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a b s t r a c t

Dynamic vision sensor (DVS) cameras enable energy-activity proportional visual sensing by only
propagating events produced by changes in the observed scene. Furthermore, by generating these
events asynchronously, they offer µs-scale latency while eliminating the redundant data transmission
inherent to classical, frame-based cameras. However, the potential of DVS to improve the energy
efficiency of IoT sensor nodes can only be fully realized with efficient and flexible systems that tightly
integrate sensing, processing, and actuation capabilities. In this paper, we propose a complete end-to-
end pipeline for DVS event data classification implemented on the Kraken parallel ultra-low power
(PULP) system-on-chip and apply it to gesture recognition. A dedicated on-chip peripheral interface
for DVS cameras aggregates the received events into ternary event frames. We process these video
frames with a fully ternarized two-stage temporal convolutional network (TCN). The neural network
can be executed either on Kraken’s PULP cluster of general-purpose RISC-V cores or on CUTIE, the
on-chip ternary neural network accelerator. We perform extensive ablations on network structure,
training, and data generation parameters. We achieve a validation accuracy of 97.7% on the DVS128
11-class gesture dataset, a new record for embedded implementations. With in-silicon power and
energy measurements, we demonstrate a classification energy of 7 µJ at a latency of 0.9ms when
running the TCN on CUTIE, a reduction of inference energy by 67× when compared to the state of the
art in embedded gesture recognition. The processing system consumes as little as 4.7mW in continuous
inference, enabling always-on gesture recognition and closing the gap between the efficiency potential
of DVS cameras and application scenarios.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The exponential proliferation of small-scale sensing systems
uch as Internet of Things (IoT) sensor nodes and wearable de-
ices has coincided with a revolution in data processing, where
achine learning (ML) algorithms such as CNNs and transformers
ave dramatically improved the state of the art in fields such
s computer vision, natural language processing or biomedical
ignal processing [1–4]. As many applications involving the col-
ection of data demand for their interpretation and reaction to
he result, these developments are naturally symbiotic. How-
ver, the approach of transmitting raw data to cloud servers to
e processed with powerful and compute-intensive ML model
oes not scale to the enormous amounts of data collected and
onflicts with the constraints of battery-powered, sensor-driven
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applications requiring real-time performance: wireless communi-
cation is power-intensive and incurs communication latency, and
the transmission of raw sensor data raises privacy and security
concerns.

This conflict is addressed by the emerging research field of
edge AI, which aims to enable efficient and accurate ML-based
processing of sensor data on edge sensor nodes. These sys-
tems, typically built around Microcontrollers (MCUs), operate
under stringent power, memory, and compute resource con-
straints. A key algorithmic technique in edge AI is quantization
of neural networks, where parameters and intermediate acti-
vations are represented in low-bitwidth data formats, reducing
a model’s memory and storage footprints. With hardware sup-
port for low-precision arithmetic through specialized extensions
to general-purpose instruction set architectures (ISAs) [5] or
dedicated accelerators, quantization also increases computational
throughput and efficiency, leading to lower energy consumption
per inference.

However, to optimize a system’s power consumption and per-
formance, the entire pipeline from the sensor to the reaction to
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the results of processing must be considered. An efficient end-
to-end solution consists of a low-power sensor that minimizes
redundant data generation, a tightly integrated sensor-processor
interface to avoid communication overhead (e.g., from dedicated
logic circuits for sensor readout) and an efficiently implemented
processing algorithm executed with low latency.

In the context of visual sensing, DVS cameras minimize sens-
ng and communication energy by only capturing and outputting
vents describing the location and polarity of pixel-wise bright-
ess changes exceeding a certain threshold. Accordingly, DVS
ommunicate at a data rate proportional to the activity in the cap-
ured scene, with a corresponding reduction in communication
nergy when operating in static or low-activity environments.
Spiking neural networks (SNN), a class of brain-inspired neural

etworks, operate directly on a stream of input events and extend
he principle of energy-activity proportionality to the processing
omain. As such, they can be viewed as the natural processing
aradigm for event-based vision systems and the combination of
he two principles has attracted significant research. However,
NNs are still an emerging technology: they lag behind classical
L models such as CNNs both in task accuracy and in hardware
upport, and have not yet proven their suitability for low-power
pplications in the edge computing domain [6,7]. Aggregating the
VS event stream into video frames provides an alternative to
NN-based processing and allows the use of more established,
ighly optimized machine learning models such as aggressively
uantized neural networks (QNNs) [8–10].
In this paper, we follow the latter approach, extending our

ork from [10]. We present a frame-based end-to-end processing
ipeline for DVS event data implemented on the RISC-V-based
raken SoC. Thanks to a dedicated on-chip DVS camera interface
mplementing configurable event frame aggregation, data trans-
er, and processing overheads are minimized. By classifying the
ccumulated frames with a 2-stage TNN, either on the integrated
UTIE accelerator [11] or on a PULP cluster of 8 RISC-V cores,
e show that frame-based processing of DVS event data has
he potential to enable ultra-low-power gesture recognition in
eal-time on edge computing nodes. While the CUTIE accelerator
ffers maximal efficiency at very low latencies, it is a large design
ith a silicon footprint of 3mm2 in a 22nm process and imposes
estriction on the supported network architectures, such as the
estriction to TNNs, the number of channels per layer or the max-
mum kernel size. The fully software-programmable PULP cluster
as no such restrictions and can efficiently perform a wide range
f compute tasks. An efficient implementation of our network
n the cluster is thus an attractive option for area-constrained
ystems requiring maximal flexibility and a point of reference
or applications requiring network architectures not compatible
ith CUTIE. While [10] reported power results based on post-
ynthesis simulation of the CUTIE accelerator and DVS peripheral
or a single network parametrization, this work presents detailed
lgorithmic explorations along with power measurements of end-
o-end implementations of the processing pipeline on the Kraken
oC.
Our contributions with this work are the following:

• We present a detailed exploration of the impact of archi-
tectural parameters and training algorithms on the perfor-
mance of ternarized hybrid TCNs for gesture recognition
from DVS event frames.

• Motivated by ReLU activations’ superior performance, we
present a procedure to convert networks using 3-level un-
signed (ReLU) activations to networks with signed ternary
activations commonly supported by TNN accelerators.

• We evaluate the effect of the different parameters in gen-

erating event frames from raw DVS camera output on the
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network’s statistical accuracy and latency, achieving state-
of-the-art classification accuracy of up to 97.9% on the
DVS128 gesture dataset.

• We map the proposed network architecture on both the
CUTIE TNN accelerator [11] and a PULP cluster of 8 RISC-
V cores with native hardware support for low-precision
arithmetic. We report in-silicon measurements of inference
energy for both targets, demonstrating continuous end-to-
end inference at a power consumption of 4.7mW and an in-
ference energy of 7 µJ at a latency of 0.9ms on CUTIE. On the
PULP cluster, continuous inference consumes 6.4mW with
a classification energy of 0.41mJ at a latency of 17.8ms.
The energy per CUTIE inference represents an improvement
on the state of the art for embedded end-to-end gesture
recognition by a factor of 67×. The energy per inference
for cluster-mapped networks is still competitive with the
state of the art, demonstrating the viability of software-
based processing of DVS events within a sub-10mW power
budget.

2. Related work

As this paper presents a pipeline for power-efficient end-
to-end gesture recognition from DVS data, we first focus our
review of the related literature on works that perform gesture
recognition on embedded, low-power devices with various types
of sensors before giving a more detailed overview of works that
employ event cameras as the primary sensor. The interested
reader may refer to [12] for a wider perspective on deep learning-
based techniques for device-free wireless sensing tasks such as
person localization, gesture recognition, or fall detection.

2.1. Embedded gesture recognition

Gesture recognition based on electromyography (EMG) has
attracted significant research interest. A common approach is to
attach an EMG electrode array to the forearm and classify the sig-
nals using a deep neural network (DNN). [13] combines a custom
analog frontend for 8-channel EMG signal acquisition and analog-
to-digital conversion with an ARM Cortex-M4 microcontroller
running a support vector machine (SVM) to classify the input. The
complete system achieves an average classification accuracy of
89.7% on four user-specific datasets of 7 gestures in a power en-
velope of 29.7mW. [14] proposes a larger system based on a 32-
channel wireless sensing armband and CNN-based classification
on the NVidia Jetson Nano platform, achieving 98.5% classification
accuracy on eight gesture classes collected from a single user with
5ms of inference latency at a total power consumption of 3.1W.
At tens-of-mW power envelopes, other EMG-based embedded
gesture recognition systems [15–17] achieve comparable results
to [13]. The drawback of EMG-based gesture recognition is that
it is not suitable for ad-hoc human–machine interaction for two
reasons. First, the models are commonly user-specific, requiring
retraining for different users. Second, placing EMG electrodes
requires careful setup and preparation. While systems supporting
on-device learning based on hyperdimensional computing [17]
have addressed the former issue, the latter is inherent to EMG
interfaces.

A different sensing approach is to use miniaturized RADAR
sensors. Google pioneered this technique with SOLI [18], using
custom RADAR application-specific integrated circuits (ASICs) in
combination with off-the-shelf (embedded and desktop-scale)
processing platforms to achieve up to 92.1% classification accu-
racy on a four-class hand gesture dataset collected from five users

with a random forest-based classifier. [19] uses SOLI hardware
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Table 1
Comparison of the results with state of the art embedded gesture recognition implementations.

[21] [29] [28] [30] This work
Sensor SRR DVS128 [31]/sEMG (Myo) DVS128 DVS128 DVS132S [32]a

Psensor 95mW >23mWb 23mW 23mW 250µW
Dataset Custom Custom DVS128 DVS128 DVS128
Model CNN/transformer SNN SNN SNN Ternarized CNN/TCN
End-to-end? ✓ ✗ ✓ ✗ ✓

Processor GAP8 ODIN + MorphIC Loihi TrueNorth Loihi CUTIE PULP Cluster
Pidle – – 29mW [33] 134.4mW 29mW [33] 4.7mW 3.6mW
Pcont >7.1mWc – 33.2mWd 178.8mW – 4.7 mW 6.4mW
tinf 9ms 19.5ms 7.8ms – 11 ms 0.9 ms 17.8ms
Einf 0.47mJ 37µJe 1.1mJe 18.8mJ – 7 µJ 0.41mJ
Accuracy 77.15% 89.4% 96.0% 94.6% 90.5% 97.7% 97.7%

aNetwork accuracy was evaluated on the DVS128 gesture dataset collected with a different sensor.
bPower consumption of the Myo armband is not specified.
cWe assume 15 inf/s and zero idle power consumption as a lower bound for continuous power consumption.
dCalculated from idle power, inference energy and inference latency.
eOnly dynamic energy figures reported.
to collect an 11-class hand gesture dataset, achieving 94.2% clas-
sification accuracy with a CNN-based classifier run on desktop
hardware. The RADAR approach was subsequently refined and
miniaturized in [20], using embedded short-range RADAR sensors
produced by Acconeer and performing classification with a hybrid
TCN on the RISC-V PULP-based GAP8 processor. The authors
report 81.5% classification accuracy at a continuous inference
power of 21mW and a classification energy of 4.52mJ, bring-
ng RADAR-based gesture recognition into the edge computing
pace. [21] improves on this work by using a transformer-based
lassifier, reducing latency and inference energy to 9ms and
.47mJ, respectively. While this shows that RADAR data process-
ng can be performed under strict power constraints, RADAR sen-
ors are generally power-hungry: Google’s SOLI RADAR consumes
00mW per chip and the sensors used in [20] use 90mW each.
his means that sensing power dominates full-system power con-
umption and makes RADAR-based gesture recognition unsuit-
ble for ultra-low-power applications requiring power envelopes
f <10mW.
Other sensing techniques used for gesture recognition in-

lude sensor gloves [22,23], ultrasonic echolocation [24,25] and
amera-based visual sensing [26,27]. However, these approaches
ave not found any application to ultra-low-power embedded
ystems so far.

.2. DVS gesture recognition

In recent years, gesture recognition from DVS event data has
een considerable research interest. The most common approach
s to process the event stream using SNNs. In [28], the authors
ntroduced the 11-class DVS128 full-body gesture dataset, which
as become the de-facto standard for DVS gesture recognition.
hey implement an end-to-end gesture recognition system on the
S1e development board based on IBM’s TrueNorth neuromor-
hic processor. The event stream is preprocessed with a cascade
f temporal filters and classified with a 16-layer convolutional
NN at 1ms timesteps. This pipeline achieves a classification
ccuracy of 91.8%, The application of a sliding-window filter to
he output further increases accuracy to 94.6%. TrueNorth’s power
onsumption is measured at 178.8mW, making this system un-
uitable for edge computing applications.
Similarly, [30] proposes an SNN converted from a 5-layer CNN

o classify the event stream from the DVS128 dataset. In no-
able contrast to [28], events are accumulated over much longer
imeframes (300ms for the best-performing network) which are
ivided into multiple input channels. This processing approach is
quivalent to feeding event frames to a SNN. Classification accu-
acy is reported as 90.5% at a processing latency of 15ms. While
719
the authors do not provide information on power consumption,
[33] reports a single Loihi chip’s idle power consumption as
29mW, providing a lower bound. It should also be noted that
the acquisition and preprocessing of the event stream are not
performed on Loihi.

[29] performs sensor fusion on DVS and EMG data, using dual-
branched SNN models with a joint classifier layer to perform
hand gesture recognition on a custom 5-class dataset. The model
mapped to Loihi, consisting of a spiking CNN handling DVS data
and a spiking multi-layer perceptron (MLP) to process EMG data,
achieves a classification accuracy of 96% at an inference latency
of 7.8ms. The authors also map a model consisting of two spiking
MLPs to a pair of research SNN accelerators, ODIN [34] and
MorphIC [35]. Like the Loihi model, this smaller model operates
on a 200ms window of input data and achieves 89% classification
accuracy at a latency of 19.5ms. The authors report only the dy-
namic energy consumption of both networks, which is measured
at 1.1mJ for Loihi and calculated (using detailed power models)
at 37 µJ for ODIN+MorphIC. As with [30], the preprocessing step
is not accounted for in these figures and is performed offline.

Other works are purely algorithmic and do not include power
or energy figures on embedded platforms. [36] proposes a spiking
convolutional recurrent neural network, achieving 90.3% valida-
tion accuracy on the DVS128 dataset. [37–39] propose different
methods of training SNNs, achieving validation accuracies of up
to 97.6%. [9] proposes a method to aggregate events into decimal
pixel values to encode time information, processing these event
frames with a large 3D CNN. This approach achieves a near-
perfect validation accuracy of 99.6% on the DVS128 dataset, the
highest result reported in the literature.

In conclusion, our literature study reveals that accessible end-
to-end gesture recognition on extreme-edge devices is an un-
solved problem: existing edge solutions use sensing technologies
that are either impractical to use (e.g., EMG) or too power-hungry
to fit the constraints of the IoT. DVS cameras have the potential to
close this gap but have not yet been used to their full potential in
ultra-low-power sensor nodes. We propose to close this gap with
an event frame-based processing pipeline based on a hybrid TNN
mapped to the Kraken SoC, which integrates the sensor interface
with efficient processing units (namely, the CUTIE accelerator
and 8-core PULP cluster) to perform both inference and general-
purpose processing tasks. To the best of our knowledge, our
system outperforms all embedded solutions in both classification
accuracy (97.7% on DVS128) and efficiency (7 µJ/inf., 4.7mW
continuous inference power) while providing the versatility of
a fully-featured MCU, enabling always-on gesture detection on
battery-powered sensor nodes at the extreme edge. Table 1 com-
pares our system to the state of the art in embedded gesture
recognition systems.
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3. Background

In this section, we give a brief overview of the operating
rinciple of DVS cameras, their advantages and drawbacks com-
ared to conventional cameras, and the approaches adopted to
rocess DVS data. We then provide background on the training
nd inference of QNN and a short description of the architecture
f the CUTIE TNN accelerator.

.1. DVS cameras and processing DVS data

DVS, first proposed in 1991 [40], are an emerging class of
isual sensors that detect and transmit information on brightness
hanges in the captured scene. In contrast to conventional cam-
ras, which produce a stream of frames at fixed time intervals,

DVS cameras emit a stream of events describing the location and
polarity of an individual pixel’s change in brightness. An event
can be described as a tuple (t, x, y, p), where t denotes the time at
which the event is produced, (x, y) are the coordinates of the pixel
which produced the event and the polarity p ∈ {−1, 1} indicates
whether brightness at the respective pixel increased or decreased
by a specific threshold since the last event emitted.

An advantage of DVS cameras over conventional image sensors
is that they enable energy-proportional sensing: As only localized
brightness changes are sensed and transmitted, the pixel array’s
activity and transmission data rate (and, with them, the respec-
tive power consumptions) are proportional to the activity level
in the captured scene. In contrast, conventional cameras capture
and transmit frames at a constant data rate, leading to constant
and activity-independent power consumption. A second advan-
tage lies in their low latency (typically <200µs) due to their
asynchronous nature: Each pixel in a DVS array operates inde-
pendently, emitting information about a change in the captured
scene as soon as it occurs. Sensing latency is thus limited only by
the readout circuitry and the physical interface used to transmit
the event stream. DVS pixels also typically have a high maximum
event rate per pixel of >300 e/s, making DVS cameras suitable
for high-speed applications. Due to the logarithmic brightness
response of DVS pixels, DVS cameras also support high dynamic
ranges of >120 dB [31,41,42], enabling their application in a wide
range of lighting conditions.

Compared to shutter-based cameras, DVS cameras have some
limitations. The first is a lack of color representation; while there
are some research works exploring this [43], commercially avail-
able DVS cameras are exclusively monochrome. Availability and
price are further obstacles to widespread adoption of DVS tech-
nology; while camera modules for embedded applications are
mass-market products, DVS camera availability is very limited
and prices range in the equivalent of thousands of dollars.

The processing of DVS data presents a significant challenge,
and [8] divides approaches into two broad categories. The first
class aggregates event data into frame-like groups. An example
of this is time surfaces, where the value of each pixel describes
how recently the last event at that pixel occurred. The most basic
approach in this class is that of event frames, which we also
dopt. Event frames are constructed by dividing the event stream
nto fixed time intervals, aggregating the events occurring during
ach frame interval into pixel values for each spatial location
n the frame [9,10,44]. These approaches enable processing with
onventional image processing algorithms such as DNNs, but omit
ome of the information in the event stream. E.g., in periodically
ampled time surfaces, there is no information about how many
vents on a given pixel occurred during the frame interval.
The second category of processing algorithms for DVS data

perates on individual events. This category’s most prevalent
lgorithmic paradigm is that of SNNs. A class of artificial neural
720
networks (ANNs) inspired by the working principle of the hu-
man brain, SNNs, consist of one or multiple layers of neurons
that behave according to a biologically-motivated model. In the
most commonly utilized model, the leaky integrate-and-fire (LIF)
neuron, each neuron in the network is connected to neurons in
the previous layer and takes discrete spikes as its input. The input
spikes are weighted with parameters specific to their source and
added to the neuron’s internal membrane potential, which de-
cays exponentially independent of input spiking activity. When a
neuron’s membrane potential reaches a parametrizable threshold,
it fires and propagates a spike to the neurons of the next layer
to which it is connected. Upon firing, the membrane potential
resets to a rest potential. SNNs are fundamentally asynchronous
and time-continuous, but their dynamics can be discretized in
time, a fundamental step for their implementation in digital
circuits [6,37]. As DVS events can be directly mapped to input
spikes, SNNs are a natural fit for processing DVS data and this
pairing has accordingly attracted widespread research attention.
Examples of their successful application include optical flow es-
timation [45,46] and image classification [37,47,48] on event
datasets converted from traditional datasets consisting of static
images [49–51]. Gesture recognition, the application we target,
has also been implemented with SNNs, achieving accuracies of
up to 94.6% on the DVS128 dataset [28].

However, on all the above tasks, the accuracy of SNN-based
methods does not match that of traditional DNNs [6,9,37,52].
Furthermore, the integration of flexible SNN accelerators suitable
for executing complex networks into systems capable of end-
to-end processing is not well-established. So far, it has been
restricted to large-scale designs such as Intel’s Loihi family of
systems [53,54] or IBM’s TrueNorth platform [55].

3.2. Training and inference of quantized neural networks

Low-power DNN inference on edge devices has been the focus
of intense research activity. quantized neural networks (QNNs)
have crystallized as a key technique to maximize inference ef-
ficiency on highly resource-constrained platforms [5,56,57]. In
a QNN, model weights and intermediate activations are rep-
resented as low-bitwidth integers. This offers three key bene-
fits: Quantizing model parameters reduces storage requirements,
while quantizing intermediate activations to low precisions re-
duces the memory footprint for model execution. Finally, both
weight and activation quantization enable the use of low-
precision multiply-accumulate (MAC) units to perform the model
calculations, increasing the throughput per area and reducing
the energy per operation. This hardware support can either be
implemented as ISA extensions [5] to general-purpose processing
cores or through specialized accelerators [58,59].

The vast majority of approaches to neural network quanti-
zation are based on uniform quantization. To discretize a full-
precision value to nlvl levels, it is clipped to an interval [a, b] and
a uniformly spaced staircase function with step width ε =

b−a
nlvl−1

s applied. Mapping a tensor X to its quantized counterpart X̃ in
his manner can be expressed as in Eq. (1).

X̃ = Q (X, a, b, nlvl) = ⌊
clip(X, a, b)

ε
⌉ × ε, where

clip(X, a, b) = min (max (X, a) , b)
(1)

The quantizer in Eq. (1) will map values to a discrete grid, but the
quantization steps of this grid are still generally real numbers. A
model quantized in this way is commonly referred to as being
fake-quantized (FQ). To execute such a model with (low-precision)
integer arithmetic, it must be integerized by mapping the FQ
tensors to their integer images, which is equivalent to dividing by
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their respective ε. We provide more details on the process of in-
egerization in Section 4.3 and a detailed mathematical derivation
an be found in [60].
Methods to convert a full-precision network to a FQ one can

e divided into two categories: Post-Training Quantization (PTQ)
nd QAT.
PTQ methods [61–63] generally start from a pre-trained full-

recision model and do not optimize the model parameters any
urther. They determine suitable clipping bounds for each tensor
o be quantized by calibration with real [62,64] or synthetic
ata [63,65].
In contrast, QAT methods train a network’s parameters (or

ine-tune them from a converged full-precision checkpoint) while
ncorporating quantization. Most such methods [66–69] are varia-
ions of the Straight-Through-Estimator (STE). Introduced in [70],
he STE is implemented by applying a (non-differentiable) uni-
orm quantizer as in Eq. (1) in the forward pass of the training
rocedure and defining its derivative as

dQ (x, a, b, nlvl)
dx

= 1a≤x≤b,

.e., treating it as a clipped identity function during the backward
ass. Different QAT algorithms provide various ways of finding
he clipping bounds {a, b}. The Learned Step Size Quantization
LSQ) [68] and TQT [67] methods apply the STE to the quantizer
1) to derive a gradient with respect to the quantization step size
, which is used to optimize ε directly (in [68]) or the logarithm
f the clipping interval log2(b − a) (in [67]).
In contrast to the previously introduced methods, INQ [71]

uantizes weights without employing the STE. This is achieved
y iteratively quantizing and freezing a fraction of all weights and
etraining the remaining full-precision weights until all weights
re quantized and frozen. As this procedure does not apply to
ctivations, they must still be quantized using an STE-based tech-
ique.

.2.1. Extreme quantization - Binarized and ternarized networks
The techniques introduced in Section 3.2 can be applied to

chieve quantization to any desired precision, with lower-
recision quantization generally leading to more significant
egradation of task accuracy. The most extreme forms of QNNs
re BNNs [72,73] and TNNs [74,75]. In BNNs, all weights and
ctivations are quantized to values in {−1, 1}. TNNs can be
onsidered an extension of BNNs, with tensor elements taking
alues in the set {−1, 0, 1}. Consequently, arithmetic operations

on binary and ternary values can be implemented with simple
hardware: Computing the dot product of two N-element binary
vectors can be achieved by N XNOR gates and an N-bit popcount
unit [72]. The dot product of two N-element ternary vectors can
be computed using N ternary multipliers and 2 N-element pop-
count units. This property makes BNNs and TNNs highly attractive
targets for acceleration. While binary and ternary quantization
schemes allow for the design of simple arithmetic units which
improves inference energy efficiency considerably [11], statistical
inference accuracy is typically degraded, even when employing
QAT. Significant research has been conducted to combat this
negative impact on accuracy and significant advances have been
reported [76,77]; however, low-bitwidth quantization typically
still carries a non-negligible penalty on statistical accuracy. As
such, binary and ternary neural networks are best suited for
applications where the penalty on accuracy is acceptable, such as
in low-complexity tasks or always-on sensing or wake-up trigger
applications. State-of-the-art digital BNN and TNN accelerators
achieve high efficiencies of 145-392TOp/J [11,78,79].
721
3.2.2. The CUTIE TNN accelerator
The Completely Unrolled Ternary Inference Engine (CUTIE) is

an accelerator for TNNs, introduced in [11]. In contrast to most
neural network accelerator architectures, CUTIE uses a compute
architecture that is fully parallel in the computation of each
output pixel by processing elements termed output channel com-
pute unit (OCU). Each OCU computes the sum of dot products
corresponding to a single filter in a fully unrolled manner and in
a single cycle. To parallelize the computation of each pixel, CUTIE
uses one OCU per output channel. Each OCU has a dedicated
latch-based weight buffer that holds all filter weights. In order
to reuse input kernel windows optimally, CUTIE features a 3-line
buffer, which dispatches full 3 × 3 kernel windows.

CUTIE’s maximally parallel design not only increases arith-
metic optimization by forming large adder trees over the sum
of dot products in each OCU, but also minimizes data movement
since every pixel in the input feature map and every weight in ev-
ery filter is only loaded once per layer. These characteristics make
CUTIE highly efficient for neural network inference at the edge
while enabling throughput at rates exceeding 1000 inf./s. Kraken
features an updated version of CUTIE, described and evaluated in
detail in [80]. The main improvements from the original version
are support for causal, dilated 1D convolutions and the addition
of an intermediate buffer for a window of up to 24 CNN output
vectors, enabling the execution of ternarized TCNs. The CUTIE
accelerator in Kraken features 96 OCUs, computing one output
pixel with up to 96 input/output channels per cycle and resulting
in a peak throughput of 56 TOp/s when clocked at 54MHz for
maximum efficiency in a 22nm implementation.

4. Event frame processing pipeline

4.1. Overview

The class of cameras we target produce events consisting of
three values each: Two spatial coordinates (xe, ye) describing the
location of the event on the sensor grid, and a polarity pe ∈

{−1, 1} to indicate a decrease or increase in brightness, respec-
tively. The first stage of our proposed pipeline performs data
preparation, aggregating events detected by the DVS camera into
2-dimensional frames. The resulting frames are natively ternary:
Pixels where at least one event occurred during a frame interval
take the value of the most recent event’s polarity, while pixels
with no activity take the value 0. The prepared data is then
processed by a two-stage hybrid CNN inspired by [20]. In the first
processing stage, Cin sequential frames are fed into a fully ternar-
ized 2D CNN. By processing multiple frames per inference, the 2D
CNN can analyze short-term temporal dependencies, which are
encoded into ternary feature vectors by the last layer.

In the third and final stage, a fully ternarized TCN analyzes
the longer-term temporal dependencies by performing inference
on a sliding window covering NTCN feature vectors. Its output is a
vector of class scores Vp ∈ ZNc , where Nc is the number of classes.
For the DVS128 dataset, Nc = 11. Finally, the class label of the
sequence is given as Cls = argmaxi

(
Vp

)
.

Fig. 1 shows a diagram of the proposed processing pipeline.
The frame extraction process is shown in Fig. 2 and described in
more detail in Section 4.5.

4.2. Network design

The ternarized hybrid CNN/TCN adopts a simple feed-forward
architecture, i.e., there are no residual branches in the network.
All layers but the first have Nch output channels. The two net-
works’ topologies are listed in Table 2. The final, fully ternar-
ized network consists only of convolutional layers with no bias,
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Fig. 1. Overview of the proposed processing pipeline.

Fig. 2. Frame aggregation for processing by the 2D CNN. All events occurring
during a time window of length tframe are assigned to the same frame. The 2D
NN takes Cin frames as input, and two successive stacks of Cin frames overlap
y OLwin frames.

ernary activations (3) and pooling layers. Consider a layer stack
onsisting of a convolutional layer with Ni/No input/output chan-
nels respectively and an optional pooling layer and denote the
ternary values as T ≜ {−1, 0, 1}. The layer stack takes as input a
tensor X ∈ T Ni×HX×WX , where HX /WX are the spatial dimensions.

is convolved with the convolutional weights W ∈ T No×Ni×k×k

and pooled, to yield pre-activations Z ∈ ZNo×HY ×WY , shown in
Eq. (2). Z is then mapped to ternary activations Y ∈ T No×HY ×WX

by channel-wise thresholding as shown in Eq. (3) with tlo and thi,
tlo, thi ∈ ZNo .

Z = pool (X ∗ W) (2)

yi,x,y =

⎧⎨⎩
−1, zi,x,y < t loi
0, t loi ≤ zi,x,y < thii
1, zi,x,y ≥ thii

(3)

4.3. Quantization-aware training

To train the ternarized networks we evaluate, we perform QAT
using two algorithms: INQ [71] and TQT [67]. To determine the
impact of the activation function used to train the network, we
 f
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Table 2
Topology of the proposed hybrid CNN architecture, consisting of a 2D CNN for
short-term feature extraction and a 1D TCN to capture longer-term temporal
dependencies. C{1,2}D: 1/2-dimensional convolution, MP: Max-Pooling. (C)S/V
indicate (causal) same/valid padding, respectively.

Layer Out Ch. Out Res. Pad Dilation

2D CNN

Input Cin 64 × 64 N/A N/A
C2D (3 × 3) 32 64 × 64 S 1
MP (2 × 2) 32 32 × 32 V 1
C2D (3 × 3) Nch 32 × 32 S 1
MP (2 × 2) Nch 16 × 16 V 1
C2D (3 × 3) Nch 16 × 16 S 1
MP (2 × 2) Nch 8 × 8 V 1
C2D (3 × 3) Nch 8 × 8 S 1
MP (2 × 2) Nch 4 × 4 V 1
C2D (3 × 3) Nch 2 × 2 V 1
MP (2 × 2) Nch 1 × 1 V 1

1D TCN

Input Nch NTCN N/A N/A
C1D (2) Nch NTCN CS 1
C1D (2) Nch NTCN CS 2
C1D (2) Nch NTCN CS 4
C1D (NTCN ) 11 1 V 1

compare Hard Hyperbolic Tangent (HtanH)-activated networks
to ReLU-based ones. Note that both types of FQ networks are
ultimately converted to fully ternarized networks as described in
Section 4.2. QAT is performed in 4 steps (3 in the case of HtanH
activations):

1. Training full-precision network to convergence,
2. quantization of activations,
3. (incremental) weight quantization, and, if ReLU activations

were used,
4. fine-tuning to compensate for non-zero padding.

For all training algorithm and activation function combinations,
we train networks with Batch Normalization (BN) layers inserted
after the convolutional layers to allow for channel-wise scaling.
After full-precision training has converged, HtanH and ReLU acti-
vations of layer l are replaced with symmetrical and asymmetrical
3-level step functions (4) and (5), respectively.

Al
symm(x) =

⎧⎨⎩
εl
A, x ≥ εl

A/2
0, −εl

A/2 ≤ x < εl
A/2

−εl
A, x < −εl

A/2
(4)

Al
asymm(x) =

⎧⎨⎩
2εl

A, x ≥ 3/2εl
A

εl
A, εl

A/2 ≤ x < 3/2εl
A

0, x < εl
A/2

= Al
symm(x − εl

A) + εl
A

(5)

The network is retrained for a few epochs before weight
quantization is applied. When using INQ, weight and activation
quantization step sizes are kept constant at 1, i.e., εW = εA =

. Weights are frozen to the nearest values in T incrementally
n order of decreasing magnitude, and the unmodified STE is
sed to propagate gradients through quantized activations. After
ach freezing step, the network’s remaining learnable parameters
free weights and BN parameters) are retrained to convergence.
hen using TQT, both weight and activation clipping bounds are

earned, with weight clipping bounds of each layer learned indi-
idually for each output channel. When quantizing weights with
QT, fake-quantization is applied to all weights simultaneously.
he detailed training parameters are listed in Section 6.1.

.4. Network ternarization

To be deployed on CUTIE, FQ networks must be mapped to

ully ternarized models containing only ternary parameters and
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thresholding activation functions of the form (3). For FQ networks
using asymmetrical (ReLU) activations (5), this requires the re-
placement of those activations by symmetrical ones (4). (5) is
equivalent to (4) shifted by εl

A in both the argument and the
output. The shift of the argument translates to shifted thresholds,
while the shift in the output is equivalent to a bias of εl

A being
dded to the next layer’s input, which can be propagated through
he convolution operation to an equivalent output bias. However,
his transformation would require padding the edge regions of
he input feature map to layer l + 1 with −εl

A (FQ)/−1 (inte-
erized), which CUTIE does not support. We compensate for this
y fine-tuning the network after fake-quantization with padding
alues of +εl

A, which corresponds to the zero-padding applied by
UTIE on the transformed network.
To generate the fully integerized network, all floating-point

arameters of an activation-convolution-BN(-pooling)-activation
ayer stack are folded into channel-wise integer thresholds of the
ernary activation layer, terminating the stack. Consider the lth
tack with (FQ) convolutional weights Wl

=
[
Wl

0, . . . ,W
l
No−1

]
nd bias Bl, input and output activation quanta εl−1

A and εl
A (as

the input data is already ternarized, ε0
A = 1), channel-wise weight

quanta εl
W and N l

O output channels. We fold the convolutional
bias and the BN parameters the into channel-wise affine trans-
formation parameters γ̂

l and β̂
l
, shown in Eq. (6). From these, we

can compute the integer threshold vectors t̂lo,l and t̂hi,l for layer l
as in Eq. (7). Because negative entries of γ̂ flip the inequalities in
(3), we sign-invert the corresponding output channels’ weights
and flip their thresholds before integerizing them, respectively
(8), (9). In the final network, Wl is replaced with its integerized
counterpart W̃

l
and BN-activation sequences are replaced with a

single channel-wise integer thresholding activation of the form
(3).

1R =

{
1 Net uses ReLU activations
0 Otherwise

B̂l
c =

{
Bl
c l = 1

Bl
c + 1Rε

l−1
A

∑
i W

l
c,i l > 1

∀ 0 ≤ c < No

β̂
l
= γ l (B̂

l
− µl)
σ l + βl, γ̂

l
=

γ l

σ l (6)

t̂lo =
(1R − 0.5)εl

A − β̂

γ̂εl
W εl−1

A

, t̂hi =
(1R + 0.5)εl

A − β̂

γ̂εl
W εl−1

A

(7)

W̃
l
c =

(
Wl

c − 2Wc1γc<0
)
/εl

W ,c ∀ 0 ≤ c < No (8)

t lo,hic =
⌈
t̂ lo,hic − 2t̂ lo,hic 1γc<0

⌉
∀ 0 ≤ c < No (9)

Integerization for deployment on the PULP cluster is more
straightforward and follows the procedure laid out in [60]. The
ternarized weights are mapped to 2-bit integers, and activation
operations are mapped to requantization layers (also called Inte-
er Channel Normalization in [81]). The lth requantization layer
olds ε scaling and BN into a single channel-wise affine trans-
ormation with parameters γ̃ l and β̃

l
followed by an arithmetic

ight shift by a layer-wise parameter Dl, effectively performing
ixed-point arithmetic with integer operations. The result is fi-
ally clipped to the appropriate integer range, implementing the
onlinear activation function. Eq. (10) shows the ternary requan-
ization operation for layer l (assuming a ReLU activation) and
qs. (11), (12) show how γ̃ l and β̃

l
are computed. Note that by
dding 0.5 to the folded bias term, the flooring operation in (10) S

723
s converted into a rounding operation.

RQ l(X) = clip
(
⌊

((
γ̃X + β̃

)
>> Dl

)
⌋, 0, 2

)
(10)

γ̃ l
=

⌊
2D εl

Wεl−1
A γ l

εl
Aσ

l

⌉
(11)

β̃
l
=

⌊
γ̃ l (Bl

− µl)
+ 2D

(
βl

εl
A

+ 0.5
)⌉

(12)

While thresholding-based activations are completely equiva-
ent to their fake-quantized equivalents, the requantizing acti-
ation (10) introduces some numerical mismatches due to the
ounding of γ̃ and β̃. Higher values of D decrease the discrep-
ncy, so D is chosen as large as possible while avoiding integer
verflows resulting from the multiplication with X in (10). In
ur implementation, we choose D = 19 to achieve equivalent
ntegerized classification accuracy to that of the FQ network.

.5. Data preparation

Unlike previous works [28,30], which employ fully event-
ased processing schemes and rely on SNNs to classify event
ata directly, our proposed approach first aggregates the event
tream into ternary 2D images. This incurs some overhead for
ata preparation (frames need to be assembled and buffered)
nd decouples the processing energy from the density of the
vent stream. In practice, however, the power required for data
reparation is vanishingly small in comparison to the idle power
f the running system (see Section 6.2). The lack of fine-grained
nergy-activity proportionality is more than compensated by the
nparalleled efficiency of TNN-based processing on CUTIE, which
s indeed owed to the regularity of DNNs. Finally, activity-energy
roportionality is still supported in a coarse-grain manner by only
riggering inference when the input event density detected by the
VS peripheral surpasses a programmable threshold.

.5.1. Parameters in data generation
The process of generating frame data from the event stream,

llustrated in Fig. 2 has several degrees of freedom:

• Frame rate FPS, or, equivalently, frame time tframe =
1

FPS
• CNN input window size Cin; this parameter dictates the

number of input channels to the CNN’s first layer
• temporal CNN input window stride swin, which gives rise to

the input window overlap OLwin = Cin − swin, and
• downsampling factor D - from our experimental observa-

tions, we choose D = 2, i.e., the height and width of the
original frame are both halved, and the resulting frame has
1/4 the resolution of the raw camera data.

While all of these parameters must be fixed for network train-
ing, the DVS peripheral performing the frame aggregation has
been designed to leave them configurable at runtime at negligible
hardware overhead. The receptive time interval tp of the full
ybrid network is given by the number of input vectors to the
CN NTCN , the number of frames encoded in a single vector Cin

and the stride of the CNN input windows swin as tp = Cin +

(NTCN − 1)swin. Once running, the latency l of the system to react
is determined by the window stride and the frame rate, as well
as the processing time tinf : l = swin/FPS + tinf ≈ swin/FPS. When
unning networks on CUTIE, we can approximate tinf ≈ 0 due to
UTIE’s very high throughput compared to the frame time (see
ection 6.2).
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. SoC architecture: Kraken

We deploy the trained hybrid TCNs on the Kraken PULP SoC
82]. Kraken has three main processing domains, each individu-
lly power-gateable: The SoC domain, the cluster domain and the
ccelerator domain (see Fig. 3).
The SoC domain contains a single RI5CY core, implementing

he XpulpV2 extension [83] to the RISC-V ISA. This core is des-
gnated as the FC and is responsible for orchestrating system
peration and managing peripherals. The SoC domain contains
MiB of SRAM-based L2 memory, which serves as the main work-
ng memory of Kraken. A wide range of peripherals for off-chip
ommunication, including a DVS camera interface (described in
etail in Section 5.1), are also located in the SoC domain and are
anaged by the µDMA engine [84], which allows operation of
eripherals with minimal involvement of the FC core. Off-chip
eripherals are powered by the same supply rail as the FC and
he L2 memory but are clocked by a separate Frequency-Locked
oop (FLL) clock generator.
The cluster domain contains a PULP cluster of 8 RI5CY cores

o perform compute-intensive processing tasks. Additionally to
he XpulpV2 extension, the cluster cores implement the XpulpNN
xtension [5]. XpulpNN offers optimized hardware support for
ow-precision arithmetic via custom MAC-and-load instructions.
hese instructions combine low-precision MAC operations on
acked 2-bit, 4-bit, or 8-bit operands with memory access and
ointer update operations. This approach greatly mitigates the
on Neumann bottleneck of load-store ISAs for matrix multipli-
ation kernels, enabling the efficient execution of low-precision
eural network layers. To minimize memory access overhead, the
luster has 128 KiB of L1 tightly-coupled data memory (TCDM),
hich is divided into 16 interleaved banks and provides single-
ycle access to temporary data.
Finally, the accelerator domain contains two application-

pecific accelerators: CUTIE, targeting TNN inference and SNE [85],
n all-digital SNN accelerator. Each accelerator can be clock-
ated and power-gated individually. For Kraken, CUTIE has been
odified from its first-generation architecture and configuration
y changing the maximum number of input and output channels
o 96, the inclusion of an additional memory bank to store ternary
NN output vectors and the capability to process those vectors
ith TCN layers by allowing for 1-D kernels with configurable
ilation and causal padding.
724
.1. DVS interface

With the DVS interface (DVSI), Kraken possesses a versa-
ile peripheral unit to interface with DVS cameras such as the
VS132S [32]. Its task is to read event data from the camera unit
nd write it to a configurable memory address. Event readout
an be triggered by writing to a configuration register or by
n on-chip timer/counter peripheral. As the DVS peripheral is
mplemented as a µDMA peripheral, it can operate without any
ntervention from the FC. The peripheral can write event data to
he configured location in two different formats. For processing
y algorithms operating on discrete events (e.g., SNNs), it can
ncode each event in a 32-bit word and write event data to
onsecutive memory addresses. Alternatively, the peripheral can
uffer up to 15 event frames in the format required by our
roposed TCN. For this purpose, it contains an SRAM macro of
096 × 32 bits, which is used as a frame buffer. Each word corre-
ponds to one pixel of a 64 × 64 feature map, with each channel’s
alue occupying 2 bits in a word for NHWC ordering. An incoming
vent at location (y, x) is written to bits [2ccurr + 1, 2ccurr ] at
ddress 64y + x, where ccurr is a wrapping counter ranging from
to 15, indexing the bits at which the currently active frame is

tored. As a new frame interval starts, ccurr is incremented. The
rame buffer is configurable in Cin and swin. After swin frames have
een written into the buffer, the readout logic streams out the
ost recent Cin frames by reading each word, circularly shifting

t to the right by 2ccurr bits and masking bits [31 : 2Cin] of the
esulting word to zero before writing it to the configured memory
ocation. After reading a word, the swin timesteps no longer used
n the next input window are zeroed to avoid contamination of
uture frames by old events. The selective writing of events to
it indices and zeroing of stale data in single write operations is
ade possible by bit-selection signals exposed by the memory
acros used in Kraken. The operation of the frame buffer is

llustrated in Fig. 3.
As the DVS peripheral can be configured to write to any

ddress in Kraken’s memory range, it can transfer input data
irectly to CUTIE’s internal activation memories. After an input
indow has been streamed out, the peripheral raises an interrupt

ine which is connected both to the FC and CUTIE, allowing au-
onomous operation of the entire processing pipeline by directly
riggering CUTIE’s inference without redundant data transfers
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Table 3
Hyperparameters for QAT with TQT.
Parameter Value

Epochs 50
Batch size 128
Opt. Adam
LR0 0.01
LR decr.a Cosine annealing [86]
EQ ,Wt/EQ ,Act

b 0/8
Act. clip init.c Const. 6.0

aWe perform one cycle of cosine annealing over 50 epochs.
bActivations and weights are quantized starting from the specified epoch.
cConst. x: clipping bounds initialized to x.

r other intervention by the FC core. After CUTIE has finished
unning the TNN on the input data, it raises an interrupt line and
he FC can process and interpret the network’s output.

.2. Mapping TNNs on Kraken

The two processing domains we target for the deployment
f our networks are the PULP cluster and CUTIE. In both cases,
etworks are executed sequentially in a layer-by-layer fashion. To
fficiently use the cluster’s computational resources, the data on
hich the cores operate must be stored in the high-bandwidth
1 memory. However, Kraken’s L1 memory is too small to hold
he inputs, outputs, and weights, necessitating tiled execution
of layers: the complete input, weight, and output buffers for a
layer are held in L2 memory and the layer is divided into smaller
execution units by tiling the input, output, and weight tensors
along the input channel, output channel or spatial dimensions.
For the execution of each tile, the corresponding inputs and
weights are transferred by direct memory access (DMA) from L2
to L1 memory and the cluster computes the partial output, which
is then transferred back to L2. Double buffering is used to hide the
latency of the DMA transfers.

In contrast, CUTIE specializes in efficient processing of TNNs by
implementing dedicated activation and weight memories, which
offer sufficient memory to avoid tiling of the network. In order
to maximize energy efficiency of the system, inferences are exe-
cuted on the accelerator in a self-contained fashion. To prepare
for network execution, weights are written to CUTIE’s internal
weight memory and parameters for each layer (e.g., kernel size,
input size, stride, etc.) are configured, both via CUTIE’s external
data interface. A ternary input tensor can then be written to
CUTIE’s activation memory. Inference is triggered by writing to
a configuration register or if CUTIE’s start interrupt line is raised.
CUTIE executes networks autonomously on its internal memories
and raises an interrupt when inference has concluded, allowing
the host system to read and interpret the results.

6. Results

In this section, we present the results of our algorithmic eval-
uations as well as power measurements conducted on the Kraken
system. First, we show the impact of data preparation, archi-
tectural, and training parameters on the network’s classification
accuracy. Then, we show power consumption and latency mea-
surements for networks mapped both to CUTIE and to Kraken’s
PULP cluster.

6.1. Network design, data preparation and QAT algorithms

We evaluate the impact of network design, training, and data
preparation parameters on statistical accuracy from multiple as-
pects. The hyperparameters for QAT with TQT are shown in
Table 3, the training schedule for QAT with INQ is shown in Fig. 4.
725
Fig. 4. Quantization and learning rate schedules used to ternarize full-precision
networks with the INQ algorithm. The left y-axis measures the learning rate,
the right y-axis measures the fraction of weights quantized. Hyperparameters
not shown in this plot are identical to those used for QAT with TQT.

6.1.1. Receptive time interval tp
The receptive time interval tp is tied to the network’s reaction

time to changes in the input: For larger tp, it will take longer for
the new inputs to propagate through the network and saturate
the TCN’s input window. To minimize the system’s reaction time,
it is thus desirable to keep tp as short as possible. However, a very
short tp limits the temporal context of the network’s input, which
ay negatively impact classification accuracy. In this context, we
onsider a configuration Pareto-optimal if there is no network that
chieves higher accuracy with a shorter tp, and the set of Pareto-
ptimal networks forms a Pareto front. As described in Section 4.5,
p is influenced both by network design (Cin, NTCN ) and data
reparation parameters (swin, FPS). Setting Nch = 96, we trained
7 networks with parameter combinations resulting in tp ranging
rom 42ms to 1433ms. We trained full-precision networks on
he dataset split used by most previous works (users 1–23 in
he training set and users 24–29 as the validation set). Of the
ull-precision networks forming the Pareto front, we also trained
ernarized versions using the TQT algorithm and ReLU activations
sing 4-fold cross-validation (CV). The results are shown in Fig. 5
or both the standard dataset split and with 4-fold CV, selecting
ifferent users as the validation set. From Fig. 5, we can observe
ultiple points of interest. First, at tp = 300ms, a ternarized net-
ork already reaches 96.86% validation accuracy on the standard
ataset split, only 0.74 percentage points below the maximum
bserved accuracy of 97.7%. The accuracy drop from ternarization
s below 1.5 percentage points in all evaluated networks, with an
verage drop of 0.6 percentage points. Quantization even results
n increased accuracy in some cases, confirming that the problem
s well-suited to be solved by TNNs. Lastly, the average statistical
ccuracy when using 4-fold CV is lower by 1.55 percentage points
han with the standard dataset split, indicating that the standard
plit is easier, with the training set representing the validation set
ccurately.

.1.2. Network design, dataset generation and QAT algorithms
As a fully exhaustive network design, training, and dataset

eneration parameter search would be infeasible, we present
blation results over those parameters and design choices we
ound to have the largest impact on statistical accuracy. Fig. 6
hows the impact of varying FPS while maintaining tp = 900ms
y changing Cin. We observed that increasing framerates signif-
cantly improves classification accuracy only up to 60 FPS, after
hich it stagnates between 97.3% and 97.9%. Next, we sought to
etermine the impact of the network’s TCN stage on statistical
ccuracy by training two of the Pareto-optimal networks shown
n Fig. 5 (tp = 300ms and tp = 900ms) without the TCN.
nstead, the N outputs of the CNN are fed directly into a linear
TCN
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Fig. 5. Validation accuracy vs. tp for various network architecture and dataset generation parametrizations. Data points connected by lines form the Pareto front of
the respective experiments.
Table 4
Impact of QAT algorithm, quantization levels and the TCN stage on classification accuracy. Classification accuracy is specified for ternarized networks trained on the
standard dataset split with full-precision accuracy in parentheses. nlvls denotes the number of quantization levels, with 2 yielding a BNN and 3 a TNN. For the full
arametrization of the networks, see Table 6.
Net (tp) nlvls Act. QAT TCN? Acc. Quant. (FP)

Net 1
(300ms)

3 ReLU TQT ✗ 95.3% (96.9%)
3 ReLU TQT ✓ 96.8% (97.3%)
3 ReLU INQ ✓ 93.9% (97.3%)
3 HtanH TQT ✓ 95.5% (95.5%)
3 HtanH INQ ✓ 93.8% (95.5%)
2 ReLU TQT ✓ 95.8% (97.3%)

Net 4
(900ms)

3 ReLU TQT ✗ 96.3% (96.9%)
3 ReLU TQT ✓ 97.7% (97.5%)
3 ReLU INQ ✓ 97.2% (97.5%)
3 HtanH TQT ✓ 96.4% (96.1%)
3 HtanH INQ ✓ 95.5% (96.1%)
2 ReLU TQT ✓ 97.0% (97.5%)
t

Fig. 6. Validation accuracy vs. FPS. Apart from FPS and Cin , the network’s
arametrization corresponds to network 4 from Table 6 with Cin chosen so that
p = 900ms, i.e., Cin = FPS/10. The highest accuracy is achieved at 150FPS with
7.9%.

lassifier layer. Table 4 shows that the inclusion of the TCN stage
mproves classification accuracy by 1.5 and 1.4 percentage points
espectively. Finally, we evaluated the impact of the choice of QAT
lgorithm and activation function on accuracy. As Table 4 shows,
he combination of ReLU activations and TQT yields the highest
lassification accuracy. Furthermore, ReLU activations and TQT
utperform HtanH and INQ individually. To determine the impact
f the number of quantization levels on accuracy, we also trained
NNs with equivalent architectures using ReLU activations and
he TQT algorithm. Since our DVS event frame representation
s ternary, the first layer of each BNN processes ternary inputs
ut uses binary weights. As Table 4 shows, these networks still
erform well but achieve lower statistical accuracies by 1.0 and
.7 percentage points than their ternary counterparts.

.2. End-to-end gesture recognition on the Kraken SoC

We evaluated the real-world energy consumption of our pro-
essing pipeline on the Kraken SoC with the four network
arametrizations shown in Table 6. On both CUTIE and the PULP
luster, we run inference under realistic operating conditions by
atching the inference rates to the evaluated networks’ training
nd accounting for the power consumption of idle domains. Our
726
Table 5
Operating conditions for power measurements and power consumption of the
different power domains on the Kraken SoC.

FC Cluster CUTIE

fclk (MHz) 40 115 15
VDD (V) 0.55 0.55 0.5
Pidle (mW) 2.0 1.6 2.7
Pinf (mW) 2.0 21.1 5.3
tinf (ms) N/A 17.8 0.9

results show that the CUTIE-based implementation of our TCN
network requires only 7 µJ, 58.5 × less than a comparable imple-
mentation on the state-of-the-art RISC-V cluster using efficient,
specialized ISA extensions.

6.2.1. Experimental setup
To map the network to the PULP cluster, we use DORY [87],

an open-source DNN mapping utility targeting PULP systems, to
generate test applications. The network layers are mapped to 2-
bit kernels from the PULP-NN library [88] which take advantage
of the XpulpNN ISA extension. As the DVSI’s operation does not
result in a measurable increase in power consumption, our test
applications store input samples in L2 memory. An on-chip timer
generates interrupts to the FC at the rate appropriate for each
tested network, upon which the FC triggers inference either on
the cluster or on CUTIE. As CUTIE operates on data from its
internal activation memory, the FC transfers input activations
before triggering the computation, which is slower than direct
transfer by the DVSI and results in pessimistic latency and en-
ergy estimations. Table 5 details the operating conditions for
our experiments, the power consumption of each domain during
each phase of inference, and the inference latency tinf . While the
ested networks differ in the values of both NTCN and Cin, this
has no measurable impact on inference latency. Due to CUTIE’s
fully unrolled architecture, the number of input channels does
not influence latency. For cluster networks, the number of input
channels must be padded to a multiple of 16 to comply with the
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Table 6
Key power and energy figures for 4 Pareto-optimal networks from Fig. 5. The networks were mapped to both the PULP cluster and CUTIIE.
Net tp (ms) FPS Cin NTCN inf./s Acc. Einf (mJ) Pcont (mW) Ewin (mJ)

Cluster CUTIE Cluster CUTIE Cluster CUTIE

1 333 60 4 5 15 96.3%

0.41 0.007

8.9 4.68 2.74 1.26
2 300 120 4 9 30 96.8% 14.1 4.74 4.08 1.27
3 625 120 15 5 8 96.9% 6.4 4.68 3.59 2.35
4 900 60 6 9 10 97.7% 7.1 4.69 6.02 3.75
Fig. 7. Power traces for networks 2 and 3. Measurements for cluster-mapped implementations are shown in the top row, CUTIE implementations are shown in
he bottom row. The differences in peak power for different inferences on CUTIE are a result of our power analyzer’s temporal resolution, which is lower than the

uration of the shortest current spikes.
Fig. 8. Breakdown of Ewin into contributions from FC, idle and inference energies.
CUTIE-mapped nets exhibit very low inference energy with larger contributions
from idle time, while cluster-mapped networks see large contributions from
inference.

constraints of XpulpNN instructions. The differences in computa-
tion load caused by varying NTCN are so small as to be unmea-
urable. During idle phases, the processing units (PULP cluster
r CUTIE) are clock-gated, but not power-gated. We also correct
ur power numbers for the leakage current drawn by oversized
ower gates for the accelerators in our design by measuring the
eakage current with both accelerators power-gated and subtract-
ng it from our current measurements. This makes our reported
esults equivalent to those of a design without any power-gating
eatures. As the FC, cluster and accelerator domains have separate
upply rails, unused domains can be turned off by switching off
heir external power supplies and we calculate the total power
onsumption as the summed power draw of the used domains.

.2.2. Power measurements
Table 6 reports the key figures of merit of the four networks

e evaluated on the Kraken SoC. The inference energy Einf is
given as the total energy consumed by the FC and CUTIE or
the PULP cluster for a single prediction update, i.e., a single
inference of the complete network. A complete inference on
the PULP cluster takes 17.8ms and consumes less than 500 µJ.
Running the network on CUTIE reduces these figures further
to 0.9ms and 7 µJ, including the inefficient transfer of input
data by the FC. This represents an improvement of 5× over
the closest result reported in literature while accounting for the
complete power consumption of the processing system including
data transfer, rather than only the processing cores. Compared to
previous end-to-end systems, our approach achieves a 67× lower
inference energy. During inference, the operational efficiency of
the system is 363GOp/J when mapping the network to the clus-
ter and 21TOp/J for CUTIE-mapped networks. Fig. 7 shows the
727
power traces from repeated inferences on two of the evaluated
networks.

To evaluate the efficiency of our processing pipeline in real-
world applications, we consider two scenarios. The first is that
of always-on inference at the rate for which the network was
trained (inf./s in Table 6). In this scenario, the metric of inter-
est is Pcont , the processing system’s average power consumption
while performing continuous inference. Table 6 shows that the
cluster and CUTIE implementations behave very differently in this
respect: While Pcont strongly correlates with the inference rate
for cluster-mapped networks, it is dominated by the idle power
consumption for CUTIE-mapped networks. With higher inference
rates, the efficiency advantage of CUTIE-mapped networks grows.
While gesture recognition does not benefit from high inference
rates, CUTIE’s extremely high throughput makes it optimal for
low-latency applications (e.g., perception pipelines for fast-flying
nano-drones). Higher inference rates would allow it to amortize
its leakage power consumption by increasing the utilization of its
extremely efficient datapath.

The second scenario is event-triggered inference: The system
is put to sleep until it is awakened by, e.g., increased event
activity (which can be detected by Kraken’s DVS peripheral).
Upon awakening, a complete window of NTCN inferences must
be completed to produce a reliable prediction. We calculate the
energy required to compute this prediction as Ewin = NTCNEinf +

(NTCN − 1)( 1
(inf /s) − tinf ) × Pidle. Consequently, shorter tp reduces

the idle energy contribution and lower inference rates reduce the
computation energy contribution. As with Pcont , idle energy domi-
nates CUTIE networks’ Ewin and CUTIE performs best on networks
with short tp, while cluster networks’ energy consumption rises
sharply with NTCN at similar tp, as seen on networks 1 and 2.
Fig. 8 visualizes the breakdown of Ewin for the four evaluated nets
mapped to CUTIE and the PULP cluster.

To determine the individual contributions of the components
of our processing pipeline to the overall energy efficiency, we im-
plemented the event-frame conversion in software. The inference
energy breakdown of Network 1 mapped to the cluster and to
CUTIE, using the software frame buffer and the hardware buffer
in the DVSI peripheral, is shown in Fig. 9. CUTIE’s inference energy
is two orders of magnitude lower and the total inference energy is
reduced again by almost 2× by using the hardware frame buffer.

7. Conclusion

In this work, we have presented an end-to-end pipeline for
frame-based gesture recognition from DVS camera data,
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Fig. 9. Breakdown of inference energy for network 1 mapped to the PULP cluster
as well as to CUTIE, using both a software-based event-to-frame mapping and
the hardware frame buffer in the DVS peripheral. Note the logarithmic y-axis,
causing the equal energy consumption of CUTIE inference to appear different
visually.

implemented on the Kraken SoC. A dedicated on-chip peripheral
aggregates the event stream from the DVS camera into ternary
event frames. We classify the event frames with a fully ternarized
hybrid TCN mapped either to the CUTIE accelerator or to the 8-
core PULP cluster. To the best of our knowledge, our network
sets a new state of the art for embedded implementations with
97.7% validation accuracy on the DVS128 gesture dataset, and
the most accurate network we trained achieves 97.9%. On the
CUTIE accelerator, we achieve a classification energy of 7 µJ, 67×
lower than the previous state of the art for end-to-end gesture
recognition at an inference latency of 0.9ms. We further show
that our approach can perform competitively even on software-
programmable RISC-V cores with ISA extensions for sub-byte
arithmetic. The cluster implementation exhibits an inference en-
ergy of 0.41mJ at a latency of 17.8ms for the same network
running on Kraken’s PULP cluster. With a continuous classifi-
cation power consumption of 4.7mW (CUTIE)/6.4mW (cluster)
for all involved processing components at 96.6% classification
accuracy, our implementation highlights the added value of com-
plete integration of sensor interface, preprocessing and efficient
compute units. Kraken’s programmability and flexibility allow for
the implementation of a variety of processing scenarios (e.g., split
execution of mixed-precision networks between CUTIE and the
PULP cluster) to be explored in future works.
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