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A B S T R A C T

Spiking Neural Networks (SNN) promise extremely low-power and low-latency inference on neuromorphic
hardware. Recent studies demonstrate the competitive performance of SNNs compared with Artificial Neural
Networks (ANN) in conventional classification tasks.

In this work, we present an energy-efficient implementation of a Reinforcement Learning (RL) algorithm
using SNNs to solve an obstacle avoidance task performed by an Unmanned Aerial Vehicle (UAV), taking a
Dynamic Vision Sensor (DVS) as event-based input. We train the SNN directly, improving upon state-of-art
implementations based on hybrid (not directly trained) SNNs. For this purpose, we devise an adaptation of
the Spatio-Temporal Backpropagation algorithm (STBP) for RL. We then compare the SNN with a state-of-art
Convolutional Neural Network (CNN) designed to solve the same task. To this aim, we train both networks
by exploiting a photorealistic training pipeline based on AirSim. To achieve a realistic latency and throughput
assessment for embedded deployment, we designed and trained three different embedded SNN versions to be
executed on state-of-art neuromorphic hardware, targeting state-of-the-art.

We compared SNN and CNN in terms of obstacle avoidance performance showing that the SNN algorithm
achieves better results than the CNN with a factor of 6× less energy. We also characterize the different SNN
hardware implementations in terms of energy and spiking activity.
Spiking Neural Networks (SNN) are sometimes referred to as the
third generation of Artificial Neural Networks (ANN) [1] since their
behaviour is closer to the mammalian biological brain than the pre-
vious generations. The main difference between the standard neural
networks, also referred to as the second generation ANNs, and the
SNNs is the computational unit, namely the neuron. In ANNs, neurons
are described by a function called activation function, while in SNNs,
neurons, called spiking neurons, are modelled by a system of Ordinary
Differential Equations (ODE). An ODE system describes the spiking
neuron as a dynamic system in which a hidden state, called membrane
potential, is accumulated. If it crosses a threshold on the rising edge,
it emits an event (or pulse), also referred to as a spike. Spikes are
the means for neurons to communicate with each other; a sequence
of them is called a spike train. The presence of the spikes enables
asynchronous communication among the neurons. Due to the complex
nature of the SNNs, they hold the potential to have the potential to
mimic key features of the mammalian brain, such as low latency, fast
inference and energy efficiency.

∗ Corresponding author.
E-mail address: luca.zanatta3@unibo.it (L. Zanatta).

The scientific community and major semiconductor companies, like
Intel and IBM, have recently proposed optimized hardware implemen-
tation of the spiking neurons and/or the asynchronous communication
between them, with the goal of (i) simulating neurocircuitries effi-
ciently, (ii) evaluating the computational efficiency of SNNs on lab
experiments, and (iii) apply SNNs on real-life problems.

The hardware platforms that nowadays support the direct execution
of SNNs on specialized hardware are often referred to as ‘‘neuromor-
phic’’. Given the multitude of goals and youth of the technology, several
conceptually different silicon implementations do exist. Intel Loihi [2]
is a digital chip developed by Intel, consisting of an asynchronous
mesh connecting programmable digital neurons. DYNAPs is a mixed-
signal chip in which the neurons are described by analogue circuits
connected by a digital asynchronous network [3]. TrueNorth is a digital
chip developed by IBM [4] and consists of digital neurosynaptic cores
and an asynchronous network-on-chip. Larger systems, which allow
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simulating large-scale SNNs in real time, have also been proposed in
the past, for example, Neurogrid [5]. In the embedded domain, SNE
is a digital IP targeting neuromorphic accelerators to be integrated
into heterogeneous SoC. Indeed, SNE provides ultra-low power SNN
inference thanks to its custom and specialized microarchitecture. SNE
has been integrated with tightly coupled standard RV32 host processors
and multi-core cluster accelerator in the Kraken SoC [6].

Thanks to that, SNE can be reprogrammed at a low cost by the RV32
host processor. Furthermore, spiking events can be exchanged between
SNE and the host processor.

Different families of training algorithms have been proposed for
SNNs: (i) the biological-inspired ones, which are based on the Spike-
Timing-Dependent-Plasticity (STDP); (ii) hybrid methods which con-
vert the trained ANNs into SNNs and do not use the full expressiveness
of the SNN in the training phase and (iii) gradient-based methods which
approximate the spike derivative.

Deep Reinforcement Learning (RL) is helpful for training robots
since it is challenging to create an offline dataset that catches all the
features of the environment, while the RL paradigm allows the robot
to learn in real time from direct interaction with the environment [7].
Furthermore, RL has been successfully exploited to train a robot in a
simulation environment before deploying it in the real world [8].

RL tasks are characterized by a temporal dimension and high com-
plexity. In this context, SNNs represent a promising approach to solving
such tasks efficiently [9]: on one side, they inherit a time dimension
feature, and as neuron dynamics capable of storing information in the
membrane potential, on the other side, it has been proven that SNNs
have a higher expressiveness compared to conventional ANNs [1]. Until
now, RL tasks have been typically deployed on highly computationally
capable platforms [10]. This trend is changing, and complex cognitive
tasks are expected to be deployed on more computational resource-
constrained nano, and pico-sized vehicles [10]. In this domain, the
energy efficiency of SNNs is particularly appealing.

Since deep reinforcement learning with SNNs is less studied com-
pared to supervised learning, it is essential to compare SNNs with the
more established ANNs to establish a solid baseline. In this paper, we
compare an SNN and an ANN in a challenging obstacle avoidance task
in which the networks are trained with the RL algorithm. More in
detail, the main contributions of the paper are:

• An adaptation of the Spatio-Temporal BackPropagation
(STBP) [11] SNN training method for RL.

• A direct comparison between an ANN and its SNN counterpart,
trained on the same RL setting.

• The creation of a plugin for QuantLab [12] to support the quan-
tization of the proposed SNN.

• A design and implementation of the SNN on low-power neuro-
morphic hardware, the SNE [13].

• A new approach, called pqeSCNN, leverages the capability of SNE
to be embedded in an SoC to reduce the accuracy drop induced
by the HW quantization. The proposed technique computes the
last layer of the SNN at full FP32 accuracy by the host processor,
while the remaining layers are computed with 4 bit quantization
by the SNE HW accelerators.

• An evaluation of the energy consumption of the proposed embed-
ded SNN when deployed on a dedicated hardware accelerator.

o train and evaluate the neural networks, we create an end-to-end
hotorealistic pipeline in which the environment is a 70 m long lane
ull of obstacles. In this setup, we show that the SNN has a higher
erformance since it reaches the end of the lane 98% of the time,
ompared to 89% of the CNN.

Furthermore, we adapt the SNN to fit the SNE (the neuromor-
hic accelerator integrated into the Kraken SoC) computation engine
haracteristics, particularly the 4 bit quantized weights and the 8 bit
uantized membrane potential and the absence of biases. To this aim,
2

e first explored the performance of the SNN by removing biases: This
Fig. 1. Reinforcement training loop. The agent acts in the environment thanks to the
action 𝑎𝑡, the environment evolves and communicates the new state 𝑠𝑡 and the reward
𝑟𝑡 to the agent.

network reaches the goal 77% of the time. By fixing as a reference the
performance of the original SNN, we obtain that the distance that 98%
of the drones can reach is 35 m.

Subsequently, we designed two quantized networks: (i) One
(qeSCNN), which accumulates the membrane potential in 8 bit integer
variables that can entirely run in SNE; (ii) The other (pqeSCNN), which
computes the last layer membrane potential in the Kraken RISC-V-based
multi-core cluster using 32 bit floating-point variables. Both networks
are post-training quantized. These two networks allow us to evaluate
the impact of post-training quantization on the SNN. This turns out to
be more severe than the bias removal, as both the two networks do not
reach the goal. Using the original SNN as a reference (distance reached
by 98% of drones), the first network (qeSCNN) achieves a distance of
1 m while the latter reaches 16 m.

Regarding energy consumption, we report the inference energy
measurements of the quantized versions, compared with an implemen-
tation of the CNN version on an SoA reference architecture. Notwith-
standing the remaining performance drop of the quantized versions,
we conclude that SNN can perform the considered RL task with an
order of magnitude less energy than CNNs, opening the way to further
exploration of their adoption in RL.

1. Background

1.1. Reinforcement learning

The Reinforcement Learning (RL) paradigm is a hot area of research
since it promises to solve complex problems in control tasks and
robotics and because it mimics the human learning behaviour too [7].
RL differs from supervised and unsupervised learning since it has the
following distinctive characteristics: (i) a lack of oracle, (ii) sparsity
of feedback and (iii) data generated during the training [7]. Fig. 1
shows a generic RL loop. The agent acts in the environment and, as
a consequence of its actions, the environment changes. Examples of
agents are drones, cars, robots, humans, neural networks, etc. The
environment is what surrounds the agent. In RL, simulators are used to
mimic an agent (or more) and its environment. As it is shown in Fig. 1,
the agent, according to an action-producing function called policy (𝜋),
hooses an action (𝑎𝑡) for modifying the environment. When the action

is chosen, the environment will change according to the transition
function. The environment communicates the goodness of the action
chosen through rewards (𝑟𝑡) and the new state (𝑠𝑡) reached by the agent.
ince the sensors used by the agent for tracking the state may not detect
ll the features of the environment, a history of a few stacked samples
is used [7].
An RL algorithm can be classified as follows:

• model-based or model-free;
• policy-based or value-based;

• on-policy or off-policy.
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A model-based algorithm is a powerful model in which the al-
gorithm tries to predict the following observations and/or rewards,
acting in the best possible way to achieve the goal. The model-based
models are used when the environment and its rules are well known.
An example is the RL applied to chess games [14]. On the opposite
side, there are model-free algorithms. In this set, the algorithm does not
build the model of the environment. This family is suitable when the
environment and its rules are not well known or when the environment
is not deterministic [14]. A policy-based algorithm is an algorithm in
which the policy is learned, i.e. the agent learns the distribution of
the actions that the agent should perform at each step. In contrast,
a value-based algorithm is an algorithm in which the agent learns to
give a score to each action and then acts in the environment with the
best one. The distinction between on-policy and off-policy regards the
use of the samples collected by the agent: if the training of the agent
is performed with the samples collected from different policies, the
algorithm is called off-policy otherwise is called on-policy [14]. In our
work, we use a Double Deep Q-Network (D2QN), which is a model-free,
value-based and off-policy algorithm.

1.2. Spiking Neural Networks

A Spiking Neural Network (SNN) is a network that is composed
of spiking neurons. In literature, various neuron models have been
proposed, and one of the most common is the Leaky Integrate-and-Fire
(LIF) model, described by the following equation:

𝜏
𝑑𝑣(𝑡)
𝑑𝑡

= −𝑣(𝑡) + 𝐼(𝑡) (1)

here 𝜏 is a time constant, 𝑣(𝑡) is the membrane potential and 𝐼(𝑡)
s the pre-synaptic current. For the sake of discrete time algorithmic
mplementation, Eq. (1) can be rewritten recurrently, in which the
embrane potential at time 𝑡+1 is a function of the membrane potential

t time 𝑡:

(𝑡 + 1) = 𝑣(𝑡)𝑒−
𝑑𝑡
𝜏 + 𝐼(𝑡) (2)

where 𝑑𝑡 is the integration step of the simulation of the network. We
will refer to it as tick. The input current is defined as:

𝑛
𝑖 (𝑡) = 𝑏𝑛𝑖 +

𝑙(𝑛−1)
∑

𝑗=1
𝑤𝑛

𝑖𝑗𝑧
𝑛−1
𝑗 (𝑡 − 1) (3)

here 𝑛 is the layer, 𝑗 is the index of the pre-synaptic neuron, 𝑖 is the
ndex of the post-synaptic one, 𝑏 is the bias (a.k.a. constant current),

are the weights, and 𝑧(𝑡) are the impulses emitted by the neurons,
alled spikes:

(𝑡 + 1) =

{

1 if 𝑣(𝑡) ≥ 𝑣𝑡ℎ
0 otherwise

(4)

ccording to Eq. (4), a spike is generated if the membrane potential
eaches the threshold in its rising edge.

Depending on the design, the neuron, after emitting a spike, can
volve in two different ways: (i) Reset its 𝑣(𝑡) to a fixed value called
est membrane potential 𝑣𝑟𝑒𝑠𝑡 (hard-reset) [11]:

(𝑡 + 1) =

{

𝑣𝑟𝑒𝑠𝑡 if 𝑧(𝑡) = 1
𝑣(𝑡 + 1) if 𝑧(𝑡) = 0

(5)

(ii) subtracting the threshold from the 𝑣(𝑡) (soft-reset) [9]:

(𝑡 + 1) =

{

𝑣(𝑡) − 𝑣𝑡ℎ𝑟 if 𝑧(𝑡) = 1
𝑣(𝑡 + 1) if 𝑧(𝑡) = 0

(6)

If the spiking behaviour is disabled, the neuron is a ‘‘non-spiking
3

IF’’. In our work, we use both neuron models.
.3. Spiking Neural Network training

The training of SNNs is a non-trivial task since the function used to
reate the spikes is not differentiable. Hence different training methods
ave been developed. We can group these methods into (i) Biological
ccurate methods, (ii) hybrid methods and (iii) gradient descend-based
ethods. In the first family, we find all the methods based on Spike-
iming-Dependent Plasticity (STDP). The issues with these approaches
re mainly two: only shallow networks can be trained with it, and
TDP acts mostly as a switch for the connections. These two issues
educe the expressiveness of the network. This training family has been
sed to solve tasks in supervised learning as [15] in which the au-
hors classified MNIST in a semi-supervised way and in reinforcement
earning as [16] in which the authors solve a really simple obstacle
voidance task in which a LEGO robot has to avoid the walls and an
bstacle placed in the middle of the environment, [17] in which a
ane keeping problem is solved, and [18] in which the control of a
obotic arm is performed. In the second training family, an ANN is
rained, and then it is converted into SNN. NengoDL [19] is the state-
f-the-art framework implementing this training technique. Different
asks were solved with this method, such as [20] in which an obstacle
voidance task is performed, [21] in which the authors teach a network
o drive using LiDAR and [22] in which the authors solve the OpenAI
ym atari games [23]. The downside of this approach is that, during

he training phase, the expressive potential of the SNNs is not fully
xploited, which is supposed to be greater than the ANNs one [1]. The
ast family uses backpropagation or its approximation to overcome the
raining issues created by the non-differentiable activation function of
he spiking neurons. Some of well known algorithms are e-prop [9],
pikeprop [24], STBP [11] and Slayer [25]. With this family of training
lgorithms, the SNNs were used in image classification [25,26], in
nomalies detection [27] and in reinforcement learning [9,28,29]. A
ell-known training method called Spatio-Temporal BackPropagation

STBP) [11] overcomes the problem of the non-differentiable spike
unction using different curves called pseudo-derivative ℎ(𝑣):

ℎ(𝑣) = 1
𝑎
𝑠𝑖𝑔𝑛

(

|𝑣 − 𝑣𝑡ℎ𝑟| <
𝑎
2

)

(7)

ℎ(𝑣) =
(

√

𝑎
2

− 𝑎
4
|𝑣 − 𝑣𝑡ℎ𝑟|

)

𝑠𝑖𝑔𝑛
(

2
√

𝑎
− |𝑣 − 𝑣𝑡ℎ𝑟|

)

(8)

(𝑣) = 1
𝑎

𝑒
𝑣𝑡ℎ𝑟−𝑣

𝑎

(

1 + 𝑒
𝑣𝑡ℎ𝑟−𝑣

𝑎
)2

(9)

ℎ(𝑣) = 1
√

2𝜋𝑎
𝑒−

(𝑣−𝑣𝑡ℎ𝑟 )
2

2𝑎 (10)

where 𝑎 is the peak width of the derivative and, from top to bottom,
they represent the derivative of the rectangular function, the polyno-
mial function, the sigmoid function, and the Gaussian function [11].
In our work, we use reset LIF and both the spiking and non-spiking
neurons.

1.4. Dynamic Vision Sensor

The Dynamic Vision Sensor (DVS) is a neuromorphic event-based
sensor that mimics the eyes of animals. In DVS, each pixel holds a
memorized brightness value and emits an event when it detects a
change in the log luminance. A DVS does not detect the background;
hence it does not send redundant information. Therefore, the output
of a DVS is an array of asynchronous and sparse events in which each
element is composed of the x–y coordinates of the pixel, its timestamp
and polarity, which can be 1 or −1.

In this work, we consider a drone equipped with a DVS camera
as an input to the agent, which uses a neural network for learning
the environment and take decisions to avoid obstacles. An example of
simulated DVS output and its comparison with an RGB image is shown
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Fig. 2. Comparison between an RGB image and an DVS image.

in Fig. 2. On the right image is shown a DVS image composed of red
pixels, the positive events, blue pixels, the negative ones, and black
pixels, the background (no events), while the left image is shown the
RGB counterpart.

1.5. Neuromorphic platforms

Neuromorphic platforms can be divided into two main categories:
Analogue and mixed-signal and digital SNN accelerators. The plat-
forms in the first category are typically more efficient and present a
smaller neuron area footprint, given the same neuron model [3,30].
However, the neuron functionality is often technology-dependent and
it is implemented by operating individual transistors in their sub-
threshold regime; Therefore, it requires a significant engineering effort
to be ported to a different technology node. The digital counterpart,
instead, implements less complex neuron models; typically a LIF or
its derivation [2,4,5,31], and are implemented as equation-solver data
paths composed of digital elementary adders and multipliers.

Digital neuromorphic platforms can also be exploited outside the
neuromorphic simulation context [32] and allow for fast integration
into digital SoCs [13] and technology porting.

Among the different neuromorphic hardware available in the SoA,
several common characteristics emerge which induce approximation
in the SNN models. Biases are supported in both Loihi [2] and Spin-
naker2 [33] while SNE does not have them since their implementation
would slow down the simulation and increase the energy consumption
of the hardware since the biases force the hardware to update the
neurons’ internal states each time steps, even if there are not input
spikes. Moreover, access to the membrane potential at run time is im-
portant since it allows the network to have an increased expressiveness.
Access to the internal states is allowed only in Spinnaker2 [33] while
in Loihi [2] only at the end of the simulation. In SNE the membrane
potential is not accessible. Finally, SNE presents high quantization
weights (4 bits) and consumes orders of magnitude less energy. Based
on this analysis we can consider SNE to be the worst-case one as
it imposes all the mentioned approximations on the neuron model.
Hence, the target deployment platform for the quantized spiking neural
network presented in this work is an implementation of the Sparse
Neural Engine (SNE) presented in [13]. SNE is a fully-digital, non-Von
Neumann data-flow architecture with DMA capabilities implementing
a programmable number of digital LIF neurons. The accelerator can be
integrated into a conventional SoC by connecting it to two dedicated
memory ports, and one configuration advanced peripheral bus (APB).

SNE uses an explicit coordinate list (COO) representation encoded
on 32 bits to address and consume single events (input feature maps)
that can be linearly stored in the main system memory. The architecture
in the exam features a dedicated local memory to store up to 256 3 × 3
4bit-quantized convolutional kernels; the firing threshold and the LIF
exponential decay time constant are held by dedicated configuration
registers and can be programmed at run time. In this work, we will
refer to an SNE configuration with 8 parallel computing engines, each
4

simulating 1024 configurable LIF output neurons.
2. Related work

Since SNNs are described by a dynamic system, they are naturally
made for temporal problems such as the ones that RL algorithms solve.
In particular, in [17,18,34] the authors use an STDP-based learning
rule to solve three OpenAI Gym Atari games [23], an arm-control
task, and a lane-keeping problem, respectively. STDP has also been
applied to navigation and obstacle avoidance tasks by the authors
of [16,35] where an agent has been trained in RL to move in 2D
small environments (i.e., a 1000 × 800 pixels rectangle and an ellipse)
avoiding obstacles (in a number of units) using ultrasonic sensors.
When it comes to visual-based inputs, like events or RGB cameras, STDP
has been widely used to train SNNs for solving classification tasks, like
MNIST or DVS-MNIST problems [15,36]. However, to the best of the
authors’ knowledge, STDP has not yet been applied to solve an obstacle
avoidance task leveraging visual-based input sensors, which is the focus
of this paper. In future work, we will explore the effectiveness of hybrid
STDP and gradient-based approaches for UAV navigation tasks.

To overcome the limitation of applying STDP in more complex RL
tasks, other training approaches have been proposed, such as training
an ANN model and then converting it into an SNN [37] or using
gradient-based training algorithms [11]. Authors of [22,38] trained
an ANN in RL and then converted it into an SNN to solve OpenAI
Gym games [23]. Similarly, the authors of [21] applied the same
methodology to a navigation task using a LiDAR input, and the authors
of [20] applied the same methodology – using the NengoDL training
framework – to perform an obstacle avoidance task with a drone using
an event-camera as an input. To the best of our knowledge, [20] is the
only work in the SoA solving a DVS-based obstacle avoidance task with
SNNs and RL. In [20], the authors validate their approach by flying
a UAV in a photo-realistic simulated environment (using AirSim [39]
flight simulator) composed of several lanes with static obstacles. The
simulated agent is a UAV constantly forward along the lane. The ANN
(and yet the NengoDL converted SNN) output correspond to the five
possible actions: go left, go right, go down, go up, and maintain the
course. The input of the network is three consecutive DVS frames.
The ANN network is trained using D2QN RL approach, which then is
converted to an SNN using NengoDL. The latter restricts the authors in
mapping the three DVS frames in different input channels — de facto
neglecting the temporal capabilities of SNNs. In the proposed paper,
we restrict ourselves to the ANN and SNN network topology as the one
presented in [20], and we maintain the same RL problem (RL method,
action space, and observation space) in a similar simulation scenario.
To overcome the limitation of [20] and demonstrate the challenges in
applying SNNs into real digital neuromorphic hardware, in our work
we introduced an RL method based on STBP which allows preserving
the temporal capabilities of SNNs during the training, we modified the
SNN model and introduced the quantization to match the capabilities of
neuromorphic hardware accelerators compatible with the application
domain. In [20], the authors validate their approach by flying a UAV in
a photo-realistic simulated environment (using AirSim [39] flight sim-
ulator) composed of several lanes with static obstacles. The simulated
agent is a UAV constantly forward along the lane. The ANN (and yet
the NengoDL converted SNN) output correspond to the five possible
actions: go left, go right, go down, go up, and maintain the course.
The input of the network is three consecutive DVS frames. The ANN
network is trained using D2QN RL approach, which then is converted
to an SNN using NengoDL. The latter restricts the authors in mapping
the three DVS frames in different input channels — de facto neglecting
the temporal capabilities of SNNs. In the proposed paper, compared
with the above-mentioned paper: we restrict ourselves to the ANN and
SNN network topology as the one presented in [20], we maintain the
same RL problem (RL method, action space, and observation space) in
a similar simulation scenario. We, however, made some improvements:
(i) we chose a more realistic DVS-camera simulated model [40] and (ii)

we made the simulated environment more complex. We evaluated the
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Table 1
Networks architecture.

CNN SCNN eSCNN qeSCNN pqeSCNN

Input channels 3 2 2 2 2
CONV1 (16, 8, 4) (16, 8, 4) (16, 8, 4) (16, 8, 4) (16, 8, 4)
CONV2 (32, 8, 4) (32, 8, 4) (32, 8, 4) (32, 8, 4) (32, 8, 4)
FC1 512 512 512 512 512
FC2 5 5 5 5 5
Bias ✓ ✓ ✗ ✗ ✗

Type of hidden neurons ReLU Hard reset - LIF Hard reset - LIF Hard reset - LIF Hard reset - LIF
Type of output neurons Linear Non-spiking LIF Non-spiking LIF Non-spiking LIF Non-spiking LIF
Quantization ✗ ✗ ✗ Full quantized No last layer
Fig. 3. Pipeline of our setup. The RGB frames are converted into DVS frames which
are fed into the network. The output of the network is the Q-function which is used
to choose the action that the drone has to perform.

complexity of the simulated environments by means of the performance
achieved by a random agent. In [20], a random agent reaches the end
about 25% of the time, while in our simulated environment, the random
agent reaches the end of the lane 0% of the time. When an ANN is
trained as a proxy to train the SNN, the performance attainable by
the SNN is constrained by the performance achieved by the ANN [19].
Indeed the SNN network has to have the same network topology as the
ANN one, and in the best-case scenario, it can perform as well as the
ANN one (since it is a conversion of it). To overcome the expressiveness
limitation of the network during the training, gradient-based training
algorithms for SNNs have been proposed.

In these algorithms, the spike function’s non-derivative problem is
bypassed using a pseudo-derivative. In [29], the authors compare the
performance of an ANN, an SNN, and an SNN converted from an ANN
in 17 OpenAI Gym games. The results show that the SNN outperforms
the ANN on 12 games. The ANN outperforms the SNN in four games. In
one game (Tennis), all three networks perform the same. Interestingly,
the SNN converted from an ANN never outperforms the others — as
early discussed, the converted SNN from the ANN, in the best case, can
only perform at most as the ANN, and discards temporal SNNs capa-
bilities. In [28], the authors use a gradient-based training algorithm
implemented with the SpyTorch tool [41] to solve two OpenAI Gym
games [23], namely the CartPole and Acrobot. The authors validated
their network by executing it in the Intel Loihi board [2]. To do so, the
author proposed a quantization-aware training algorithm to match the
Loihi weight resolution and used the membrane potential on the last
layer to select the action.

In [9], the authors proposed a new training method in which the
gradient is accumulated during the inference in the training phase
and then applied to the network at the end of the inference. This
method was tested in two OpenAI Gym games [23], and works only
with recurrent SNNs. As a matter of fact, gradient-based approaches
have been applied only in conjunction with RL to OpenAI gym games
and never with DVS input in photorealistic environments. To stress the
gradient-based SNNs training algorithms to more realistic scenarios,
in this manuscript, we applied it to solve the problem of a UAV
navigation and obstacle avoidance task with DVS-camera input as the
one presented in [20], taking the same ANNs topology as SoA reference,
and we evaluated the approximations which need to be added to fit
the network into an SoA low-power embedded neuromorphic hardware
called SNE [13] designed for nano-drones and cyber–physical system
applications [6].
5

3. Methodology

In this work, we want to evaluate an SNN inside an RL algorithm
for an obstacle avoidance task, comparing it with an ANN-based ver-
sion [20]. Fig. 3 shows the pipeline used for the comparison. The RGB
frames are fed into the DVS simulator, which converts them into DVS
images. These images are the input of the neural networks which model
the Q-function and give, as output, a Q-array. The action taken by the
agent is the one that corresponds to the maximum value in the Q-array.

After this comparison, we create a framework that simulates the
behaviour of SNE in which the membrane potentials and the weights
are quantized. In the end, we design a new SNN in a way that can fit
inside SNE [13].

Our methodology consists of a set of training algorithms and SNN
topologies progressively meeting the constraints imposed by the hard-
ware target implementation and by the RL task.

3.1. Spiking neural network and DVS input model

In this work, we focus on SNN for reinforcement learning tasks.
This implies some relevant considerations about the network and input
model for SNN used for classification.

Indeed, SNNs used in classification tasks use multiple ticks in which
the data fed to the networks are the same and measure the spike activity
of the output to assign a class. This strategy lets the networks evolve
and reach a steady state. Recent works show how this latency can be
tuned as a hyperparameter [42]. Hence, the input of the network has
to be shown for a certain amount of time called ticks (𝑁) to allow the
network to reach a steady state. Normally the longer the persistence of
the input, the higher the accuracy of the network. To keep the same
input for a certain amount of time, two strategies can be used: (i) In
the case of an event-based input such as a sequence of DVS frames,
the sequence to be classified is recorded and repeated for a predefined
number of times [43]; (ii) In case the input is an RGB/grayscale frame,
it is kept fixed for a certain amount of ticks allowing the encoding
strategy to convert the frame into spike trains. Examples of the second
method are (i) in [44] the input images are translated in spike trains
where the pixels values are proportional to the probability of firing and
(ii) in [9] the pixels value are used as feeding current of the neurons
in the input layer.

In this work, we focus on reinforcement learning using an event-
based input. This input is time-varying and encoded as spikes because
of the use of a DVS camera simulator.

However, in a reinforcement learning case where the network has
to observe and react to the environment to estimate a Q-function, there
is no defined sequence to be classified. Hence, recording and repeating
a scene is not feasible as the network processes the input events as they
are produced.

Also, the network has a constrained time to converge because the
agent must decide to navigate the environment. For this reason, we
use the spikes generated by the DVS directly as input of the network
to reduce latency. A sequence of DVS (differential) images is provided
as staked frames to the network. The ticks of the network (𝑁) are
the same number of the DVS frames fed into the network. The SNN



Neurocomputing 562 (2023) 126885L. Zanatta et al.

w
𝜋
f

w
p

e
c
t
t

will process all the stacked frames to produce an output estimation of
the Q-function. The number of stacked frames is a design parameter
and should be kept small to avoid increasing the latency. As reported
in the experimental section, we found that we can achieve acceptable
accuracy with a minimum number of 3 stacked frames.

Since SNNs can have only positive spikes and they are described
by a dynamic system in which the time is explicit, we can make the
following considerations: (i) The negative DVS events are converted
into positive ones. They are fed into the network in a different channel.
Hence 2 input channels for frames are needed; (ii) The stacked frames
used for detecting the status of the environment are fed as temporal
sequence samples; hence the number of time steps in the SNNs is equal
to the number of stacked frames: 𝑁 = 𝑆. The stacked frames used for
detecting the status of the environment are fed as temporal sequence
samples; hence the number of time steps (ticks) in the SNNs is equal
to the number of stacked frames: 𝑁 = 𝑆 which is equal to 3. In this
process, every single frame is shown to the network for 1 tick.

The network used for tackling the RL task comprises 2 types of
neurons: (i) The spiking LIF with hard reset in the hidden layer and
(ii) The non-spiking LIF in the output layer. Both neuron types have a
bias. We will consider this network as the SNN baseline for our study
and refer to it in the experimental results as SCNN.

The SNN model is then modified to match the capabilities of real-
life neuromorphic hardware to study the feasibility of equipping a
real agent with this type of network. Also, quantization must be ap-
plied to reduce the memory footprint and match the target computing
architecture of an embedded device [12].

Neural network topologies can feature billions of parameters, typ-
ically represented as single-precision floating-point values [45]. This
choice is dictated by the need to ensure the numerical stability of the
algorithms used to train the network. The memory footprint of such
a neural network featuring floating point parameter representation is
typically in the order of several tens of GB. It might not fit the amount
of memory hosted by embedded computing platforms where such a
network would be deployed.

Straightforward quantization approaches can reduce the precision
moving from 32 bits or 64 bits floating point representation to a smaller
16 bits float representation. More aggressive quantization strategies
can start from the full precision representation of the network pa-
rameters and target low bitwidth parameters representation like 8,
or even sub-byte integer representation [46]. In the context of this
work, we will target 4-bit quantized network weight parameters and
8-bit quantized internal membrane potential representation to match
the targeted SNE neuromorphic accelerator. The intermediate feature
map, i.e., the output produced by a neural network layer, is inher-
ently quantized to 1-bit activation in SNNs. Indeed, contrarily to CNN
continuous-valued activation, the activation function of SNN layers
produces binary events indicating that the neuron membrane potential
has exceeded a threshold at the corresponding time instant. More
details about the quantization strategy of both weights and neuron
dynamics are reported in Section 3.4.

3.2. The adopted reinforcement learning model

In this work, we consider a well-known easy to use RL family
known as deep Q-learning, which is a set of model-free, value-based
and off-policy algorithms in which the goal is to maximize the expected
reward [7] that is the reward that the agent expects to collect the next
steps. In particular, with reference to Fig. 1, the goal of Q-learning is
to maximize the action-value function 𝑄(𝑠, 𝑎). This function, given a
state 𝑠, assigns a score to all the possible actions 𝑎 that the agent can
perform:

𝑄𝜋 (𝑠, 𝑎) = E𝑠0=𝑠,𝑎0=𝑎,𝜏∼𝜋

[ 𝑇
∑

𝛾 𝑡𝑟𝑡

]

(11)
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𝑡=0
here the action-value function 𝑄(𝑠, 𝑎) has to be referred to as a policy
, and it is computed as the expectation of the future rewards 𝑟 sampled
rom a trajectory 𝜏 and discounted by a factor 𝛾.

In particular, in the DQN algorithm, the Eq. (11) can be rewritten
as:

𝑄𝜋 (𝑠, 𝑎) ≈ 𝑟 + 𝛾 max
𝑎′

𝑄𝜋 (𝑠′, 𝑎′) = 𝑄𝜋
𝑡𝑎𝑟(𝑠, 𝑎) (12)

here 𝑄𝜋
𝑡𝑎𝑟(𝑠, 𝑎) is the target action-value function and 𝑄𝜋 (𝑠′, 𝑎′) is

roduced by the neural network that is used for choosing the actions.
This algorithm has two main limitations: (i) The network that

stimates the target is the same as the one that estimates the actions,
ausing the instability of the target function [47] and (ii) The network
hat estimates the next action is the same as the one which estimates
he 𝑄𝜋

𝑡𝑎𝑟(𝑠, 𝑎), leading to an optimistic prediction [48].
To face the first problem, we adopted an approach proposed in [47]

where a lagged copy of the network is used. This implies using two
networks: One for the evaluation task that is described by its own set of
parameters (𝜑) and the network used for choosing the action (𝜃) [47].
To face the second problem, we evaluate the next action (𝑎′) with the
𝜃 network [48], which is the Double DQN (D2QN) approach. Hence,
Eq. (12) becomes:

𝑄𝜋
𝑡𝑎𝑟(𝑠, 𝑎) = 𝑟 + 𝛾𝑄𝜋𝜑 (𝑠′,max

𝑎′
𝑄𝜋𝜃 (𝑠′, 𝑎′)) (13)

The loss function will be computed as mean square error between
𝑄𝜋

𝑡𝑎𝑟(𝑠, 𝑎) and 𝑄𝜋𝜃 (𝑠, 𝑎).
In general RL algorithm scalability is limited by the training time

which depends on the time it takes to simulate a step in the simulated
scenario. To overcome this limitation, two main approaches have been
proposed: The acceleration of the simulation time [49,50]; and the
usage of multiple environments running in parallel [7,50]. The D2QN
algorithm is an off-policy algorithm and thus it can leverage only the
acceleration of the simulation time to speed up the training time. In
addition, the D2QN algorithm learns a discrete action space, which can
limit its scope of applicability.

3.3. The adaptation of STBP for Q-function estimation

In the RL task we deal with in this work, the role of the SNN is
to estimate a Q-function and use the estimation to take actions. This
function in our problem of navigation in a photorealistic environment is
a complex one that a network should describe with high expressiveness.

For training the SNNs, we used a well know training algorithm
called STBP [11], which uses the pseudo-derivative described
by Eq. (7) and is designed for training SNNs in classification tasks
and is based on the average output activity. In Table 2 are reported
3 examples for each output strategy shown in the following. The
examples are computed with a number of ticks (𝑁) equal to 3. The first
row is the plot of the output activity, while the second row is the output
activity ‘‘translated’’ in spikes. The following 4 rows are the 4 strategies
that can be used as the output of a spiking neural network. The first
strategy is the mean output activity which presents a low expressiveness
since the output value will be in the rage [0, 1] and because the possible
output levels 𝑛𝑜𝑙 are strictly dependent on the number of ticks 𝑁 of the
network: 𝑛𝑜𝑙 = 𝑁 + 1 (Table 2 - Output i). A possibility to increase
the expressiveness of the network is to consider the ‘‘time to spike’’ of
the last layer. In this case, the output will be described by: 𝑛𝑜𝑙 = 2𝑁

(Table 2 - Output ii). As discussed in Section 3.1, 𝑁 is equal to the
number of frames fed into the network. As such, we want to keep it as
small as possible since a high number of frames would lead to increased
latency and increase the amount of computation. A possible way to
overcome the limited output levels is to use the membrane potential 𝑣(𝑡)
of the spiking neurons in the output layer. In this case, the output can
reach the values in the interval [−∞, 𝑣𝑡ℎ𝑟], and the number of output
levels will increase up to: 𝑛𝑜𝑙 = ∞ (Table 2 - Output iii). With this

implementation, however, the Q-function cannot reach a value greater
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Table 2
Three examples of neuron output values computed with different strategies. In these examples, we use a number of ticks (𝑁) equal to 3.

Case 1 Case 2 Case 3

Output

Activity
Spikes 𝑧0 = 0; 𝑧1 = 0; 𝑧2 = 0 𝑧0 = 0; 𝑧1 = 1; 𝑧2 = 1 𝑧0 = 1; 𝑧1 = 1; 𝑧2 = 1
i: 1∕𝑁 ∗

∑

𝑖 𝑧𝑖 0 0.67 1
ii: ∑𝑖 2𝑖 ∗ 𝑧𝑖 0 6 7
iii: Eqs. (2) & (5) 𝑣(𝑡) < 𝑣𝑡ℎ 𝑣𝑡ℎ 𝑣𝑡ℎ
iv: Eq. (2) −∞ < 𝑣(𝑡) < ∞ −∞ < 𝑣(𝑡) < ∞ −∞ < 𝑣(𝑡) < ∞
Table 3
Comparison between the features of a full customize neuron and the neuron
in SNE.

Features LIF Neuron SNE LIF Neuron

Bias ✓ ✗

No-spiking neuron ✓ ✗

Type of reset Hard & Soft Hard
Access to 𝑣(𝑡) ✓ ✓

Acces to 𝑧(𝑡) ✓ ✓

than 𝑣𝑡ℎ𝑟. To tackle also this problem, we use a non-spiking LIF as
output. Hence, the output membrane potential can reach the values
in interval [−∞,∞] and the output levels will be 𝑛𝑜𝑙 = ∞ ( Table 2 -
Output iv).

3.4. Spiking Neural Network on SNE embedded neuromorphic accelerator

The SNN model described in the previous section has been modified
to match the requirements of the SNE accelerator. The first adaptation
concerns the neuron model, and the second relates to the quanti-
zation of weights and membrane potential. The differences between
the software neuron model and the implementation available in SNE
are reported in Table 3. To match the SNE neuron model, we first
modified Eq. (3) to remove the bias:

𝐼𝑛𝑖 (𝑡) =
𝑙(𝑛−1)
∑

𝑗=1
𝑤𝑛

𝑖𝑗𝑧
𝑛−1
𝑗 (𝑡 − 1) (14)

In the following, we will refer to this network as eSCNN.
To deploy SCNNs onto the embedded neuromorphic hardware, the

network parameters (i.e. weights and intermediate feature maps) must
be represented with a bit-width supported by the target architecture.

On SNE, the weights are represented as 4-bit signed integer values.
Moreover, compared to traditional ANNs, SCNNs present an internal
state variable. In the case of SNE, the LIF membrane potential, i.e. the
internal neuron state variable, is represented on 8 bits. During deploy-
ment, the neural network weights and the membrane potential must be
modelled with an adequate level of numerical precision, i.e. they must
be quantized to 8 bits.

To perform this task, we use Quantlib [12], which has been ex-
tended to support the activation function implemented on the target
neuromorphic HW, i.e. the LIF function implemented on SNE. Specif-
ically, Quantilib supports the quantization of the weights to a desired
numerical precision. In the following, we will refer to the full quan-
tized, SNE-deployable network as qeSCNN. This network is composed
of 2 different neurons: the non-spiking neurons used for the last layer
and the spiking neurons for all the other layers. In this configuration,
all the weights and the membrane potential are quantized according to
the hardware constraints.

In our experiments, we also implemented a version of the SNN
where the last layer is implemented in the general-purpose microcon-
troller of SNE. Therefore there is no need to restrict its numerical
precision to 8 bits, i.e. (𝑛𝑜𝑙 = 256). We called this network pqeSCNN.
Such a choice has been made to account for a possible loss of expres-
siveness of the SNN due to the low number of time steps used in the
7

Fig. 4. The full photorealistic pipeline. The blue box is the simulation environment
that is composed of Unreal Engine 4, AirSim and the DVS while the yellow box is the
network.

decision layer. A summary of the networks compared in this work is
shown in the 1.

To evaluate the inference accuracy achievable on the target hard-
ware platform, we modelled the exact behaviour of the LIF neurons
implemented on SNE. Specifically, we modelled the 8-bit membrane po-
tential decay performed on the real hardware using look up table (LUT),
as well as the neuron membrane potential update in the occurrence of
an incoming spike and the membrane potential reset mechanism once
the threshold is exceeded, which restores the membrane potential to its
rest value. This goal has been achieved by extending the base neural
network classes defined by the Quantlib framework [12]. The synaptic
connectivity supported by SNE is of convolutional and fully connected
type.

4. Training and evaluation framework

In this section, we describe the simulator we used for training the
drone to perform the obstacle avoidance task, outlining the environ-
ment characteristics, the RL parameters and the configuration of the
DVS.

4.1. Simulation environment and DVS model

A simulator is used to model agent actions in the environment and
build a dataset for the RL obstacle avoidance task. In this work we
use AirSim [39], built on top of Unreal Engine 4 graphic engine [51].
AirSim uses Unreal Engine for the physics simulation and the rendering.
Being photo-realistic makes it possible to use the trained network in the
real world with an acceptable performance drop [52].

In the past years, a lot of effort was made to create a DVS simula-
tor [40,53–55], and in this work, we used v2e [40] since it is realistic
as the tool models the DVS dynamic and noise.

We integrated DVS in AirSim so that the images generated by AirSim
are processed by v2e and then passed to the RL agent as input.

4.2. Training and evaluation setup

This section describes the training and evaluation pipeline presented
in Fig. 4. The blue box is the environment simulator, while the yellow
one is the network trained with the D2QN algorithm. The network only
has access to the observations of the environment and the rewards that
measure how well the network performs.

In this work, we create a setup similar to [20], creating 3 different
70 m-long lanes in Unreal Engine 4 along the 𝑦-axis in which we place

several obstacles of different sizes and shapes.
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Table 4
Simulation parameters value and description.

Parameters Values Description

DVS

Positive Threshold 0.2 Nominal threshold of triggering positive event in log intensity
Negative Threshold 0.2 Nominal threshold of triggering negative event in log intensity
Sigma Threshold 0.03 Standard deviation of threshold in log intensity
Cutoff Frequency [Hz] 300 3 dB cutoff frequency of DVS photoreceptor
Leak Rate Frequency [Hz] 0.01 Leak event rate per pixel
Shot Noise Rate Frequency [Hz] 0.001 Shot noise rate

Reward

𝛾𝑦 1 Weight for the distance reward
𝛾𝑎 −0.1 Weight for the action reward
𝛾𝑐 −10 Weight for the collision reward
𝑀 250 Maximum amount of actions that the drone can take

Simulation

𝛾 0.99 Discount factor
Staked Frames 3 Number of staked frames feed to the neural network
# Train Games 5 000 Number of training games
# Test Games 100 Number of testing games per lane
Fig. 5. The position of the obstacles in the 3 lanes. The first row is the representation from the top, while the second is the representation from the left.
The lanes created are shown in Fig. 5. From left to right: (a) Training
lane, used in the training and in the evaluation with 16 obstacles; (b)
Lane 1, used for the evaluation, featuring 9 obstacles, and (c) Lane 2,
used for the evaluation, featuring 25 obstacles. The data exchanged
between the environment and the agent are the observations and the
rewards. Since the observations are composed of 3 pre-processed DVS
frames, we used a tool called v2e [40] that simulates the real DVS
behaviour. All the DVS parameters and the simulation settings can be
found in the Table 4. This tool takes, as input, the images gathered
from AirSim, and it returns a list of tuples in which the first entry is
the timestamp, the second and the third are the 𝑥 and 𝑦 coordinates
of the pixel, and the last one is the polarity. The polarity can be 1
or −1, depending on the variation of the log-luminance. The second
data exchanged by the environment are the rewards. The rewards are
computed as follows:

𝑅(𝑠, 𝑎) = 𝛾𝑦𝛥𝑦 − 𝛾𝑐𝐶 − 𝛾𝑎𝐴 (15)

where 𝑅 is the reward of the state 𝑠 taken action 𝑎, 𝛾s are some
regularization factors that are used to weight the sum, 𝛥𝑦 is the distance
between the goal and the drone, 𝐶 is a flag that indicates if the drone
has collided and 𝐴 is the action taken. 𝐴 is computed as:

𝐴 =

{

0 if index action is 4
1 otherwise

(16)

𝐶 =

{

1 if the drone has collided or #𝐴 > M
0 otherwise

(17)

where #𝐴 is the number of actions done and 𝑀 is the maximum number
of actions the drone can take. The game ends when the drone reaches
the goal or when 𝐶 = 1.

The agent communicates the decision taken through the actions, and
this environment is characterized by a discrete actions space in which
the actions are the following:

• 0: avoid left.
• 1: avoid right.
• 2: avoid down.
• 3: avoid up.
8

• 4: maintain the course.

The described framework has been used to obtain the results pre-
sented in the next section.

5. Results

5.1. Neural networks performance

In this section, we compare the performance of the trained net-
works. To evaluate the networks, we compute the Normalized Area
Under the Curve (Normalize AUC) and the total amount of drones that
reach the goals. The AUC is computed as:

𝐴𝑈𝐶 =
∑

𝑟𝑑
𝑑 (18)

where 𝑟𝑑 is the distance, a certain number of drones 𝑑 reached. The
Normalize AUC is the AUC divided by the width of the bins.

Fig. 6 reports the performance of the networks in each 10 m bin
for all the three lanes. We consider a random agent (blue bars) that we
use as baseline. In Table 5, we report the Normalized AUC values and
the percentage of drones reaching the final goal of 70 m. The SCNN
(green bars) is the best network since it reaches the end of all the 3
lanes 98% of the time while the CNN (orange bars) 89% of the time in
the Training lane, 70% in Lane 1, and 17% in Lane 2. This is due to the
better capability of the SCNN to solve temporal tasks and shows that
the SNNs generalize better than the ANNs counterpart. The eSCNN (red
bars) has the same architecture as the SCNN, except for the presence of
biases, and it reaches the goals of just 77%, 28%, and 17% of the cases
in Training lane, Lane 1, and Lane 2 respectively. We conclude that the
biases are relevant for this task because they increase the expressiveness
of the network. In general, eSCNN reaches the goals a lower number of
times than the CNN, but in the Training lane and in Lane 2 they have
a similar Normalized AUC. In these two lanes, the two networks show
similar behaviour. In Lane 1, the eSCNN has a big drop in the third bin,
showing high difficulties to pass through that sequence of obstacles.
This is well-shown in Fig. 6(b) and in Table 5 and is due to the lack
of biases which decreases the expressiveness of the network. Both the
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Fig. 6. Performance of the networks in 3 lanes. It is shown the Normalize AUC computed with bins of 10 m.
Table 5
Networks performance.

Normalized AUC Drones reaching the goal

Training lane Lane 1 Lane 2 Training lane Lane 1 Lane 2

Random 21.70 19.83 26.63 0% 1% 0%

CNN 92.79 78.94 37.74 89% 70% 26%
SCNN 99.34 98.51 99.5 98% 98% 98%
eSCNN 91.67 48.30 44.64 77% 28% 17%
qeSCNN 2.86 2.83 2.86 0% 0% 0%
pqeSCNN 38.20 37.61 37.23 0% 0% 0%
qeSCNN (purple bars) and the pqeSCNN (brown bars) networks are
post-training quantized. The difference between the two networks lies
in the quantization of the last layer. Indeed, in the qeSCNN, the last
layer is quantized. As a result, the network shows the worst overall
score with respect to the other networks: it does not even reach the
second bin (Fig. 6) while the pqeSCNN, in which the last layer is not
quantized, reaches the fourth bin in the Training lane and the third
in both Lane 1 and Lane 2. The poor performance of the qeSCNN is
due to the low expressiveness of the last layer, as it has 256 levels
to represent the Q-function. On the other side, the pqeSCNN version,
where the output layer is executed on a RISC-V-Based 8-core cluster,
can exploit the full dynamic range. The first two bins show accuracies
comparable with SCNN and eSCNN (Fig. 6). However, a performance
degradation from the third bin happens due to the approximations
introduced by the post-training quantization. In the end, we can see
that even if the random agent reaches the sixth bin while the pqeSCNN
the fourth one, the latter has a higher Normalized AUC (Table 5). This
happens because the random agent shows remarkably low performance
from the beginning while the pqeSCNN from the third bin (Fig. 6).

5.2. Spiking Neural Network Footprint

In this section, we present energy and latency estimates of the
quantized SNN when running on the digital embedded neuromorphic
platforms presented in [13]. Estimates have been calculated based
on the network input and hidden layers’ spike activity. The input
activity estimates are measured on the entire dataset used to train the
network on the proposed RL task. Fig. 7 reports three relevant metrics
derived from the quantized SNN spike activity. Fig. 7(a) shows that
the activity increases in the deeper layers of the network. This result
is expected as the network has not been penalized for spiking high
activity during the training. Therefore, the network has not been forced
to prune redundant synaptic connections, which might increase in the
deeper layers [56]. As the accelerator in exams is designed to achieve
energy-to-activity proportionality, the network activity determines the
inference energy consumption and inference latency proportionally.

Fig. 7(b) reports the energy consumed by the SNE platform on each
network layer. Convolutional layers implement a smaller number of
synaptic operations thanks to the sparsity of the first layers. Therefore,
the energy to execute such layers is, on average, lower than the one
required to execute linear layers.

The total average energy required to perform a complete inference
is 0.62 uJ/inf. Note that the energy consumed during an inference
9

Table 6
Number of the total operation and inference energy for the proposed approach
and the baseline CNN executed on a reference state-of-the-art hardware acceler-
ator [59]. Estimates are based on the highest energy per inference reported by
the author.

Network Number of operations Inference energy

CNN 23.2 MOP 24.11 μJa (3.6 μJb)
qeSCNN 2.9 MOP 0.62 μJ
pqeSCNN 2.9 MOP 0.66 μJ

a Energy per inference estimate based on the number of MAC executed on the
reference hardware accelerator [59].
b Energy per inference estimate on the reference hardware accelerator with
energy cost scaled to the SNE technology.

strongly depends on the activity of the network. On this data set, the
minimum estimated energy consumed on SNE is 0.41 uJ/inf, while
the maximum is 0.85 uJ/inf. Depending on the input stream of events
captured in the event-camera field of view, there is a variation. During
the RL training phase, the network has not been trained to reduce the
spike activity of hidden layers. See Fig. 7(a).

Similar estimates can be computed for the inference latency.
Fig. 7(c) reports estimates of the inference latency when the proposed
SNN is executing on SNE. The average inference latency is 2.4 ms,
the minimum inference latency is 1.7 ms, and the maximum inference
latency is 3.14 ms.

Such results demonstrate that it is possible to solve the naviga-
tion and obstacle avoidance task at a frame rate that is compara-
ble to or higher than what was reported for SoA embedded deploy-
ment of resource-constrained neural networks in small drones such as
Dronet [57]. Dronet has been deployed on an embedded SoC featuring
a RISC-V cluster [58] and optimized to reach 15 mJ/inf. Compared
to such approach, the proposed RL strategy coupled with an efficient
deployment on dedicated neuromorphic hardware can lead to more
than three orders of magnitude energy efficiency improvement.

To perform an energy comparison with the CNN, we considered
state-of-the-art CNN implementation on a dedicated programmable
hardware accelerator capable of executing both compact and sparse
DNNs [59]. To have a fair comparison, both the CNN and SNN work-
loads have been decomposed into elementary operations, i.e., mul-
tiplication or addition operations. Results are reported in Table 6.
In the case of CNN, operations are MACs (multiply and accumulate)

performed to compute the value of each output pixel. In the case of
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Fig. 7. The Convolutional layers are indicated as ‘‘Cn’’, Linear layers are indicated as ‘‘Ln’’, and ‘‘IN’’ indicates the network input activity from the event camera.
C

–

SNN, additions originate from the sparse weight accumulation process
on the membrane potential, while multiplications are performed to im-
plement the membrane potential exponential decay. When executing an
inference on the proposed network topology, the SNN variant executes
8× fewer operations than the CNN variant, thanks to its sparse nature.

Results in Table 6 highlight that when SNN inference is executed on
dedicated hardware capable of efficiently performing sparse operations,
the resulting inference energy cost is lower than the CNN. The energy
cost remains a factor of 6× lower for SNE even when considering the
energy consumed by the reference CNN accelerator in [59] with energy
numbers scaled to SNE technology.

6. Conclusions

In this work, we addressed the issue of training the SNNs in RL for
solving a real obstacle avoidance task. The network is designed to fit
in state-of-the-art neuromorphic hardware called SNE.

• We created a full photorealistic pipeline for training the networks
in an obstacle avoidance task using Unreal Engine 4 as environ-
ment simulator, AirSim as UAV simulator and v2e for converting
the RGB frame collected from UE4 to DVS frames.

• We trained an SNN, without converting it from the ANN, to
solve the obstacle avoidance task. To do so, we modify the
Spatio-Temporal BackPropagation SNN training method, allowing
the use of the membrane potential of the output neurons for
evaluating the action that has to be performed in the next step.

• We create a plugin for QuantLab that allows us to quantize the
weights and the membrane potential of the SNNs to simulate the
behaviour of the network in real neuromorphic hardware.

• We compared the CNN trained in RL with the SCNN, eSCNN,
qeSCNN and pqeSCNN. From this comparison, we showed that
the best network is the SCNN since it reaches the end 98% of
the time in all lanes, while the CNN reaches at most 89% in
the lane in which it was trained. Furthermore, we train a new
network that fits the hardware constraint (eSCNN), which has no
biases. Results show that the biases have a considerable impact on
our network performance. Indeed, without them, we experience
a drop in performance in all the 3 lanes. Finally, another relevant
aspect is the quantization of the last layer. Indeed, the post-train
quantization of the last layer causes a non-acceptable reduction
of the expressiveness of the network — thus a solution where the
quantization of the last layer is performed at full precision or in
software in the host processor is more effective.

• We evaluated the energy consumption and the latency of the
network as if it was developed in SNE. The energy consumption
and the latency are strongly linked to the spike activity, and we
did not train the network to minimize it. This analysis shows that
the average energy required to perform a complete inference is
10

9.73 uJ/inf, while the latency is 33.35 ms.
• We compared the energy consumption of both the 2 embedded
networks and the CNN, showing that even if the SNNs were not
trained for having a sparse activity, both the qeSCNN and the
pqeSCNN use 6× less energy compared to the CNN.
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