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The phenomenon of antibiotic resistance stands as a paramount health challenge in the contemporary era. Within a One Health
approach, it becomes crucial to effectively track the dissemination of antibiotic resistance, not only within humans and animals but
also within the environment. To investigate the environment, the honey bee (Apis mellifera) has emerged as a prominent
environmental bioindicator due to its social, behavioral, and morphological features. The objective of this study was to describe
the antimicrobial resistance (AMR) patterns of bacterial isolates from the body surface and the gut of honey bees sampled from 33
colonies throughout the Emilia-Romagna region (Italy). A total of 608 strains were examined for 19 distinct antimicrobial
compounds from various classes, and the results showed that more than 50% of the isolates for eight out of nine provinces showed
characteristics of nonsusceptibility toward amoxicillin and penicillin, and, generally, 98.19% of isolated strains were considered
AMR and 74.67% exhibited multidrug resistance (MDR) characteristics, more frequent in Gram-negative strains (87.74%) than in
Gram-positive ones (60.34%). Additionally, a significant correlation with a lower prevalence of MDR bacteria was demonstrated
for one province (Ferrara, odds ratio (OR)= 3.33, (1.67; 6.64), p¼ 0:0006). In conclusion, this study provides evidence for the
utility of A. mellifera colonies as bioindicators for MDR bacteria, enabling their characterization and distribution at a geographical
level. Additional investigations are required to further explore the potential role of honey bees as bioindicators for antimicrobial-
resistant bacteria, particularly in terms of their association with environmental characteristics.

1. Introduction

Antimicrobial resistance (AMR) is a phenomenon born with
antimicrobial drug discovery and use, whose exponential
growth is racing with improper antimicrobial use both in
human and veterinary medicine [1, 2]. The main institutions
have established surveillance systems for monitoring the
AMR spread in a distinct pathogen bacteria group; in Europe,
it is represented by the European Antimicrobial Resistance
Surveillance Network (EARS-Net) (https://www.ecdc.europa.
eu/en/about-us/networks/disease-networks-and-laboratory-
networks/ears-net-data, accessed June 2023). However, all
these monitoring systems are limited in the sanitary contest
without considering external factors, and within a OneHealth
approach, it can be necessary to evaluate the possible spread of

AMR and multidrug resistance (MDR) bacteria in the envi-
ronment. To date, some studies have found AMR and anti-
microbial resistance genes (ARGs) in different environments,
such as rivers, embankments, and ponds, probably due to
fecal contamination [3, 4]. Farming and husbandry areas
can also be a potential reservoir of AMR and ARGs because
soil bacteria can be influenced by animal manure derived
from animals treated with antimicrobics [5–7]. Urban con-
texts may also be a possible source of transmission of AMR or
ARGs when considering water treatment plants [8] or sani-
tary structures [9]. For this reason, the AMRmay be regarded
as an environmental factor in biomonitoring. Honey bee
(Apis mellifera L.) colonies are commonly used as a bioindi-
cator, thanks to the individual morphology and behavioral
colony characteristics. Individually, they present a body
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surface covered by bristles and hairs, whereby they catch the
pollen and intercept other types of particles during the flight.
Concerning the behavior, they present a huge member popu-
lation and an elevated number of flights of foragers per day,
with a flight radius of around 1.5 km [10–12]. Considering
each bee as a microsampler, the total amount of foragers bees
are able to perform a representative sample of the explored
environment [11]. Besides, the honey bee colonies can be
managed in any type of environment, including marginal,
rural, agricultural, urban, and industrialized areas [10]. All
these characteristics have made honey bee colonies useful
for several environmental biomonitoring plans through the
analysis of bee products and/or their bodies [13–16] to detect
environmental contaminants, such as heavy metals, pesti-
cides, andmicroplastics [15, 17–25], environmental pollutant,
such as atmospheric particulate matters [26–28], and, lately,
plants, animals, human pathogens [15, 29–33], AMR and
ARGs [34–39]. Honey bees can acquire AMR bacteria and
ARGs during the foraging flight, especially during the inges-
tion of nectar and water. Besides, bacteria on flowers can be
picked up by the fimbriae on their bodies during flight activity
[10, 11, 27].

This study aims to describe the AMR patterns of bacterial
strains isolated from the body surface and the gastrointesti-
nal tract of honey bees, sampled from 33 colonies throughout
the Emilia-Romagna region (Italy).

2. Materials and Methods

2.1. Sampling. The study was conducted as a part of the
BeeNet project [40], including a network of 33 apiaries
located in all provinces of the Emilia-Romagna (Supplemen-
tary 1). The sampling was performed in four different peri-
ods of the year, namely November 2021, March 2022, June
2022, and September 2022. All apiaries were sampled during
each monthly sampling period. For each apiary, the province
of origin was considered. Three hives were chosen for each
apiary, and 10 returning foragers have been sampled for each
hive [41, 42]. The 10 foragers have been placed in sterile
25ml tubes type falcon and stored at 4Æ 3°C until analysis.

2.2. Bacterial Isolation and Identification. The bacterial iso-
lation was made from both the body surface and the gastro-
intestinal tract. For bacterial isolation from the body surface,
the 10 foragers belonging to the same colony were put in a
25ml falcon tube with 6ml of sterile physiologic solution and
vortexed for 10 s [43, 44]. The consequent suspension was
streaked by a 10 μl sterile disposable loop onto UTIC (Con-
dalab, Madrid, Spain) agar medium and incubated aerobi-
cally at 37Æ 1°C for 24 hr; for the gastrointestinal tract’s
bacterial isolation, all the 10 foragers used were dissected
and for each forager, the ventriculus (small intestine and
midgut) was extracted and put in 2ml sterile microtubes
with 1.5ml of a sterile physiologic solution to create a pool
with all the 10 guts. Subsequently, the pool was ground with
a microbiological micro pestle and then streaked onto the
UTIC medium as described above and incubated equally.
After the incubation, the bacterial growth was evaluated,
and the different colonies with different colors were isolated

in purity onto theUTIC agarmedium [45]. For the identification
of isolated bacteria, each bacterial colony was subcultured in
Tryptone Soy Agar (TSA) (Oxoid, Basington, UK) medium.
The fresh colonies were identified using Matrix-Assisted Laser
Desorption/Ionization Time-Of-Flight Mass Spectrometry
(MALDI-TOF MS) (Biotyper, Bruker Inc., USA). All the colo-
nies were identified at level species with a minimal score of 1.80
using Bruker Biotyper version 3.0 software.

2.3. Antimicrobial Susceptibility Testing (AST). All the iden-
tified strains were tested for antimicrobial susceptibility to 18
antimicrobials according to the agar diffusion method described
by the Clinical and Laboratory Standard Institute [46]. The 19
antimicrobials tested (see Table 1) are amoxicillin (25μg), amox-
icillin/clavulanic acid (20/10μg), ampicillin (10μg), aztreonam
(30μg), cefotaxime (30μg), cefoxitin (30μg), cephalothin
(30μg), chloramphenicol (30μg), doxycycline (30μg), enroflox-
acin (5μg), erythromycin (15μg), gentamicin (10μg), imipenem
(10μg), nalidixic acid (30μg), penicillin (10U), streptomycin
(10μg), tetracycline (30μg), trimethoprim/sulfamethoxazole
(1.25/23.75μg), and vancomycin (30μg). The antimicrobial sus-
ceptibility was evaluated according to clinical breakpoints pro-
vided by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) or CSLI [46, 47]; the clinical
breakpoints used were reported in Table 1. According to the
National Reference Laboratory for Antimicrobial Resistance
(Reg. 882/2004/CE) “Istituto Zooprofilattico Sperimentale del
Lazio e della Toscana (IZS),” the intrinsic resistance of each
bacterial species was evaluated and excluded from results
(https://www.izslt.it/crab/wp-content/uploads/sites/8/2018/08/
Tabelle-Resistenze-intrinseche-in-batteri-di-interesse-veterina
rio.pdf, accessed June 2023). For AST interpretation, the strains
were divided into “susceptible” and “non-susceptible,”where the
“non-susceptible” category included resistant and intermediate
isolates. Following the definition given byMagiorakos et al. [48],
isolates that were nonsusceptible to at least one antimicrobial
drug were considered AMR, and isolates that were not
susceptible to at least one antimicrobial drug from at least
three different antimicrobial classes were considered MDR.

2.4. Statistical Analysis. For each isolate, data about the prov-
ince of sampling (BO, RA, FC, FE, RN, MO, PC, PR, and RE)
were extrapolated. Nonsusceptibility percentages for each
tested antimicrobial were calculated by dividing the number
of nonsusceptible strains by the number of tested strains.
AMR and MDR percentages were evaluated by dividing the
number of AMR/MDR strains by the number of total strains.
The association between the nonsusceptibility percentages
and province was tested with the Chi-squared test. The alpha
risk was set to 0.05. A multivariate logistic regression was
performed to assess the relation between AMR/MDR and
province. Data were checked for multicollinearity with the
Belsley–Kuh–Welsch technique. Heteroskedasticity and nor-
mality of residuals were assessed respectively by theWhite test
and the Shapiro–Wilk test. A p-value< 0.05 was considered
statistically significant. For the evaluation of the correlation
between antimicrobials found to be statistically significant
distributed by province and the livestock density, the
Shapiro–Wilk tests were used. Pearson’s coefficient was
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used to assess the correlation, judged very strong from 1 to
0.9, strong from 0.9 to 0.7, moderate from 0.7 to 0.5, low from
0.5 to 0.3, and poor from 0.3 to 0. The alpha risk was set to
0.05. Statistical analysis was performed with EasyMedStat
(version 3.24; https://www.easymedstat.com). Bovine and
swine populations were the only animal species considered,
since they represent the most frequent type of livestock in the
considered area (National Database of Italian Zootechnical
Registry (BDN) https://www.vetinfo.it/j6_statistiche/index.
html#/, accessed June 2023).

3. Results

3.1. Bacteria Isolation and Identification. A total of 608
strains, belonging to 29 genera and 79 species, were isolated.
In detail, 84 strains (13.82%) were isolated from the body sur-
faces of foragers, while 524 (86.18%) were from the gut. Three-
hundred-eight strains (52.3%) were classified as Gram-negative
bacteria, while 290 (47.7%) as Gram-positive. All genera and
species identified are reported in Supplementary 2. Considering
the sampling period, a total of 97, 138, 207, and 166 bacteria
were isolated, respectively, in November 2021, March 2022,
June 2022, and September 2022, as shown in Figure 1.

The higher percentage of the strain isolated belonged to
the genus Bacillus (27%), isolated in all provinces; the other
two bacteria genera isolated in all provinces were Klebsiella
spp., Pantoea spp., and Enterobacter spp., which represented
8.39%, 8.22%, and 15.95% of the total bacteria isolated,
respectively (Figure 2).

3.2. Antimicrobial Susceptibility Testing and Multivariate
Analysis. AST results and percentages for each tested drug
of the total number of isolated strains and other categories
(Gram-positive, Gram-negative, isolation from the gut or

external surface) are shown in Table 2. Five hundred
ninety-seven isolates (98.19%) were considered AMR, while
454 (74.67%) were considered MDR (Figure 3).

The highest percentages of nonsusceptibility strains
resulted in amoxicillin and penicillin with percentages of
62.99% and 62.34%, respectively, followed by erythromycin
(59.11%), ampicillin (54.95%), and aztreonam (54.82%);
these results were in line with the categories considered
(Gram-positive, Gram-negative, isolation from the gut or
external surface) except for Gram-positives, where the only
nonsusceptibility percentages above 50% were for cefotaxime
and aztreonam (Table 2).

The nonsusceptibility percentages distribution of isolates
by sampling province are shown in Table 3. Among all the
molecules tested, amoxicillin and penicillin resulted in
higher percentages of nonsusceptibility (> 50% of strains
isolated) in all the provinces but Ferrara, where the corre-
sponding percentages were 48.75% for amoxicillin and
46.15% for penicillin. Among all provinces, the highest per-
centage for amoxicillin was in Modena (71.79%); instead, the
highest percentage for penicillin was in Reggio Emilia
(69.39%). Regarding ampicillin and aztreonam, the nonsus-
ceptibility percentages of isolates were above 50% in six out
of nine provinces (except Ferrara, Modena, and Reggio Emi-
lia for aztreonam and Ravenna, Forlì-Cesena, and Ferrara for
ampicillin). Considering erythromycin, the strains presented
nonsusceptibility percentages above 50% in seven provinces
except for Ferrara and Rimini, and the highest value was
recorded in the Modena province, with 84.21% of isolates
found to be nonsusceptible (Table 3). In the statistical analy-
sis between the province and the single-drug nonsusceptibil-
ity, the p-value was considered statistically significant for
FOX (p¼ 0:002), AX (p¼ 0:020), CTX (p¼ 0:017), DO
(p<0:001), TE (p¼ 0:003), and KF (p¼ 0:010). In

TABLE 1: List of antimicrobials used, their relative classes, acronyms, concentration, and resistance breakpoint utilized.

Antimicrobials Classes Acronyms Concentration Resistance breakpoint (mm)

Amoxicillin Penicillins AX 25 μg ≤ 20
Amoxicillin/clavulanic acid Penicillin and beta-lactamase inhibitors AMC 20/10 μg ≤ 17
Ampicillin Penicillins AMP 10 μg ≤ 16
Aztreonam Monobactams ATM 30 μg ≤ 20
Cefotaxime 3rd cephalosporins generation CTX 30 μg ≤ 22
Cefoxitin 2nd cephalosporins generation FOX 30 μg ≤ 17
Cephalothin 1st cephalosporins generation KF 30 μg ≤ 17
Chloramphenicol Amphenicols C 30 μg ≤ 17
Doxycycline Tetracyclines DO 30 μg ≤ 13
Erythromycin Macrolides E 15 μg ≤ 22
Gentamicin Aminoglycosides CN 10 μg ≤ 14
Imipenem Carbapenems IPM 10 μg ≤ 15
Nalidixic acid Quinolones NA 30 μg ≤ 18
Penicillin Penicillins P 10U ≤ 28
Streptomycin Aminoglycosides S 10 μg ≤ 14
Tetracycline Tetracyclines TE 30 μg ≤ 18
Trimethoprim/sulfamethoxazole Sulphamides SXT 1.25/23.75 μg ≤ 15
Vancomycin Glycopeptides VA 30 μg ≤ 16
Enrofloxacin Fluoroquinolones ENR 5 μg ≤ 19
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multivariate analysis, FE province (odds ratio (OR) =3.33, (1.67;
6.64), p¼ 0:0006)was associatedwith lower percentages ofMDR.

A strong positive correlation was found between TE non-
susceptibility percentages and bovine density (ρ= 0.74;
r2= 0.542; p¼ 0:024) and between DO percentages and
swine density (ρ= 0.72; r2= 0.517; p¼ 0:029). A strong pos-
itive correlation was found between the percentage of non-
susceptibility to at least one of the two tested tetracyclines
and swine (ρ= 0.77; r2= 0.591; p¼ 0:016) and bovine den-
sity (ρ= 0.8; r2= 0.634; p¼ 0:01). These results are shown in
Figure 4.

4. Discussion

Honey bees are widely considered excellent bioindicators due
to their distinctive characteristics [13, 30, 49]. Notably, for
AMR, bees have demonstrated their potential as specific

indicators [34, 50], providing insights into the epidemiologi-
cal distribution of ARGs.

In this study, 608 bacterial strains were isolated from bees
collected from apiaries distributed across all nine Emilia-
Romagna region provinces. These strains were subsequently
identified; some identified species, such as Escherichia coli,
Klebsiella pneumoniae, Enterococcus faecium, and Staphylo-
coccus aureus, are widely recognized as commensal organ-
isms but also have the potential to be pathogenic and cause
infectious diseases in both animals and humans [51–55].
These species are included in the list of “priority pathogens”
redacted by the World Health Organization [56], namely
bacteria for which new antimicrobials are urgently needed.
The possibility of comparing their susceptibility to antimi-
crobials between the clinical and environmental settings,
using bee colonies as bioindicators, may provide insights
into the indirect effects of antimicrobial use in healthcare
on the environment. Furthermore, it could potentially serve
as an indication for improving the management of antimi-
crobial treatments for specific bacterial species of interest.
The results of this investigation indicated also that isolated
strains genera and species change during the sampling
period. According to previous studies, the bee microbiota
and their colonizing bacteria strains change seasonally,
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probably due to different ontogenic and climate conditions,
including diets and environments, which influence the
growth percentages of bacteria [31, 33, 43, 44, 57, 58].

All isolated strains were tested for their susceptibility to
different classes of antimicrobials, and the results revealed
alarmingly high percentages of nonsusceptibility, which can
be considered indicative of the regional AMR situation.

The results indicate that, in nearly all of the different
antimicrobials considered, amoxicillin and penicillin exhib-
ited higher percentages of nonsusceptibility among the iso-
lated strains. This finding can be attributed to the fact that
the penicillin class is extensively used in Italy, both in human
medicine and, based on preliminary data from the Italian
Drug Association, in animal husbandry as well (https://
www.aifa.gov.it/documents/20142/1853258, accessed June
2023). Due to the incompleteness of these data, making an
accurate comparison is challenging. Nevertheless, it still pro-
vides some insight into the use of honey bee colonies as
indicators for the spread of antimicrobial-resistant bacteria
to specific antimicrobials.

The resistance percentages observed against antimicro-
bials classified as the highest priority for human medicine by
the World Health Organization are of particular concern
(https://www.who.int/publications/i/item/9789241515528,
accessed June 2023), such as quinolones, carbapenems, peni-
cillins with beta-lactamase inhibitors, macrolides, and others
[59]. Given that the use of antibiotics is prohibited for bees in

TABLE 2: Percentage of nonsusceptibility for each molecule tested out of the total strains isolated.

% of Nonsusceptible
% of Gram-positive

(47.7)
% of Gram-negative

(52.3)
% of Ventriculum

(86.2)
% of External
surface (13.8)

FOX 33.61 23.27 44.44 32.27 41.43
VA 50.52 11.17 96.07 49.07 58.33
SXT 5.10 4.83 5.35 5.34 3.57
IMP 4.11 1.38 6.60 4.58 1.19
AX 62.99 37.59 86.16 63.5 59.52
AMP 54.95 31.38 86.93 54.42 57.81
AMC 52.25 27.35 79.73 51.89 54.29
CN 5.59 5.17 5.97 6.11 2.38
CTX 37.99 52.41 24.84 39.12 30.95
ATM 54.82 74.82 37.54 55.36 51.28
S 32.4 13.45 49.69 32.63 30.95
P 62.34 32.76 89.31 63.17 57.14
C 9.23 5.86 12.30 9.75 5.95
DO 11.19 13.10 9.28 11.22 10.98
TE 14.39 6.30 21.90 14.16 15.79
NA 31.93 29.20 34.28 31.71 33.33
E 59.11 31.07 91.57 58.02 65.00
KF 48.92 27.62 71.75 48.47 51.43
ENR 26.81 25.52 27.99 28.05 19.05
AMR 98.19 96.9 99.37 98.66 95.24
MDR 74.67 60.34 87.74 75.00 72.62

Note: Nonsusceptibility percentages considering Gram-positive and Gram-negative strains, as well as percentages considering the origin of isolation (ventricle
or external surface), are reported. The percentage value of AMR and MDR for each category is given in the last two rows. In brackets, the percentage value of
strains belonging to the category compared to the total strains isolated.
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Europe (https://eur-lex.europa.eu/legal-content/IT/ALL/?
uri=celex:32004L0028, accessed June 2023), it can be
excluded the possibility that the isolated bacteria have expe-
rienced selective pressure from direct drug treatments,
enabling them to acquire nonsusceptible traits. Instead, these
traits likely stem from surrounding environmental contami-
nation, particularly through resources such as water and
pollen. Notably, no significant differences were observed in
terms of genus/species variability and AMR patterns between
samples collected from the external surface and the gut, sug-
gesting that both sites serve as valid indicators. It is worth
noting that the gut provides a more favorable physiological
environment for bacterial growth and colonization com-
pared to the external surface, which was reflected in a higher
number of isolates obtained from the gastrointestinal
tract [49].

Generally, Gram-negative bacteria exhibited higher resis-
tance percentages, likely attributed to their propensity for
acquiring mobile resistance elements, such as plasmids, as
compared to Gram-positive bacteria [60]. However, this
evaluation is based on phenotypic qualitative assessment,
and further genotypic analysis is necessary to confirm this
hypothesis, and it should be acknowledged as a limitation of
the study.

Another important aspect to consider is the variation in
resistance percentages across different provinces, which
underscores the potential of honey bees as bioindicators
for detecting geographic differences. Although the limited
number of apiaries sampled does not allow to conclude
that the differences between provinces are truly representa-
tive of the real AMR situation, it can be speculated that the
results from each apiary somehow reflect the area in which
they are located and their sum can be considered a partial
representation of the AMR situation in the province. Inter-
estingly, one particular province (FE) exhibited statistically
significant lower percentages of MDR bacteria. It is currently
impossible to determine the exact origin of this specific situ-
ation, and we are unable to formulate a specific hypothesis
regarding its cause. Analyzing the land use and weather con-
ditions during the sampling period could potentially provide
valuable insights and help identify explanatory variables.
Indeed, previous studies have demonstrated that the urban
environment, characterized by human activities, serves as a
reservoir for AMR due to factors like water disposal systems
and pollution [9, 61, 62]. Additionally, specific molecules,
including cephalosporins (CTX, FOX, KF), tetracyclines
(DO, TE), and penicillins (AX), were found to be statistically
associated with provincial disparities. Once again, it is not
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FIGURE 4: Geographical distribution of tetracyclines and TE nonsusceptibility percentages compared with swine and bovine density.
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possible to determine the exact reason for this disparity. A
possibility could be to conduct a cross-analysis that might
reveal a correlation between the total consumption of anti-
microbials (including human and animal use) in the different
provinces and the results obtained in this study. However,
such data are not publicly available, and the only aspect we
can emphasize is the fact that the utilization of bee colonies
highlights a geographical disparity for certain antimicrobials
and that these findings are important in evaluating their
potential use as bioindicators. The honey bees have long
been recognized as reservoirs for various tetracycline resis-
tance genes [63, 64]. Furthermore, as shown in Figure 4 and
the statistical analysis, the comparison of geographical dis-
tributions of resistance to TE and DO reveals some correla-
tion with the density of swine and bovine farms in the
respective areas (measured in animals per km2). This corre-
lation has to be considered in relation to the use of this
antimicrobial class in livestock. In Italy, tetracyclines are
frequently used in livestock animals (they represent 23.2%
of total antimicrobials sales in 2021) (https://www.salute.gov.
it/imgs/C_17_pubblicazioni_3281_allegato.pdf, accessed
June 2023) in both swine and bovine farms (19% and 28%,
respectively). Although data about tetracyclines consump-
tion in livestock for each province were not available, it
can be speculated that the antimicrobial use is proportional
to the animal density for each province and that the non-
susceptibility percentages toward tetracyclines found in bees
could reflect their use in farms. Considering cephalosporins,
the distribution among provinces was found to have statisti-
cal significance, but no strong correlation with bovine or
swine density was identified. This lack of correlation could
be attributed to the limited usage of cephalosporins in live-
stock, accounting for only 0.2% of total sales in 2021. As a
result, it is not possible to establish a direct connection with
animal husbandry. However, the influence of urban and
industrial settings with high human activities can be hypoth-
esized as a contributing factor.

In general, it can be argued that honey bees act as
location-dependent bioindicators, reflecting the selective
pressure exerted by antibiotics in localized areas. This phe-
nomenon is attributed to the foraging and drinking activities
of honey bees, as well as the horizontal transfer of resistance
genes within their microbiota [36, 65].

5. Conclusions

This study indicates another use of honey bee colonies as
bioindicators for human, animal, and environmental health.
The observed high percentages of nonsusceptibility highlight
the importance of considering this insect species within a
One Health approach. Honey bee colonies can be used as a
readily accessible and sensitive indicator for evaluating the
geographic distribution of certain antimicrobic resistances.
Specifically, the statistical association between MDR percen-
tages and province suggests a potential use in terms of AMR
location-dependent bioindicators, especially for some anti-
microbials such as tetracyclines and cephalosporins, for
which honey bees seemed to show a specific sensitivity.

The potential link between AMR percentages in honey
bees and the antimicrobial use in both humans and animals
and its use for surveillance purposes still needs to be better
investigated, especially in the broader context of a One
Health perspective.
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