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Astrt. In t sttn o Crnot roups (onnt, smply onnt n strt

L roups), w prov  nsty rsult or  BV-typ sp prvously ntrou n [3].

In ton, w rlt t ul o ts BV-typ sp wt t ul o t wll known

sp o untons o ntrns oun vrton. Ts rsults xtn to t sttn o

Crnot roups som proprts stu y Pu  Torrs n [22] n [23] n t Euln

sttn.

Sunto. S prov un rsultto  nst pr uno spzo  tpo BV nll’mto  rupp

 Crnot (rupp  L onnss, smplmnt onnss  strtt)  ntrootto n

[3]. Com onsunz  qusto rsultto  nst smttono n rlzon lo spzo ll

unzon  vrzon (ntrns) lmtt on l ul  qusto spzo. Qust rsultt

stnono l so  rupp  Crnot lun proprt stut n mto ulo 

Pu  Torrs n [22] n [23]
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1. Introution

A Carnot group G of step κ is a connected, simply connected Lie group whose Lie

algebra g admits a step κ stratication, i.e. there exist linear subspaces V1, ..., Vκ such

that

(1) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ ̸= 0, Vi = 0 if i > κ,
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where [V1, Vi] is the subspace of g generated by the commutators [X, Y ] with X ∈ V1 and

Y ∈ Vi. We denote by Q the homogeneous dimension of G dened by

(2) Q :=

κ

i=1

i dim Vi.

The integer Q turns out to be the Hausdor dimension of G when seen as a metric space

(see precise denitions and properties of Carnot groups contained in Section 1).

In [3] the authors considered in the setting of Carnot groups the problem of studying

distributions F for which there exists a continuous horizontal vector eld Φ, vanishing at

innity, that solves the equation divHΦ = F . The analogous problem for the Euclidean

case has been considered by De Pauw and Torres in [10].

In [3] was introduced the space BV Q/Q−1(G), dened as the set of all functions in

LQ/Q−1(G) whose distributional gradient (regarded as a measure) has nite total varia-

tion. One of the main feature of this space is that the BV -space in Carnot groups, rst

introduced e.g. by [14] and [16] and here denoted by BVH(G), is such that BVH(G) →
BV

Q/Q−1
H (G) ⊂ BVH,loc(G) (see Section 2 below). In [3] it was also studied a closed sub-

space of the dual space of BV Q/Q−1(G), denoted by Ch0(G), and it was proved that its

dual is isomorphic to BV Q/Q−1(G) and that the equation divHΦ = F admits as a solution

a continuous horizontal vector eld Φ vanishing at innity if and only if F ∈ Ch0(G).

In Phuc-Torres [22] was shown that there is a connection between the problem of

characterizing the dual of BV and solving the equation divΦ = F . Since in [3] the

dual space of BV Q/Q−1(G) is connected with the study of the solvability of the equation

divHΦ = F in this note we want study some more properties of BV Q/Q−1(G). The main

results of this paper are contained in Section 3, were we prove that the spaces BVH(G)∗

and

BV

Q/Q−1
H (G)

∗
are isometrically isomorphic.

The paper is organized as follows. In the Section 2 we recall some basic facts about

Carnot groups and in Section 3 we collect the main results concerning the space BV

in a Carnot group G. In addition we remind some result presented in [3] about space

BV Q/Q−1(G). The main result of this note is contained in Section 4, where we prove that

the space of bounded BV functions with compact support is dense in BV Q/Q−1. Thanks
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to this result we are able to prove that there exists an isometric isomorphism between the

dual of BV and the dual of BV Q/Q−1(G).

2. A w ts out Crnot roups

The denition of Carnot group G as already given above. With the same notation, the

exponential map is a one to one map from g onto G. Using exponential coordinates, we

identify a point p ∈ G with the N -tuple (p1, . . . , pN ) ∈ RN and we identify G with (RN , ·)
where the explicit expression of the group operation · is determined by the Campbell-

Hausdor formula (see, e.g., [11]). In exponential coordinates the unit element e of G is

e = (0, . . . , 0).

The rst layer V1 will be called horizontal layer; a left-invariant vector eld in V1,

identied with a dierential operator, will be called an horizontal deerivative.

From now on, we shall denote by X1, . . . , Xm a basis of V1.

The N -dimensional Lebesgue measure LN , is the Haar measure of the group G. For

any λ > 0, the dilation λ : G → G, is dened as

(3) λ(x1, ..., xN ) = (λd1x1, ...,λ
dNxN ),

where di ∈ N is called the homogeneity of the variable xi in G (see [11] Chapter 1). The

homogeneous dimension of G is dened in (2) We shall assume that Q ≥ 3.

As customary, we also x a smooth homogeneous norm ∥ ·∥ in G (see [25], p. 638) such

that the gauge distance d(x, y) := ∥y−1 · x∥ turns out to be a left invariant distance in G,

which is in fact equivalent to the Carnot-Carathéodory distance (see [1]). We set

B(x, r) := y ∈ G; d(x, y) < r

to denote the open r-ball centered at x ∈ G.

Following e.g. [11], we can dene a group convolution in G: if, for instance, f ∈ D(G)

and g ∈ L1
loc(G), we set

(4) f ∗ g(p) :=


f(q)g(q−1 · p) dq for q ∈ G.
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If f : G −→ R, we denote by vf the function given by vf(x) := f(x−1). We remind that,

if (say) g is a smooth function and P is a left invariant dierential operator, then

P (f ∗ g) = f ∗ Pg.

We remind also that the convolution is again well dened when f, g ∈ D′(G), provided

at least one of them has compact support. In this case the following identities hold

(5) ⟨f ∗ gϕ⟩ = ⟨gvf ∗ ϕ⟩ and ⟨f ∗ gϕ⟩ = ⟨f ϕ ∗ vg⟩

for any test function ϕ, where we use the notation ⟨··⟩ for the duality between D′ and D
(remeber that if T ∈ D′(G), then vT is the distribution dened by ⟨vT ϕ⟩ := ⟨T vϕ⟩ for

any test function ϕ).

The subbundleHG of the tangent bundle TG spanned by the vector elds X1, . . . , Xm
is called the horizontal bundle.

A subriemannian structure is dened on G once one endows each ber HxG of the

horizontal bundle HG with a scalar product. From now on, we shall assume that, at any

x ∈ G, the basis X1(x), . . . , Xm(x) is orthonormal (under the chosen scalar product).

Now, let f : G −→ R be a smooth function, say f ∈ C∞(G). The horizontal gradient of

f is the horizontal vector eld DHf that can be written, with respect to the the horizontal

frame, as

DHf = (X1f, ..., Xmf).

Moreover, if Φ = (ϕ1, . . . ,ϕm) is a smooth horizontal vector eld, say Φ ∈ C∞(G, HG),

its horizontal divergence divH Φ is, by denition, the real valued function

(6) divH Φ :=

m

j=1

Xjϕj .

The same symbols DH and divH will be adopted later, when working with the weak

horizontal gradient and divergence operators (intended in the sense of distributions).

Let J : G −→ R be a mollier (for the group structure), i.e., J ∈ C∞
c (G), J ≥ 0,

supp J ⊂⊂ B(e, 1), and

G J(x) dx = 1. Note that, if one starts from a standard mollier

J dened in (R,+), then the function J(∥x∥) turns out to be a mollier in G. Now, given
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a mollier J , we dene a family of approximations to the identity Jεε>0 by setting

Jε(x) := −QJ(1/εx) .

We remark explicitly that Jε(x) =
vJε(x) for every x ∈ G.

If 1 ≤ p < +∞ and f ∈ Lp(G), then Jε ∗ f −→ f in Lp(G) as  → 0.

3. Som BV-typ sps in Crnot roups: BVH(G) n BV
Q/Q−1
H (G)

3.1. Denitions nd some properties of the spce BVH(G). First, we recall the

denition of functions of intrinsic bounded variation, below denoted by BVH-functions.

There is a wide letterature on BVH-functions in Carnot groups for which we refer, for

instance, to [14], [16], [27], and references therein. Here we limit ourselves to recall the

main results.

Let Ω ⊆ G be an open set. Recall that a function f : Ω −→ R is said to have intrinsic

bounded variation in Ω, and in this case we write f ∈ BVH(Ω), if f ∈ L1(Ω) and

∥DHf∥(Ω) := sup



Ω

f divHΦ dx : Φ ∈ D(Ω, HΩ), ∥Φ∥∞ ≤ 1


< +∞,

where ∥Φ∥∞ = supΦ(x)x : x ∈ Ω.
The quantity ∥DHf∥(Ω) represents the total horizontal variation (or, H-variation) of

the distributional horizontal gradient DHf in Ω. Unless otherwise stated, we shall hence-

forth assume that Ω = G. In this case, the total H-variation of DHf in G will be simply

denoted as ∥DHf∥.
This denition can easily be localized. To this aim, let f ∈ L1

loc(Ω) and assume that

∥DHf∥(V ) < +∞ for every open subset V ⊂⊂ Ω. In this case, we set f ∈ BVH,loc(Ω) to

denote the space of functions of locally bounded H-variation in Ω.

The (total) H-variation is lower semicontinuous with respect to the L1
loc-convergence

and follows because the map f → ∥DHf∥(·) is the supremum of a family of L1-continuous

functionals. Hence, if Ω ⊆ G is an open set and fkk∈N be a sequence in BVH(Ω) such

that fk −→ f in L1
loc(Ω) as k → +∞. Then

∥DHf∥(Ω) ≤ lim inf
k→+∞

∥DHfk∥(Ω).
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If E ⊆ G is a Borel set, we set PH(E) := ∥DHχE∥, where χE is the characteristic

function of E. More generally, if Ω ⊆ G is an open set, we set PH(E,Ω) := ∥DHχE∥(Ω).
The quantities just dened are the H-perimeter of E in G and in Ω, respectively.

The next result is the coarea formula for functions of bounded H-variation (see, e.g.,

[14], [16]).

Theorem 3.1 (Coarea formula). Let f ∈ BVH(Ω) and set Et := x ∈ Ω : f(x) > t.
Then, Et has nite H-perimeter in Ω for a.e. t ∈ R and the following formula holds

(7) ∥DHf∥(Ω) =


R
PH(Et,Ω) dt.

Conversely, if f ∈ L1(Ω) and

R PH(Et,Ω) dt < +∞, then f ∈ BVH(Ω).

Remrk 3.1. Let f ∈ BVH(Ω), t ∈ R, and consider the function gt := maxf, t. As in

the Euclidean case (see, e.g., [17], p. 340), a useful consequence of the coarea formula is

that gt ∈ BVH(Ω) and that ∥DHgt∥(Ω) = ∥DHf∥(Et).

Finally, we have to recall the following fundamental inequality already discussed in

Remark 2.11 of [3].

Remrk 3.2 (Gagliardo-Nirenberg inequality). As is well-known, the classical Gagliardo-

Nirenberg inequality has been generalized to Carnot groups by many authors (and with

dierent aims); see, e.g., [9], [12], [13], [16], [19], [21]. More precisely, if f ∈ D(G), the

inequality states that there exists a geometric constant C
GN

= C
GN

(Q,G) such that

(8) ∥f∥LQ/Q−1 ≤ C
GN

∥DHf∥L1 .

The inequality (8) extends to functions in BVH(G) having compact support.

By adapting the classical Riesz representation theorem to our setting, one can prove

the following structure theorem.

Theorem 3.2. If f ∈ BVH(G), then ∥DHf∥(·) is a Radon measure on G. In addition,

there exists a bounded ∥DHf∥-measurable horizontal section σf : G → HG such that

σf (x)x = 1 for ∥DHf∥-a.e. x ∈ G, and the following holds

(9)



G
f divHΦ dx = −



G
⟨Φ, σf ⟩ d∥DHf∥ ∀Φ ∈ D(G, HG).
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Moreover, µ = σf ∥DHf∥ is a vector measure in HG (see Section 2 in [3] for more

details). Writing σf with respect to the horizontal frame as σf =
m

i=1 σf,iXi, where the

components σf,i : G −→ R (i = 1, . . . ,m) are bounded measurable functions, we have

µ = (σf,1, . . . , σf,m)∥DHf∥. We shall set [DHf ] := µ. Thus, (9) becomes

(10)



G
f divHΦ dx = −



G
⟨Φ, d [DHf ]⟩.

Remrk 3.3 (product rule: a particular case). Let f ∈ BVH,loc(G) and ϕ ∈ D(G). Then,

we claim that

(11) DH(ϕf) = ϕDHf + fDHϕ

as measures.

Proof. We rst show that the equality holds in the sense of distribution. To prove this

claim, we argue exactly as in [28], Proposition 5.3.2. We consider the mollier Jε and we

set fε = Jε ∗ f . Since ϕ fε ∈ D(G) it holds

DH(ϕfε) = ϕDHfε + fεDHϕ .

Since fε → f in L1, in particular fε tends to f as distributions therefore alsoDHfε → DHf

in D′(G). Since ϕ ∈ D(G), also ϕDHfε → ϕDHf in D′(G) and DHϕ fε → DHϕ f

in D′(G). Finally, with the observation that ϕfε → ϕf in D′(G) which implies that

DH(ϕfε) → DH(ϕf) in D′(G), the conclusion of the rst claim follows. To conclude

the proof we need just to notice that the right and the left hand side of (11) are two

distribuition of order 0 that concide on D(G), hence they concide as measures as well.

□

3.2. The spce BV
Q/Q−1
H (G). We introduce another intrinsic BVH-type space, which is

a subspace of LQ/Q−1(G). In the Euclidean setting this space was introduced and studied

in [10] and in the setting of Carnot groups it has been introduced in [3].

Denition 3.1. The space BV
Q/Q−1
H (G) is the set of functions f ∈ LQ/Q−1(G) whose

distributional gradient DHf is a nite vector measure, i.e.,

∥DHf∥ := ∥DHf∥(G) = sup



G
f divHΦ dx : Φ ∈ D(G, HG), ∥Φ∥∞ ≤ 1


< +∞.
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The space BV
Q/Q−1
H (G) is a Banach space when endowed with the norm

∥f∥LQ/Q−1 + ∥DHf∥.

Note also that BV
Q/Q−1
H (G) ⊂ BVH,loc(G).

In [3] several properties of BV
Q/Q−1
H (G) have been proved. Among them, the lower

semicontinuity of the H-variation with respect to the weak convergence in LQ/Q−1(G)

(see [3], Theorem 3.2): if fkk∈N is a sequence in BV
Q/Q−1
H (G) such that fk ⇀ f in

LQ/Q−1(G) as k → +∞, then

(12) ∥DHf∥ ≤ lim inf
k→+∞

∥DHfk∥.

Also an approximation result for BV
Q/Q−1
H (G) is proved in [3] (Theorem 3.3 threin) which

enable to obtain as a consequence the following inequality

Proposition 3.1 (see Corollary 3.4 in [3]). Let f ∈ BV
Q/Q−1
H (G). Then

(13) ∥f∥LQ/Q−1 ≤ C
GN

∥DHf∥.

By (13), if f ∈ BV
Q/Q−1
H (G) it follows that the H-variation ∥DHf∥ is an equivalent

norm to ∥f∥LQ/Q−1 + ∥DHf∥. For this reason, in the sequel the H-variation will be taken

as a norm and we shall set

∥f∥
BV

Q/Q−1
H

:= ∥DHf∥.

Note also that (13) immediatly implies the continuous embedding

(14) BVH(G) → BV
Q/Q−1
H (G).

4. Min rsults

This section contains the main result of this note which is a new density result related

to the space BV
Q/Q−1
H . As a corollary, we deduce a duality property of the space BVH(G):

we prove that the spaces BVH(G)∗ and

BV

Q/Q−1
H (G)

∗
are isometrically isomorphic.

First, we consider the space of bounded functions with compact support that are in

BVH(G), namely

BV ∞
H,c(G) := BVH,c(G) ∩ L∞(G),
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where BVH,c(G) denotes the set of functions in L1
c(G) (i.e., the space of functions in L1(G)

with compact support) with bounded H-variation.

The result below extends Theorem 3.1 in [23] (compare also with [22], Lemma 3.4).

Theorem 4.1. The space BV ∞
H,c(G) is dense in BV

Q/Q−1
H (G).

Proof. We will show that for any f ∈ BV
Q/Q−1
H (G) there is a sequence of functions

fkk∈N ⊂ BV ∞
H,c(G) such that

lim
k→+∞

∥fk − f∥
BV

Q/Q−1
H

= 0.

Step 1. We claim that the space BVH,c(G) is dense in BV
Q/Q−1
H (G), with respect to the

topology induced by the norm ∥ · ∥
BV

Q/Q−1
H

.

Let gkk∈N ⊂ D(G) be a sequence of cut-o functions such that:

(15) χB(e,k) ≤ gk ≤ χB(e,2k), DHgk ≤
C

k
∀ k ∈ N.

Clearly gk has compact support and gk(x) −→ 1 as k → +∞ for every x ∈ G.

Let f ∈ BV
Q/Q−1
H (G) (and note that fgk −→ f in LQ/Q−1(G) as k → +∞).

Since BV
Q/Q−1
H (G) ⊂ BVH,loc(G), by applying the formula in Remark 3.3 we have

DH(ϕf) = ϕDHf + fDHϕ (in the distributional sense and as measures). Thus,

we get that fgk ∈ BVH(G) ⊂ BV
Q/Q−1
H (G). Now, if Φ ∈ D(G, HG), ∥Φ∥∞ ≤ 1,

we can estimate the functional

G⟨Φ, d[DH(fgk − f)]⟩ as follows:




G
⟨Φ, d[DH(fgk − f)]⟩

 ≤


G
gk − 1Φd∥DHf∥+



supp(DHgk)

Φf DHgkdx

≤


G
gk − 1d∥DHf∥+

C

k



B(e,2k)\B(e,k)

f dx (by (15))

≤


G
gk − 1d∥DHf∥+

C

k



B(e,2k)\B(e,k)

f Q/Q−1dx

Q−1/Q

B(e, 2k) \ B(e, k)1/Q

≤


G
gk − 1d∥DHf∥+ C



B(e,2k)\B(e,k)

f Q/Q−1dx

Q−1/Q

.

By the arbitrariness of Φ, taking the supremum on the left-hand side we obtain

∥DH(fgk − f)∥ ≤


G
gk − 1d∥DHf∥+ C



B(e,2k)\B(e,k)

f Q/Q−1dx

Q−1/Q

.
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Finally, since f ∈ LQ/Q−1(G), by the dominated convergence theorem both terms

on the right-hand side vanish as k → +∞. Hence

(16) lim
k→+∞

∥DH(fgk − f)∥ = 0,

which shows the initial claim.

Step 2. We claim that the space BV ∞
H,c(G) is dense in BVH,c(G), with respect to the topology

induced by the norm ∥ · ∥
BV

Q/Q−1
H

.

Let h ∈ BVH,c(G) and let us rst assume that h ≥ 0. In order to prove the

claim, we consider the truncation of h dened, for any x ∈ G, by

hj(x) :=





j if h(x) > j

h(x) if 0 ≤ h(x) ≤ j
∀ j ∈ N.

By the coarea formula (7), we have

∥DH(h− hj)∥ =

 +∞

0

PH(x ∈ G : h(x)− hj(x) > t) dt

=

 +∞

0

PH(x ∈ G : h(x)− j > t) dt

=

 +∞

0

PH(x ∈ G : h(x) > j + t) dt

=

 +∞

j

PH(x ∈ G : h(x) > s) ds.

But since h ∈ BVH,c(G), we have

R PH(x ∈ G : h(x) > s) ds < +∞. Hence, by

the dominated convergence theorem, we infer that

(17) lim
j→+∞

∥DH(h− hj)∥ = 0.

In other words, if h ≥ 0, we have shown that there exists hjj∈N ⊂ BV ∞
H,c(G)

approximating h in the topology induced by the norm ∥ · ∥
BV

Q/Q−1
H

.

The general case can be achieved as follows. Let h ∈ BVH,c(G) and let us

write h = h+ − h−, where h± ≥ 0 denote the positive/negative parts of h. Using

Remark 3.1 it follows that h± ∈ BVH,loc(G) and ∥DHh
±∥(Ω) ≤ ∥DHh∥(Ω) for
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every open set Ω ⊂⊂ G. Therefore ∥DHh
±∥ ≤ ∥DHh∥ < +∞, which implies also

that h± ∈ BVH,c(G). Moreover, we set

h+
j := (h+)j , h−

j := (h−)j ∀ j ∈ N.

From what we have seen above, h+
j − h−

j ∈ BV ∞
H,c(G) and we have

DH [h− (h+
j − h−

j )]
 =

DHh
+ −DHh

− −DHh
+
j +DHh

−
j



≤
DH(h

+ − h+
j )
+

DH(h
− − h−

j )
 −−−−→

j→+∞
0,

where we have used (17). This shows the initial claim.

Combining Step 1 and Step 2, the proof is complete. □

The following corollary extends to our setting an interesting isomorphism result con-

tained in [23].

Corollry 4.1. Let

S :

BV

Q/Q−1
H (G)

∗ −→ BVH(G)∗, S(T ) := T BVH(G),

where ·BVH(G) denotes the restriction to BVH(G) ⊂ BV
Q/Q−1
H (G).

Then, the map S is an isometric isomorphism.

Proof. We start by proving that S is injective. Let T ∈

BV

Q/Q−1
H (G)

∗
be such that

S(T ) = 0. Then, by denition, T BVH(G) = 0. Since BV ∞
H,c(G) ⊂ BVH(G), it follows

that T BV ∞
H,c(G) = 0. But since the space BV ∞

H,c(G) is dense in BV
Q/Q−1
H (G) and T is

continuous, it follows that for any f ∈ BV
Q/Q−1
H (G) there exists fkk∈N ⊂ BV ∞

H,c(G)

such that ∥fk − f∥
BV

Q/Q−1
H

−→ 0 as k → +∞. Hence 0 = T (fk) −−−−−→
k−→+∞

T (f) and this

shows that T (f) = 0 for any f ∈ BV
Q/Q−1
H (G) = 0, which means that T = 0.

It remains us to show that S is surjective. To this aim, let us take T ∈ BVH(G)∗. Note,

in particular, that T BV ∞
H,c(G) is a continuous linear functional. Now we use that BV ∞

H,c(G)

is dense in BV
Q/Q−1
H (G). More precisely, by the classical Continuous Linear Extension

Theorem (see, e.g., [24]), there exists a continuous linear functional T̂ dened on the

whole BV
Q/Q−1
H (G) that extends T . By its very denition, S(T̂ ) = T̂ BVH(G) = T BVH(G),
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and hence S(T̂ ) = T . Moreover, the extended functional T̂ preserves the norm, i.e.,

∥T̂∥
BV

Q/Q−1
H

∗ = ∥T∥BV ∗
H
. Since S(T̂ ) = T , we get that

∥T̂∥
BV

Q/Q−1
H

∗ = ∥S(T̂ )∥BV ∗
H
,

which shows that S is an isometry.

□
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