
nature machine intelligence

https://doi.org/10.1038/s42256-023-00630-8Article

A neuro-vector-symbolic architecture for
solving Raven’s progressive matrices

In the format provided by the
authors and unedited

https://doi.org/10.1038/s42256-023-00630-8

CONTENTS

Supplementary Figures 2
Supplementary Figure 1: Details on the RAVEN dataset. 2

Supplementary Notes 3
Supplementary Note 1: Neural network representation learning over VSA and its generalization 3

a. Supervised training with additive cross-entropy loss and comparisons 3
b. Generalizability of multiplicative binding to unseen combinations of attribute values 4
c. Generalizability of multiplicative binding to unseen combinations of multiple objects 5
d. Resolution issues in the RAVEN dataset 7

Supplementary Note 2: Visual Analogies 8
a. One-to-one relationship 8
b. One to many relationship 9

Supplementary Note 3: Details on the NVSA backend 11
VSA representation of PMFs 11
Rule probability computation and rule execution 11
Selection of the rule and the final answer 14

Supplementary Note 4: Out-Of-Distribution generalization to unseen attribute-rule pairs 15
Supplementary Note 5: Experiments on the PGM dataset 16
PGM Dataset 16
NVSA frontend 16
Probabilistic scene representation 16
NVSA backend 17
Selection of the final answer 18
Training details 18
Experimental results 19

Supplementary References 19

2

SUPPLEMENTARY FIGURES

Supplementary Figure 1: Details on the RAVEN dataset.

Position: Distribute threeNumber: Progression (-2)Number: Arithmetic plusPosition: Constant

Center 2x2 grid 3x3 grid Left-right Up-down Out-in center Out-in grid
1 2 3

4 5

6 7 8

9 10 11

12 13 14

15 16 17

18

1
10

1
19 20

21 22

(c) Example RPM test

(a) Example for each constellation in RAVEN

(b) Example for each rule in RAVEN

Context panels

Candidate panels

Supplementary Figure 1: (a) Examples of the seven constellations in the RAVEN dataset. We enumerate 22 unique positions
(in blue) across all seven constellations. Moreover, we merge overlapping positions with the same proportions across

constellations, which are 1) the object in center, the outer object in out-in center, and the outer object in out-in grid (enumerated
with “1”); and 2) the middle object in 3x3 grid and the inner object in out-in center (enumerated with “10”). (b) Examples for

the four types of rules in RAVEN. In these examples, the rules are applied on the position attribute, or number attributes. A
separate rule is applied per attribute, the displayed attribute and rule is just one of them. (c) An example of RPM test from the
RAVEN dataset using the 3x3 grid constellation. There are eight context panels and eight answer panels. In this example, the
number of objects stays constant per row. Moreover, the size values (small, medium, large) of the objects are distributed per
row. Even though the shapes do not agree within a panel, they stay constant per row. The arithmetic minus rule is applied on

the attribute color. Combining the detected rule leads to the correct answer panel 5.

3

SUPPLEMENTARY NOTES

Supplementary Note 1: Neural network representation learning over VSA and its generalization

In this Supplementary Note, we present further investigations into the NVSA frontend for the visual perception. In the first
subsection (a), we explain the direct supervised training of the frontend in the presence of the visual ground-truth attribute labels
using a novel additive cross-entropy loss. We also analyze the object classification accuracy and compare it with other loss
functions and perceptual methods. In the next two subsections (b and c), we study the generalizability of the NVSA frontend in
isolation for unseen attribute-value combinations (b) and unseen combinations of multiple objects (c).

a. Supervised training with additive cross-entropy loss and comparisons

We consider a supervised training setup in which the visual ground-truth attribute labels for all objects are provided. There-
fore, the frontend can be trained standalone. We mutually train a universal NVSA frontend on all training constellations by
enumerating all possible positions and merging the identical positions across constellations (see Supplementary Fig. 1). For an
image panel X, containing k objects, with k target indices Y :“ tyiu

k
i“1, the trainable parameters θ of ResNet-18 are optimized

to maximize the similarity between its output query q “ fθ pXq and the bundled vector wy1 ‘ ...‘wyk . The dictionary matrix
W stays fixed during training. As noted, each vector in W is computed by multiplicative binding of the codebooks, so we call
this W encoding multiplicative binding. Due to the similarity-preserving property of the bundling operation, maximizing the
similarity between the query vector and the bundled vector is equivalent to maximizing the similarity between the query vector
and each object vector:

θ
˚ “argmax

θ

sim
`

fθ pXq,wy1 ‘ ...‘wyk

˘

(1)

«argmax
θ

simp fθ pXq,wy1q` ...` sim
`

fθ pXq,wyk

˘

. (2)

We propose to optimize equation (1) utilizing a novel additive cross-entropy loss, defined as

L pX,Y,θq :“´log
esl ¨psimp fθ pXq,wy1 q`...`simp fθ pXq,wyk qqq

esl ¨psimp fθ pXq,wy1 q`...`simp fθ pXq,wyk qqq `
řm

i“1 esl ¨psimp fθ pXq,wyi qq
, (3)

where sl is an inverse softmax temperature. The loss is optimized using the batched stochastic gradient descent by exclusively
updating the parameters θ while freezing W. As the cosine similarity is bound between -1 and +1 and the softmax function
embedded in the cross-entropy loss is scale sensitive, we scale the logit vector with a scalar sl , serving as an inverse softmax
temperature for improved training.

As an alternative loss function, the NVSA frontend can be trained with a randomized cross-entropy loss, which focuses on
optimizing of the similarity between the query and one randomly picked object vector w ji, iPty1,...,yku at a time. We compute the
m-dimensional logit vector z “Wq, pick one of the target indices at random, and compute the cross-entropy loss based on the
scaled logit vector and the randomly picked target index. By repeating the optimization for multiple epochs, the randomized
cross-entropy loss guides fθ to generate a composite vector that resembles the bundling of all object vectors in the panel.

During inference, ResNet-18 generates a query vector that can be decomposed into constituent object vectors. The decom-
position performs a matrix-vector multiplication between the normalized dictionary matrix W and the normalized query vector,
q, to obtain the cosine similarity scores z. The similarity scores are passed through a thresholded detection function gτ , which
returns the indices of the score vector whose similarity exceeds a threshold. The optimal threshold τ :“ 0.23 is determined by
cross-validation and is identical across all constellations. Since the structure of the dictionary matrix is known, we can infer the
labels for the attributes, namely position, color, size, and type, from the detected indices.

In the following, we assess the performance of the NVSA frontend by evaluating the panel accuracy when predicting the
attribute values of type, size, color, and position for each panel. A correct prediction is counted only if all attribute values of
all objects in a panel are predicted correctly. We compare the perception accuracy of the NVSA frontend in different training
configurations with the visual perception part of PrAE1. The visual perception part of PrAE consists of four separate LeNet-
like architectures, which predict objectiveness, type, size, and color. Since the original PrAE was trained only on the 2x2
constellation, we also train the visual perception part of PrAE on each constellation individually.

For learning the parameters of our NVSA frontend and PrAE1, we extract the 16 panels (eight context panels and eight
answer panels) and use ground-truth attribute values provided by the dataset as meta-labels. We exclusively trained and tested
the models on the RAVEN training and testing sets, respectively. Moreover, we also train our NVSA frontend on a partial
training set containing only 6000 training samples (instead of full 42,000 samples) by taking training samples from the individual

4

constellations based on a share that corresponds to their number of possible locations, e.g., 3x3 grid provides 9ˆ more training
samples than the center. The trainable parameters are trained using batched stochastic gradient descent (SGD) with a weight
decay of 10´41e-4 and a momentum of 0.9.

Supplementary Table I compares the panel accuracy of these different perception methods. Training the NVSA frontend on the
full training set yields a highly accurate model that significantly outperforms the constellation-dependent PrAE models, where
the additive cross-entropy loss results in 2.4% higher accuracy compared to the random loss (99.76% vs. 97.33%). The additive
cross-entropy loss notably outperforms the randomized cross-entropy loss in the constellations with many possible locations,
e.g., in the 3x3 grid (98.61% vs. 85.70%) or the out-in grid (99.95% vs. 97.30%). Moreover, when training the perception
only on the partial training set (i.e., 1{7 of the full training set), the NVSA frontend accuracy is almost preserved with both the
additive (99.76% vs. 97.16%) and the random cross-entropy loss (97.33% vs. 96.78%) while reducing the training set to the size
of a single constellation (42,000 samples vs. 6000 samples). This showcases the sample efficiency of our approach.

Finally, we merge this instance of the NVSA frontend, which is trained on the complete training set with the additive cross-
entropy loss, with the NVSA backend to solve the complete RPM tests. Tables II and III show the performance in the last
row. NVSA achieves the highest accuracy of 98.5% and 99.0% on RAVEN and I-RAVEN, respectively, thanks to its accurate
perception.

Supplementary Table I: Panel accuracy (%) of the visual perception methods on the RAVEN test set. The methods are trained
with the visual attribute labels. Avg denotes the average accuracy over all test constellations. L-R stands for left-right, U-D for

up-down, O-IC for out-in center, and O-IG for out-in grid.

Method Training
Loss

Training
Constellation(s)

Training
Samples Avg Center 2x2 grid 3x3 grid L-R U-D O-IC O-IG

PrAE1 perception Rand. CEL Individual‹ 42,000 85.27 88.65 93.56 73.95 100.0 100.0 94.23 46.52
NVSA frontend Add. CEL Full: 42,000 99.76 100 99.83 98.61 99.97 99.96 99.97 99.95
NVSA frontend Rand. CEL Full: 42,000 97.33 100 99.30 85.70 99.67 99.56 99.73 97.30
NVSA frontend Add. CEL Partial: 6,000 97.16 98.84 99.26 86.23 99.66 99.55 99.75 96.85
NVSA frontend Rand. CEL Partial: 6,000 96.78 99.83 99.18 84.95 99.63 99.52 99.74 94.57

‹ The training constellation is identical to the testing constellation, thus seven independent models were trained and tested.
: A universal model on all seven constellations was trained and tested.

b. Generalizability of multiplicative binding to unseen combinations of attribute values

In this part, we investigate the generalizability of the NVSA frontend to unseen attribute-value combinations. To that end,
we consider the single object case for the 2x2 grid constellation. After choosing a set of values for each of the four attributes
(position, color, size, and type), the training and test datasets for each of the six pairs of attributes are generated as follows. For
the pair of attributes tAi,A jui, jPt1,..,4u and their associated set of values Vi and Vj, an object is considered during training if at
least one of its values for Ai or A j is in the prespecified sets Vi and Vj. The test set only contains objects that do not satisfy the
condition for Ai nor A j.

For instance, when we choose the first quadrant for position and the triangle for type as the pair of attribute-value of interest,
the training set contains panels with single objects of all types placed on the first quadrant or triangles located on the remaining
three quadrants. In this case, the test set is composed of single objects of all types except triangles placed on all quadrants,
excluding the first one. We note that in this setting, the considered objects can have any value for the rest of attributes that is
color and size. The datasets for the example above are depicted in Supplementary Fig. 2. Supplementary Table II lists the
training and testing attribute combinations for all six pairs of attributes.

The second type of generalization experiment involves determining two sets of values per attribute. For attribute Ai, the two
sets are denoted Vi,1 and Vj,2. Accordingly, for the pair of attributes tAi,A jui, jPt1,..,4u and their respective four sets of values Vi,1,
Vi,2, Vj,1, and Vj,2, the training set comprises objects with values for the two attributes in Vi,1 and Vj,1, or in Vi,2 and Vj,2. The test
set is the remaining data points in the complement of the training set. This partitioning is inspired by the CLEVR dataset2 for
compositional generalization experiments.

In both investigated generalizability settings, the NVSA frontend based on the multiplicative binding cannot provide the
correct predictions for the test sets, resulting in 0% test accuracy for all six attribute pairs (see the 4th column of Supplementary
Table II). According to these results, this frontend instance does not show any sign of attribute-value generalizability. In fact,
the frontend’s inability to generalize is an inherent property of the multiplicative binding of quasi-orthogonal vectors; each entry
of the cosine similarity scores vector z corresponds to the similarity value with the embedding vector of a given combination of
the considered four attributes. Through the additive cross-entropy loss, the model learns to maximize the entry corresponding
to the target and minimize the rest. In the context of the generalization experiments, the set of components of the vector z

5

(a) Training set (b) Test set

Supplementary Figure 2: The types of panels considered in the training set (a) and test set (b) for the first type of generalization
experiments in the following pair of attribute-value: the first quadrant for position, and triangle for type.

corresponding to the training set and that of the test set are mutually exclusive. Therefore, when the dictionary matrix W
contains quasi-orthogonal vectors, the model cannot be expected to perform accurate predictions for any unseen combination of
the attributes.

After identifying this limitation in the attribute-value generalizability of the multiplicative binding encoding, we enhance this
encoding by the addition (bundling) operation to add key-value bound pairs. In this enhanced multiplicative-additive encoding,
we describe an object w with attribute values a,b,c,d for type, size, color, and position as

w“
`

rtyped ta
˘

‘prsized sbq‘prcolord ccq‘
`

rposd ld
˘

, (4)

where ri P t´1,`1ud are randomly initialized key vectors. The key vectors are bound with the corresponding value vectors (ta,
sb, cc, and ld), yielding key-value pairs which are added (bundled) to represent all attributes of the object. The multiplicative-
additive encoding allows the extraction of each attribute’s value individually by unbinding the object representation (w) with
the key vector; the knowledge of other attribute values is not required. Hence, this encoding explicitly disentangles the attribute
values. This allows us to treat each attribute individually and, more importantly, formulate the attribute recognition as a re-
gression problem where a relationship between values exists. Concretely, we formulate the recognition of the color and the
size as a regression problem using hyperspherical prototypes3. Instead of dictating the target vector of every attribute value,
hyperspherical regression only defines the target vectors of the minimum and maximum values. The intermediate values are
uniformly distributed on the hypersphere in terms of cosine similarities. For example, the target vectors for the attribute color
with 10 values are c1 “ ´x and c10 “ x, where x is a randomly initialized vector. The representation of an intermediate color
value (ci) should then have a cosine similarity of

cospc10,ciq “ 2 ¨
i´1

mc´1
´1, (5)

where mc “ 10 is the number of possible color values. Finally, the visual perception module is trained by optimizing the
mean-squared error for the hyperspherical prototypes (color and size) and the categorical cross-entropy loss for the position and
type.

Supplementary Table II compares the generalization capabilities of the NVSA frontend when using different encodings: the
multiplicative versus the multiplicative-additive. Indeed, the multiplicative-additive encoding significantly improves the gen-
eralization in four attribute pairs compared to the pure multiplicative encoding: position-color (34.8%), position-size (15.1%),
color-size (29.3%), and color-type (72%). There are still two attribute pairs of position-type and size-type that show 0% gener-
alization, which could be due to the spatial structure of the CNN’s filters.

c. Generalizability of multiplicative binding to unseen combinations of multiple objects

In the previous subsection, we observe that the NVSA frontend using the encoding of multiplicative-additive with hyper-
spherical prototypes can generalize to some unseen combinations of the attribute values in a single object, while the encoding
with the multiplicative binding of the quasi-orthogonal vectors cannot. Here, we further evaluate whether the multiplicative

6

Supplementary Table II: Accuracy of attribute-value generalization (%) of the NVSA frontend in the 2x2 grid constellation
containing k=1 object. The training and test sets are chosen such that the attribute-value sets are disjoint. The NVSA frontend
is trained with the ground-truth attribute labels by optimizing the loss in equation (3) with SGD. The NVSA frontend uses two

different encodings: multiplicative binding of quasi-orthogonal vectors, and multiplicative-additive of hyperspherical.

Training combinations Testing combinations Multiplicative +
quasi-orthogonal

Multiplicative-additive +
hyperspherical

Position-color Position P {0, 3} OR
color P {0, 3, 6, 8}

Position R {0, 3} AND
color R {0, 3, 6, 8} 0.0 34.8

Position-type Position P {0, 3}
OR type P {0, 2}

Position R {0, 3}
AND type R {0, 2} 0.0 0.0

Position-size Position P {0, 3}
OR size P {1, 5}

Position R {0, 3}
AND size R {1, 5} 0.0 15.1

Color-size Color P {0, 3, 6, 8}
OR size P {1, 5}

Color R {0, 3, 6, 8}
AND size R {1, 5} 0.0 29.3

Color-type Color P {0, 3, 6, 8}
OR type P {0, 2}

Color R {0, 3, 6, 8}
AND type R {0, 2} 0.0 72.0

Size-type Size P {1, 5}
OR type P {0, 2}

Size R {1, 5}
AND type R {0, 2} 0.0 0.0

encoding can generalize to unseen combinations of multiple objects. We train the NVSA frontend (hereafter, we simply omit the
repetitive multiplicative encoding term) in the 2x2 grid constellation where the training set contains as a basis all possible panels
with exactly one object, which are 9600 panels when considering that we have 10 color, 6 size, 5 type, 8 angle, and 4 position
attribute values. We provide two training settings ktrain P t1,2u, where ktrain is the number of available objects in the panel. In
the training setting ktrain “ 1, we only train the NVSA frontend using the basis training set with a single object, whereas in the
ktrain “ 2 setting we have augmented the basis training set by another 9,600 panels containing 2 objects. The validation sets are
always constructed in the same way as the training sets. In the testing, we consider the settings ktest P t2,3,4u, where in each
setting, the trained models are tested on 28,800 panels containing a fixed number of ktest objects in the panel. See the first two
rows in Supplementary Table III.

The model parameters are trained using SGD with a weight decay of 1e-4 and a momentum of 0.9. The batchsize was set
to 256, and we used the scaling factor sl “ 1. Furthermore, we set the learning rate to 0.1 and decay by factor of 10 every 30
epochs. Moreover, the number of epochs is scaled such that all trained models have approximately the same number of updates.
The optimal threshold τ is determined by cross-validation, where the selection criteria is τ “ argmaxτ̂ vpτ̂q´4τ̂ , where vpτq is
the accuracy on the validation set using threshold τ . We included the regularization on the magnitude of τ since we generally
predicted too few objects when ktest was large.

Next, we construct a similar experiment in the 3x3 grid constellation, in which the basis of the training set contains all 21,600
possible single-object panels. Compared to the 2x2 grid, there are 9 position attributes instead of 4. We consider the training
settings ktrain P t1,2,3,4u, where in ktrain “ 1 we only use the basis training set to train the NVSA frontend. In the settings
where ktrain ě 2, we augment the training set which is used in the setting ktrain´ 1 by 21,600 panels containing exactly ktrain
objects. The validation sets are always constructed in the same way as the training sets in each setting. In the testing, we consider
the settings ktest P t2,3,4,5,6,7,8,9u, where in each setting, the trained models are tested on 64,800 panels containing a fixed
number of ktest objects in the panel. The training hyperparameters are chosen as in the above experiment, except that the optimal
threshold τ is determined using τ “ argmaxτ̂ vpτ̂q´ 9τ̂ as our selection criteria. Note that in both experiments, we omit to test
the single object setting because every possible single object panel is already contained in the corresponding training set. The
results of the two experiment sets are summarized in Supplementary Table III.

In the 2x2 grid constellation, we observe that after training in the ktrain “ 1 setting, the NVSA frontend is already able to
correctly predict the majority of the panels in the ktest P t2,3u settings, where it achieves 92.4% and 68.1% without even having
seen an instance of multiple object panel in training. Nevertheless, there is a significant accuracy drop in the ktest “ 4, achieving
19.3%. However, training with the 2 object combinations (i.e., ktrain “ 2) achieves an average panel accuracy of 97.1% in all
testing settings. Considering the out-of-distribution (OOD) testing cases, i.e., ktest P t3,4u, an average panel accuracy of 97.3%
is achieved. This indicates that training with the simple cases of up to 2 objects in the panels is enough to generalize to panels
that contain up to 4 objects.

In the 3x3 grid constellation, we observe similar trends in the ktrain “ 1 setting, where it correctly predicts 70.6% of the panels
containing 2 objects. However, in the testing settings ktest P t5,6,7,8,9u the model is overwhelmed by the presence of too many
objects at the same time. In ktrain “ 2, it is able to obtain non-zero panel accuracy in all testing settings except the most complex

7

one (ktest “ 9). This indicates that the model is able to generalize in more complex panels with up to 8 objects after having
encountered the panels with at most 2 objects. We observe that increasing the number of objects during training results in a
higher OOD average panel accuracy, where the accuracy is monotonically improving with respect to ktrain. Note that the OOD
average is calculated over a more complex set, when we increase ktrain. Finally, the NVSA frontend achieves an average panel
accuracy of 86.3% after training only on the panels which contain less than half of the maximal number of objects allowed in
the 3x3 grid constellation.

Supplementary Table III: The NVSA frontend using multiplicative binding and its generalization to a growing number of
unseen objects in the RAVEN panel. The frontend is trained with a fixed number of objects ktrain ranging from 1 to 2 in the 2x2
constellation, and then the test panel accuracy (%) is reported for an unseen number of object combinations (ktest) ranging from
2 up to 4 objects. Similar experiments are done in the 3x3 constellation where ktrain P t1,2,3,4u and ktest P t2,3,4, ...,9u. Avg

denotes the average accuracy over all testing samples and OOD Avg denotes the average accuracy on testing samples with more
than ktrain objects.

Training
Constellation

Training
Samples # Epochs ktrain

ktest Avg OOD
Avg2 3 4 5 6 7 8 9

2x2 9600 200 1 92.4 68.1 19.3 - - - - - 59.9 59.9
2x2 19,200 100 2 96.6 97.3 97.3 - - - - - 97.1 97.3

3x3 21,600 400 1 77.6 30.1 2.5 0.0 0.0 0.0 0.0 0.0 13.8 13.8
3x3 43,200 200 2 89.2 83.4 60.9 30.7 10.9 2.8 0.6 0.0 34.8 27.0
3x3 64,800 133 3 92.6 92.6 90.7 82.4 67.3 49.1 32.7 17.3 65.6 56.5
3x3 86,400 100 4 89.3 89.9 90.9 91.8 91.4 88.4 81.2 67.8 86.3 84.0

d. Resolution issues in the RAVEN dataset

In addition to its high perception accuracy, the NVSA frontend offers better transparency, allowing us to discover issues in
the generative process in the RAVEN dataset. Some objects in the inner part of the out-in grid constellation have a different size
attribute value but the same image representation. The problem occurs in cases where the size attribute differs by one value;
hence, it can be attributed to an insufficient image resolution. This generation problem only concerns objects of type square and
is observed in 42.15% of the panels. For validating the perception accuracy, we solve this issue by merging classes with different
sizes but same image representation.

8

Supplementary Note 2: Visual Analogies

In this Supplementary Note, we demonstrate another use case in which the appropriate perceptual representations in the
NVSA frontend can be used directly to solve higher-level reasoning tasks. Specifically, we show that the predicted perceptual
representations at the output of ResNet-18 can be directly manipulated by the binding operations to solve visual analogy tasks
(A : B :: α : β). In the studied task, we consider a source domain that shares one relationship, or multiple relationships, between
its two sets of objects (A : B), and a target domain that shares the same relationship(s) between its object sets (α : β). Binding
the neural network representations obtained from the source domain allows to capture the relationship(s) solely from a single
example, which can be applied to novel circumstances in the target domain by another application of the binding operation.

We generate a new RAVEN-like test dataset, in which a visual analogy problem consists of four panels arranged in a 2ˆ2
matrix with a missing panel in the bottom right, as shown in Supplementary Fig. 3a. The first row constitutes the source domain
where there is at least one relationship between the two panels (indicated by the blue arrow), and the second row constitutes the
target domain that should establish the same relationship between one of its panels and the missing one. We demonstrate how
the relationship can be captured from a single example in the source domain and how it can be applied beyond the example from
which it was learned (i.e., in the novel circumstances of the target domain). This can be done by solely applying consecutive
binding operations at the vector outputs generated from the neural network: the first binding operation captures the relationship
in the source domain, and the second one applies it to the target domain.

a. One-to-one relationship

We describe how the relationship can be captured from the source domain and how it can be applied (i.e., transferred) to the
target domain. We explain it using the visual analogy example shown in Supplementary Fig. 3a. We name this analogy problem
one to one because there is only one relationship among the two objects in the source domain. Using our NVSA frontend,
ResNet-18 generates the VSA representations of qA, qB, and qα for the objects in panels A, B, and α . By manipulating these
VSA representations, we aim to generate the VSA representation of the solution panel β .

To better explain the analogy, let us refer to the ground-truth VSA representations of the object in the panels. We only refer
to them for the sake of clarification; note that they are not used for solving analogies. In our example shown in Supplementary
Fig. 3a, we have the following ground-truth VSA object representations:

oA “ l5d tsquared s2d c3 (6)
oB “ l5d tpentagond s5d c3 (7)

oα “ l2d tsquared s2d c3 (8)
oβ “ l2d tpentagond s5d c3 (9)

In this example, oA is related to oB by changing its type from square to pentagon and increasing its size from 2 to 5. Using the
binding operation between the corresponding perceptual representations generated by ResNet-18 (qA and qB) allows capturing
this relationship in a VSA representation (rA:B) as a high-dimensional vector via:

rA:B “ qAdqB « oAdoB “ tsquared tpentagond s2d s5. (10)

As shown, the resulting relationship vector rA:B approximately expresses the binding between four attribute vectors that are
actively involved in the relationship. In fact, rA:B transparently describes that tsquare should be mapped to tpentagon, and s2 should
be mapped to s5. This relationship vector provides an explanation as to how the source objects can inductively be mapped to the
target objects. Therefore the relationship can be readily applied beyond the example from which it is learned. In order to apply
the relationship rA:B in the target domain pα : β q, we bind the relationship vector with the object vector qα , resulting in:

ôβ “ rA:Bdqα « (11)

rA:Bdoα “ (12)
ptsquared tpentagond s2d s5qdpl2d tsquared s2d c3q “ (13)

l2d tpentagond s5d c3 “ oβ . (14)

We observe that the VSA-generated object (ôβ) matches the target object (oβ). In short, the final answer generation consists of
binding both panels from the source domain and the first panel from the target domain, i.e., ôβ “ qAdqBdqα .

We generated our one to one problems by using the 2x2 grid constellation of the RAVEN dataset, where we used the rules
constant and distribute two in the generation process. The rules are applied to the position, type, size, and color. The
constant rule fixes the value of an attribute in a row, whereas in the distribute two rule, we sample two valid and distinct

9

values and assign the first value to the object in panels A and α and the second value to panels B and β . The rule of each attribute
is selected individually, with the constraint that there is at least one attribute with the constant rule. The attribute values of
the object in panel α are only allowed to differ if the rule on the attribute is constant. We generated 6,000 one to one
problems, where these problems can be further divided into sets of size 2,000 that contain the distribute two rule once,
twice, and three times.

For evaluation, we trained the NVSA frontend for 100 epochs with a batchsize of 256 and scaling factor sl “ 1 on the
panels from the standard RAVEN training set in the 2x2 grid constellation. We have used a learning rate of 0.1, which we
have decreased by a factor of 10 every 30 epochs. We consider the analogy to be successfully solved when the ground-truth
VSA representation of the object in panel β (i.e., oβ) has the highest cosine similarity with our generated answer ôβ . This
has been done by an associative memory cleanup that computes the similarities between the generated vector and all the object
vectors in the dictionary W, i.e., oβ “ argmaxwPWsimpôβ ,wq. Using the output of our NVSA frontend, we solved the generated
one to one analogies with an accuracy of 100%.

b. One to many relationship

We expand the one to one analogies to one to many analogies, where an example is shown in Supplementary Fig. 3b.
The main difference compared to the one to one analogies is that the number of objects in the panels B and β can be more
than one, e.g., 2, 3, or 4. This means there are relationships between the objects (depicted with different colors in Supplementary
Fig. 3b).

We describe capturing the relationship set and transferring the relationship set to the target domain based on an example with
a fixed number of objects (k) in the panels B and β . Since there are multiple (k) objects in the panel B, its ground-truth VSA
representation is the addition (i.e., bundling) of the VSA representations of the individual objects (oB1 , ..., oBk) present in the
panel, which is expressed by

oB “ oB1 ‘ ...‘oBk . (15)

Similarly, the ground-truth VSA representation of the panel β is:

oβ “ oβ1 ‘ ...‘oβk
. (16)

The trained ResNet-18 generates the perceptual representations for the three panels: qA, qB, qα . Similar to Supplementary
Note 2a, binding qA and qB captures the relationship set in rA:B. This is because, in VSA, multiplication (binding) distributes
over addition (bundling). The relationship vector rA:B is an approximation of the bundle of all one to one analogies present
in the source domain, namely:

rA:B “ qAdqb « r1
A:B‘ ...‘ rk

A:B,where ri
A:B “ oAdoBi for i“ 1, ...,k. (17)

Finally, the relationship vector rA:B is bound by the object representation in panel α to represent the target domain (ôβ “ rA:Bd

oα). This single binding operation performs computation-in-superposition by applying a set of relationships simultaneously. We
measure the accuracy of our analogy by calculating the cosine similarity between the ground-truth object representation oβ and
our generated representation ôβ . We consider the analogy to be solved when the cosine similarity between the two vectors is at
least 0.99.

We generated the one to many problems similar to the one to one problems, except that multiple objects are required
in panels B and β . Due to this exception, the position attribute is only allowed to have the distribute two rule since the
constant rule could not be instantiated. We generated 2000 one to many problems.

In the experiments, we used the same NVSA frontend used in Supplementary Note 2a. We achieved 100% accuracy in solving
the one to many visual analogy tasks.

10

(a) one to one analogy (b) one to many analogy

Supplementary Figure 3: Example analogy in (a) one to one scenario and (b) one to many scenario. In (a) we
illustrate a one to one visual analogy problem. In the source domain (A : B) there is an underlining relationship of changing
type and size of the object which is shown by the blue arrow. The same relationship should be applied to novel circumstances in
target domain (α : β), where for example the position of the objects is different. In (b) we illustrate expanded one to many
visual analogy problem. In this problem, there is a set of relationships between the objects in the source domain (A : B). In the
shown example, the relationship set consists of two one to one relationships indicated by the green an violet arrows. Both

relationships change the color of the object in the same way, however they alter the position attribute to a different value.

11

Supplementary Note 3: Details on the NVSA backend

In this Supplementary Note, we provide a detailed description of the NVSA backend, including the VSA representation of
PMFs, the rule probability computation and execution, and the selection of the rule and the final answer.

VSA representation of PMFs

For all attributes, the PMF is represented through the weighted superposition with the values in the PMF used as weights and
the corresponding codewords bk as basis vectors taken from the codebook B :“ tbku

n
k“1:

api, jq :“ gpppi, jqq “
n
ÿ

k“1

ppi, jqrks ¨bk. (18)

The codebook (discrete or continuous) is selected based on the underlying attribute and rule. The number of codewords n is
given by the dimensionality of the PMF, which depends on the attribute. For example, the shape PMF is 5-dimensional due to
the five different shapes in RAVEN; hence, the transformation requires n“ 5 codewords. After transforming the PMF to a VSA
representation, we can manipulate the PMFs in the VSA representation using the algebra provided by the vector space. This
allows estimating the probability urrules for every rule. Then, the most probable rule is selected and executed in the vector
space, yielding âp3,3q. Finally, the PMF is estimated using the similarity computation with a consecutive normalization:

p̂p3,3q :“ norm
´”

simpâp3,3q,b1q,simpâp3,3q,b2q, ...,simpâp3,3q,bnq,
ı¯

. (19)

An alternative VSA representation to the binary sparse block codes is Fourier holographic reduced representation (FHRR)4.
In the following, we describe a similar procedure of transforming a PMF to an FHRR-based VSA representation and compare it
with the binary sparse block codes. The basis vectors in FHRR are d-dimensional, complex-valued, unary vectors. Each element
is a complex phasor with unit norm and an angle randomly drawn from a uniform distribution Up´π,πq. The dense bipolar
representations are a particular case of the FHRR model where angles are restricted to t0,πu. The binding in FHRR is defined
as the element-wise modulo-2π sum; similarly, the unbinding is the element-wise modulo-2π difference. The bundling of two or
more vectors is computed via the element-wise addition with a consecutive normalization step, which sets the magnitude of each
phasor to unit magnitude. The similarity of two vectors is the sum of the cosines of the differences between the corresponding
angles. Binding, unbinding, and similarity computation can be done using the polar coordinates, while bundling requires the
Cartesian coordinates. For a discrete attribute, we use a codebook with n unrelated basis vectors bi P Cd . For representing the
PMF of a continuous attribute, we use a codebook with basis vectors generated by the fractional power encoding4, where the
basis vector corresponding to an attribute value v is defined by exponentiation of a randomly chosen basis vector e using the
value as the exponent, i.e., bv “ ev. Each PMF is represented through the normalized weighted superposition with the values in
the PMF used as weights and the corresponding codewords as basis vectors:

api, jqFHRR :“ gFHRRpppi, jqq “ cnorm

˜

n
ÿ

k“1

ppi, jqrks ¨bk

¸

, (20)

where cnormp¨q normalizes the magnitude of every phasor of a d-dimensional complex-valued vector.
However, we observed nonidealities when mapping PMFs to the FHRR-based VSA representations. In a synthetic experiment,

we mapped a uniform distribution to the VSA representation using either the binary sparse block codes (by equation (18)) or
FHRR (by equation (20)), and projected them back to the PMF representation again using the associative memory search on
the corresponding codebook. Supplementary Fig. 4 shows the original and the reconstructed PMFs for discrete and continuous
concepts. We observe that both FHRR and binary sparse block codes can represent the discrete PMFs; however, FHRR faces
issues in representing continuous PMFs. This nonideality might stem from the complex normalization step in combination with
the constructive interference of the superimposed complex phasors. Thus, in this work, we use sparse binary block codes in our
NVSA backend.

Rule probability computation and rule execution

In the following, we describe the probability computation and the execution for every rule.

12

0 1 2 3 4 5 6 7 8 9
PMF idx

0.00

0.05

0.10

0.15

0.20

0.25
PM

F
va

lu
e

Original
Reconstr. FHRR
Reconstr. binary sparse block codes

(a) Discrete

0 1 2 3 4 5 6 7 8 9
PMF idx

0.00

0.05

0.10

0.15

0.20

0.25

PM
F

va
lu

e

Original
Reconstr. FHRR
Reconstr. binary sparse block codes

(b) Continuous

Supplementary Figure 4: Reconstruction of uniformly distributed PMF using either FHRR or binary sparse block codes for
both discrete and continuous concepts. The dimension of both VSA representations is set to d=1024.

a. Arithmetic plus and minus. The arithmetic rule computes the value of the last panel by adding (arithmetic plus) or
subtracting (arithmetic minus) the attribute values of the first two panels. Since this rule relates to a continuous concept, we use
a dictionary constructed by fractional power encoding. For determining the rule probability for arithmetic plus, we represent the
addition of the first two panels using the binding operation

r`i “ api,1qdapi,2q, i P t1,2u. (21)

If the arithmetic plus rule applies, we expect simpr`i ,a
pi,3qq " 0. Let us have a closer look at the similarity expression for the

first row:

simpr`i ,a
p1,3qq “ simpap1,1qdap1,2q,ap1,3qq (22)

“ sim

¨

˝

¨

˝

n
ÿ

k1“1

pp1,1qrk1s ¨bk1

˛

‚d

¨

˝

n
ÿ

k2“1

pp1,2qrk2s ¨bk2

˛

‚,

¨

˝

n
ÿ

k3“1

pp1,3qrk3s ¨bk3

˛

‚

˛

‚ (23)

“
ÿ

k1,k2,k3
s.t.k1`k2“k3

pp1,1qrk1s ¨pp1,2qrk2s ¨pp1,3qrk3s`
ÿ

k1,k2,k3
s.t.k1`k2‰k3

simpbk1 dbk2 ,bk3qp
p1,1qrk1s ¨pp1,2qrk2s ¨pp1,3qrk3s

(24)

“
ÿ

k1,k2,k3
s.t.k1`k2“k3

pp1,1qrk1s ¨pp1,2qrk2s ¨pp1,3qrk3s`
ÿ

k1,k2,k3
s.t.k1`k2‰k3

nk1,k2,k3 ¨p
p1,1qrk1s ¨pp1,2qrk2s ¨pp1,3qrk3s (25)

«
ÿ

k1,k2,k3
s.t.k1`k2“k3

pp1,1qrk1s ¨pp1,2qrk2s ¨pp1,3qrk3s. (26)

Equation (24) uses the linearity of the similarity and divides the sum into contributions that satisfy the arithmetic plus constraint
(LHS), i.e., simpbk1 dbk2 ,bk3q “ 1, and contributions which do not satisfy the constraint (RHS). For the latter, we replace the
similarity simpbk1 dbk2 ,bk3q with nk1,k2,k3 , which can be modeled as vanishing noise as the dimension d increases. The non-
satisfying terms converge to zero with sufficiently large dimension d and we can approximate (25) with (26). Equation (26)
sums up the products of all valid rule implementations. Indeed, this computation appears in traditional probabilistic reasoning
engines such as the PrAE1. Supplementary Table IV shows the relation between our NVSA backend and the PrAE backend1 for
computing the probabilities for different rules. Our NVSA backend derives the rule probability based on the similarity between
vectors of fixed dimension, while the PrAE computes the rule probability by marginalizing all possible rule implementations.

For interpreting the similarity in equation (22) as a probability, we limit the range of the similarity using a threshold function,
which sets all similarity values below 0.05 to 0. This suppresses noise stemming from invalid contributions.

Some of the rules need to satisfy additional constraints to be valid. For the arithmetic plus, the sum of the attributes of the first
two panels (k1`k2) has to be smaller than n. By computing simpr`i ,a

pi,3qq for i P t1,2u, this constraint is embedded for the first

13

two rows. For validating the arithmetic rule in the last row, we compute the constraint

hapap3,1q,ap3,2qq :“min

˜

n
ÿ

k“1

sim
´

ap3,1qdap3,2q,bk

¯

,1

¸

. (27)

The constraint accumulates all projections of the binding of ap3,1q and ap3,2q (i.e., the addition) to the space spanned by B. The
minp¨,1q guarantees the constraint to be 0ď ha ď 1 such that it can be interpreted as a probability. If the majority of the binding
falls outside of the space, i.e., the addition is larger than n, the constraint is not satisfied, and its value will be close to zero.
Finally, the rule probability is determined as

urarithmetic pluss “ simpr`1 ,a
p1,3qq ¨ simpr`2 ,a

p2,3qq ¨hapap3,1q,ap3,2qq. (28)

If the rule is selected, it is executed by computing

âp3,3q “ ap3,1qdap3,2q. (29)

The rule arithmetic minus is implemented analogously, where the row representation is computed using the unbinding opera-
tion:

r´i “ api,1qgapi,2q, i P t1,2u. (30)

b. Progression. The progression rule describes a positive or negative increment by one or two values along the panels;
hence, it is a continuous concept, too. We detect and execute the progression rules with different increments and decrements
individually. The RAVEN dataset applies the rules row-wise. We compute the rule probability for positive increments by
computing first the unbinding between adjacent panels

d`pi, jq “ api, j`1qgapi, jq pi, jq P tp1,1q,p1,2q,p2,1q,p2,2q,p3,1qu (31)

as well as the unbinding between the left-most and right-most panel in the first two rows:

d``pi,0q “ api,2qgapi,0q i P t1,2u. (32)

If the progression rule by an increment of n P t1,2u is active, we expect the unbound vectors d`pi, jq and d``pi,0q to be similar to
the basis vectors that represent the values n and 2n (bn and b2

n):

urprogression-plus-ns “

˜

ź

i, j

simpd`pi, jq,bnq

¸

¨

¨

˝

ź

iPt1,2u

simpd``pi,0q,b2
nq

˛

‚¨hppdp1,1qq. (33)

The last term prevents us from confusing the progression rule with the constant rule, which can be interpreted as a progression
of zero, and is implemented as

hppd`p1,1qq :“ p1´ simpd`p1,1q,0qq. (34)

It computes the similarity between a difference vector (dp1,1q) and the all-zero vector (0), which is represented with a vector
where each block has its non-zero element at index 0. Finally, the progression rule is executed by

âp3,3q “ ap3,2qdbn. (35)

The implementation of the progression with decrement is analogous, where we compute the binding in reverse order, e.g.,

d´pi, jq “ api, jqgapi, j`1q pi, jq P tp1,1q,p1,2q,p2,1q,p2,2q,p3,1qu. (36)

14

Supplementary Table IV: Relation of rule probability computation between PrAE1 and our NVSA backend.

Rule PrAE NVSA

Constant u“
2
ÿ

r“1

n
ÿ

v“1

3
ź

c“1

ppr,cqrvs`
n
ÿ

v“1

2
ź

c“1

pp3,cqrvs u“ simpap1,1q,ap1,2qq ¨ simpap1,2q,ap1,3qq ¨ ... ¨ simpap3,1q,ap3,2qq

Progression-
plus n

u“
2
ÿ

r“1

ÿ

v1,v2,v3
s.t.v1`n“v2

v2`n“v3

3
ź

c“1

ppr,cqrvcs`
ÿ

v1,v2
s.t.v1`n“v2

2
ź

c“1

pp3,cqrvcs u“

¨

˝

ź

i, j

simpd`pi, jq,bnq

˛

‚¨

¨

˝

ź

iPt1,2u

simpd``pi,0q,b2
nq

˛

‚¨hppdp1,1qq

Arithmetic-
plus

u“
2
ÿ

r“1

ÿ

v1,v2,v3
s.t.v1`v2“v3

3
ź

c“1

ppr,cqrvcs u“ simpr`1 ,ap1,3qq ¨ simpr`2 ,ap2,3qq ¨hapap3,1q,ap3,2qq

Dist.three u“
ÿ

vp1,1q,...,vp3,2qPId3

2
ź

r“1

3
ź

c“1

ppr,cqrvpr,cqs
2
ź

c“1

pp3,cqrvp3,cqs u“ simpc1,c2q ¨ simpr1,r2q ¨hdpap1,1q,ap1,2qq, ...,ap2,3qq

c. Distribute three. The distribute three rule relates to a discrete concept, hence we use fully random codewords. First, we
compute the row-wise binding of the PMF-vector representation of the first two rows

ri “ api,1qdapi,2qdapi,3q, i P t1,2u. (37)

Similarly, we can compute the column representations by

c j “ ap1, jqdap2, jqdap3, jq, j P t1,2u. (38)

If the distribute three rule applies, we expect both simpr1,r2q " 0 and simpc1,c2q " 0.
Hence, the rule probability is computed by

urdistribute threes “ simpc1,c2q ¨ simpr1,r2q ¨hdpap1,1q,ap1,2qq, ...,ap2,3qq, (39)

where

hdpap1,1q,ap1,2qq, ...,ap2,3qq :“ p1´ simpap1,1q,ap1,2qq ¨ p1´ simpap1,2q,ap1,3qq ¨ ... ¨ p1´ simpap3,1q,ap3,2qq (40)

validates the constraint that panels are not equal within a row. If the rule is selected, it is executed by

âp3,3q “ r1g

´

ap3,1qdap3,2q
¯

. (41)

d. Constant. The computation of the constant rule probability involves the row-wise similarities:

urconstants “ simpap1,1q,ap1,2qq ¨ simpap1,2q,ap1,3qq ¨ simpap2,1q,ap2,2qq ¨ simpap2,2q,ap2,3qq ¨ simpap3,1q,ap3,2qq. (42)

The execution of the constant rule requires no transformation; thus, there is no need to map the PMF to the vector space and
back. Therefore, the PMF of the missing panel can be directly estimated by using one of the PMFs in the bottom row, e.g.,

p̂p3,3q “ pp3,1q. (43)

Selection of the rule and the final answer

For each attribute, we compute the rule probability of all rules using the NVSA backend. In the RAVEN dataset, the arith-
metic and progression rules on the position attribute are implemented in the binary system; thus, we compute the rule probability
computation in the original PMF space for those rules. For every attribute, we select the rule with the highest rule proba-
bility and apply it to get P̂p3,3q :“ pp̂pos, p̂num, p̂type, p̂size, p̂color). Finally, we compute for each candidate answer panel j, the
Jensen–Shannon divergence (JSD) between each of the five probability distributions in Ppkq and P̂p3,3q, and sum the five JSD
values to obtain a score for the answer panel j. The predicted answer panel j‹ is the one with the lowest total divergence.

15

Supplementary Note 4: Out-Of-Distribution generalization to unseen attribute-rule pairs

In this Supplementary Note, we evaluate the generalizability of our NVSA, including both frontend and backend, for to unseen
attribute-rule pairs. More specifically, we evaluate whether our model is able to solve an unseen target attribute-rule pair (e.g.,
the constant rule on the type attribute) when it has been trained on the examples containing all of the attribute-rule pairs except
the specific target one (e.g., the constant rule on size and color, the progression rule on all attributes, and the distribute rule on
all attributes). Hence, this setting tests the out-of-distribution generalization for the attribute-rule pairs. To do so, we generate a
new training and validation set containing all examples except those with the target attribute-rule pair and a test set containing
examples exclusively with the target attribute-rule pair. The datasets are generated by filtering the existing splits in RAVEN and
I-RAVEN. As a result, the sets contain fewer samples depending on the target attribute-rule pair; specifically, the training sets
contain 2622–3437 samples, the validation sets 841–1160 samples, and the test sets 803–1117.

Supplementary Table V shows the experimental results on I-RAVEN in the L-R constellation. The results of LEN5 and
CoPINet6 are based on experiments conducted by Wu et al.7. Our NVSA was trained end-to-end and outperformed both baselines
by a large margin in all target attribute-rule pairs. Minor accuracy degradations are observed in the continuous rules (i.e.,
progression and arithmetic). This might point out the importance of the continuous rules being present for the NVSA to learn
all attribute values properly.

Supplementary Table V: Out-Of-Distribution generalization on the unseen rule-attribute pairs of the I-RAVEN dataset in the
L-R constellation. We report accuracy (%) on test set that contains exclusively examples with the target attribute-value pairs on

which it has not been trained on.

Type Size Color

Constant Progress. Dist.3 Constant Progress. Dist.3 Arithmetic Constant Progress. Dist.3 Arithmetic

LEN5 28.0 24.0 29.4 24.4 27.9 27.6 - 25.3 25.3 22.0 -
CoPINet6 25.1 36.2 32.9 37.2 36.2 36.4 - 38.8 35.8 29.2 -
NVSA 100 81.8 100 100 100 100 77.8 99.9 81.7 100 80.9

16

Supplementary Note 5: Experiments on the PGM dataset

This section describes the application of our NVSA to the Procedurally Generated Matrices (PGM) dataset8.

PGM Dataset

The PGM dataset provides RPM tests with two constellations, line and shape, which can simultaneously be present in a panel.
The objects in the shape constellation are arranged in a 3x3 grid, each taking one out of ten gray shadings, ten sizes, and seven
geometrical types (see Supplementary Table VI). Moreover, the line constellation contains six different line types, each taking
one out of ten gray shadings. Both constellations can have no objects present in a panel.

Each PGM example has 1 to 4 active rules, either applied row-wise or column-wise. This contrasts the RAVEN dataset, where
only a row-wise rule governs every attribute. The rules can be described as follows:

• Progression: The attribute value monotonically increases by a value of one in a row/column.

• XOR, OR, and AND: The set of attribute values in the third panel in a row/column corresponds to the logical XOR, OR, or
AND operation of the first two panels. Let us consider an example with the attribute type in the shape constellation. The
first panel contains objects with squares and triangles and the second only triangles. Consequently, the third panel would
either contain only squares (XOR), both squares and triangles (OR), or only triangles (AND).

• Consistent union: The same set of attribute values appear in the three panels of every row/column (with permuta-
tions of the values in different rows/columns). This is a relaxed version of the distribute three rule in the RAVEN
dataset since it does not require all the permutations to be distinct.

Supplementary Table VI summarizes the attribute rules of the two constellations. The PGM dataset contains 1,200,000
examples for training, 20,000 for validation, and 200,000 for testing. Moreover, the active rules are provided as meta-labels.
Note that the meta-labels do not contain the orientation of the rule (i.e., row-wise or column-wise).

NVSA frontend

We start by defining the codebooks for the two constellations. The line constellation has two codebooks, TL :“ ttiu
6
i“1 for type

and CL :“ tciu
10
i“1 for color. Similarly, the codebooks for the shape constellation are TS :“ ttiu

7
i“1, SS :“ tsiu

10
i“1, CS :“ tcS

i u
10
i“1,

and LS :“ tliu9
i“1 representing the type, size, color, and position of a single object. We build the dictionaries WL P t´1,`1umLˆd

and WS P t´1,`1umSˆd by binding the vectors from the codebooks of all possible combinations for line and shape. This yields
mS=6300 combinations for the shape and mL=60 combinations for the line.

In our earlier NVSA frontend using one ResNet-18, we identified a limitation in the end-to-end training with multiple at-
tributes, where in most cases, only one attribute was learned, and the others remained at random chance. The limitation might
stem from the larger number of attribute combinations in PGM: the shapes in PGM have ą 2ˆ more attribute combinations
than the largest 3x3 grid constellation in RAVEN (6300 vs. 2700). To simplify the end-to-end training, we train four ResNet-18
models, each focusing on two attributes: one for the line constellation (type-color attributes) and three for the shape constel-
lation (type-position, size-position, color-position). We intentionally included the position attribute for every attribute since it
influences the scene probability computation of the other attributes (e.g., see equation (17) in Methods). Moreover, we use a
larger dimension d “ 1024 for better performance.

Probabilistic scene representation

For every panel, we compute a PMF for each object (e.g., vpkqexist, vpkqtype, vpkqsize, vpkqcolor for object k in the shape constellation)
using the marginalization with consecutive softmax approach (see equation (12)–(14) in Methods). We then derive the PMFs
representing the attributes of the panel. Here, most attribute-rule pairs use the same computation of the panel PMF as in RAVEN.
The exceptions are the logical rules (XOR, OR, and AND) on color, size, and type, where we need to describe every attribute value
combination separately. More specifically, we describe the occupancy with the set of occupied values I j; e.g., I3 “ t1,2u
represents a scene with at least one object with attribute value 1 and at least one with attribute value 2. The probability that a
panel contains the attributes a with values in I j is determined by

p1ar js “
ź

kPI j

min

˜

n
ÿ

l“1

vplqexistr0sv
plq
a rks,1

¸

, (44)

17

Supplementary Table VI: Summary of attributes and rules in the PGM dataset.

Constellation Attribute name Number of
attribute values Rules

Shapes Color 10 Progression, XOR, OR, AND, consistent union
Size 10 Progression, XOR, OR, AND, consistent union
Number 10 Progression, consistent union
Position 9 XOR, OR, AND
Type 7 XOR, OR, AND, consistent union

Line Color 10 Progression, XOR, OR, AND, consistent union
Type 6 XOR, OR, AND, consistent union

where n is the number of positions in the scene (n=6 for line and n=9 for shape), vplqexist the probability that an object exists at
position l, and vplqa rks the probability that the object at position l has attribute a with value k. We limit the set I j to contain at
most four different values to keep the compute and memory demands low. Overall, we get a scene representation for the line,
PL :“ tppos,pcolor,p1coloru, and for the shape constellation, PS :“ tppos,pnum,ptype,p1type,psize,p1size,pcolor,p1coloru. Note that the
attributes color, type, and size now have two scene representations: the standard PMF pa (see equation (17) in Methods) and the
novel extended p1a (see equation (44)). As opposed to the RAVEN dataset, an inconsistency state is not required for the PGM
dataset.

NVSA backend

Here, we describe the rule probability computation and execution for the PGM dataset. Similar to NVSA’s application to the
RAVEN dataset, the progression rule is implemented with VSA-enhanced vector operations. Moreover, the consistent
union rule implementation benefits from the VSA-enabled computation-in-superposition, similar to the distribute
three rule in RAVEN. The logical rules (XOR, OR, and AND) are simple logical operations that can be implemented more
efficiently in the original low-dimensional PMF space. We compute the rule probability along the rows and columns and execute
it accordingly. In the following, we describe the row-wise implementation; the column-wise implementation is done by feeding
the transposed context matrix to the NVSA backend.

a. Progression. The progression rule’s probability computation and execution are implemented as described in equa-
tion (33) and equation (35), respectively, where only the increment by one value is detected and executed in this case.

b. Consistent union. The consistent union rule relates to a discrete concept; hence, we use random codewords. First, we
compute the row-wise binding of the PMF-vector representation of the first two rows:

ri “ api,1qdapi,2qdapi,3q, i P t1,2u. (45)

The rule probability is computed by

urconsistent unions “ simpr1,r2q ¨hc.u.pap1,1q,ap1,2q, ...,ap2,3qq, (46)

where

hc.u.pap1,1q,ap1,2q, ...,ap2,3qq :“

¨

˝

ź

iPt1,2u

ź

jPt1,2u

p1´ simpapi, jq,api, j`1qq

˛

‚¨ p1´ simpap3,1q,ap3,2qq (47)

validates the constraint that panels are not equal within a row. If the rule is selected, it is executed by

âp3,3q “ r1g

´

ap3,1qdap3,2q
¯

. (48)

c. XOR, OR, and AND. The rule probability of the logical rules is computed in the original PMF space by summing up all
possible rule implementations. For example, the rule probability for the XOR rule is determined by:

urXORs “

¨

˚

˝

2
ÿ

r“1

ÿ

v1,v2,v3
s.t.1XORpv1,v2,v3q

3
ź

c“1

ppr,cqrvcs

˛

‹

‚

`
ÿ

v1,v2

2
ź

c“1

pp3,cqrvcs, (49)

18

Supplementary Table VII: End-to-end accuracy (%) on the neutral split of the PGM test set. The upper part shows the results
reported in the literature. In the lower part, we report the average accuracy ˘ the standard deviation over five runs with

different seeds for our NVSA and the reproduced baselines.

Method Accuracy

CNN+MLP8 33.0
LSTM8 35.8
Resnet-508 42.0
Wild-ResNet8 48.0
CoPINet6 56.4
WReN8 62.8
LEN5 88.9
SCL7 88.9
MRNet9 93.4

PrAE1 N/A‹

LEN5 N/A:

SCL7 N/A:

MRNet9 68.34˘4.73
NVSA (end-to-end tr.) 68.30˘4.93

* PrAE only applied to RAVEN.
: No code for PGM available on the

code repositories.

where 1XORpv1,v2,v3q indicates the correctness of the XOR rule within a row/column given the indices v1, v2, and v3. Similarly,
the rule probability for OR and AND are determined with the corresponding indication function. For executing the rule, we
marginalize all combinations in the last row, i.e.,

p̂p3,3qrvs “
ÿ

v1,v2
s.t.1XORpv1,v2,vq

2
ź

c“1

pp3,cqrvcs. (50)

Selection of the final answer

For every attribute, we execute the rule with the highest probability yielding the estimated PMFs for the line and shape
constellation: P̂ :“ tP̂L, P̂Su. Finally, we compute the score of every candidate answer panel i by summing up the JSD of the
individual attributes:

spPpiq, P̂q “ ´
ÿ

a
wa ¨ JSDpppiqa , p̂aq, (51)

where wa weights the contribution of the attribute a. In the RAVEN dataset, all the attributes equally contribute to the final
score (i.e., wa “ 1, @a). In contrast, in the PGM dataset, only 1 to 4 attributes have an active rule. Hence, we use a learnable
small-sized multi-layer perceptron (MLP) which predicts the set of active attributes given the rule probabilities and the JSD
errors. More concretely, the MLP takes the concatenation of all rule probabilities, their maximizing values, and the JSD errors
as input and predicts the values wa. The MLP contains one hidden layer with a dimension of 75 and a ReLU activation, and a
sigmoid activation at the output. The MLP is learned by optimizing the binary cross-entropy loss between the predicted attribute
weights and the ground-truth values, which are derived from the auxiliary attribute rules.

Training details

We train each perception frontend separately with training data containing examples with the corresponding attribute rules.
For example, for training the frontend corresponding to the position and type in the shape constellation, we filter the training set
such that it contains either rules with attribute position or type. For improved training, we restrict the training samples to have
only one rule. This yields around 314,000 examples for training the type-color frontend for the line constellation and 146,000

19

examples for each shape constellation frontend (position-color, position-type, and position-size). The models are trained and
validated on a Linux machine using an NVIDIA Tesla A100 GPU.

Similar to our approach on RAVEN, we optimize the REINFORCE loss, which is augmented with an auxiliary loss (see
equation (19) in Methods), where only attributes with active rules contribute to the loss (provided by meta-labels). We train the
shape-related frontends for 45 epochs and the line-related one for 25 epochs using the Adam optimizer with weight decay 10´4,
a constant learning rate of 9.5ˆ10´5, and batchsize of 16.

After the NVSA training, the attribute selection MLP is learned on a randomly selected subset of the complete training data
(i.e., no rule-based filtering), which turned out to be sufficient to the large dataset size. We train the MLP for 50 epochs using
a batchsize of 64 and a learning rate of 0.01, where we randomly select only 128 batches in each epoch (0.68% of the entire
dataset).

Experimental results

Supplementary Table VII compares the end-to-end accuracy of our NVSA with various baselines. The upper part of the
table shows the accuracy reported in the literature, where the highly accurate methods are LEN5 (88.9%), SCL7 (88.9%), and
MRNet9 (93.4%). The lower part of the table compares the accuracy of the reproduced methods with our NVSA. PrAE1 was
only developed for the RAVEN dataset; hence, it could not be easily applied to the PGM dataset. Similarly, the open-sourced
code of LEN5 and SCL7 can only be applied to RAVEN, even though PGM results are reported in the corresponding works.
Finally, MRNet9, the current state-of-the-art method on PGM, provides code for this dataset. However, training the architectures
from scratch with randomly initialized weights with different seeds yielded significantly lower accuracy than the one reported in
their paper (68.3% vs. 93.4%), despite optimizing the weight decay for better training. Our NVSA achieves an average accuracy
of 68.3%, being competitively with the reproduced MRNet.

SUPPLEMENTARY REFERENCES

1Zhang, C., Jia, B., Zhu, S.-C. & Zhu, Y. Abstract spatial-temporal reasoning via probabilistic abduction and execution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2021).

2Johnson, J. et al. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017).

3Mettes, P., van der Pol, E. & Snoek, C. Hyperspherical prototype networks. In Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019).
4Plate, T. A. Holographic Reduced Representations: Distributed Representation for Cognitive Structures (Center for the Study of Language and Information,
Stanford, 2003).

5Zheng, K., Zha, Z.-J. & Wei, W. Abstract reasoning with distracting features. Advances in Neural Information Processing Systems (NeurIPS) (2019).
6Zhang, C. et al. Learning perceptual inference by contrasting. In Advances in Neural Information Processing Systems (NeurIPS) (2019).
7Wu, Y., Dong, H., Grosse, R. & Ba, J. The scattering compositional learner: Discovering objects, attributes, relationships in analogical reasoning. arXiv
preprint arXiv:2007.04212 (2020).

8Barrett, D., Hill, F., Santoro, A., Morcos, A. & Lillicrap, T. Measuring abstract reasoning in neural networks. In International Conference on Machine
Learning, 511–520 (PMLR, 2018).

9Benny, Y., Pekar, N. & Wolf, L. Scale-localized abstract reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021).

	SpringerNature_NatMachIntell_630_ESM.pdf
	
	Contents
	Supplementary Figures
	Supplementary Figure 1: Details on the RAVEN dataset.

	Supplementary Notes
	Supplementary Note 1: Neural network representation learning over VSA and its generalization
	a. Supervised training with additive cross-entropy loss and comparisons
	b. Generalizability of multiplicative binding to unseen combinations of attribute values
	c. Generalizability of multiplicative binding to unseen combinations of multiple objects
	d. Resolution issues in the RAVEN dataset

	Supplementary Note 2: Visual Analogies
	a. One-to-one relationship
	b. One to many relationship

	Supplementary Note 3: Details on the NVSA backend
	VSA representation of PMFs
	Rule probability computation and rule execution
	Selection of the rule and the final answer

	Supplementary Note 4: Out-Of-Distribution generalization to unseen attribute-rule pairs
	Supplementary Note 5: Experiments on the PGM dataset
	PGM Dataset
	NVSA frontend
	Probabilistic scene representation
	NVSA backend
	Selection of the final answer
	Training details
	Experimental results

	Supplementary References

