the dark (active) phase, self-directed behaviors in the
mothers are increased compared to pup-directed behaviors, such
as licking/grooming behaviors (Champagne et al., 2003). During
each session, each dam and its litter were observed every 3 min (25
observations per 3 sessions per day for a total of 75 observations
per day). We measured the following 7 maternal parameters: (1)
arched nursing (dam adopting a nursing posture with its back and
ventral surface arched over its pups), (2) blanket nursing (dam
over the pups in nursing posture but not arched), (3) passive
nursing (dam adopting nursing posture lying either on its back
or side), (4) licking pups (dam licking pups), (5) pup retrieval
(dam moving the pups in another cage position), (6) building
nest (dam manipulating nest shavings), (7) maternal self-grooming
(dam grooming its breasts). We also recorded the following 4
non-maternal parameters: (1) feeding, (2) exploring (exploring the
cage), (3) not-exploring without pups (dam away from the pups),
(4) self-grooming (grooming its body but not the breast). The total
sum of maternal and non-maternal behaviors was calculated for
each litter. To investigate how maternal behavior adapts to the
different needs of the pups during their development, maternal
behavior was monitored from PND 2 to PND 13, i.e., a critical
period during which rat pups are still developing various abilities
and depend entirely on their mother for nutriment and care.

2.3.2 Isolation-induced ultrasonic vocalizations
Isolation-induced ultrasonic vocalizations (USVs) are emitted

by rodent pups when removed from the nest and play an
important communicative role in mother–offspring interactions.
The isolation-induced USVs emitted by pups from both the SH
and CN groups were recorded as previously described (Melancia
et al., 2018; Manduca et al., 2020) at PNDs 5 and 9 (see timeline,
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FIGURE 1

Experimental timeline (A) and effect of communal nesting on maternal behavior (B,C). Mothers from the CN group exhibit a lower frequency of
maternal behaviors (B) and a higher frequency of non-maternal behaviors (C) compared to the mothers from the SH group (SH = 10, CN = 12). Data
represent mean ± S.E.M. ∗p < 0.05, ∗∗p < 0.01 vs. SH (Mann–Whitney test).

Figure 1A). Briefly, pups were individually removed from the nest
and placed into a black Plexiglas arena (30 × 30 cm), located
inside a sound-attenuating and temperature-controlled chamber.
Pup USVs were detected for 3 min by an ultrasound microphone
(Avisoft Bioacoustics, Berlin, Germany) sensitive to frequencies
between 10 and 200 kHz and fixed at 15 cm above the arena and
analyzed quantitatively (number of calls/3 min).

2.3.3 Elevated plus-maze test
The elevated plus maze (EPM) apparatus comprised two

open (50 × 10 × 40 cm; l × w × h) and two closed arms
(50× 10× 40 cm; l×w× h) that extended from a common central
platform (10 × 10 cm). The test was performed as previously
reported (Manduca et al., 2015; D’Elia et al., 2022). At PND 35, rats
were individually placed on the central platform of the maze for
5 min. Each 5-min session was recorded with a camera positioned
above the apparatus for subsequent behavioral analysis carried out
an observer, unaware of animal treatment, using the Observer
3.0 software (Noldus Information Technology, NL). The following
parameters were analyzed:

• % time spent in the open arms (% TO): (seconds spent on the
open arms of the maze/300)× 100;
• % open arm entries (% OE): (number of entries into the

open arms of the maze/number of entries into open + closed
arms)× 100;
• number of total arm entries: number of entries into

open + closed arms.

2.4 Tissue and plasma collection

Another batch of rats, exposed to the same protocol described
in 2.2.1, was used for molecular analysis and animals were rapidly

decapitated at PND35, blood was collected, and brains were quickly
removed. Brains were placed into an ice-cold plate and PFC
was dissected under stereomicroscope, as a crude coronal section
(from 2.0 to 4.0 mm anterior to bregma), according to the Rat
Brain atlas (Paxinos and Watson, 2013). Tissues were stored at
−80◦C until analysis. Blood samples from each rat were collected
in tubes containing EDTA (250 µL × 2 mL of blood collected)
as anticoagulant agent. Plasma was separated by centrifugation
(6,500 g for 20 min) and stored at−80◦C.

2.5 Molecular analysis

2.5.1 Analysis of plasma corticosterone levels
Corticosterone (CORT) levels were determined by an enzyme-

linked immunosorbent assay (ELISA) using a commercial kit
according to the manufacturers’ instructions (Tecan, Italy).

2.5.2 RNA extraction and gene expression
analysis by real-time qPCR

Total RNA was extracted according to the method of
Chomczynski and Sacchi (2006). Each sample was subjected to
DNAse treatment and converted to cDNA with the GeneAmp RNA
PCR kit (Life Technologies Italia, Italy) as previously described
(Caputi et al., 2019, 2021). The qRT-PCR analysis was performed on
a StepOne Real-Time PCR System (Life Technologies, Italy) using
the SYBR Green PCR MasterMix (Life Technologies, Italy). Relative
expression of different gene transcripts was calculated by the Delta-
Delta Ct (11Ct) method and converted to relative expression ratio
(2−11Ct) for statistical analysis (Livak and Schmittgen, 2001). All
data were normalized to the housekeeping gene glyceraldehyde-
3-phosphate dehydrogenase (Gapdh). The specificity of each PCR
product was determined by melting curve analysis, constructed in
the range of 60◦C to 95◦C. Primers used for PCR amplification
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were designed using Primer 3, and their sequences are reported as
follows:

– Gapdh Forward 5′-AGACAGCCGCATCTTCTTGT-3′;
Reverse 5′-CTTGCCGTGGGTAGAGTCAT-3′;

– Nr3c1 Forward 5′-GAAAAGCCATCGTCAAAAGGG-3′

Reverse 5′-TGGAAGCAGTAGGTAAGGAGA-3′;
– Cb1r Forward 5′-GTCGATCCTAGATGGCCTTGC-3′;

Reverse 5′-GTCATTCGAGCCCACGTAGAG-3′;
– Faah Forward 5′-GTTACAGAGTGGAGAGCTGTCC-3′;

Reverse 5′-GTCTCACAGTCGGTCAGATAGG.

2.5.3 Preparation of protein extracts and western
blot analysis

Prefrontal cortex tissues were homogenized in a glass–glass
potter using a cold buffer containing 0.32 M sucrose, 1 mM
Hepes solution, 0.1 mM EGTA, 0.1 mM PMSF, pH = 7.4,
in presence of a complete set of protease inhibitors and a
phosphatase inhibitor cocktail, as previously described (Mottarlini
et al., 2022). In brief, an aliquot of each homogenate was
sonicated and then stored at −20◦C, while the remaining
homogenized tissues were centrifuged at 800 g for 10 min.
The resulting pellet corresponding to the nuclear fraction, was
resuspended in a buffer containing 20 mM Hepes, 0.1 mM DTT,
0.1 mM EGTA, with protease and phosphatase inhibitors. The
supernatant was centrifuged at 12,000 g for 15 min to obtain
the pellet corresponding to the crude synaptosomal fraction,
and the resulting supernatant corresponds to a clarified fraction
of cytosolic proteins. Total proteins have been measured in
the nuclear, crude synaptosomal and cytosolic fractions by the
Bio-Rad Protein Assay, using bovine serum albumin as the
calibration standard (Bio-Rad Laboratories, Segrate, Milan, Italy).
10 micrograms of proteins for each sample were run on an
SDS-10% polyacrylamide gel under reducing conditions and
then electrophoretically transferred onto nitrocellulose membranes
(Bio-Rad Laboratories). Blots were blocked 1 h at room
temperature with 10% BSA or with I-Block solution (Life
Technologies Italia) in TBS + 0.1% Tween-20 buffer, washed with
TBS + 0.1% Tween-20 buffer and then incubated with the antibody
anti-GR (1:500, RRID:AB_2283110, Thermo Scientific, USA); anti-
CBD1 (1:1000, RRID:AB_10859098, ProteinTech, USA); anti-
FAAH (1:1000, RRID:AB_2101994, Cell Signaling, USA). Results
were standardized using β-actin (1:10.000, RRID:AB_476744,
Sigma- Aldrich, Milan, Italy) as the control protein, which
was detected by evaluating the band density at 43 kDa.
Immunocomplexes were visualized by chemiluminescence using
the Chemidoc MP Imaging System (Bio-Rad Laboratories) and
analyzed using the Image Lab software (Bio-Rad Laboratories).
Gels were run 2 times each and the results represent the average
from 2 different western blots, averaged and normalized by using a
specific correction factor (Caffino et al., 2020). In Supplementary
Figure 1, results of GR protein levels measured individually in
the nuclear and cytosolic fraction are presented. Full-size original
cropped immunoblots related to the protein expression levels of
GR, CB1R, FAAH are presented in Supplementary Figures 2–4
and representative immunoblots of the observed targets are shown
in Figures 4–6.

2.6 Data analysis

Behavioral and biochemical data have been initially evaluated
by Shapiro-Wilk tests to confirm the normality of the distribution
and by Grubb’s test to identify outliers. Behavioral experiments were
scored in a blinded conditions using the Observer 3.0 software
(Noldus Information Technology, NL) and analyzed by Student
t-test, Mann-Whitney test or two-way ANOVA. Molecular data
were analyzed by two-way ANOVA and followed by Tukey’s
multiple comparison test when appropriate. For the statistical
analysis, the GraphPad Prism 9 software was used. Results are
expressed as mean ± standard error of the mean (SEM). The level
of significance was set at p < 0.05.

3 Results

3.1 Behavioral results

3.1.1 Maternal behavior
Dams assigned to the SH group displayed a higher frequency

of maternal behaviors compared to dams assigned to the CN group
(U = 21.50; p = 0.0095) (Figure 1B). Conversely, mothers from the
CN group showed a higher frequency of non-maternal behaviors
in comparison to mothers of the SH group (U = 25.5; p = 0.0211)
(Figure 1C), indicating that the two nesting conditions affected
maternal care.

3.1.2 Ultrasonic vocalizations
No differences between groups were found in the number of

USVs emitted by male and female pups when separated from the
dam at PND 5 (males: t = 0.41, df = 26, p = 0.6787; females: t = 0.057,
df = 26, p = 0.9549) (Figures 2A, C). At PND 9, male pups from
the CN group emitted less USVs when separated from the dam
compared to male pups from the SH-group (t = 2.72, df = 26;
p = 0.0114) (Figure 2B), whereas no significant differences were
found in female pups (t = 1.41, df = 26; p = 0.1699) (Figure 2D).

3.1.3 Elevated plus-maze test
The two-way ANOVA analysis of the parameters measured in

the elevated plus-maze test, performed in the adolescent male and
female offspring, gave the following results:

– percentage of time spent in the open arms of the elevated
plus-maze apparatus: males [F(ESI)1,28 = 6.93, p = 0.0136;
F(CN)1,28 = 4.43, p = 0.0443; F(ESI x CN)1,28 = 0.15,
p = 0.6996], (Figure 3A); females [F(ESI)1,27 = 5.70,
p = 0.0243; F(CN)1,27 = 4.24, p = 0.0492; F(ESI x CN)
1,27 = 0.007, p = 0.9325], (Figure 3B).

– percentage of open arm entries: males [F(ESI)1,28 = 4.03,
p = 0.0544; F(CN)1,28 = 5.34, p = 0.0284; F(ESI x
CN)1,28 = 0.34, p = 0.5624], (Figure 3C); females
[F(ESI)1,27 = 2.22, p = 0.1476; F(CN)1,27 = 3.60, p = 0.0687;
F(ESI x CN)1,27 = 2.59, p = 0.1190], (Figure 3D).

No differences in locomotion were observed, as no significant
differences were detected in the total number of entries in both
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FIGURE 2

Effect of communal nesting on isolation-induced USVs in the infant rat offspring. At PND 5, no differences were found in the number of USVs
emitted by the male (A) and female (C) offspring. At PND 9, CN male pups vocalized less compared to SH pups (B) while no differences were found
in female rats (D) (Male: PND 5: SH = 16, CN = 12; PND 9: SH = 16, CN = 12; Female: PND 5: SH = 16, CN = 12; PND 9: SH = 16, CN = 12). Data
represent mean ± S.E.M. *p < 0.05 vs. SH (Student’s t-test).

males [F(ESI)1,28 = 0.34, p = 0.559; F(CN)1,28 = 2.73, p = 0.1099;
F(ESI x CN)1,28 = 0.57, p = 0.457] and females [F(ESI)1,27 = 0.18,
p = 0.674; F(CN)1,27 = 2.16, p = 0.152; F(ESI x CN)1,27 = 0.17,
p = 0.677]. Overall, these results indicate that the combination
of nesting (SH or CN) and early social isolation (CTRL or ESI)
conditions did not affect anxiety-like behavior in the elevated
plus-maze test in the adolescent male and female rat offspring.
Interestingly, similar results were found when the male and female
offspring was tested in the elevated plus-maze at adulthood (See
Supplementary material).

3.2 Biochemical results

3.2.1 Plasma corticosterone levels
To investigate whether a combination of nesting (SH or CN)

and early isolation (CTRL or ESI) conditions might affect the stress
response of the HPA axis in adolescent offspring, we measured
the circulating level of corticosterone in PND35 male and female
offspring. In males, two-way ANOVA revealed a significant effect
of CN [F(1,19) = 112.7; p < 0.0001], of ESI [F(1,19) = 62.21;

p < 0.0001] and of CN x ESI interaction [F(1,19) = 13.63; p = 0.0015]
was observed (Figure 4A). Post hoc comparisons indicated that
CN exposure in male rats increases corticosterone levels (+ 210
ng/ml vs SH-CTRL, p < 0.0001), while the ESI procedure
reduced corticosterone levels in SH male rats (−55 ng/ml vs SH-
CTRL, p = 0.0423), and in male rats previously exposed to CN
(−141 ng/ml vs CN-CTRL, p = 0.0423). In female rats, two-
way ANOVA showed a significant effect of CN [F(1,19) = 18.30;
p = 0.0004] and CN x ESI interaction [F(1,19) = 26.27; p < 0.0001]
whereas no effect of ESI [F(1,19) = 0.0058; p = 0.9403] was
observed (Figure 4B). Interestingly, post hoc comparisons showed
a significant reduction of CORT in SH-ESI rats (−253 ng/ml vs
SH-CTRL, p = 0.0120), while an increase of CORT was observed
in ESI rats previously exposed to CN (+ 260 ng/ml vs CN-CTRL,
p = 0.0065).

3.2.2 Gene and protein expression in PFC
To assess the effects of different rearing conditions (SH or

CN) and early isolation (CTRL or ESI) on GR, CB1R and FAAH
expression we evaluated their mRNA and protein levels in the PFC
of male and female offspring at PND35.
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FIGURE 3

Effects of early social isolation (ESI) and communal nesting (CN) on the percentage (%) of time in the open arms (A,B) and on the percentage (%) of
open arm entries (C,D) of male (left panels) and female (right panels) adolescent rats in the EPM test. No differences among groups were found in
the percentage of time in the open arms (A,B) of the maze and in the percentage of entries into the open arms of the maze (C,D) (Males:
SH-CTRL = 8, SH-ESI = 8, CN-CTRL = 8, CN-ESI: 8; Females: SH-CTRL = 8, SH-ESI = 7, CN-CTRL = 8, CN-ESI: 8). Data represent mean ± S.E.M.
(Two-way ANOVA).

3.2.2.1 Glucocorticoid receptor (GR)

Gene expression: In male adolescent rats, two-way ANOVA
indicated a significant effect of CN [F(1,20) = 8.293; p = 0.0093] on
Nr3c1 (gene encoding for GR) expression. However, no significant
effect of ESI [F(1,20) = 0.01018; p = 0.9206] and of CN x
ESI interaction [F(1,20) = 0.2147; p = 0.6481] was observed
(Figure 4C). In females, the ANOVA revealed an overall effect
of CN [F(1,18) = 9.814; p = 0.0058] and of ESI [F(1,18) = 34.88;
p < 0.0001], but no significant effect of CN x ESI interaction was
found [F(1,18) = 0.8065; p = 0.3810] (Figure 4D).

Protein expression: To measure the level of GR translocation
from the cytoplasm to the nucleus we performed a ratio of GR
protein levels in the two subcellular fractions nucleus/cytosol,
which is an index of GR nuclear internalization. In males, two-
way ANOVA revealed significant effect of ESI [F(1,20) = 4.790;
p = 0.0407], CN [F(1,20) = 9.918; p = 0.005] and CN x ESI
interaction [F(1,20) = 4.569; p = 0.0451] (Figure 4E). Interestingly,
ESI reduced GR translocation only in CN rats (−33% vs CN-
CTRL, p = 0.0291, −40% vs SH-ESI, p = 0.0065). In females,
two-way ANOVA of GR nucleus/cytosol ratio revealed significant
effect of CN housing [F(1,20) = 11.28; p = 0.0031] and CN x ESI
interaction [F(1,20) = 12.54; p = 0.0021] whereas no effect of ESI
[F(1,20) = 2.889; p = 0.1047] was detected (Figure 4F). Post hoc
comparisons revealed an ESI-induced reduction only in SH animals
(−29% vs SH-CTRL, p = 0.007;−38% vs CN-ESI, p = 0.0005).

3.2.2.2 Cannabinoid receptor type-1 (CB1R)

Gene expression: Two-way ANOVA of Cb1r gene expression
indicated a significant effect of CN [F(1,20) = 33.08; p < 0.0001]
in adolescent male rats. However, no significant effect of ESI
[F(1,20) = 0.01053; p = 0.9193] and of CN x ESI interaction
[F(1,20) = 40.31; p = 0.5327] was observed (Figure 5A). In
adolescent female rats, overall ANOVA revealed a main effect of
CN [F(1,19) = 14.47; p = 0.0012] and of ESI [F(1,19) = 55.31;
p < 0.0001], however, no significant effect of CN x ESI interaction
[F(1,19) = 0.08820; p = 0.7697] was observed on Cb1r gene
expression (Figure 5B).

Protein levels: In male rats, two-way ANOVA of cortical
CB1R protein expression revealed a significant effect of CN
[F(1,20) = 18.58; p = 0.0003] whereas no effect of ESI
[F(1,20) = 0.3987; p = 0.5349] and of CN x ESI interaction
[F(1,20) = 0.3122; p = 0.5825] was observed (Figure 5C). In female
rats, two-way ANOVA revealed only a significant effect of CN x
ESI interaction [F(1,20) = 37.61; p < 0.0001; ESI: F(1,20) = 2.349;
p = 0.5349; CN: F(1,20) = 3.343; p = 0.5825; Figure 5D]. Further
intergroup sub-testing showed that CN per se increased CB1R
expression (+ 27% vs SH-CTRL, p = 0.03). Interestingly, ESI altered
CB1R expression differently depending on the housing condition.
In fact, while ESI increased CB1R expression in SH rats (+ 28% vs
SH-CTRL, p = 0.0192), ESI reduced its expression in CN animals
(−47% vs CN-CTRL, p = 0.0001,−49% vs SH-ESI, p < 0.0001).
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FIGURE 4

Effect of early social isolation (ESI) and different housing conditions on plasma corticosterone levels, Nr3c1 gene expression, and GR protein
expression in the PFC of adolescent male (A,C,E) and female (B,D,F) rats. Plasma corticosterone data (A,B) are expressed as ng/ml of mean ± SEM
(n = 5–6/group; 1 outlier in SH-ESI males and 1 outlier in SH-CTRL females). Gene expression data (C,D) represent 2−11Ct values calculated by the
11Ct method. GR protein levels are shown as a ratio between nuclear and cytosolic fraction (E,F). Protein data are expressed as percentages vs.
SH-CTRL male or female rats. Histograms represent the mean ± SEM (n = 5–6/group; 1 outlier in SH-CTRL females and 1 outlier in CN-CTRL
females). Data were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons test (∗p < 0.05, ∗∗p < 0.001, ∗∗∗∗p < 0.0001).
Representative immunoblots for GR protein levels (95 kDa) and β-Actin (43 kDa) are shown in panel (G).

3.2.2.3 Fatty acid amide hydrolase (FAAH)

Gene expression: In adolescent male rats, two-way ANOVA
indicated a significant effect of CN [F(1,20) = 28.21; p < 0.0001]
on Faah gene expression. However, no significant effect of ESI
[F(1,20) = 0.1832; p = 0.6732] and of CN x ESI interaction
[F(1,20) = 2.683; p = 0.1171] was observed (Figure 6A). The overall
ANOVA analysis displayed a main effect of CN [F(1,20) = 87.74;
p < 0.0001] and of ESI [F(1,20) = 35.27; p < 0.0001] on FAAH
gene expression in female rats. While, no significant effect of CN
x ESI interaction [F(1,20) = 0.001856; p = 0.9661] was revealed
(Figure 6B).

Protein expression: In male rats, two-way ANOVA of cortical
FAAH protein expression revealed a significant effect of CN x ESI
interaction [F(1,20) = 9.390; p = 0.0061] whereas no effect of ESI
[F(1,20) = 3.448; p = 0.0781] and of CN [F(1,20) = 3.855; p = 0.0637]
was observed (Figure 6C). Post hoc comparisons indicate that ESI
increased FAAH protein levels only in CN rats (+ 24% vs SH-ESI,
p = 0.0098; + 23% vs CN-CTRL, p = 0.0116).

In female rats, two-way ANOVA revealed a significant effect of
ESI [F(1,20) = 5.944; p = 0.0242], CN [F(1,20) = 32.38; p < 0.0001]
and CN x ESI interaction [F(1,20) = 5.616; p = 0.028; Figure 6D].
Opposite to male rats, in female PFC ESI reduced FAAH protein

levels only in CN animals (−26% vs SH-ESI, p < 0.0001; −15% vs
CN-CTRL, p = 0.0139).

4 Discussion

The present study investigated the impact of early social
environment on the emotional reactivity of adolescent male and
female rats, focusing on the cortical eCB and glucocorticoid
systems. To this aim, we applied a protocol of environmental
manipulation based on early postnatal socially enriched or
impoverished conditions. The ability of the environmental
manipulations used in our study (ESI and CN) to induce
physiological and emotional changes in rodents have been
previously demonstrated, although most of the available studies
assessed their impact at adult age. For instance, it has been shown
that mice exposed to the same ESI protocol used in our study
(i.e., single housing in a cage with clean bedding for 30 min/day
from PND 14 to PND 21) showed depressive-like behaviors at
adulthood (Lo Iacono et al., 2015) associated with epigenetic
changes in different brain regions (Catale et al., 2020). Furthermore,
we recently showed that that the same ESI protocol used in our
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FIGURE 5

Effect of early social isolation (ESI) and different housing conditions on CB1R gene and protein expression in the PFC of adolescent male (A,C) and
female (B,D) rats. Gene expression data (A,B) represent 2−11Ct values calculated by the 11Ct method and are expressed as mean ± SEM
(n = 5–6/group; 1 outlier in CN-CTRL females). Protein levels (C,D) are shown in the cortical membrane fraction. Data are expressed as percentages
of SH-CTRL male and female rats, respectively. Histograms represent the mean ± SEM (n = 6/group). Data were analyzed by two-way ANOVA
followed by Tukey’s multiple comparisons test (*p < 0.05, ***p < 0.001). Representative immunoblots for CB1R protein levels (53 kDa) and β-Actin
(43 kDa) are shown in panel (E).

FIGURE 6

Effect of early social isolation (ESI) and different housing conditions on FAAH gene expression in the PFC of adolescent male (A,C) and female (B,D)
rats. Gene expression data (A,B) represent 2−11Ct values calculated by the 11Ct method and are expressed as mean ± SEM (n = 5–6/group).
Protein levels (C,D) are shown in the cortical membrane fraction. Data are expressed as percentages of SH-CTRL male and female rats, respectively.
Histograms represent the mean ± SEM (n = 6/group). Data were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons test
(*p < 0.05). Representative immunoblots for FAAH protein levels (63 kDa) and β-Actin (43 kDa) are shown in panel (E).

study did not affect locomotor activity and the time spent in the
central part of the open field arena in the adolescent rat offspring,
although ESI altered sensorimotor gating and burying behavior
(Bratzu et al., 2023), thus supporting the idea that this ESI protocol
induces subtle behavioral changes in the rat offspring. Similarly, it

has been shown that CN in mice affected depressive- and anxiety-
like responses later in life (Branchi and Alleva, 2006; Branchi,
2009; Cirulli et al., 2010), although less information is available on
the impact of CN in adolescent animals. For instance, adult male
mice reared in the CN condition displayed a higher propensity
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for social interaction (Branchi et al., 2006a) and they showed
anxiety-like behaviors in the elevated plus-maze and open field
tests (Branchi et al., 2006b). Interestingly, however, adult female
mice reared in the CN condition did not differ in the emotional
responses measured in the zero-maze apparatus (Gracceva et al.,
2009). Furthermore, other studies (Sayler and Salmon, 1971) failed
to detect changes in emotional reactivity in adult CN mice. Based
on these controversial findings and on the paucity of data about
the impact of early environmental manipulations in developing
animals of both sexes, we assessed the impact of ESI and CN in the
rat male and female offspring during adolescence, a critical time
window for brain maturation.

Our results showed that the two forms of social manipulation
(i.e., communal nesting, CN and early social isolation, ESI)
induced different behavioral and molecular outcomes in female
and male rats. Molecular results underline that the environmental
manipulations resulted in distinct alterations in mRNA and protein
expression of the main components of the glucocorticoid and
eCB systems. Interestingly, elevated plasma CORT levels together
with reduced CB1R and FAAH protein expression have been
detected in CN-ESI females. However, an opposite picture has
been found in the corresponding male group, thus suggesting
that the previous exposure to CN differently affected ESI-induced
molecular alterations in the two sexes. Actually, significant sex-
dependent effects in response to an early life stress have been
previously reported in both the glucocorticoid (Pallarés et al., 2021)
and the eCB (Dow-Edwards, 2020) systems.

It has been suggested that CN provides a highly stimulating
social environment to the developing pups because they are
exposed to diverse styles of maternal care and to a higher
number of peer-peer interactions (Branchi and Cirulli, 2014).
This social stimulation is supposed to have a major impact on
brain function and behavioral development (Branchi, 2009). In
a synchronous CN (all females give birth on the same day), the
total amount of maternal behavior displayed by the mothers in
the CN condition has been reported to be greater compared to
standard laboratory rearing conditions (Sayler and Salmon, 1971;
Branchi et al., 2006a,b). Here, we found that rat dams assigned to
the CN procedure showed reduced frequency of maternal behaviors
compared to dams in the SH condition. In line with our findings,
some studies reported reduced maternal behavior after prenatal
exposure to environmental enrichment (Cancedda et al., 2004;
Welberg et al., 2006; Rosenfeld and Weller, 2012), or CN housing
(Gracceva et al., 2009). Differences between mice and rats in their
response to environmental manipulations during pregnancy and
lactation, as well as differences in the CN protocol applied, may
account for these discrepant findings.

In the present study, the reduced maternal behavior displayed
by CN dams could impact on the emotional reactivity of the pups
and their relationship with the dam.

We tested pups’ emotionality by measuring their ultrasonic
vocalization (USV) emission following a brief period of isolation
from the mother and siblings. These USVs play an important role
in mother–offspring interactions and are indeed an indicator of
emotional reactivity in the pups representing a potent tool used
to detect subtle effects of adverse events during development. We
found that nesting condition did not affect pup USV emission at
PND5. Conversely, at PND9 male, but not female, pups reared in
the CN emitted a lower number of USVs when separated from

the mother and littermates. This result is in line with previous
studies showing that mouse pups born from dams housed together
from the day of parturition (a condition referred to as “communal
rearing”) (Sayler and Salmon, 1971; Curley et al., 2009) display
reduced basal USV production (Cirulli et al., 2010), although this
study did not find differences between the USV rate of male and
female pups. The reduced number of USVs emitted by male pups
born in the CN condition may be related to a reduced anxious-like
phenotype compared to pups born in the SH condition.

To mimic early social deprivation, each pup either reared in
CN or SH conditions was subjected to an early social isolation
(ESI) protocol from PND 14 to PND 21. The emotional reactivity
of the animals was assessed at adolescence by the elevated plus-
maze (EPM) test. We found no changes between both male and
female rats subjected to CN protocol and then exposed to the ESI
procedure. These unexpected results could indicate that, despite
these pups were exposed to reduced maternal care between PND2
and PND13, other factors such as a high number of peer-peer
interactions or increased maternal care after the ESI protocol,
may impact the development of their emotional behavior (Branchi
and Alleva, 2006). Moreover, the long-term impact of CN on the
emotional reactivity of the offspring seems to be dependent on
which facet of emotionality is assessed, e.g., social anxiety versus
exposure to a physical challenge (Branchi et al., 2006a,b), but it is
also dependent on the CN protocol used (Andersen, 2003; Sparling
et al., 2020). For instance, it has been reported that, at adulthood,
the CN offspring show greater emotionality in the open-field and
in the elevated plus-maze (but not in a social interaction test) when
the mothers are placed together 5 days before parturition (Branchi
et al., 2006a,b; Branchi, 2009), while opposite effects are observed
when the mothers are put together on the day of parturition (Sayler
and Salmon, 1971; Curley et al., 2009). Altogether, the results of
the isolation-induced USV and EPM tests suggest that early social
manipulations may induce sex-dependent changes in emotional
behavior, indicated by a reduced USV rate, that can already be
detected during the first days of life but then normalize at a later age.
Alternatively, it is still possible that subtle changes in anxiety-like
behaviors could be detected in adolescent and adult CN-exposed
animals if behavioral tasks other than the elevated plus-maze test
were performed.

From a molecular point of view, in the last decade, several
lines of evidence indicate that the eCB system is involved in the
central regulation of the stress response to life challenges, such
as early life events; indeed, eCBs are involved in glucocorticoid-
feedback inhibition of the HPA axis in the PFC, which represents
a neuroanatomical site integral for delayed feedback inhibition
(mediated by GR translocation into the nucleus) of the HPA axis. In
this scenario, corticosterone represents the major stress hormone
and it is known to play a regulatory role in stress induced HPA
axis activity in rodents. Elevated corticosterone levels activate the
stress-response network and affect various neural circuits involved
in stress-coping (Avishai-Eliner et al., 2001; Kinlein et al., 2019).

In our model, adolescent female rats exposed to the
combination of CN and ESI, showed increased corticosterone
plasma levels, unaltered genomic GR response (as shown by the
unaffected nucleus/cytosol ratio) and reduced CB1R and FAAH
protein levels. Even though ESI exposure in CN reared female
rats increases CORT levels, the corticosterone-induced negative
feedback on the HPA axis is not effective because GR translocation
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into the nucleus is not altered, suggesting that the nuclear GR
is unresponsive to the increased levels of the glucocorticoid.
Moreover, in these rats, the glucocorticoid actions mediated by the
increased CORT levels might have indeed induced a stimulation
of the eCB system not through the de novo synthesis of eCBs but,
rather, via reducing the endocannabinoid degrading enzyme FAAH
which, in turn, increases eCBs levels in the PFC. However, since
CB1R protein levels were significantly reduced, the hypothesized
increase of endocannabinoids concentrations is potentially unable
to foster the glucocorticoid-feedback inhibition of the HPA axis.
Accordingly, human studies suggested that permanently elevated
anandamide levels together with early life stress may cause
a lifelong damage on stress response probably through CB1R
reduction during neurodevelopment (Lazary et al., 2016).

We speculate that the inability to respond to corticosterone
observed in CN female rats exposed to ESI might be due to
the increased levels of endocannabinoids which, via a non-CB1R
dependent mechanism, may dysregulate the HPA axis ability to
respond to negative stimuli.

Despite several evidence suggested that FAAH inhibition may
be a valid pharmacological strategy to reduce HPA axis activation
and elicit anxiolytic/antidepressant effects (Haller et al., 2009;
Carnevali et al., 2020), it has also been shown that the efficacy of
this treatment strongly depends on the developmental time window
of treatment (Alteba et al., 2021). Indeed, FAAH inhibition may
have deleterious or ameliorating effects on behavior depending on
its mid- or late-adolescence occurrence.

The dysregulation of the eCB signaling following the
combination of CN and ESI in female rats is further underlined
by the uncoupling between mRNA and protein levels for both
CB1R and FAAH. According with previous evidence (Demaili et al.,
2023), the ESI-induced long lasting up-regulation of Cb1r and Faah
mRNA levels may alter excitation/inhibition balance in the PFC of
adolescent females thus affecting their ability to cope with stress
later in life.

Conversely to what observed in females, male CN rats exposed
to ESI show reduced corticosterone plasma levels and GR nuclear
translocation, suggesting that CN rearing condition positively
influence the development of important behavioral competences
useful to cope with social challenges, thus blunting CN-induced
HPA axis activity. Moreover, in light of our glucocorticoid results
and despite no changes were observed in CB1R protein levels, it
is possible that the CN-induced increase of Cb1r gene expression
could represent an adaptive mechanism aimed to reduce HPA axis
activity (Lazary et al., 2016), as we indeed observed. In addition,
the FAAH enzyme increases in these animals, possibly leading
to a decrease in eCBs levels, an effect that could influence HPA
axis activation reducing endocannabinoid inhibitory tone in this
brain region (Hill and McEwen, 2010; Hill and Tasker, 2012).
Such a reduction corroborates our hypothesis of reduced HPA
activity, since it might have potentiated the negative feedback loop
of HPA axis, as shown by the reduced levels of CORT. Indeed,
in accordance with our findings, a lower vulnerability to acute or
prolonged social stress consequences has been reported in CN-
rather than in SH-reared mice (Branchi et al., 2010).

It is difficult to conclude whether each biochemical change here
reported could have adaptive or maladaptive outcomes thus leading
to vulnerability or resilience to stressors. However, also in the light
of other investigations (see Viveros et al., 2012 for review), these

results highlight that different early life experiences can produce a
wide panel of neurochemical alterations, and that these alterations
can be influenced by sex.

Even though this work provides novel findings about the
effects of social manipulations early in life on the homeostasis of
glucocorticoids and eCB system that may differentially affect male
and females coping abilities, we are aware that it holds strengths as
well as limitations. Indeed, it represents one of the first evidence
showing the influence of CN on adverse events occurring later
in life, through a mechanism that involves the coordinated action
of glucocorticoids and eCBs. In addition, we observed differences
between males and females exposed to CN in the modulation of
the response to the early life stress, providing further evidence
that maternal care influences the coping to emotional events in
males and females, differently. However, a potential limitation
may be represented by the fact that the core of our analyses
was done during adolescence and, therefore, we cannot extend
our considerations to adulthood. Furthermore, only the emotional
domain of the offspring was assessed, leaving open doors to the
possibility that these sex-dependent changes in the response to
early social manipulations may affect other behavioral domains
(e.g., motor, cognition, social behavior). In addition, the evaluation
of sex differences in the HPA axis response by acute restraint
stress and of CORT levels in rat hair could have added relevant
information. Therefore, further investigations will be useful to
elucidate these aspects.

In conclusion, we found that CN shapes the response to
ESI in the rat PFC differently in males and females and that
glucocorticoids and eCBs influence each other in the modulation
of such a response.
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