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S1 Compilation of litera-

ture data

A set of literature data by Miura et al.,1 Greben
et al.2 and Valenta et al.3 were combined with
our measurements to deduce the ideal fully ra-
diative average lifetimes τ idealPL from Figure 1(d).
Two studies which also report fully radiative
average lifetime by Sangghaleh et al4 and Kalk-
man et al5 were not included in the calculation
because their reported values are slightly lower
than the remaining datasets, see Figure 2b. Ra-
diative lifetimes reported by Liu et al.6 are
a simplistic recalculation from QY measure-
ments, disregarding the influence of dark QDs.
Therefore, they were not included either.
All the lifetimes included in the figure were

recalculated into average lifetimes τPL using
Eq. (5). The stretched-exponential parameters
were extracted from the text where available,
or the reported PL decays were digitalized and
re-fitted.
In the study by Miura et al,1 the reported

radiative rates are based the τSE stretched-
exponential lifetime and thus they also needed
to be recalculated. A typical β for high-quality
samples of 0.85 was assumed, which corre-
sponds to the Γ(2/β)/Γ(1/β) ≈ 1.3 factor connect-
ing the stretched-exponential and average life-
times. Thus, the plots used to deduce the ra-

diative and non-radiative rates by Miura et al.1

were digitalized, corrected by this factor and
re-fitted to yield the average rates rather than
the stretched-exponential rates. Based on the
comparison between these values, the correc-
tion factor of 1.36 was applied to the radiative
lifetimes reported by Miura et al.1

Data by Greben et el2 and Valenta et al3

report intensity-averaged rates, so no recal-
culation to the average lifetimes was neces-
sary. However, these decays were acquired us-
ing significantly different experimental condi-
tions (long-pulse excitation), which are known
to lead to longer lifetimes when compared to
classical fast excitation.7 Thus, data obtained
from these studies2,3 were corrected by a fac-
tor of 0.85. The corresponding correction fac-
tor for short-pulse excitation can be determined
by comparison of the decay times after suffi-
ciently short and sufficiently long excitation,7

with the “long” decay time being ≈ 283 µs and
the “short” decay time ≈ 250 µs. Out of the
datasets presented in the latter study,3 only the
deduced radiative rates were included here.
To ensure equal weight of the individual mea-

surements in the characterization of the uni-
versal lifetime curve τ idealPL (λ), all the datasets
were first interpolated so that each one con-
tained roughly 25 evenly spaced points within
the measured interval of emission photon ener-
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gies. In order to characterize the value of the
1/kQC slope parameter as accurately as possible,
each dataset was first fitted with an exponential
and the mean value and the standard deviation
of these kQC values was calculated. In a sec-
ond run, this mean kexp

QC value was fixed and a
second exponential fit for all the data assuming
the 1/kexpQC slope was used to extract the Aexp

PL off-
set parameter (reported with 66 % confidence
bands).

S2 Intensity-averaged pho-

toluminescence life-

times

Using strictly its definition, the intensity aver-
aged lifetime8

τPL(λ) =

∫∞
0

tI(t, λ) dt∫∞
0

I(t, λ) dt
(S1)

is an emission-photon-energy dependent num-
ber characterizing the lifetime of an PL decay
independently of the fitting model. In a single-
exponential PL decay I(t) = I0 exp (−t/τexp),
τPL from Eq. (S1) equals directly the 1/e de-
cay time (τPL = τexp) and for many common
shapes of the PL decay curve, average τPL
can be easily calculated using a simple ana-
lytical formula.8 More generally, for a multi-
exponential fit composed of N exponentials
I(t) =

∑N
i=0 Ii exp (−t/τi), the average lifetime

τME
PL is equal to2

τME
PL =

∑N
i=0 Iiτ

2
i∑N

i=0 Iiτ
. (S2)

In a stretched-exponential PL decay, τPL com-
bines τSE and β for a given emission photon
energy λ into a single parameter8

τPL =
Γ(2/β)

Γ(1/β)
τSE, (S3)

where Γ() is the gamma function. Thus, it is
possible to calculate the model-independent av-
erage lifetime τPL(λ) from Eq. (S1) very sim-
ply by traditional fitting of a set of PL decays

at different emission photon energies using a
stretched-exponential function from Eq. (4) and
then inserting the τSE and β parameters directly
into Eq. (5). Notably, the fit of the same curve
assuming a different mathematical models leads
to very similar values of lifetimes.2

S3 Details about PL decay

measurements

The trends reported on in this study are based
on a large number of measurements with vary-
ing experimental conditions (excitation inten-
sity 1024 − 1026 ph/cm2s, mode of excitation: fs
or ns laser and excitation wavelength: 315 −
400 nm, two-photon or two-step excitation at
515 and 780 nm) with no significant deviations
from the reported average lifetimes except for
the influence of measurement and analysis ar-
tifacts, such as the lowering of the determined
average lifetimes due to low PL signal.9 On the
whole, at least 90 PL maps, corresponding to at
least 2,000 individual PL decays, were experi-
mentally characterized and their behavior an-
alyzed. This relatively large statistical sample
ensures the robustness of the observed univer-
sality of PL decays and is crucial for our ability
to identify measurement- or analysis-induced
artifacts in the determination of the average
lifetimes.
Possible artifacts in the determination of

τPL(λ) in Figure 1c are connected with (i) the
inaccurate determination of the PL onset time,
(ii) the omission of the longer-timescale tail of
the PL decay, (iii) underestimation of the influ-
ence of the solvent for example via stray light
in the detector and (iv) excessive noise in the
data. Whereas issue (i) can generally skew the
results of a fit in any direction,9 the latter three
issues lead to the underestimation of the ex-
tracted lifetimes.9 Therefore, we included the
onset of PL in our analysis and made sure that
the tail of the PL decay was accurately mea-
sured. To properly visualize the PL tail, the
PL decays are plotted in an offset logarithmic
vertical scale, where a small constant is added
to the PL signal before applying the logarithmic
scale to ensure that the signal is non-negative
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and its whole range shows in the logarithmic
plot (inset of Figure 1a).9

S4 The determination of

non-radiative lifetimes

To illustrate the role of the APL parameter, we
can imagine a set of SiQDs in which the life-
times of the non-radiative processes are compa-
rable to those of the radiative ones τr = τnr.
In such a set of samples, the corresponding
measured τPL will be about a half of that of
the ideal τ idealPL (λ) curve from Figure 1(c), be-
cause τPL = 1/(1/τr+1/τr) = τr/2. This differ-
ence will be reflected in the APL parameter as
APL(τnr = τr) = APL(τnr→∞)/2 = Aexp

PL/2.
The APL value allows us to roughly estimate,

disregarding the underlying λ dependence, the
magnitude of microsecond non-radiative life-
times in the “non-ideal” etch-SiQD:Oa sample.
As Aetch−SiQD:Oa

PL ≈ Aexp
PL/5 and the 1/kQC slope

is very close to 1/kexpQC , the etch-SiQD:Oa non-
radiative lifetimes are roughly 1/4 of those of
the purely radiative τ idealPL curve (1/τetch−SiQD:Oa

PL =
5/τ idealPL = 1/τrideal + 4/τ idealr ⇒ τ etch−SiQD:Oa

nr =
τ idealPL /4). The corresponding iQY is 0.2.

S5 The accuracy of the

determination of the

stretched-exponential

stretching parameter

In order to assess the influence of the data qual-
ity, namely the signal-to-noise ratio and data
sparsity, on the fitted parameters, we define two
quantities as follows. These quantities are de-
termined from the underlying measured data
I(t, λ) and the parameters of fitted function
f(t, λ), in particular of the onset times t0(λ)
and the average measured lifetimes τPL(λ). To
ensure that the two quantities are independent
of the overall temporal length of the measure-
ment window, they are determined on a tempo-
ral interval of a sufficiently high signal T signal,
which we define as the interval between the on-
set time t0 and three times of the average life-

time τPL from data onset

T signal ∈ ⟨t0, t0 + 3τPL⟩. (S4)

A time interval defined in this way sufficiently
covers the decay of the signal for both the ex-
ponential and the stretched-exponential curves.
Firstly, the N/S parameter describing the

noise-to-signal ratio of a decay curve I(t) is de-
termined from the standard deviation (std{}) of
the residuals of the fit on the T signal interval af-
ter being normalized for the maximum (max{})
of the fitted decay curve f(t)

N/S =
std {I(t)− f(t)}

max {f(t)}

∣∣∣∣
t∈T signal

. (S5)

A visual representation this definition is given
in Figure S1(a). Using the maximum of the fit-
ting function in the denominator of this formula
rather than normalizing simply for the maxi-
mum of data ensures that the N/S parame-
ter is not influenced by potential noise spikes
around the maximum of the measured data.
Secondly, the sparsity of data N signal is char-
acterized simply as the number of datapoints
inside the T signal internal. Please note that
each decay I(t) is characterized by a single N/S
and a single N signal parameter, which makes
both these parameters potentially dependent on
the emission wavelength λ. Examples of decay
curves with the corresponding data quality pa-
rameters are shown in Figure S1(b).
Further, we used synthetically generated de-

cay curves such as the ones in Figure S1 to as-
sess how the data-quality parameters defined
above influence the output of data analysis. To
generate the synthetic curves fsynth(t), a func-
tion with known parameters freal(βreal, τreal; t)
was calculated for a selected number of equally
sampled datapoints and randomly generated
noise following the normal distribution was
added

fsynth = freal + noise. (S6)

In an ideal case, fitting of the fsynth curve would
recover the (βreal, τreal parameters of the freal
function. However, if the random noise and
sparser data have non-negligible influence on
the fitting procedure, the parameters obtained
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Figure S1: (a) Visual representation of Eq. (S5) (b) Examples of decay curves characterized by
various N/S and N signal.

Figure S2: Examples of histograms of β’s fitted to synthetic decay curves with known parameters
and added noise (each histogram represents the statistics of 500 decay curves). (a–d) The underlying
data follow a stretched-exponential decay with β = 0.85, N signal = 100 and N/S varies. The
histogram is overlaid with a fit to a normal distribution in red. (e–h) The underlying data follow
a single-exponential decay, N signal = 52, N/S varies.
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by fitting the synthetic curve would be different
from the (βreal, τreal “real” ones. These synthetic
datasets then underwent a standard9 fitting
procedure assuming a stretched-exponential de-
cay, which allowed us to extract the statistics
of fitted βfit parameters and statistically deter-
mine how a particular random pattern of noise
influences the extracted decay curves. In the
following analysis, only the influence of the data
quality on the βreal parameter is discussed, be-
cause the β dispersion parameter determines
the “nature” of PL decay (single-exponential,
non-single-exponential).
One possibility of describing the statistics of

the fitted βfit’s is simply using histograms as
in Figure S2. Histograms of fitted βfit’s for an
underlying stretched-exponential decay (βreal =
0.85) presented in Figure S2(a–d) clearly il-
lustrate how, intuitively, the histogram gets
broadened for noisier datasets. The distribu-
tion of βfit’s would closely resemble a normal
distribution but, when performing a stretched-
exponential fit, the upper bound for βfit is tra-
ditionally set to one. This upper bound arti-
ficially crops the histogram as it gets broader
(Figure S2(c,d)). Figure S2 clearly illustrates
how a non-negligible percentage of fits natu-
rally converge to βfit = 1 or other, “incorrect”
(βreal ̸= 0.85) values of β, even if the underly-
ing dataset freal follows a stretched-exponential
decay as a result of lower-quality data (sparser
datapoints, higher level of noise).
In the reverse case, when the underlying syn-

thetic data freal(t) are single-exponential and
are fitted with a stretched-exponential func-
tion as in Figure S2(e–h), the fit often con-
verges to βfit = 1, in other words to a single-
exponential. However, as the data gets nois-
ier, a tail of fitted βfit < 1 again broadens
(Figure S2(g,h)). This noise-induced devia-
tion of the fit from the shape of the underly-
ing dataset can be quantified by calculating the
portion of βfit’s which falls outside of the inter-
val βfit ∈ ⟨βreal−0.05, βreal+0.05⟩ (or the inter-
val ⟨0.9, 1⟩ for a single exponential), which will
be referred to as p. The p parameter can be in-
terpreted as the rough estimate of the probabil-
ity that the fitted βfit parameter differs from the
real underlying decay βreal by more than 0.05

as a result of data sparsity and the presence of
noise. Thus, p → 0 implies high certainty about
the βfit value, while p → 0.3 signifies about a
30% probability of the fitted βfit being incorrect.
Using our analysis as presented above, we con-
structed a dependence of the p parameter of the
data quality parameters N/S and N signal. We
found out that p relatively strongly depends on
the noise-to-signal ratio N/S, see Figure S3(a),
but its dependence on data sparsity N signal is
weaker. Based on the shape of this dependence,
solely for the purposes of a simple description,
we selected a fitting function well-describing p
for N/S and N signal parameter values relevant
for PL decay measurements as follows

p(A,w;N/S,N signal) = (S7)

A

[
1− w2N signal

(N/S)2 + w2N signal

]
,

where A and w are parameters which are de-
rived from the above analysis and depend on
the parameters of the underlying, real data.
Whereas A represents the value to which p
“asymptotically” approaches for noisier data
(N/S → 0.3 and more), the weakly N signal-
dependent w denotes the N/S value where p
attains half of this maximum. A simplified two-
dimensional example disregarding the p(N signal)
dependence of the p(N/S) dependence in Fig-
ure S3(a). The whole p(N/S,N signal) de-
pendence for an underlying single-exponential
(βreal = 1) and stretched-exponential (βreal =
0.85) PL decays is then shown in Figure S3(b),
the corresponding parameters are listed in Ta-
ble S1. Whereas in the single-exponential de-
cay curve, the probability p of the fitted βfit

to be outside of the ⟨0.9, 1⟩ interval slowly
rises to roughly 35 % with increasing N/S
noise value as the tail of the histogram in Fig-
ure S2(e–h) broadens, a possible error in βfit

for a stretched-exponential decay rises to an
even higher value with the analogical histogram
broadening. Changing βreal from 0.85 to 0.75 in-
fluences the fit deviation p only marginally, see
Table S1.
In our analysis, we use a mode of fitting in-

cluding the onset of the PL decay, as we dis-
cussed elsewhere.9 However, in most PL decays
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Figure S3: (a) The dependence of p, the portion of βfit falling outside of the ⟨βreal−0.05; βreal+0.05⟩
interval, on the noise-to-signal ratio N/S on an example of a stretched-exponential synthetic decay

(βreal = 0.85,N signal =110). The red curve represents the fit by a formula A
(
1− w2

(N/S)2+x2

)
, whose

generalized version including both N/S and N signal is shown as Eq. (S8). (b) The summary of the
deviations of the fitted βfit for a single-exponential (exp) and a stretched-exponential underlying PL
decay from Figure S2 using p(N/S,N signal) from Eq. (S8) (the corresponding parameters are listed
in Table S1). One p(N/S,N signal) dependence was calculated using a statistics of 68,000 synthetic
PL decay curves. (c) The gray area highlights noise levels and number of datapoints in the dataset
for a fitted βfit value to be statistically significant (p < 0.1 in Eq. (S8)). (d) The portion of βfit

converging to ⟨0.9; 1⟩ for underlying stretched-exponential data (βreal = 0.85, N signal = 90), the
data are fitted using Eq. (S9).

Table S1: The parameters of Eq. (S8) for various combinations of underlying PL decay
data and fitting approaches.

underlying data βreal fit A w
exponential 1.0 SE 0.37 1.4× 10−2

SE 0.85 SE 0.90 6.3× 10−3

SE 0.75 SE 0.90 9.3× 10−3
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reported in the literature, this PL onset is ex-
cluded from the data, which results in the un-
certainty about the onset time where the PL de-
cay starts and thus produces much larger errors
of the fitted parameters.9 We performed the fit
quality assessment in the same way as presented
above also for fitting excluding PL onset. The
analysis revealed that the mode of fitting im-
pacts the p(N/S,N signal) dependence. In par-
ticular, if care is taken to use an “appropriate”
onset time when fitting without the PL onset,
the p values for noisier data N/S > 0.5 ap-
proach somewhat lower values than those pre-
sented in Figure S3(b) (i.e. As from Table S1
are lower) and the initial rise is much steeper
in the case of an exponential underlying dataset
(w is lower). However, the histograms of βfit

for noisier and sparser data are much less or-
dered than for the case of onset-included fitting
in Figure S2 as the fit deviations are no longer
solely statistical errors of a single parameter
(βfit). Thus, we will use the p(N/S,N signal) de-
pendence derived using the onset-included fit-
ting for a rough fit-quality assessment in gen-
eral. Since the onset-included mode of fitting
is much more reliable, the corresponding noise-
induced error can only be underestimated in
this way, never overestimated.
The presented analysis provides us with a tool

to determine if a possible noise-induced error
of a stretched-exponential βfit obtained from a
non-linear least-square fitting is small enough
to provide reasonable certainty about the fit-
ted value. If we consider a p = 0.1 probability
that the βfit is outside ±0.05 range (other val-
ues can be chosen), we can calculate the ac-
ceptable noise-to-signal level for a particular
datasets from Eq. (S8)

(N/S) <
w√
A− p

√
N signal ⇒

N/S ⪅ 0.05 for N signal = 50,

N/S ⪅ 0.07 for N signal = 100. (S8)

These threshold noise levels are depicted in
Figure S3(c). If the data-quality parameters
N/S and N signal are outside of the designated
range, a stretched-exponential fit cannot reli-
ably distinguish between an exponential and a

stretched-exponential curve.
One more important quantity to be deduced

from the described analysis is the percentage
pexp of fits in which the fit incorrectly converges
to a single-exponential (βfit ∈ ⟨0.9; 1⟩) for un-
derlying stretched-exponential data (βreal =
0.85). This quantity can be easily estimated
from the already-calculated set of βfit his-
tograms from Figure S2(a–d). This dependence
takes on an analogical but slightly different
shape than the one in Figure S3(a), as shown
in Figure S3(d). To represent the slightly dif-
ferent shape we describe this dependence using
a formula

pexp(A,w;N/S) = 1− A

(N/S)w
(S9)

with A = 0.35 and w = 0.25. In this case, the
dependence on N signal is too weak to play a role.
The variability the histograms in Figure S1

indicates one possibility of circumventing this
limitation: the histograms of βfit are shaped dif-
ferently for an underlying stretched-exponential
and exponential data. (We note, however,
that this difference significantly smears if onset-
excluded fitting is applied.) Thus, constructing
a histogram of βfit will hint at the underlying
PL decay. The disadvantage of this approach
is the relatively large number of independent
datasets necessary for such an analysis, making
it difficult to be applied.

S6 Example of the compar-

ison of individual PL

lifetimes to the ideal

curve

Measured PL lifetimes in the average notation
τPL from Eq. (5) of any sample can be easily
compared to the fully radiative τ idealPL curve, see
Figure S4.
One example of the need to discuss the un-

certainty in the determined β parameter are
the single-QD PL decays.10 In SiQDs, in con-
trast to direct-bandgap materials, the mea-
surements of single-QD PL decays are notori-
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ously difficult due to the extremely low emis-
sion rates arising from microsecond PL decays
(τPL ≈ 1/10−4 s−1→ 104 photons/s), implying that
the detection system needs to be extremely sen-
sitive and optimized for the signal to overcome
noise. Consequently, noise level are also impor-
tant in the interpretation of the results and a
closer inspection is necessary before concluding
that the observed single PL decay was single-
exponential.10 In the PL decays presented in
that paper, we could estimate the fit ambiguity
coefficients pexp. When assuming an exponen-
tial fit, p is relatively large (pexp ≈ 0.3). How-
ever, both these datasets can be also well fitted
using a stretched-exponential function (β ≈ 0.7
and 0.8, respectively). The application of a
stretched-exponential fit in turn significantly
increases the resulting fit ambiguity coefficient
(pSE ≈ 0.6 and 0.8, respectively). Thus, our
analysis supports the proposed conclusion that
the reported PL decays are single-exponential
(β = 1), but it also highlights that the con-
clusion is connected with a high level of uncer-
tainty.
Another interesting observation related to

these measurements are the values of the ob-
served lifetimes, which are significantly below
the ideal PL decay curve, see Figure S4(a), sug-
gesting a high influence of slow non-radiative
relaxation in these samples with iQYs in the
range of only a few percent APL = (0.01 ±
0.1)Aideal

PL . This conclusion well agrees with a
subsequent report on blinking analysis11 by the
same group.

Figure S4: (a) Comparison of single-QD PL
lifetimes10 with the PL trends discussed in the
main text (see Figure 2(b)).
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