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ABSTRACT

Context. Turbulent processes at work in the intracluster medium perturb this environments, impacting its properties, displacing gas,
and creating local density fluctuations that can be quantified via X-ray surface brightness fluctuation analyses. Improved knowledge
of these phenomena would allow for a more accurate determination of the mass of galaxy clusters, as well as a better understanding
of their dynamic assembly.
Aims. In this work, we aim to set constraints on the structure of turbulence using X-ray surface brightness fluctuations. We seek to
consider the stochastic nature of this observable and to constrain the structure of the underlying power spectrum.
Methods. We propose a new Bayesian approach, relying on simulation-based inference to account for the whole error budget. We
used the X-COP cluster sample to individually constrain the power spectrum in four regions and within R500. We spread the analysis
on the entire set of 12 systems to alleviate the sample variance. We then interpreted the density fluctuations as the result of either gas
clumping or turbulence.
Results. For each cluster considered individually, the normalisation of density fluctuations correlate positively with the Zernike
moment and centroid shift, but negatively with the concentration and the Gini coefficient. The spectral index within R500 and evaluated
over all clusters is consistent with a Kolmogorov cascade. The normalisation of density fluctuations, when interpreted in terms of
clumping, is consistent within 0.5R500 with the literature results and numerical simulations; however, it is higher between 0.5 and
1R500. Conversely, when interpreted on the basis of turbulence, we deduce a non-thermal pressure profile that is lower than the
predictions of the simulations within 0.5 R500, but still in agreement in the outer regions. We explain these results by the presence of
central structural residues that are remnants of the dynamical assembly of the clusters.
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1. Introduction

The intracluster medium (ICM) is the primary baryonic com-
ponent of galaxy clusters. The hot gas (T ∼ 107−108 K) is
governed by many physical processes that introduce pertur-
bations on various scales. In the inner parts of galaxy clus-
ters, the strong cooling and accreting gas trigger feedback
from the active galactic nucleus (AGN) hosted by the cen-
tral galaxy (McNamara & Nulsen 2012; Voit et al. 2017). In
the outer parts, merger events and accretion from the cos-
mic web generate shocks, adiabatic compression, and turbu-
lent cascades (Nelson et al. 2012). Throughout the history of
the dynamic assembly of galaxy clusters, these perturbations
will play a predominant role in the non-thermal heating of the
ICM (Bennett & Sijacki 2022), generating non-thermal pres-
sure, which drives the hydrostatic mass bias when it is not
accounted for in the mass estimation of massive halos when
assuming their hydrostatic equilibrium (Piffaretti & Valdarnini
2008; Lau et al. 2009; Meneghetti et al. 2010; Nelson et al.
2014; Biffi et al. 2016; Pratt et al. 2019).

Turbulence is a stochastic process that occurs in high
Reynolds number flows. It can be interpreted qualitatively as
the transport of kinetic energy from a large injection scale to a

small viscous scale, which then dissipates as heat in the medium.
Putting constraints on the turbulence that occurs in the intraclus-
ter medium is of great interest when it comes to characterising
non-thermal heating, since turbulent motions can be responsi-
ble for more than 80% of these effects – and potentially all of it
(Vazza et al. 2018; Angelinelli et al. 2020). The level of baseline
turbulence implied by most of the modern cosmological simu-
lations also appears to be in line with the implications of the
latest discoveries of very extended radio emission, namely, out
to at least R500 in clusters of galaxies classified as ‘mega-halos’
(Cuciti et al. 2022). The detection of such unprecedentedly large
volumes of cluster environments filled with relativistic particles
and magnetic fields is currently best explained by the ubiquitous
re-acceleration of electrons by turbulence, which is expected to
be present at a similar level in all clusters on these radii, at a level
compatible with simulations (see also Botteon et al. 2022).

Direct observations of this phenomenon is possible via stud-
ies of the centroid shifts and broadening of the ICM emis-
sion lines to derive the bulk and turbulent motions, respectively.
Upper limits on the fraction of energy in the form of turbu-
lent motions have been derived using the XMM-Newton spec-
trometer for samples of clusters (Sanders et al. 2011; Pinto et al.
2015). A novel approach using the EPIC-pn detector has
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allowed for the direct measurement of bulk flows in the Coma
and Perseus clusters (Sanders et al. 2020), showing consistent
results with Hitomi and was also applied to the Virgo and
Centaurus clusters (Gatuzz et al. 2022a,b). How these measure-
ments translate into a correction for the hydrostatic bias is
illustrated in, for instance, Ota et al. (2018), Ettori & Eckert
(2022). The first credible spatially resolved measurements of this
type in the X-rays were achieved with the Hitomi observatory
(The Hitomi Collaboration 2016) at the centre of the Perseus
cluster. Future direct measurements will be obtained with the
coming of the new generation of X-ray integral fields unit, that
is XRISM/Resolve in the coming years (XRISM Science Team
2020) and Athena/X-IFU in the long term (Barret et al. 2020).

It is also possible to characterise these phenomena using
indirect observables. The X-ray surface brightness fluctuations
are mostly due to density fluctuations in the ICM, and have been
studied for the first time in the Coma cluster by Schuecker et al.
(2004), and later by Churazov et al. (2012), deriving constraints
on the density fluctuation power spectrum on scales ranging
between 30 kpc and 500 kpc. Various theoretical works have sug-
gested a strong link between turbulent velocities and density
fluctuations (e.g., Zhuravleva et al. 2014; Gaspari et al. 2014;
Mohapatra et al. 2020, 2021; Simonte et al. 2022), indicating
that the study of brightness fluctuations could constrain the tur-
bulent processes that occur in the ICM. This methodology was
applied to Perseus (Zhuravleva et al. 2015), and in the cool cores
of ten galaxy clusters (Zhuravleva et al. 2018). These studies
constrained turbulent velocities to .150 km s−1 at scales smaller
than 50 kpc, which is consistent with direct measurements from
Hitomi.

Turbulent processes, and thereby the resulting density fluc-
tuations, originate from chaotic processes that can be assimi-
lated to random fields observed in spatially finite regions. The
stochastic nature of this observable coupled with the finite size
of the observations means it intrinsically carries an additional
variance, which is later referred to as the sample variance. This
effect has been studied for the structure function of turbulent
velocities for XRISM (ZuHone et al. 2016) and Athena X-IFU
mock observations (Clerc et al. 2019; Cucchetti et al. 2019), and
it has been dominant in the error budget at spatial scales &50 kpc.
It is expected to play a significant role in fluctuation analyses,
leading to an underestimation of the error budget when it is
not accounted for. In this work, we propose a novel approach
based on the forward modelling of observables related to surface
brightness fluctuations, which allows, for the first time, the full
error budget associated with their stochastic nature to be con-
sidered. In this work, we apply this methodology to the XMM-
Newton Cluster Outskirts Project (X-COP, Eckert et al. 2017)
sample and derive individual constraints on the statistical prop-
erties and spatial distribution of the density fluctuations via the
characterisation of the 3D power spectrum of the associated ran-
dom field. We combine these constraints under the assumption
of comparable dynamics within the clusters to obtain stronger
constraints on the whole sample, which can be related to the gas
clumping and the turbulent processes occurring in the ICM.

In Sect. 2, we describe our methodology as well as the vali-
dation process. In Sect. 3, we present the individual results and
the joint constraints on density fluctuations. In Sect. 4, we inter-
pret these constraints as being gas clumping or coming from tur-
bulent processes and contributing to non-thermal heating. We
also inspect the correlations between the obtained parameters
and the dynamic state of the clusters and discuss the various lim-
itations of our approach. Throughout this paper, we assume a flat
ΛCDM cosmology with H0 = 70 km s−1 and Ωm = 1−ΩΛ = 0.3.

Scale radii are defined according to the critical density of the
Universe at the corresponding redshift. The Fourier transform
conventions are highlighted in Appendix B.

2. Data and method

2.1. X-COP Sample

The XMM-Newton Cluster Outskirts Project (X-COP,
Eckert et al. 2017) is an XMM Very Large Program dedi-
cated to the study of the X-ray emission of cluster outskirts.
This sample comprises 12 massive (∼3−10 × 1014 M�) and
local (0.04 < z < 0.1) galaxy clusters, for a total exposure
time of ∼2 Ms. The targets were selected from the first Planck
catalogue (Planck Collaboration XXIX 2014) as (i) resolved
sources regarding Planck’s spatial resolution (i.e. all clusters
have R500 > 10′), (ii) with high signal-to-noise ratio (S/N > 12),
and (iii) in directions that ensure low hydrogen column den-
sities to prevent soft-X ray absorption (NH < 1021 cm−2). The
thermodynamical properties of the X-COP sample have been
characterised (Ghirardini et al. 2019). The sample was further
used to derive the first observational constraints on the amount
of non-thermal pressure in the outskirts of clusters (Eckert
et al. 2019).

2.2. Data preparation

This project is based on the publicly available X-COP data
products (Ghirardini et al. 2019; Ettori et al. 2019)1. Here, we
recall the main steps of the data reduction, image extraction, and
point source subtraction. We refer to Ghirardini et al. (2019),
Eckert et al. (2019) for further details on the data preparation
procedure.

First, the data were reduced using the XMMSAS v13.5
software package and the Extended Source Analysis Software
(ESAS) procedure; namely, the raw data were screened using
the emchain and epchain executables to extract raw event files.
We then extracted the light curves of the entire field of view to
exclude time periods affected by soft proton flares.

From the cleaned event files, we extracted count maps from
each observation in the [0.7–1.2] keV from the three detectors
of the EPIC instrument (MOS1, MOS2, and pn). We then com-
puted the corresponding exposure maps including the telescope
vignetting using the eexpmap task. Finally, we created non X-ray
background maps from the filter-wheel-closed event files, appro-
priately rescaling the filter-wheel-closed data to match the count
rates observed in the unexposed corners of the individual CCDs.
The contribution of residual soft protons was estimated by mea-
suring the ratio between the high-energy count rates inside and
outside field of view (IN-OUT) and its relation to the residual
soft proton component, calibrated over ∼500 blank-sky point-
ings (Ghirardini et al. 2018).

For each cluster, the individual images, exposure maps, and
background maps were stacked and concatenated into joint EPIC
mosaic images. Point sources were extracted by joining the [0.5–
2] keV and [2–7] keV energy bands using the XMMSAS tool
ewavelet with a S/N = 5 threshold and the detected point
sources were masked when their count rate exceeded a thresh-
old set by the peak of the logN-logS distribution, such that the
source exclusion threshold is homogeneous over the entire field.

1 https://dominiqueeckert.wixsite.com/xcop
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2.3. Modelling surface brightness

To characterise the surface brightness fluctuations of X-COP
clusters, we choose first to subtract the bulk of the main cluster
emission. We determined an average emissivity profile, assum-
ing radial symmetry, and biaxiality in directions orthogonal to
the line of sight. This was achieved by fitting an average sur-
face brightness profile on the X-ray images in the [0.7–1.2] keV
energy band. In this section, we note our use of the r = (x, y, `)
in the 3D parametrisation and ρ = (x, y) in the 2D parametrisa-
tion, with ` as the coordinate along the line of sight and (x, y) as
the coordinates mapping the dimensions on the image. The true
surface brightness ΣX is given by:

ΣX(ρ) =
1

4π(1 + z)4

∫ +∞

−∞

Λ (T,Z) n2
e(r) d`, (1)

where Λ is the intra-cluster gas cooling function in the [0.7–1.2]
keV band, T is the 3D-temperature, Z is the metallicity, and ne
is the 3D electron density. The surface brightness we observe
is convolved with the XMM-Newton responses functions, and
partially absorbed by the Galactic hydrogen column density. We
then define the observed surface brightness S X as:

S X(ρ) =

∫ +∞

−∞

Ψ(r) n2
e(r) d` + B, (2)

where Ψ(r) encompasses the cooling function, the cosmologi-
cal dimming, the Galactic absorption, and the convolution with
XMM-Newton response functions, while B is a constant surface
brightness background left as a free parameter. The 3D density
profile is modelled using a modified version of the Vikhlinin
functional form (Vikhlinin et al. 2006), defined as follows:

n2
e(r) = n2

e,0

(
r
rc

)−α (1 + r2/r2
c )−3β+α/2

(1 + rγ/rγs )ε/γ
, (3)

where ne,0 is the central density, rc and rs are two scale radii, and
α, β, γ, ε are parameters that define the slopes and smoothness of
transition between the power laws in this equation. We set α = 0,
as done by Shi et al. (2016), to remove the central singularity,
which causes problems due to low values of r on the image. We
fix γ = 3 to prevent degeneracies with the ε parameter, as the
data do not allow for a simultaneous determination of ε and γ.

We computed the cooling rate Λ and the Galactic absorp-
tion using a functional approximation fitted to the count rate
derived from a “PhAbs*APEC” model under XSPEC 12.11.1,
as detailed in Appendix C. Galactic absorption admits non-
negligible fluctuations (∼10%) at the scale of the large X-COP
mosaics. To take them into account, we used the NH data from
the HI4PI survey (HI4PI Collaboration 2016), which provide a
mapping of the Galactic column density at the spatial scale of
12–16 arcmin. We performed the projection along the line of
sight with a double exponential quadrature (Takahasi & Mori
1973; Mori & Sugihara 2001). The centre position on the
model image is left free and fitted as a Gaussian perturba-
tion of the cluster centre, as provided in the Planck catalogue
(Planck Collaboration XXIX 2014). The effective centre is then
parametrised as:(
xc
yc

)
=

(
N(1, 0.5) 0

0 N(1, 0.5)

) (
xPlanck
yPlanck

)
. (4)

To take non-sphericity into account, we fit for an elliptical
brightness distribution rather than a spherical one. The positions

(x, y) are distorted in a surface-conserving way into a new con-
figuration (x̃, ỹ), introducing two additional free parameters to
describe the ellipse angle θ and eccentricity e:(
x̃
ỹ

)
=

 1
√

1−e2
0

0
√

1 − e2

 (cos θ − sin θ
sin θ cos θ

) (
x − xc
y − yc

)
. (5)

This is formally equivalent to assuming a biaxiality of the
3D distribution of the cluster density over the image directions.
The distributions of the free parameter posteriors are obtained
using Bayesian inference. We define a Poisson likelihood on
images rebinned within R500 with a Voronoi tessellation for a tar-
get count of 100 counts per bin (Cappellari & Copin 2003). As
an example, for A3266, the median characteristic bin size and its
14th–86th percentile is 10+10

−4 arcsec. The model count for each
bin is approximated by the product of the surface brightness S X
estimated in the centre times the area and exposure of the bin.
This is a reasonable approximation, since the size of the bins is
small over the regions where the surface brightness varies a lot
(see Appendix D for further discussions). The total number of
photon counts is obtained by adding the estimated background to
the model counts, as defined in Eq. (D.1). We mask the regions
associated with point sources and also remove identified sub-
structures and groups such as in A1644, A2142, A644, A85, and
RXC1825. The posterior distributions are sampled with the No
U-Turn Sampler (Hoffman & Gelman 2014), as implemented in
the numpyro library (Bingham et al. 2019; Phan et al. 2019).
The prior distributions are displayed in Appendix E.

2.4. Fluctuations and power spectrum

We want to quantify the surface brightness fluctuations under
the assumption that they come exclusively from intrinsic den-
sity fluctuations. In this framework, the density profile can be
decomposed into a rest component n2

e and relative fluctuations δ
whose amplitude is smaller than unity:

S X(ρ) =

∫ +∞

−∞

Ψ(r) n2
e(r) (1 + δ(r))2d`. (6)

By linearising the Eq. (6) in δ, it follows that, at first order,
the raw image corresponds to the sum of an unperturbed image
S X,0 and a surface brightness fluctuation map:

S X(ρ) ' S X,0(ρ) + 2
∫ +∞

−∞

ε0(r) δ(r)d`, (7)

where ε0(r) = Ψ(r)n2
e,0(r) is the unperturbed emissivity of the

cluster. The fluctuations can be defined in a theoretically equiva-
lent way by taking the difference or ratio of the perturbed to the
unperturbed surface brightness. However, from an observational
perspective, both approaches have their advantages and disad-
vantages, which we quantitively discuss in Sect. 2.6. We define
the absolute and relative fluctuations, ∆abs/rel, as follows:

∆abs(ρ)
def
=

S X(ρ) − S X,0(ρ)
2

'

∫ +∞

−∞

ε0(r)δ(r)d`, (8)

∆rel(ρ)
def
=

S X(ρ)
S X,0(ρ)

' 1 + 2

∫ +∞

−∞
ε0(r)δ(r)d`∫ +∞

−∞
ε0(r)d`

. (9)

In practice, we use the definition of Zhang et al. (2023)
as a variant of Eq. (9) for relative fluctuation maps, which
performs better in low statistic regions while having a simi-
lar qualitative behaviour. The difference (as presented in e.g.,
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Fig. 1. Comparison between the absolute fluctuations ∆absolute from Eq. (8) (left) and the relative fluctuations ∆relative from Eq. (9) (right) using
the surface brightness data and best fit model image of A2319. For display purposes, the images are filtered by a Gaussian kernel of 7.5′′. The
successive contours represent the distance to the centre in units of R500.

Khatri & Gaspari 2016) generates maps of fluctuations whose
amplitude decreases with distance from the centre. This method
defines fluctuations everywhere on the image, but biases their
amplitude by over-representing fluctuations in the brightest areas
of the image. The ratio (e.g., Churazov et al. 2012) instead
defines well-scaled fluctuations, at the expense of intensifying
the noise in the low-brightness regions. In Fig. 1, we compare
the fluctuation maps obtained using the absolute and relative def-
inition for A2319. It should be noted that both methods suffer
from the lack of signal over regions of the order of R500, here the
photon statistics is insufficient to perform an efficient fluctuation
analysis. To study the contribution of each spatial scale to sur-
face brightness fluctuations, it is natural to perform the analysis
in Fourier space. We define the power spectrum of the fluctua-
tions, P2D,∆(kρ), as follows:

P2D,∆(kρ) =
1

2π

∫
|∆̂(kρ)|2dϕ, (10)

with ∆̂ the Fourier transform of the two-dimensional (2D) map
∆ and ϕ the azimuthal angle on the image. The numerical eval-
uation of P2D,∆ is performed using the method described by
Arévalo et al. (2012), which computes the variance of images
filtered by Mexican hats on a characteristic scale to estimate the
azimuthal average of the power spectrum. A detailed explana-
tion of the method is provided in Appendix F. Other approaches
found in the literature compute the structure function, SF 2D(ρ),
of the image instead of the P2D(k) (e.g., Roncarelli et al. 2018;
Clerc et al. 2019; Cucchetti et al. 2019). We emphasise that these
two approaches are fully equivalent, since both SF 2D and P2D
are measures of the second order correlation of the fluctuation
field and are related by the following bijection, which can be
derived using the Wiener–Khinchin theorem:

SF 2D(ρ) = 2
∫ (

1 − e2iπkρ.ρ
)
P2D(kρ)dkρ. (11)

We stuck to the formulation in power spectrum as it is more
practical in our chosen framework, in particular, to generate the
density fluctuation random fields (see Sect. 2.5).

2.5. Density fluctuations as a Gaussian random field

The next step in the analysis is to properly relate P2D,∆ to the 3D
power spectrum of density fluctuations. Previous work based on
this method uses a proportional relationship between the 2D and
3D spectra, involving the Fourier transform of the assumed emis-
sivity (see Eq. (11) in Churazov et al. 2012). This approximation
is valid as long as the surface brightness can be considered con-
stant, but is no longer valid when considering large areas with
strong gradients and important variations in the surface bright-
ness. Moreover, this approach does not consider the stochastic
nature of this observable and the associated sample variance. To
address this, we chose to consider density fluctuations as a ran-
dom field. Since many works suggest deep connections between
density fluctuations and turbulent processes (Zhuravleva et al.
2014; Gaspari et al. 2014; Simonte et al. 2022), we modelled the
density fluctuation as a Gaussian random field (GRF) with a 3D
power spectrum, P̄3D,δ, noted with a bar to distinguish it from
the 3D power spectrum measured from a single realisation of
the random field. By noting 〈.〉 the averaging operator over real-
isations, it is defined as:

P̄3D,δ(kr)δD(kr + k′r) =
〈
δ̃(kr)δ̃(−k′r)

〉
=

〈
|δ̃(kr)|2

〉
. (12)

The link between turbulence and density fluctuations sug-
gests both their power spectra take a similar form. As such, we
adopted the simplest possible turbulent model as a Kolmogorov
cascade. We chose the following functional form as proposed by
ZuHone et al. (2016), which has no direction dependence under
the isotropic hypothesis:

P̄3D,δ(k) = σ2 e−(k/kdis)2
e−(kinj/k)2

k−α∫
4πk2dk e−(k/kdis)2 e−(kinj/k)2

k−α
, (13)

where kinj and kdisp are, respectively, the injection and dissi-
pation scales, α is the inertial range spectral index, and σ2

δ is
the variance of fluctuations. For ease of understanding, we used
spatial scales of injection rather than frequency scales, defined
as `inj,dis = 1/kinj,dis and expressed in units of R500. Since the
dissipation scale (of order &10−3R500, Brüggen et al. 2015) is
expected to be much lower than the spatial resolution of our
images (∼10−2R500 at the average redshift of the X-COP clus-
ters), we set it to 10−3R500 for all X-COP clusters. This choice
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Table 1. Regions used in the analysis, minimum and maximum scale
achievable in Fourier space according to Nyquist–Shannon theorem.

Region Radius Min scale Max scale

(I) 0 < r < R500/10 0.02R500 0.10R500
(II) R500/10 < r < R500/4 0.02R500 0.23R500
(III) R500/4 < r < R500/2 0.02R500 0.43R500
(IV) R500/2 < r < R500 0.02R500 0.86R500

has little effect on the other parameters of the spectrum, since
the exact value of the dissipation length will very marginally
affect the normalisation of the spectrum and, therefore, σδ. The
GRF hypothesis is valid as long as the fluctuations within the
clusters can be represented by an isotropic homogeneous field.
However, as clusters are dynamical objects, they are subject to,
for instance, merging, accretion, or sloshing events at the centre,
which will induce residuals that cannot be described by a GRF.
This assumption is discussed further in Sect. 4.6.

2.6. Optimal definition and observable

As seen in Sect. 2.3, the definition of fluctuation and aperture
size (and, more generally, the shape of the mask we choose) has
various implications with regard to the signal we measure. For
example, the fluctuation map, ∆rel, obtained through a ratio is
expected to over-represent the Poisson noise for radii ∼R500, and,
conversely, for the maps, ∆abs, obtained with a subtraction, the
very low significance of the signal at this distance to the centre
does not provide additional information. To quantify the com-
parison between absolute and relative approaches, we used the
numerical simulations (further explained in Sect. 2.8) to study
the signal-to-noise ratio (S/N) that can be obtained in each case.

We simulated 100 mock surface brightness maps for den-
sity fluctuations with σδ = 0.32, `inj = 0.05R500, α = 11/3
(as defined in Eq. (13)) and computed the associated P2D in
the regions defined in Table 1. The maximum scale was defined
using Nyquist-Shannon criterion, which is half of the highest
scale accessible in the mask. For a ring of inner radius, Rmin, and
outer radius, Rmax, it is given by (R2

max−R2
min)1/2. To quantify the

valuable information in the power spectrum, we compared it to
the power spectrum that is obtained by switching off density fluc-
tuations,N2D. This quantity represents the fluctuations which are
expected when observing a perfect cluster at rest, without any
density fluctuations. It can be obtained by forward modelling the
power spectrum, but with a zero-normalisation density fluctua-
tion field, accounting for the dispersion due to the mean model
fit and the Poisson noise by computing it for models drawn from
the posterior distribution and making various realisation of the
count image. We define the S/N of the power spectrum as fol-
lows for each realisation of the mock density fluctuations:

S/N∆
def
=
P2D,∆

N2D,∆
; ∆ ∈ {abs, rel}. (14)

This quantity can trace the excess of surface brightness fluc-
tuation when compared to what is expected with the cluster emis-
sivity and Poisson noise. In Fig. 2, we show the comparison
between the S/N obtained with the absolute method and the rela-
tive method, for the four regions of analysis and for several spa-
tial scales. For the most central regions, the S/N metric values
are high and both methods perform equivalently well. For the
outermost regions, the absolute method performs better than the
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Fig. 2. Comparison of the S/N values obtained using the absolute and
relative definition for surface brightness fluctuations, for different spa-
tial scales and in the four regions defined in Table (1). The comparison
is made for 100 mock spectra using the best-fit model and the exposure
map of A3266, with density fluctuation parameters fixed at σδ = 0.32,
`inj = 0.05R500 and α = 11/3.

relative method for large spatial scales, and both perform equally
well on smaller scales. With this in mind, we favour the absolute
method in the following.

2.7. Error budget

Constraining density fluctuations requires controlling the error
budget associated with surface brightness fluctuations. The
Bayesian characterisation of the cluster emission (see Sect. 2.3)
allows us to estimate the uncertainties related to the mean sur-
face brightness best-fit model, in the form of posterior distribu-
tion of the model parameters. The other major source of error
is the Poissonian nature of the image counts, which introduces
constant power at all spatial scales.

Observables related to the velocity (or density fluctuation)
field are subject to an additional variance intrinsically linked to
their stochastic nature. The measured statistics of the density
fluctuation field δ will vary from one realisation to another, due
to finite size effects introduced by the cluster itself and the lim-
ited field of view. Any quantity that depends on δ will there-
fore be affected by this ‘sample variance’, including the sur-
face brightness fluctuation power spectrum, P2D,∆. This variance
increases at higher spatial scales due to the lack of large-scale
modes and becomes predominant in the error budget at spatial
scales of &50 kpc in the structure functions of Cucchetti et al.
(2019). In the following, we implement a forward modelling
approach which, for the first time, accounts for the sample vari-
ance induced by the finite sizes of galaxy clusters and limited
fields of view.

2.8. Simulation-based inference

The Bayesian framework is well suited to the integration of the
error budget, which should be reflected in the likelihood of our
problem. In a classical Bayesian inference, we seek to obtain the
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posterior distribution p(θ|x) of the parameters θ of our model
given an observation x, by inverting the likelihood distribution
p(x|θ), namely, the probability distribution of an observation
given the parameters. In practice, the posterior distribution is
sampled by estimating the likelihood for many parameters with
Markov chain Monte Carlo (MCMC) methods. This is the pro-
cess we describe in Sect. 2.3, assuming a Poisson distribution
in each pixel, which allows us to define a corresponding like-
lihood. However, in the case of surface brightness fluctuations,
there is no simple way to define an analytical and closed form
for the likelihood function of a spectrum P2D,∆ given the density
fluctuation parameters, as we cannot grasp the underlying distri-
bution. Therefore, the Bayesian inference of the P̄3D,δ parame-
ter distributions falls under the scope of approximate Bayesian
computation methods, which only require the ability to model
observables x (including all the sources of variance one wishes
to consider) for any set of parameters θ instead of an analytical
likelihood function.

In this work, we chose to use a neural network (NN) that
learns the likelihood of our problem, based on simulated obser-
vations. First, we mocked many couple of observables xi using
parameters θi drawn from the prior distribution p(θ) selected for
the inference. We then trained the neural network to learn an esti-
mator q(x|θ) of the likelihood p(x|θ) using the couples (xi, θi).
This approximation is accomplished by adjusting a normalising
flow, which is formally an invertible bijection between two prob-
ability distributions. The normalising flow itself is built using
several layers of density estimators, implemented by masked
autoencoders (Germain et al. 2015), so we ended up training a
masked autoregressive flow (Papamakarios et al. 2017, 2019).
Once the training had converged, the posterior distribution was
sampled by evaluating the likelihood with the previously trained
flow, sampling for p(θ|x) ∝ q(x|θ)p(θ) with a classical MCMC
approach.

We used the sbi library (Tejero-Cantero et al. 2020) imple-
mentation to perform this simulation-based inference. The prior
distribution used for the parameters of Eq. (13) are shown in
Table A.1. We generated mock X-ray images with surface bright-
ness fluctuations by projecting an emissivity field with an addi-
tional density fluctuation field, as highlighted in Eq. (6). To
achieve this, we defined emissivity cubes dimensioned as the
X-COP data in the (x, y) directions and with the same spatial
resolution, but expanded to ±5R500 along the line of sight. We
used the same 3D models as in Sect. 2.3, that is: density, tem-
perature, cooling, and ellipticity, along with their best-fit param-
eters, as well as the individual properties of each observation,
that is, the exposure maps, background maps, and NH maps, to
mock the expected rest surface brightness of each cluster in the
X-COP sample. The density fluctuations δ are generated by
drawing a single realisation of a Gaussian random field, assum-
ing a Kolmogorov-like power spectrum, as defined in Eq. (13).
These fluctuations are co-added to the modelled emissivity and
projected along the line of sight in the same standard as Eq. (7).
We then choose to use the S/N∆, as defined in Eq. (14) as an
observable, since this quantity reduces the proper contribution of
each cluster by dividing by the spectrum of the expected emis-
sion without density fluctuations and best represents the excess
power due to their presence. It is evaluated on 20 logarithmically
spaced scales between the minimum and maximum scale acces-
sible in each region, as defined in Table 1. Generating 300 000
realisations of the fluctuation field allows us to properly learn
the likelihood function for each region of analysis. The pos-
terior parameters are then sampled using the NUTS sampler,
as implemented in the pyro library (Bingham et al. 2019). We

checked that the number of simulations is sufficient by testing
the neural network asserting proper convergence of the recov-
ered parameters for a NN trained with an arbitrary number of
simulations. We do not observe any significant improvement in
training for more than 100 000 simulations.

2.9. Validation

To validate our methodology, we applied it to mock clusters with
known power spectrum and statistical properties similar to the
actual X-COP clusters with known density fluctuation param-
eters and compared them with the parameters inferred via the
method outlined in Sect. 2.8, in the multiple regions defined in
Table 1. We performed a validation by producing, for each mock
cluster, a realisation of the density fluctuations with σδ = 0.32,
`inj = 0.05 R500 and α = 11/3 as the parameters to recover, along
with 300000 simulations for parameters drawn from the priors in
Table A.1. We tackled the effect of sample variance by defining a
joint likelihood for all our clusters, which is equivalent to stating
that each cluster is an individual observation of the same fluctu-
ation process. Since all spatial coordinates are scaled to R500, we
can define a joint likelihood as follows:

logLjoint =
∑

cluster

logLcluster, (15)

where Lcluster is the likelihood estimated with the previously
trained NN for each cluster in the X-COP sample. The effec-
tiveness of this approach is illustrated in Fig. 3. In this case, we
randomly drew N clusters ten times to alleviate cluster selection
effects on the reconstructed parameters. We computed the joint
parameters for each draw and average them. The error on each
parameter decreases with the number of clusters used to define
the likelihood, dependence, as expected when adding indepen-
dent observations.

3. Results

The data accompanying this analysis is available online on the
repository2 associated with this article.

3.1. Mean profile and fluctuation maps

The marginalised parameter mean and 1σ dispersion are dis-
played in Tables E.1 and E.2. We ensure proper convergence of
the Markov chains by computing the R̂ statistic, as proposed in
(Vehtari et al. 2021) and checking that R̂ < 1.01. The parameters
so found are compatible with those obtained by Ghirardini et al.
(2019), which are representative of X-COP clusters. The corre-
sponding fluctuation maps computed with Eq. (8) are shown in
Fig. 4. Most of these fluctuation maps show non-Gaussian fea-
tures in their residual. Sub-mergers or post-mergers can be iden-
tified in A2319 and A3266. Spiral-shaped structures in the inner
regions of A85, A2029, or A2142 indicate the presence of gas
sloshing.

3.2. Density fluctuation power spectrum parameters

We calculated, for each fluctuation map, the S/N between the
surface brightness fluctuations and the fluctuations expected
when only Poisson noise is present (see Sect 2.6) for the four
different aforementioned regions, which is shown as a plain line

2 https://github.com/renecotyfanboy/turbulence_xcop
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Fig. 3. Estimation of the posterior parameters and qualitative behaviour of the associated errors for mock observations with known parameters with
an increasing number of clusters in the joint likelihood. For each point, we randomly draw N clusters ten times, compute the posterior parameter
distributions and average the mean and standard deviation to alleviate the selection effect. The parameters are in each of the four regions as defined
in Table (1). Left panel: mean and standard deviation of the parameters estimated for an increasing number cluster in the joint likelihood. The black
line represents the true parameters. Right panel: error on each parameter compared to the number of cluster used to find the parameters, rescaled
so that it is equal to 1 for N = 12. The black line shows the expected N−1/2 behaviour.

in Fig. 5. Separation of the fluctuation maps into several regions
provides us a way to discriminate between the different pro-
cesses at work in the ICM. The central region is expected to be
dominated by the presence or absence of a cool core, as well
as by AGN-feedback. The second ring should be rather sensi-
tive to the presence or not of sloshing in the core of the clus-
ter. It is worth noting that a sloshing extending at least out to
R500 has been observed in various clusters, in particular A2142
(Rossetti et al. 2013). The two outer rings should be related to
the fluctuations induced by the larger dynamical assembly of
the cluster, that is, by the accretion from the cosmic web and
infalling halos. We also computed the S/N for the whole region
inside R500 to get an average statistic on the clusters. Using the
methodology presented in Sect. 2.8, we constrained the parame-
ters of the density fluctuation power spectrum.

The prior distribution and posterior median and 16th–84th
percentiles are highlighted in Table A.1. The posterior probabil-
ities for the free parameters of the 3D power spectrum derived
from the joint fit over the whole X-COP sample are shown in
the ‘corner plot’ of Fig. 6. We also checked the proper con-
vergence by assessing that R̂ < 1.01 for each parameter. By
folding the posterior parameter distributions into our model, we
obtain the resulting 2D observables accounting for the complete
error budget (including the sample variance), which are shown
in Fig. 5. The inner regions are marked by a high slope and
low injection scale, indicating the preponderance of finite-sized
structures in these regions, which corroborates with the presence
of sloshing and assemblage artefacts in our fluctuation maps in
Fig. 4. The estimation for all fluctuations inside R500 should be
more resilient to the central region artefacts, since these struc-
tures can be described as marginal realisations of the random
field when compared to the fluctuations in the external regions.
The parameters in R500 jointly estimated on the whole sample
converge to a normalisation of σδ ∼ 0.18, an injection of the

order of `inj ∼ 0.4R500, with a slope of α ∼ 11/3, compati-
ble with a pure hydrodynamical Kolmogorov cascade. This is
comparable to what was determined for the Coma cluster by
Schuecker et al. (2004), studying the pressure fluctuation at spa-
tial scales between 40 and 90 kpc, as well as in Zhuravleva et al.
(2015) for the Perseus cluster.

4. Discussions

4.1. Correlation with morphological indicators

The processes that lead to density fluctuations are expected
to be related to the dynamical state of the clusters. Indeed,
merger events or sloshing in the centre are intrinsically linked
to the dynamic assembly of clusters and can be characterised by
morphological and dynamical indicators. We consider various
indicators that are well correlated with the dynamic state of
the cluster (Lovisari et al. 2017; Campitiello et al. 2022) and
we seek correlations with the density fluctuations parameters.
We chose to use the following indicators: (1) the concentration
parameter cSB compares the central emission of the cluster to
its total emission. We used the definition from Campitiello et al.
(2022), namely, the ratio between the surface brightness inside
0.15R500 and R500; (2) the centroid shift w relates the variation
of the distance of the peak of luminosity and the centroid of the
emission for a varying aperture. We used the definition and deter-
mination of this parameter from Eckert et al. (2022); (3) the Gini
coefficient G measures the disparity of surface brightness in the
pixels of the image. This coefficient ranges from 1 to 0 for a per-
fectly homogeneous and perfectly inhomogeneous distribution,
respectively, and is computed using the following formula:

G =

∑n
i
∑n

j

∣∣∣si − s j

∣∣∣
2n2 s̄

,
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ZW1215 RXC1825 A2255 A2142

A2029 A644 A1795 A3158

A85 A3266 A2319 A1644

−10−5 −10−6 −10−7 0 10−7 10−6 10−5

Surface brightness fluctuations ∆ [counts kpc−2 s−1]

Fig. 4. Surface brightness fluctuation maps, ∆abs, from the absolute method (see Sect. 2.6) for the X-COP cluster sample. The successive contours
represent the annular regions I, II, III, and IV with outer radii of 0.1, 0.25, 0.5 and 1R500, respectively. For display purposes, the images are filtered
by a Gaussian kernel of 7.5′′. Each image is ∼2.5 Mpc on a side. The images are ranked in ascending order of disturbance for the cluster as
measured by the CZ coefficient (see Sect. 4.1).

where si, j is the surface brightness in the i, jth pixel, s̄ is the
mean surface brightness and n the total number of pixels used
to compute G; (4) finally, the Zernike moments, Zi, relate the
decomposition of the image on a basis of orthogonal polyno-
mials that allow us to efficiently describe the morphology of the
cluster. Here, we specifically use the Zernike coefficient, CZ , that
reflects the asymmetry of the clusters:

CZ =
∑

n,m,0

√
|Zm

n |,

where Zm
n are coefficients obtained from scalar products of

the image and a given Zernike polynomial, as described in
Capalbo et al. (2021). The gallery of clusters in Fig. 4 is sorted
by increasing CZ .

We computed these morphological indicators using all the
pixels in R500, excluding the point sources and assuming spher-

ical symmetry. We accounted for the shot noise by drawing
several Poisson realisations of the measured image, with cen-
tre position drawn from our best-fit posterior distribution. The
resultant morphological indicators are displayed in Table 2. We
quantified the correlations by drawing 2000 values of each mor-
phological indicators and computing the Spearman correlation
coefficient with the same number of density fluctuation param-
eters drawn from the posterior distributions. In Fig. 7, we show
the correlation matrix between the density fluctuation parame-
ters measured inside R500 and the morphological indicators, as
measured by the Spearman correlation coefficient. We observe
that the best correlations appear with σδ and our 4 morpholog-
ical indicators. The σδ drives the standard deviation and thus
the broadness of the density fluctuation distribution. The con-
centration and Gini are correlated negatively with σδ, which
can be understood as the fact that less concentrated clusters are
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Fig. 5. Power spectrum S/N as defined in Eq. (14) and measured on the surface brightness fluctuation maps with the absolute method (see Sect. 2.6)
in the four regions as defined in Table (1) and inside R500 for each cluster in the X-COP sample. Dotted line and shaded envelopes show the posterior
distribution median and 16th–84th percentiles, accounting for the complete error budget for each cluster. The plain line represents the measured
observable for each cluster in X-COP. The plots are ranked in ascending order of disturbance for the cluster, as measured by the CZ coefficient (see
Sect. 4.1).

generally more disturbed and therefore admit a less even dis-
tribution of its surface brightness, which goes hand in hand
with the emergence of surface brightness fluctuations and thus
density fluctuations. Conversely, the positive correlation with
the centroid shift and the Zernike moment (which both trace
the deviation of the surface brightness from a spherically sym-
metrical distribution) can be understood as the emergence of
density and surface brightness fluctuations will disturb the sym-
metry of the system and therefore increase the value of these
two indicators. We plot the correlation between σδ and these
parameters along with the best fit as a power-law scaling in
Appendix G. The range of morphological indicators we use
here cannot represent the structure of the fluctuations, so it was
to be expected that there would be no significant correlation
with the injection scale and the spectral index. Nevertheless,
they do reflect the disturbance of the surface brightness, and, in

this sense, the correlation with the normalisation of the spec-
trum, related to the standard deviation of the fluctuations, is
self-consistent.

4.2. Interpretation as gas clumping

Gas clumping refers to the local deviation of the gas density
from the average density expected at that location. Throughout
this paper, we prefer this definition to the more specific defini-
tion of ‘accreted substructures’, so clumping defines any form
of density deviation from the smooth profile. One way of inter-
preting our density fluctuation measure is in the form of clump-
ing. From the 3D power spectrum of density fluctuations, we can
estimate the clumping factor in our analysis regions. Similarly
to Zhuravleva et al. (2015), we define the clumping factor C as
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Fig. 6. Posterior distributions (left) and radial evolution (right) of the standard deviation, σδ, the injection scale, `inj, and the spectral index α of the
density fluctuation power spectrum parameters, jointly evaluated on the whole X-COP cluster sample in the four regions as defined in Table (1)
and within R500. The colour scale matches the four regions of interest, and the turquoise distribution represents the entire R500 region. The black
dashed line represents the expected 11/3 index from Kolmogorov-Oboukhov theory.

follows:

C =

〈
n2

e

〉
〈ne〉

2 = 1 + σ2
δ, (16)

where σδ is the normalisation of the density fluctuation power
spectrum as defined in Eq. (13). In Fig. 8, we show the clump-
ing factor we obtained for the regions (II), (III), and (IV) along
with a comparison with the approximate clumping factor derived
for 35 clusters in Eckert et al. (2015), the clumping factor esti-
mated in the Perseus cluster with a model-free approach by
de Vries et al. (2023), and the clumping factor estimated by
Angelinelli et al. (2021) for the Itasca simulated cluster sam-
ple. We see a good agreement between the three results in the
inner regions. We attribute our lower values to the circularly
symmetric profiles used in Eckert et al. (2015). Furthermore, we
see a good agreement with the factor from de Vries et al. (2023),
which was computed from surface brightness fluctuations deter-
mined without a spatial surface brightness model (in contrast
to what is done in this paper). This may point to the fact that
accounting for the ellipticity of the surface brightness minimises
the biases introduced by the arbitrary choice of model (discussed
further in Sect. 4.5). However, we observe a tension in the outer
region (radii ranging from 0.5 to 1 R500), which is presumably
due to a change in the nature of the measured fluctuations. This
is further discussed in Sects. 4.6 and 4.8.

4.3. Interpretation as turbulent motions

Assuming that turbulence in the ICM is the main cause of
measured density fluctuations, Zhuravleva et al. (2014) and
Gaspari et al. (2014) have shown that the characteristic ampli-
tude of the one-component velocity, which can be related to
the 1D Mach number, M1D, is proportional to the character-
istic amplitude of density fluctuations. This relationship was

also studied in the case of turbulence in a box and for strati-
fied atmospheres (Mohapatra & Sharma 2019; Mohapatra et al.
2020, 2021) and is discussed further in the case of stratified
turbulence in Sect. 4.7. Simonte et al. (2022) derived a similar
relationship based on cosmological simulations. This relation
is meant to link density fluctuations entirely to the random
gas motions, which is more or less arguable depending on the
relaxed or perturbed nature of the clusters. This is further dis-
cussed in Sect. 4.8. In this case, the density fluctuation dispersion
σδ can be linearly related to the velocity dispersion, σv, which
we refer to in terms of the 3D Mach number M3D = σv/cs,
where cs is the speed of sound in the ICM:

M3D ' (0.63 ± 0.04) × σδ. (17)

We use the relation derived for the whole sample of
Simonte et al. (2022; including relaxed and disturbed clusters).
This correlation was initially derived in terms of σv instead
of the Mach number, which is equivalent in the limit of an
isothermal ICM, but not entirely true in our study involving
large scales. The turbulent Mach numbers determined for the
X-COP sample are provided in Table A.1 for the four regions
of analysis and in R500. The level of turbulence we measure
is clearly subsonic, which agrees with the non-thermal pres-
sure support estimated by Eckert+19 using the assumption
of a universal gas fraction (Eckert et al. 2019), and also with
direct measurements of spectral lines broadening (Sanders et al.
2011; The Hitomi Collaboration 2016). It is also in agreement
with previous results from other works based on the statistics
of fluctuation in density (Zhuravleva et al. 2015, 2018) and in
thermodynamical quantities (Hofmann et al. 2016) in various
galaxy clusters. We compute the one-component velocity, V1,k,
as defined by Zhuravleva et al. (2018) in Eq. (4) and use the same
scaling relation as proposed in Zhuravleva et al. (2014) to con-
vert the density fluctuation to velocity:

V1,k =
cs

(1 ± 0.3)
×

√
4πk3P̄3D,δ(k). (18)
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Table 2. Concentration, cSB, centroid shift, w, Gini coefficient, G, and
Zernkie moment, CZ , computed for the X-COP cluster sample, with
variance from the best-fit elliptical radii and Poisson noise.

Name cSB w(×103) G CZ

A1644 0.114+0.002
−0.001 13.761+0.085

−0.079 0.699+0.001
−0.001 1.0+0.034

−0.026

A1795 0.52+0.001
−0.001 2.36+0.019

−0.019 0.823+0.001
−0.001 0.477+0.007

−0.008

A2029 0.496+0.001
−0.001 0.85+0.009

−0.01 0.792+0.001
−0.001 0.437+0.011

−0.01

A2142 0.408+0.001
−0.001 4.51+0.03

−0.028 0.771+0.001
−0.001 0.391+0.004

−0.004

A2255 0.078+0.002
−0.002 31.391+0.269

−0.261 0.694+0.002
−0.002 0.389+0.011

−0.011

A2319 0.215+0.001
−0.001 33.069+0.179

−0.176 0.68+0.001
−0.001 0.946+0.012

−0.013

A3158 0.212+0.001
−0.001 5.87+0.039

−0.04 0.708+0.001
−0.001 0.523+0.01

−0.01

A3266 0.17+0.001
−0.001 30.837+0.166

−0.165 0.665+0.001
−0.001 0.79+0.016

−0.015

A644 0.348+0.002
−0.002 20.971+0.151

−0.147 0.772+0.001
−0.001 0.457+0.007

−0.008

A85 0.417+0.001
−0.001 3.85+0.02

−0.019 0.767+0.001
−0.001 0.711+0.008

−0.009

RXC1825 0.153+0.001
−0.001 8.031+0.061

−0.062 0.625+0.001
−0.001 0.333+0.007

−0.007

ZW1215 0.205+0.001
−0.002 3.731+0.03

−0.03 0.703+0.001
−0.001 0.328+0.009

−0.009

σδ `inj α
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Fig. 7. Correlation matrix as measured by the Spearman coefficient
between the morphological indicators and the density fluctuation power
spectrum parameters. We display the median and difference with the
16th–84th percentiles. The morphological parameters are defined in
Sect. 4.1 and the density fluctuation parameters are defined in Eq. (13)
and evaluated inside R500 for each cluster in the X-COP sample.

We compare it to the results from Zhuravleva et al. (2018) for
the clusters in common with X-COP in Fig 9, where we see
a reasonable agreement. The source of differences between our
measurements may originate from the different approach used to
calculate the fluctuations, as Zhuravleva et al. (2018) used wider
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Fig. 8. Comparison of the clumping factor obtained with Eq. (16) for
the joint fit across the X-COP sample in each annular region compared
to the clumping factor obtained by Eckert et al. (2015) for a sample
of 35 clusters, by de Vries et al. (2023) for the Perseus cluster and by
Angelinelli et al. (2021) for 9 clusters in the ITASCA simulated clus-
ters. The plain line and envelop represent the median and 16th–84th
percentiles of the clumping factor profile.

Chandra energy bands that are combined, whereas we use a sin-
gle narrow XMM-Newton band that minimises absorption.

4.4. Non-thermal pressure support

Numerical simulations predict that turbulent motions should be
the dominant non-thermal pressure component in galaxy clusters
(Vazza et al. 2018; Angelinelli et al. 2020). From this perspec-
tive, the aim is to characterise the ratio between the non-thermal
pressure of turbulent origin and the total pressure PNTH/PTotal.
This ratio can be expressed as a function of the 3D turbulent
Mach number,M3D (Eckert et al. 2019), and is expressed as:

PNTH

PTOT
=
M2

3Dγ

M2
3Dγ + 3

, (19)

where γ = 5/3 is the polytropic index. The PNTH/PTotal ratio
determined for the X-COP sample are provided in Table A.1
for the four regions of analysis and inside R500. The value
of PNTH/PTotal derived for the joint M3D is shown in Fig. 10
as a function of radius. It is compared to the previous esti-
mations from Eckert et al. (2019), and theoretical predictions
from numerical simulation by Angelinelli et al. (2020) and
Gianfagna et al. (2021). The level of non-thermal support we
obtain is consistent with previous measurements on X-COP clus-
ters at R500 (Eckert et al. 2019). Similarly to what these authors
found, we determined a value that is a fraction of between 0.5
and 1R500 lower than what is predicted by numerical simulations.
This discrepancy is enhanced towards the centre of clusters up
to a factor of 10. In our study, the centre is filled by residual
structures such as sloshing spirals and cool-cores, which dictate
our measurements in these regions. This is further discussed in
Sects. 4.6 and 4.8. This also could point to the fact that real clus-
ters may be more thermalised than those predicted in numerical
simulations (e.g., due to an incomplete implementation of the

A91, page 11 of 21



Dupourqué, S., et al.: A&A 673, A91 (2023)

10 20 50

k[R−1
500]

100

50

200

V
1
,k

[k
m

s−
1
]

A85

10 20 50

k[R−1
500]

A1795

Inner Half CC

Outer Half CC

This work (I)

10 20 50

k[R−1
500]

A2029

Fig. 9. Comparison of the one component velocity V1,k from Zhuravleva et al. (2018) in the inner and outer part of the cool-cores of each cluster,
and our determination in the central region (I) as defined in Table 1. The envelope represents the 16th–84th percentiles of V1,k.

gas physics). In addition, other physical processes, such as cos-
mic rays, or magnetic fields could contribute to the non-thermal
pressure support (Ruszkowski et al. 2017). However, the combi-
nation of the available radio data for clusters with radio emission
and/or enough sources to study Faraday rotation allows for con-
straints to be set on the magnetic field pressure to ≤1−2%, while
upper limits drawn from the non-detection of hadronic γ-rays
allows putting a strong upper limit to the level of ≤1% within
the virial radius of clusters. Combined, these two non-thermal
pressure sources should account for ≤2−3% of the non-thermal
pressure support on the ICM within the virial radius. Numerical
estimations on the radial profile of these two components can
be found in, for instance, Vazza et al. (2016). A new paper by
Botteon et al. (2022) on A2255 may link turbulence at R500, or
beyond, to the non-thermal pressure. With a first-order estimate,
and limited to this perturbed cluster, it is argued that ∼10% of
turbulent energy (compared to thermal energy) at R500 should
be enough to explain the diffuse emission detected by LOFAR
(assuming a Fermi II acceleration process).

4.5. Density model dependency

The density model chosen arbitrarily necessarily induces fluc-
tuations of its own, thus introducing a bias in the statistics of
brightness fluctuations. We assessed the impact of the choice
of model on the statistics of surface brightness fluctuations
across the X-COP clusters. We compared three models cor-
responding to increasing level of fidelity: a circular β-model
(Cavaliere & Fusco-Femiano 1976), an elliptical β-model, and
our mean-model (defined in Sect. 2.3). Assuming that the sur-
face brightness fluctuations are distributed according to a log-
normal distribution (Kawahara et al. 2007), we fit a dispersion
δS X inside R500:

log S X ∼ N
(
log S X,0, δS X

)
.

We assume that the mean surface brightness, S X,0, in each pixel
is given, respectively, by the best-fit circular and elliptic β-model
and our best-fit model (see Sect. 3 or Table A.1). The results are
shown in Fig. 11. There is a systematic reduction in dispersion
when a more accurate model is used, showing that the simplest
way to reduce arbitrary fluctuations is to account for the ellip-
tical shape of the surface brightness. The best improvement is
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Fig. 10. Comparison of the fraction of turbulent to the hydrostatic pres-
sure in the ICM as measured for the X-COP sample (black points), com-
pared to the previous determination at R500 by Eckert et al. (2019, green
point). The blue and green line and associated shade envelope shows
the predictions for non-thermal pressure support from the numerical
simulations by Gianfagna et al. (2021) with the MUSIC clusters and
Angelinelli et al. (2020) with the ITASCA clusters.

the transition between the circular and elliptical β-model. This is
consistent with the results by Zhuravleva et al. (2023) on numer-
ical simulations, showing that accounting for the ellipticity of
clusters can reduce the measured density fluctuations by a fac-
tor of up to 2. Moreover, we expect the underlying potential to
be intrinsically triaxial (e.g., Lau et al. 2021) which motivates
the smooth, elliptical surface brightness model. Including triax-
iality could further improve the density modelling, but it can-
not be constrained by simply using X-ray images in the [0.7–
1.2] keV band. There are very few studies constraining the tri-
axiality using a combination of lensing, X-ray and/or Sunyaev-
Zel’dovich distortion (e.g., Filippis et al. 2005; Sereno et al.
2006, 2017; Sayers et al. 2021). Applying this methodology to
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X-COP clusters would require a multi-wavelength modelling
efforts that are beyond the scope of this paper. Generally speak-
ing, structural residuals induced by modelling flaws affect the
parameters of the power spectrum from Eq. (13). They tend to
increase the normalisation as more fluctuations means more vari-
ance, change the slope due to the presence of sharp structures
and affect the scale of injection, depending on the size of the
residuals.

4.6. Limitations of the Gaussian random field hypothesis

Our methodology is sensitive to density fluctuations, assumed to
be homogeneous and isotropic. As such, they can be described
simply by a GRF. This assumption is valid as long as the den-
sity fluctuations arise from isotropic and homogeneous turbu-
lence, and the density fluctuations are linearly related to the
turbulent velocity. In the case of the X-COP clusters, the pres-
ence of cool-cores, submergers, and sloshing causes the emer-
gence of structures in the surface brightness fluctuations that
are poorly described by a GRF. Even if these structures (e.g.,
sloshing) cause turbulence in the ICM (ZuHone et al. 2012),
we are likely to be more sensitive to fluctuations in surface
brightness generated by the spiral structure itself rather than
to turbulence emerging at the interface of the two phases. The
same applies to the presence of hot plasma bubbles from the
central AGN feedback, which causes local gas under densi-
ties in the central regions with a characteristic size .10 kpc
(Zhang et al. 2022). Such spatial scales are out of the reach of
XMM-Newton. These rising bubbles could induce density fluc-
tuations, exciting g-modes and sound waves. Although simula-
tions predict that they could contribute up to 20% of the heat
dissipated in the ICM, they would remain elusive in surface
brightness fluctuations (Choudhury & Reynolds 2022). In con-
trast, in the outer regions, turbulent processes can be expected
to emerge from the dynamic assembly of structures. These pro-
cesses could be sustained over long periods due to the large
relaxation time frames that characterise the cluster outskirts

and the propensity for the emergence of magnetohydrodynamic
instabilities (Perrone & Latter 2022).

We therefore expect the centre of the images to represent
the clumping of the gas, that is, in our case, the overdensities
present due to the dynamic assembly. Conversely, we can expect
the outer regions to represent fluctuations due to turbulent phe-
nomena, since they are not close enough to the centre of the clus-
ter for substructure accretion to bias our results and the clearly
identified substructures are masked as part of our analysis. To
get rid of the presence of the structures in the centre would
require either a fine modelling of the sloshing spiral, as well as
the modelling of cool-cores and mergers in the surface bright-
ness residues, or by considering a departure from Gaussianity
and informed phase distribution for the random field model we
fit, which is beyond the scope of this paper.

4.7. Implications of non-ideal turbulence

In galaxy clusters, the gravity influence is expected to stratify
the turbulent flows. This effect will tend to suppress parallel
motion and stretch the eddies in the direction orthogonal to the
gravity field. Depending on the strength of the stratification, the
assumption of an isotropic Gaussian field for the velocity can
be rejected, since significant differences will appear between the
parallel and orthogonal component (Mohapatra et al. 2020).

Furthermore, stratification will introduce a new mode of
energy cascade. In addition to cascading from high to low spa-
tial scales, kinetic energy can be converted in either direction
into gravitational potential energy via buoyancy (e.g., Bolgiano
1962). By moving hot gas to regions of lower density, an addi-
tional density contrast appears and increases the total density and
surface brightness fluctuations. If stratification is not negligible,
not taking this effect into account may imply that the Mach num-
ber we calculate may be overestimated. The M3D/σδ relation-
ship (see Eq. (17)) proposed by Simonte et al. (2022) consid-
ers these effects in cosmological simulations and adds another
degree of anisotropy by including the effect of radial accretion.

4.8. Limitations of σδ −M3D equivalency

As in the previous section, it is expected that the density fluc-
tuations observed in the centre of clusters are not necessarily
representative of the turbulent phenomena taking place there.
For instance, in Fig. 6, we observe both a low injection scale
and high spectral index, which can be interpreted in a straight-
forward way as the presence of small-scale, sharp features in
the fluctuation maps. The scale of injection then increases and
the slope tends to reduce with the radius, reflecting the fact that
these structures are less prevalent away from the centre. Previ-
ous works on turbulence based on numerical simulations shows
that this radial evolution should be much lower for the veloc-
ity power spectrum (Vazza et al. 2012). Simonte et al. (2022)
showed that the spectrum of density fluctuations was steeper
in the centre of clusters than in the outer regions, and that its
normalisation increases with the radius, while the velocity spec-
trum remained fairly invariant. At the same time, they showed
a better correlation between density fluctuations and turbulent
velocity fluctuations when using only relaxed clusters, similarly
to Zhuravleva et al. (2023), while the correlation worsens when
disturbed clusters, associated with a larger number of clumps in
the central regions, are concerned. All together, this suggests that
the density fluctuations below R500/2, are probably more sensi-
tive to the presence of dense substructures and clumps and rela-
tively less to the compression by turbulent motions. On the other
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hand, our measurement suggests that the region between R500/2
and R500 gives an overall better correlation between density and
velocity fluctuations.

5. Conclusions

We performed an analysis of the spatial statistics of surface
brightness fluctuations across the twelve clusters of the X-COP
sample. We derived the underlying power spectrum of den-
sity fluctuations. For the first time, we have accounted for the
stochastic nature of this observable by estimating the associated
sample variance, thus providing a complete error budget.

– Using a simulation-based inference approach and modelling
the density fluctuations as a Kolmogorov cascade, we can
constrain the normalisation, slope, and scale of injection
from the surface brightness fluctuations. The increasing
trend in normalisation and injection scale with distance from
the cluster core is consistent, respectively, with the general
idea that cluster virialisation decreases and that fluctuation-
generating processes have dynamic scales that increase fur-
ther away from the core.

– We correlate the parameters of the density fluctuations with
morphological indicators for X-COP clusters to find connec-
tions between dynamical state and apparent fluctuations. By
properly propagating the uncertainties on each of our param-
eters, we found a clear correlation between the normalisation
of the density fluctuation field and the four parameters of
interest, suggesting a link between the measured normalisa-
tion of density fluctuations and the dynamical state of clus-
ters. The normalisation of density fluctuations within R500
is positively correlated with the Zernike coefficient and the
centroid shift, and negatively correlated with the Gini coeffi-
cient and concentration parameter. All these correlations can
be interpreted as being due to the fact that the amount of fluc-
tuation increases when the surface brightness of the cluster
is disturbed, which is self-consistent in our analysis.

– We further interpreted these density fluctuations as gas
clumping and turbulent motions. We constrained the clump-
ing factor, Mach number, and non-thermal pressure support
in the different regions of interest of our clusters. We observe
good agreement with clumping data from other works in the
central parts, but not in the external parts, where it is ∼10%
higher. On the other hand, the non-thermal pressure profile
agrees with numerical simulations in the external parts and a
previous determination at R500 for our sample, but is under-
estimated in the central parts up to a factor of 10. Due to
the presence of assembly artefacts in the central regions, we
discuss the notion that the density fluctuations in the central
regions are dominated by pure clumping and density fluctua-
tion originating from residual substructures, while turbulent
motions dominate the outer fluctuations.

Considering the sample variance obviously increases the total
error in the modelling and parametrisation of the power spec-
trum of fluctuations. However, this component of the error bud-
get contributes significantly at most scales. Neglecting it could
lead to over or false physical interpretations. For physical pro-
cesses that are universal, such as turbulence, this sample variance
can be tackled by increasing the number of sources. It is then
assumed that each cluster of a sample would present an individ-
ual realisation of the same stochastic physical process, possibly
rescaled with its typical size. Thus, we ought to extend our work
to a larger sample to allow for a further refinement of the con-
straints on the velocity dispersion, slope, and injection scales,

or even test a more evolved turbulence model including, such as
stratification or multiple injection scales (from e.g., AGN, slosh-
ing, dynamical assembly), while retaining sufficient statistics to
study relaxed and disturbed subsets to further characterise differ-
ent behaviours as a function of the source dynamical state. For
instance, in a future work, we will present the application of our
method to the CHEX-MATE sample (Chex-Mate Collaboration
2021).

Furthermore, upcoming and future direct measurements of
turbulence will be a key step in this work and will become
available in the coming years, first with the Resolve instrument
on board of the XRISM missions (Terada et al. 2021) and later
with the X-IFU instrument on board the Athena mission (Barret
et al. 2020).

Acknowledgements. We would like to thank Giulia Gianfagna for shar-
ing the MUSIC cluster non-thermal pressure profile from Gianfagna et al.
(2021), Irina Zhuravleva for sharing the turbulent velocity power spectra from
Zhuravleva et al. (2018), Matteo Angelinelli and Thomas Jones for sharing
the clumping data and non-thermal pressure profile of the ITASCA cluster
sample from Angelinelli et al. (2020, 2021) and Rajsekhar Mohapatra for the
insightful discussions about the impact of stratification. This work was granted
access to the HPC resources of CALMIP supercomputing center under the
allocation 2022-22052. F.V. acknowledges financial support from the Hori-
zon 2020 program under the ERC Starting Grant magcow, no. 714196. This
work used various open-source packages such as matplotlib (Hunter 2007),
astropy (Astropy Collaboration 2013, 2018), ChainConsumer (Hinton 2016),
cmasher (Velden 2020), sbi (Tejero-Cantero et al. 2020), pyro (Bingham et al.
2019), jax (Bradbury et al. 2018), haiku (Hennigan et al. 2020), numpyro
(Bingham et al. 2019; Phan et al. 2019).

References
Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Angelinelli, M., Vazza, F., Giocoli, C., et al. 2020, MNRAS, 495, 864
Angelinelli, M., Ettori, S., Vazza, F., & Jones, T. W. 2021, A&A, 653, A171
Arévalo, P., Churazov, E., Zhuravleva, I., Hernández-Monteagudo, C.,

& Revnivtsev, M. 2012, MNRAS, 426, 1793
Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123
Barret, D., Decourchelle, A., Fabian, A., et al. 2020, Astron. Nachr., 341, 224
Bennett, J. S., & Sijacki, D. 2022, MNRAS, 514, 313
Biffi, V., Borgani, S., Murante, G., et al. 2016, ApJ, 827, 112
Bingham, E., Chen, J. P., Jankowiak, M., et al. 2019, J. Mach. Learn. Res., 20, 1
Bolgiano, R. Jr. 1962, J. Geophys. Res. (1896-1977), 67, 3015
Botteon, A., van Weeren, R. J., Brunetti, G., et al. 2022, Sci. Adv., 8, eabq7623
Bradbury, J., Frostig, R., Hawkins, P., et al. 2018, JAX: Composable

Transformations of Python+NumPy Programs
Brüggen, M., & Vazza, F. 2015, Astrophys. Space Sci. Lib., 407, 599
Campitiello, M. G., Ettori, S., Lovisari, L., et al. 2022, A&A, 665, A117
Capalbo, V., De Petris, M., De Luca, F., et al. 2021, MNRAS, 503, 6155
Cappellari, M., & Copin, Y. 2003, MNRAS, 342, 345
Cavaliere, A., & Fusco-Femiano, R. 1976, A&A, 500, 95
Chex-Mate Collaboration (Arnaud, M., et al.) 2021, A&A, 650, A104
Choudhury, P. P., & Reynolds, C. S. 2022, MNRAS, 514, 3765
Churazov, E., Vikhlinin, A., Zhuravleva, I., et al. 2012, MNRAS, 421, 1123
Clerc, N., Cucchetti, E., Pointecouteau, E., & Peille, P. 2019, A&A, 629, A143
Cucchetti, E., Clerc, N., Pointecouteau, E., Peille, P., & Pajot, F. 2019, A&A,

629, A144
Cuciti, V., de Gasperin, F., Brüggen, M., et al. 2022, Nature, 609, 911
de Vries, M., Mantz, A. B., Allen, S. W., et al. 2023, MNRAS, 518, 2954
Eckert, D., Roncarelli, M., Ettori, S., et al. 2015, MNRAS, 447, 2198
Eckert, D., Ettori, S., Pointecouteau, E., et al. 2017, Astron. Nachr., 338, 293
Eckert, D., Ghirardini, V., Ettori, S., et al. 2019, A&A, 621, A40
Eckert, D., Ettori, S., Robertson, A., et al. 2022, A&A, 666, A41
Ettori, S., & Eckert, D. 2022, A&A, 657, L1
Ettori, S., Ghirardini, V., Eckert, D., et al. 2019, A&A, 621, A39
Filippis, E. D., Sereno, M., Bautz, M. W., & Longo, G. 2005, ApJ, 625, 108
Gaspari, M., Churazov, E., Nagai, D., Lau, E. T., & Zhuravleva, I. 2014, A&A,

569, A67
Gatuzz, E., Sanders, J. S., Canning, R., et al. 2022a, MNRAS, 513, 1932
Gatuzz, E., Sanders, J. S., Dennerl, K., et al. 2022b, MNRAS, 511, 4511
Germain, M., Gregor, K., Murray, I., & Larochelle, H. 2015, in Proceedings of

the 32nd International Conference on Machine Learning (PMLR), 881

A91, page 14 of 21

http://linker.aanda.org/10.1051/0004-6361/202245779/1
http://linker.aanda.org/10.1051/0004-6361/202245779/2
http://linker.aanda.org/10.1051/0004-6361/202245779/3
http://linker.aanda.org/10.1051/0004-6361/202245779/4
http://linker.aanda.org/10.1051/0004-6361/202245779/5
http://linker.aanda.org/10.1051/0004-6361/202245779/6
http://linker.aanda.org/10.1051/0004-6361/202245779/7
http://linker.aanda.org/10.1051/0004-6361/202245779/8
http://linker.aanda.org/10.1051/0004-6361/202245779/9
http://linker.aanda.org/10.1051/0004-6361/202245779/10
http://linker.aanda.org/10.1051/0004-6361/202245779/11
http://linker.aanda.org/10.1051/0004-6361/202245779/12
http://linker.aanda.org/10.1051/0004-6361/202245779/14
http://linker.aanda.org/10.1051/0004-6361/202245779/15
http://linker.aanda.org/10.1051/0004-6361/202245779/16
http://linker.aanda.org/10.1051/0004-6361/202245779/17
http://linker.aanda.org/10.1051/0004-6361/202245779/18
http://linker.aanda.org/10.1051/0004-6361/202245779/19
http://linker.aanda.org/10.1051/0004-6361/202245779/20
http://linker.aanda.org/10.1051/0004-6361/202245779/21
http://linker.aanda.org/10.1051/0004-6361/202245779/22
http://linker.aanda.org/10.1051/0004-6361/202245779/23
http://linker.aanda.org/10.1051/0004-6361/202245779/23
http://linker.aanda.org/10.1051/0004-6361/202245779/24
http://linker.aanda.org/10.1051/0004-6361/202245779/25
http://linker.aanda.org/10.1051/0004-6361/202245779/26
http://linker.aanda.org/10.1051/0004-6361/202245779/27
http://linker.aanda.org/10.1051/0004-6361/202245779/28
http://linker.aanda.org/10.1051/0004-6361/202245779/29
http://linker.aanda.org/10.1051/0004-6361/202245779/30
http://linker.aanda.org/10.1051/0004-6361/202245779/31
http://linker.aanda.org/10.1051/0004-6361/202245779/32
http://linker.aanda.org/10.1051/0004-6361/202245779/33
http://linker.aanda.org/10.1051/0004-6361/202245779/33
http://linker.aanda.org/10.1051/0004-6361/202245779/34
http://linker.aanda.org/10.1051/0004-6361/202245779/35
http://linker.aanda.org/10.1051/0004-6361/202245779/36
http://linker.aanda.org/10.1051/0004-6361/202245779/36


Dupourqué, S., et al.: A&A 673, A91 (2023)

Ghirardini, V., Ettori, S., Eckert, D., et al. 2018, A&A, 614, A7
Ghirardini, V., Eckert, D., Ettori, S., et al. 2019, A&A, 621, A41
Gianfagna, G., De Petris, M., Yepes, G., et al. 2021, MNRAS, 502, 5115
Hennigan, T., Cai, T., Norman, T., & Babuschkin, I. 2020, Haiku: Sonnet for

JAX
HI4PI Collaboration 2016, A&A, 594, A116
Hinton, S. 2016, J. Open Source Softw., 1, 45
Hoffman, M. D., & Gelman, A. 2014, J. Mach. Learn. Res., 15, 1593
Hofmann, F., Sanders, J. S., Nandra, K., Clerc, N., & Gaspari, M. 2016, A&A,

585, A130
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Kawahara, H., Suto, Y., Kitayama, T., et al. 2007, ApJ, 659, 257
Khatri, R., & Gaspari, M. 2016, MNRAS, 463, 655
Lau, E. T., Kravtsov, A. V., & Nagai, D. 2009, ApJ, 705, 1129
Lau, E. T., Hearin, A. P., Nagai, D., & Cappelluti, N. 2021, MNRAS, 500, 1029
Lovisari, L., Forman, W. R., Jones, C., et al. 2017, ApJ, 846, 51
McNamara, B. R., & Nulsen, P. E. J. 2012, New J. Phys., 14, 055023
Meneghetti, M., Rasia, E., Merten, J., et al. 2010, A&A, 514, A93
Mohapatra, R., & Sharma, P. 2019, MNRAS, 484, 4881
Mohapatra, R., Federrath, C., & Sharma, P. 2020, MNRAS, 493, 5838
Mohapatra, R., Federrath, C., & Sharma, P. 2021, MNRAS, 500, 5072
Mori, M., & Sugihara, M. 2001, J. Comput. Appl. Math., 127, 287
Nelson, K., Rudd, D. H., Shaw, L., & Nagai, D. 2012, ApJ, 751, 121
Nelson, K., Lau, E. T., Nagai, D., Rudd, D. H., & Yu, L. 2014, ApJ, 782, 107
Ota, N., Nagai, D., & Lau, E. T. 2018, PASJ, 70, 51
Papamakarios, G., Pavlakou, T., & Murray, I. 2017, Advances in Neural

Information Processing Systems (Curran Associates, Inc.), 30
Papamakarios, G., Sterratt, D., & Murray, I. 2019, in Proceedings of the Twenty-

Second International Conference on Artificial Intelligence and Statistics
(PMLR), 837

Perrone, L. M., & Latter, H. 2022, MNRAS, 513, 4605
Phan, D., Pradhan, N., & Jankowiak, M. 2019, ArXiv e-prints

[arXiv:1912.11554]
Piffaretti, R., & Valdarnini, R. 2008, A&A, 491, 71
Pinto, C., Sanders, J. S., Werner, N., et al. 2015, A&A, 575, A38
Planck Collaboration XXIX. 2014, A&A, 571, A29
Pratt, G. W., Arnaud, M., Biviano, A., et al. 2019, Space Sci. Rev., 215, 25
Roncarelli, M., Gaspari, M., Ettori, S., et al. 2018, A&A, 618, A39

Rossetti, M., Eckert, D., Grandi, S. D., et al. 2013, A&A, 556, A44
Ruszkowski, M., Yang, H.-Y. K., & Reynolds, C. S. 2017, ApJ, 844, 13
Sanders, J. S., Fabian, A. C., & Smith, R. K. 2011, MNRAS, 410, 1797
Sanders, J. S., Dennerl, K., Russell, H. R., et al. 2020, A&A, 633, A42
Sayers, J., Sereno, M., Ettori, S., et al. 2021, MNRAS, 505, 4338
Schuecker, P., Finoguenov, A., Miniati, F., Böhringer, H., & Briel, U. G. 2004,

A&A, 426, 387
Sereno, M., Filippis, E. D., Longo, G., & Bautz, M. W. 2006, ApJ, 645, 170
Sereno, M., Ettori, S., Meneghetti, M., et al. 2017, MNRAS, 467, 3801
Shi, X., Komatsu, E., Nagai, D., & Lau, E. T. 2016, MNRAS, 455, 2936
Simonte, M., Vazza, F., Brighenti, F., et al. 2022, A&A, 658, A149
Takahasi, H., & Mori, M. 1973, Publ. Res. Inst. Math. Sci., 9, 721
Tejero-Cantero, A., Boelts, J., Deistler, M., et al. 2020, J. Open Source Softw., 5,

2505
Terada, Y., Holland, M., Loewenstein, M., et al. 2021, J. Astron. Telesc. Instrum.

Syst., 7, 037001
The Hitomi Collaboration 2016, Nature, 535, 117
Vazza, F., Roediger, E., & Brüggen, M. 2012, A&A, 544, A103
Vazza, F., Wittor, D., Brüggen, M., & Gheller, C. 2016, Galaxies, 4, 60
Vazza, F., Angelinelli, M., Jones, T. W., et al. 2018, MNRAS, 481, L120
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. 2021,

Bayesian Anal., 16, 667
Velden, E., & v. d., 2020, J. Open Source Softw., 5, 2004
Vikhlinin, A., Kravtsov, A., Forman, W., et al. 2006, ApJ, 640, 691
Voit, G. M., Meece, G., Li, Y., et al. 2017, ApJ, 845, 80
Weisstein, E. W. 1995, Fourier Transform (Wolfram Research, Inc.)
XRISM Science Team 2020, ArXiv e-prints [arXiv:2003.04962]
Zhang, C., Zhuravleva, I., Gendron-Marsolais, M.-L., et al. 2022, MNRAS, 517,

616
Zhang, X., Simionescu, A., Gastaldello, F., et al. 2023, A&A, 672, A42
Zhuravleva, I., Churazov, E. M., Schekochihin, A. A., et al. 2014, ApJ, 788,

L13
Zhuravleva, I., Churazov, E., Arévalo, P., et al. 2015, MNRAS, 450, 4184
Zhuravleva, I., Allen, S. W., Mantz, A., & Werner, N. 2018, ApJ, 865, 53
Zhuravleva, I., Chen, M. C., Churazov, E., et al. 2023, MNRAS, 520, 5157
ZuHone, J. A., Markevitch, M., Brunetti, G., & Giacintucci, S. 2012, ApJ, 762,

78
ZuHone, J. A., Markevitch, M., & Zhuravleva, I. 2016, ApJ, 817, 110

A91, page 15 of 21

http://linker.aanda.org/10.1051/0004-6361/202245779/37
http://linker.aanda.org/10.1051/0004-6361/202245779/38
http://linker.aanda.org/10.1051/0004-6361/202245779/39
http://linker.aanda.org/10.1051/0004-6361/202245779/41
http://linker.aanda.org/10.1051/0004-6361/202245779/42
http://linker.aanda.org/10.1051/0004-6361/202245779/43
http://linker.aanda.org/10.1051/0004-6361/202245779/44
http://linker.aanda.org/10.1051/0004-6361/202245779/44
http://linker.aanda.org/10.1051/0004-6361/202245779/45
http://linker.aanda.org/10.1051/0004-6361/202245779/46
http://linker.aanda.org/10.1051/0004-6361/202245779/47
http://linker.aanda.org/10.1051/0004-6361/202245779/48
http://linker.aanda.org/10.1051/0004-6361/202245779/49
http://linker.aanda.org/10.1051/0004-6361/202245779/50
http://linker.aanda.org/10.1051/0004-6361/202245779/51
http://linker.aanda.org/10.1051/0004-6361/202245779/52
http://linker.aanda.org/10.1051/0004-6361/202245779/53
http://linker.aanda.org/10.1051/0004-6361/202245779/54
http://linker.aanda.org/10.1051/0004-6361/202245779/55
http://linker.aanda.org/10.1051/0004-6361/202245779/56
http://linker.aanda.org/10.1051/0004-6361/202245779/57
http://linker.aanda.org/10.1051/0004-6361/202245779/58
http://linker.aanda.org/10.1051/0004-6361/202245779/59
http://linker.aanda.org/10.1051/0004-6361/202245779/60
http://linker.aanda.org/10.1051/0004-6361/202245779/60
http://linker.aanda.org/10.1051/0004-6361/202245779/61
http://linker.aanda.org/10.1051/0004-6361/202245779/61
http://linker.aanda.org/10.1051/0004-6361/202245779/62
https://arxiv.org/abs/1912.11554
http://linker.aanda.org/10.1051/0004-6361/202245779/64
http://linker.aanda.org/10.1051/0004-6361/202245779/65
http://linker.aanda.org/10.1051/0004-6361/202245779/66
http://linker.aanda.org/10.1051/0004-6361/202245779/67
http://linker.aanda.org/10.1051/0004-6361/202245779/68
http://linker.aanda.org/10.1051/0004-6361/202245779/69
http://linker.aanda.org/10.1051/0004-6361/202245779/70
http://linker.aanda.org/10.1051/0004-6361/202245779/71
http://linker.aanda.org/10.1051/0004-6361/202245779/72
http://linker.aanda.org/10.1051/0004-6361/202245779/73
http://linker.aanda.org/10.1051/0004-6361/202245779/74
http://linker.aanda.org/10.1051/0004-6361/202245779/75
http://linker.aanda.org/10.1051/0004-6361/202245779/76
http://linker.aanda.org/10.1051/0004-6361/202245779/77
http://linker.aanda.org/10.1051/0004-6361/202245779/78
http://linker.aanda.org/10.1051/0004-6361/202245779/79
http://linker.aanda.org/10.1051/0004-6361/202245779/80
http://linker.aanda.org/10.1051/0004-6361/202245779/80
http://linker.aanda.org/10.1051/0004-6361/202245779/81
http://linker.aanda.org/10.1051/0004-6361/202245779/81
http://linker.aanda.org/10.1051/0004-6361/202245779/82
http://linker.aanda.org/10.1051/0004-6361/202245779/83
http://linker.aanda.org/10.1051/0004-6361/202245779/84
http://linker.aanda.org/10.1051/0004-6361/202245779/85
http://linker.aanda.org/10.1051/0004-6361/202245779/86
http://linker.aanda.org/10.1051/0004-6361/202245779/87
http://linker.aanda.org/10.1051/0004-6361/202245779/88
http://linker.aanda.org/10.1051/0004-6361/202245779/89
http://linker.aanda.org/10.1051/0004-6361/202245779/90
https://arxiv.org/abs/2003.04962
http://linker.aanda.org/10.1051/0004-6361/202245779/92
http://linker.aanda.org/10.1051/0004-6361/202245779/92
http://linker.aanda.org/10.1051/0004-6361/202245779/93
http://linker.aanda.org/10.1051/0004-6361/202245779/94
http://linker.aanda.org/10.1051/0004-6361/202245779/94
http://linker.aanda.org/10.1051/0004-6361/202245779/95
http://linker.aanda.org/10.1051/0004-6361/202245779/96
http://linker.aanda.org/10.1051/0004-6361/202245779/97
http://linker.aanda.org/10.1051/0004-6361/202245779/98
http://linker.aanda.org/10.1051/0004-6361/202245779/98
http://linker.aanda.org/10.1051/0004-6361/202245779/99


Dupourqué, S., et al.: A&A 673, A91 (2023)

Appendix A: Additional table

Table A.1. Prior distribution, inferred median and difference with 16th-84th percentiles for the density fluctuation parameters, and deduced param-
eters, for each cluster in the X-COP sample and for a joint fit over the whole sample. The first section represents the density fluctuation parameters
defined in Sec. 2.5. The second section corresponds to the parameters deduced from the density fluctuations, namely, the clumping factor

√
C

(Sect. 4.2), Mach numberM (Sect. 4.3) and ratio of non-thermal pressure to total pressure PNTH/PTOT (Sect. 4.4). The parameters of the density
fluctuations as well as the inferred parameters are calculated in the four regions defined in Table (1) and within R500. We ensured the proper
convergence of the MCMC sampling by assessing that R̂ < 1.01 for each parameter.

Name Prior A1644 A1795 A2029 A2142 A2255 A2319 A3158 A3266 A644 A85 RXC1825 ZW1215 Joint

σδ (I) 10U(−2,1) 0.54+0.27
−0.18 0.2+0.08

−0.05 0.17+0.09
−0.06 0.12+0.05

−0.03 0.06+0.16
−0.04 0.19+0.1

−0.05 0.28+0.28
−0.14 0.42+0.28

−0.13 0.25+0.2
−0.11 0.09+0.04

−0.02 0.28+0.24
−0.1 0.05+0.24

−0.04 0.16+0.02
−0.01

σδ (II) 10U(−2,1) 0.31+0.23
−0.09 0.18+0.1

−0.04 0.09+0.04
−0.03 0.24+0.12

−0.06 0.05+0.13
−0.04 0.27+0.08

−0.05 0.11+0.09
−0.04 0.36+0.09

−0.05 0.06+0.03
−0.02 0.15+0.05

−0.03 0.31+0.17
−0.1 0.1+0.07

−0.04 0.23+0.03
−0.02

σδ (III) 10U(−2,1) 0.18+0.09
−0.05 0.22+0.21

−0.09 0.13+0.13
−0.05 0.18+0.07

−0.04 0.09+0.49
−0.07 0.27+0.09

−0.06 0.21+0.1
−0.05 0.23+0.06

−0.04 0.32+0.28
−0.11 0.28+0.12

−0.08 0.28+0.43
−0.15 0.18+0.07

−0.04 0.23+0.03
−0.02

σδ (IV) 10U(−2,1) 0.74+0.78
−0.35 0.42+0.03

−0.03 0.33+0.1
−0.07 0.57+0.25

−0.21 0.23+0.84
−0.19 0.45+0.21

−0.16 0.45+0.21
−0.14 0.77+0.21

−0.15 0.48+0.1
−0.08 0.41+0.38

−0.13 0.39+0.26
−0.11 0.25+0.17

−0.09 0.59+0.08
−0.07

σδ in R500 10U(−2,1) 0.37+0.11
−0.09 0.19+0.05

−0.04 0.14+0.07
−0.04 0.19+0.05

−0.03 0.17+0.18
−0.06 0.44+0.13

−0.08 0.28+0.19
−0.12 0.32+0.04

−0.04 0.14+0.08
−0.03 0.14+0.05

−0.04 0.41+0.16
−0.14 0.06+0.03

−0.02 0.18+0.01
−0.01

`inj[R500] (I) 10U(−2,1) 0.46+1.92
−0.33 0.44+1.2

−0.28 1.41+3.49
−1.05 0.15+0.43

−0.05 0.06+0.38
−0.04 0.19+0.55

−0.08 1.77+4.76
−1.49 0.34+0.5

−0.15 1.37+2.68
−0.8 0.81+3.07

−0.65 0.49+2.16
−0.31 0.12+1.69

−0.1 0.26+0.12
−0.07

`inj[R500] (II) 10U(−2,1) 0.6+2.02
−0.35 0.49+0.95

−0.22 3.34+3.72
−2.34 0.47+0.64

−0.2 0.53+3.01
−0.47 0.34+0.51

−0.12 0.78+2.07
−0.43 0.29+0.27

−0.09 1.99+4.74
−1.55 0.77+1.67

−0.42 1.29+2.84
−0.87 1.38+3.03

−0.9 2.55+1.09
−0.76

`inj[R500] (III) 10U(−2,1) 0.47+2.1
−0.22 0.61+1.05

−0.31 1.16+2.52
−0.62 0.91+1.65

−0.44 0.1+1.32
−0.08 2.75+3.06

−1.55 0.54+0.96
−0.24 0.55+0.69

−0.21 1.82+4.6
−1.14 2.87+3.4

−1.63 1.14+4.14
−0.71 1.08+1.48

−0.52 1.65+0.55
−0.4

`inj[R500] (IV) 10U(−2,1) 2.48+3.91
−2.36 0.12+0.03

−0.02 1.22+1.37
−0.45 5.88+2.63

−2.88 0.35+4.45
−0.33 4.73+3.34

−2.51 1.71+3.41
−1.18 1.19+2.15

−0.63 0.32+0.43
−0.14 2.27+4.33

−1.64 2.59+3.23
−1.6 1.15+3.12

−0.71 6.53+1.45
−1.21

`inj[R500] in R500 10U(−2,1) 0.32+0.19
−0.12 1.31+1.58

−0.61 0.32+0.39
−0.13 0.52+0.38

−0.16 0.57+0.74
−0.26 5.6+2.35

−1.82 2.17+3.65
−1.52 0.35+0.12

−0.08 0.5+1.15
−0.32 0.73+2.25

−0.44 2.87+4.98
−2.4 0.73+0.99

−0.28 0.48+0.06
−0.05

α (I) U (0, 7) 4.0+1.24
−0.85 2.83+0.61

−0.47 3.18+0.61
−0.41 5.17+1.19

−1.31 4.02+2.12
−2.73 4.89+1.22

−1.07 2.9+1.37
−0.73 5.21+1.09

−0.96 5.86+0.76
−0.82 3.06+0.98

−0.63 4.97+1.41
−1.33 1.81+2.2

−1.22 4.08+0.35
−0.28

α (II) U (0, 7) 3.81+1.39
−0.73 5.94+0.73

−0.91 3.79+1.31
−0.7 6.01+0.7

−1.09 4.73+1.47
−2.56 4.81+1.35

−0.88 3.69+1.5
−0.95 4.94+0.88

−0.65 4.97+1.35
−1.44 4.1+1.11

−0.61 3.37+0.92
−0.51 4.53+1.65

−1.34 3.68+0.18
−0.14

α (III) U (0, 7) 4.85+1.52
−1.54 2.96+1.03

−0.52 3.4+1.13
−0.64 5.13+1.15

−1.01 2.27+2.45
−1.59 3.54+0.59

−0.37 4.3+1.63
−1.18 3.97+1.15

−0.61 4.59+1.59
−1.16 2.96+0.37

−0.31 2.85+1.47
−0.58 4.77+1.22

−1.1 3.15+0.14
−0.12

α (IV) U (0, 7) 3.72+2.12
−1.35 5.69+0.74

−0.81 4.85+1.49
−1.1 3.31+0.89

−0.37 3.54+1.99
−2.01 4.01+1.44

−0.6 3.05+0.99
−0.37 2.72+0.26

−0.21 4.48+1.51
−1.25 4.1+2.32

−1.15 3.93+0.81
−0.58 4.68+1.68

−1.56 2.9+0.1
−0.09

α in R500 U (0, 7) 3.4+1.01
−0.5 3.07+0.38

−0.33 2.9+0.66
−0.6 4.05+0.52

−0.42 3.5+1.22
−0.87 3.2+0.22

−0.22 2.83+0.83
−0.44 4.26+0.45

−0.38 3.32+2.45
−0.72 3.88+1.66

−0.86 2.81+0.37
−0.26 4.89+1.29

−1.24 3.67+0.12
−0.12

√
C (I) 1.14+0.15

−0.07 1.02+0.02
−0.01 1.02+0.02

−0.01 1.01+0.01
−0.0 1.0+0.02

−0.0 1.02+0.02
−0.01 1.04+0.11

−0.03 1.09+0.14
−0.04 1.03+0.07

−0.02 1.0+0.0
−0.0 1.04+0.09

−0.02 1.0+0.04
−0.0 1.01+0.0

−0.0
√

C (II) 1.05+0.09
−0.02 1.02+0.02

−0.01 1.0+0.0
−0.0 1.03+0.03

−0.01 1.0+0.02
−0.0 1.04+0.02

−0.01 1.01+0.01
−0.0 1.06+0.03

−0.02 1.0+0.0
−0.0 1.01+0.01

−0.0 1.05+0.06
−0.03 1.01+0.01

−0.0 1.03+0.01
−0.01

√
C (III) 1.02+0.02

−0.01 1.02+0.06
−0.02 1.01+0.03

−0.0 1.02+0.02
−0.01 1.0+0.15

−0.0 1.04+0.03
−0.01 1.02+0.03

−0.01 1.03+0.01
−0.01 1.05+0.12

−0.03 1.04+0.04
−0.02 1.04+0.19

−0.03 1.02+0.01
−0.01 1.03+0.01

−0.0
√

C (IV) 1.24+0.58
−0.17 1.09+0.01

−0.01 1.05+0.03
−0.02 1.15+0.14

−0.09 1.03+0.44
−0.02 1.1+0.1

−0.05 1.09+0.1
−0.05 1.26+0.14

−0.09 1.11+0.05
−0.03 1.08+0.19

−0.04 1.07+0.12
−0.04 1.03+0.06

−0.02 1.16+0.05
−0.04

√
C in R500 1.07+0.04

−0.03 1.02+0.01
−0.01 1.01+0.01

−0.0 1.02+0.01
−0.01 1.01+0.05

−0.01 1.09+0.06
−0.03 1.04+0.07

−0.03 1.05+0.01
−0.01 1.01+0.02

−0.0 1.01+0.01
−0.0 1.08+0.07

−0.05 1.0+0.0
−0.0 1.02+0.0

−0.0

M (I) 0.34+0.18
−0.11 0.13+0.05

−0.03 0.11+0.06
−0.04 0.08+0.03

−0.02 0.04+0.1
−0.02 0.12+0.06

−0.03 0.17+0.18
−0.09 0.27+0.18

−0.08 0.16+0.13
−0.07 0.06+0.02

−0.01 0.18+0.15
−0.07 0.03+0.15

−0.02 0.1+0.01
−0.01

M (II) 0.19+0.15
−0.06 0.11+0.06

−0.03 0.06+0.03
−0.02 0.15+0.08

−0.04 0.03+0.09
−0.02 0.17+0.05

−0.03 0.07+0.06
−0.02 0.23+0.06

−0.04 0.04+0.02
−0.01 0.1+0.03

−0.02 0.19+0.11
−0.06 0.06+0.05

−0.02 0.15+0.02
−0.02

M (III) 0.11+0.06
−0.03 0.14+0.13

−0.06 0.08+0.08
−0.03 0.11+0.05

−0.03 0.05+0.3
−0.04 0.17+0.06

−0.04 0.13+0.06
−0.03 0.15+0.04

−0.02 0.2+0.18
−0.07 0.18+0.07

−0.05 0.18+0.27
−0.09 0.11+0.05

−0.02 0.15+0.02
−0.02

M (IV) 0.47+0.5
−0.23 0.27+0.03

−0.03 0.21+0.06
−0.04 0.36+0.16

−0.13 0.14+0.53
−0.12 0.28+0.13

−0.1 0.28+0.13
−0.09 0.48+0.14

−0.1 0.3+0.07
−0.05 0.26+0.24

−0.08 0.25+0.16
−0.07 0.16+0.11

−0.06 0.37+0.06
−0.05

M in R500 0.23+0.07
−0.06 0.12+0.03

−0.02 0.09+0.05
−0.02 0.12+0.03

−0.02 0.11+0.11
−0.04 0.27+0.08

−0.05 0.18+0.12
−0.07 0.2+0.03

−0.03 0.09+0.05
−0.02 0.09+0.03

−0.02 0.26+0.1
−0.09 0.04+0.02

−0.01 0.11+0.01
−0.01

PNTH/PTOT (I) 5.99+6.83
−3.18 0.87+0.83

−0.38 0.67+0.87
−0.41 0.32+0.34

−0.13 0.07+0.93
−0.06 0.83+1.04

−0.36 1.65+4.8
−1.26 3.79+6.12

−1.93 1.39+2.92
−0.92 0.19+0.2

−0.09 1.73+3.98
−1.04 0.06+1.78

−0.06 0.54+0.14
−0.11

PNTH/PTOT (II) 2.06+3.98
−1.08 0.68+1.0

−0.3 0.19+0.22
−0.1 1.23+1.59

−0.54 0.06+0.7
−0.05 1.59+1.1

−0.52 0.24+0.58
−0.14 2.81+1.53

−0.77 0.08+0.1
−0.04 0.51+0.4

−0.19 2.05+2.71
−1.12 0.23+0.44

−0.14 1.2+0.34
−0.26

PNTH/PTOT (III) 0.71+0.87
−0.32 1.03+2.84

−0.7 0.38+1.12
−0.22 0.72+0.7

−0.28 0.17+6.57
−0.16 1.59+1.27

−0.61 0.97+1.09
−0.4 1.16+0.64

−0.35 2.22+5.17
−1.26 1.71+1.67

−0.82 1.75+8.31
−1.35 0.68+0.65

−0.26 1.19+0.33
−0.25

PNTH/PTOT (IV) 10.75+23.14
−7.57 3.79+0.76

−0.66 2.36+1.58
−0.85 6.53+6.4

−3.8 1.11+19.13
−1.08 4.19+4.51

−2.38 4.18+4.4
−2.14 11.58+6.14

−3.89 4.81+2.21
−1.52 3.53+8.66

−1.82 3.28+5.22
−1.61 1.39+2.42

−0.83 7.2+2.17
−1.74

PNTH/PTOT in R500 2.91+1.96
−1.26 0.81+0.52

−0.28 0.45+0.56
−0.2 0.79+0.5

−0.26 0.66+2.04
−0.36 4.02+2.63

−1.32 1.74+2.96
−1.12 2.14+0.68

−0.51 0.45+0.66
−0.19 0.44+0.37

−0.2 3.57+3.14
−2.02 0.09+0.11

−0.04 0.7+0.12
−0.1
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Appendix B: Fourier transform convention

In this paper, we define the Fourier transform with the classi-
cal signal processing convention, namely (0,−2π), see Weisstein
(1995). This pairs results in the forward transform highlighted in
Eq. B.1 and B.2. We use f̂ and f̃ to refer, respectively, to the 2D
and 3D Fourier transform of a function, f .

FT 2D { f } ≡
∫

d2ρ f (ρ)e−2iπkρ.ρ = f̂ (kρ), (B.1)

FT 3D { f } ≡
∫

d3r f (r)e−2iπkr.r = f̃ (kr). (B.2)

Appendix C: Functional approximation for Ψ

The cooling function as seen by XMM-Newton in the [0.7 - 1.2]
keV energy band can be phenomenologically modelled with a
smooth-broken power law for the temperature dependency and
an exponential absorption for the column density:

Ψ(NH ,T ) ' Λ0e−NHσ

(
T

Tbreak

)−α1
1

2
+

1
2

(
T

Tbreak

)1/∆(α1−α2)∆

.

(C.1)

To determine the best set of parameters for this analytical
approximation, we minimised the least-square of the residuals
between the functional given in the previous equation and the
cooling function estimated with XSPEC for each cluster of the
sample. The true cooling rate is determined by computing the
count rate for XMM-Newton with an PhABS*APEC model. The
temperature at a given radius is set using the universal profile
derived from the X-COP sample by Ghirardini et al. (2019). The
exposure time is arbitrarily set to 1 Ms and split among PN,
MOS-1 and MOS-2 with a 60%, 20%, 20% ratio. The abundance
is fixed to 0.3 Z�. The count-rate in an element of volume is com-
puted in the [0.7-1.2] keV band, assuming that ne = 1.17nH for a
fully ionised ICM (Anders & Grevesse 1989), and with the fol-
lowing normalisation:

N =
10−14

4π[dA(1 + z)]2

∫
d3VnenH ,

where dA is the angular diameter distance at the redshift z of the
cluster. The XSPEC cooling function Λ̄ is computed on a 10 × 10
grid with kBT ∈ [1, 10] keV and NH ∈ [1 × 1019, 2 × 1021] cm−2

to cover the ranges expected in the X-COP clusters.

Appendix D: Binning approximation

In Sect. 2.3, we make the approximation that the model counts
in each bin is given by the product of the surface brightness,
S X , estimated in the centre times the effective exposure

∫
Bin τdρ,

instead of the integral over the bin geometry:

Model Counts =

∫
Bin

S X(ρ) τdρ ' S X(ρ0) ×
∫

Bin
τdρ, (D.1)

where τ is the exposure time in each pixel and dρ is a surface
element of the bin area. To validate this approximation, we used
a A3266 image, exposure map, and binning, and we define the
relative error ε between the true integral and the approximation
as follows:

ε =

∫
Bin S X(ρ) τdρ − S X(ρ0) ×

∫
Bin τdρ∫

Bin S X(ρ) τdρ
.

We plot in Figure (D.1), ε compared to the standard deviation of
τdρ within the bin. We observe that ε is contained around 0.5%
for most of the bins. It rises to 4% for some bins located in areas
of the image away from the centre, where the mosaic exposure
varies greatly. These regions correspond to the places where the
XMM-Newton mosaics overlap, and produce strong variations
of exposure within the same bin. In any case, the bins with the
coarsest approximation are those that contribute the least to the
likelihood of our average model.
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Fig. D.1. Evaluating the uncertainties induced by our approximation
of a flat surface brightness in 2D spatial bins. The relative error, ε, is
compared to the standard deviation of effective exposure in each bin
and the color of each point indicate the distance of the bin to the centre
of the cluster image.
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Appendix E: Mean model parameters

Here, we provide the parameters obtained for the average sur-
face brightness profile, as presented in Sect. 2.3. The notation

U represents an uniform prior distribution, while N stands for
a normal distribution. The density parameters are displayed in
Table E.1 and the spatial parameters are displayed in Table E.2

Table E.1. Mean and standard deviation of the density model parameters from Eq. 3. The prior distributions are displayed in the first line.

log10 n2
e,0 log10 rc log10 rs β ε log10 B

Prior U(−8,−3) U(−2, 0) U(−1, 1) U(0, 5) U(0, 5) U(−10,−4)

A1644 −4.057 ± 0.084 −1.934 ± 0.049 −0.091 ± 0.103 0.341 ± 0.004 3.254 ± 1.221 −7.162 ± 0.438
A1795 −3.574 ± 0.005 −1.475 ± 0.004 −0.254 ± 0.034 0.502 ± 0.002 2.075 ± 0.321 −7.34 ± 0.039
A2029 −3.241 ± 0.014 −1.912 ± 0.016 −0.988 ± 0.007 0.31 ± 0.004 1.647 ± 0.022 −7.334 ± 0.012
A2142 −4.267 ± 0.006 −1.274 ± 0.004 −0.08 ± 0.007 0.476 ± 0.002 4.891 ± 0.104 −7.44 ± 0.01
A2255 −6.09 ± 0.034 −0.6 ± 0.098 0.021 ± 0.431 0.526 ± 0.122 2.643 ± 1.49 −7.925 ± 0.65
A2319 −4.978 ± 0.007 −1.033 ± 0.007 −0.001 ± 0.018 0.459 ± 0.004 4.56 ± 0.365 −6.907 ± 0.019
A3158 −5.146 ± 0.026 −1.234 ± 0.051 −0.527 ± 0.025 0.27 ± 0.021 2.522 ± 0.115 −7.458 ± 0.055
A3266 −5.606 ± 0.008 −0.992 ± 0.012 −0.202 ± 0.006 0.327 ± 0.006 4.976 ± 0.025 −7.229 ± 0.011
A644 −4.678 ± 0.009 −1.049 ± 0.01 −0.112 ± 0.048 0.565 ± 0.009 3.914 ± 0.77 −7.486 ± 0.029
A85 −3.224 ± 0.008 −1.987 ± 0.006 −0.639 ± 0.008 0.357 ± 0.001 1.381 ± 0.019 −8.785 ± 0.548
RXC1825 −5.527 ± 0.072 −1.528 ± 0.145 −0.56 ± 0.022 0.149 ± 0.016 2.995 ± 0.098 −7.178 ± 0.023
ZW1215 −5.447 ± 0.019 −0.997 ± 0.037 −0.298 ± 0.059 0.412 ± 0.03 3.554 ± 0.54 −7.545 ± 0.035

Table E.2. Mean and standard deviation of the spatial parametrisation from Eq. 5. The prior distributions are displayed in the first line.

θ e Right ascension Declination
Prior U(−π/2,+π/2) U(0, 0.99) RAPlanck × N(1, 0.5) DECPlanck × N(1, 0.5)

A1644 1.148 ± 0.048 0.41 ± 0.02 12h57m10.923s ± 0.07s −17◦24′41.001” ± 0.75”
A1795 −0.197 ± 0.005 0.578 ± 0.002 13h48m52.778s ± 0.007s 26◦35′33.404” ± 0.126”
A2029 −0.347 ± 0.004 0.612 ± 0.002 15h10m56.236s ± 0.005s 5◦44′42.049” ± 0.087”
A2142 0.854 ± 0.003 0.753 ± 0.001 15h58m20.173s ± 0.013s 27◦13′55.763” ± 0.17”
A2255 1.481 ± 0.036 0.553 ± 0.016 17h12m51.890s ± 0.397s 64◦03′48.037” ± 2.149”
A2319 0.445 ± 0.005 0.651 ± 0.003 19h21m10.511s ± 0.038s 43◦57′21.618” ± 0.527”
A3158 1.418 ± 0.01 0.639 ± 0.005 3h42m52.761s ± 0.09s −53◦37′44.784” ± 0.624”
A3266 −1.136 ± 0.006 0.58 ± 0.003 4h31m25.116s ± 0.079s −61◦25′33.411” ± 0.548”
A644 −0.205 ± 0.01 0.621 ± 0.005 8h17m25.447s ± 0.025s −7◦31′02.495” ± 0.459”
A85 0.355 ± 0.005 0.509 ± 0.002 0h41m50.414s ± 0.005s −9◦18′11.713” ± 0.074”
RXC1825 1.57 ± 0.0 0.624 ± 0.006 18h25m21.609s ± 0.069s 30◦26′22.100” ± 0.679”
ZW1215 −1.094 ± 0.011 0.637 ± 0.005 12h17m41.309s ± 0.051s 3◦39′30.396” ± 0.617”
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Appendix F: Mexican hat filtering

We redirect the readers to the original article by Arévalo et al.
(2012) for additional details on the Mexican hat filtering method.
Here, we extend this formalism to arbitrary conventions for
Fourier transforms (a, b), see Weisstein (1995). To do so, we
first define the n-dimensional Fourier transform for a radially
symmetric function f as the following Hankel transform:

FT nD { f } =

(
|b|

(2π)1−a

)n/2 (2π)n/2

(bk)n/2−1

∫ ∞

0
rn/2 f (r)Jn/2−1(bkr)dr. (F.1)

In the following, we designate f̃ as the N-dimension Fourier
transform of f . We define the n-dimensional Gaussian kernel of
σ standard deviation and its Fourier transform as follows:

Gσ,nD(r) =
1(

2πσ2)n/2 exp
(
−

r2

2σ2

)
, (F.2)

G̃σ,nD = (2π)
n(a−1)

2 |b|
n
2 exp

(
−

b2k2σ2

2

)
. (F.3)

The kernel of the Mexican hat is formally defined as the
difference of two Gaussian kernels, whose standard deviations
are, respectively, σ1 = σ/

√
1 + ε and σ2 = σ ×

√
1 + ε with

ε = 10−3. Computing the Taylor expansion of this kernel gives:

F̃(k) = (G̃σ1,nD − G̃σ2,nD)(k) ' |b|
n
2 +2 εk2σ2 (2π)

n(a−1)
2 e−

b2k2σ2
2 .

(F.4)

The relation between the filtered frequency kmax, which cor-
responds to the maximum value of the previous filter, and the
standard deviation σ is given by kmax =

√
2/(|b|σ). We then

assume that we set σ in Eq. F.4 so that kr is the frequency of
maximum value. We convolve the true image I with this kernel:

Ic(r) =
(
Gσ1 −Gσ2

)
∗ I(r) (F.5)

The variance of the convolved image Ic is directly related
to the power spectrum of I evaluated at kr, with a simple pro-
portionality relation: Var Ic ∝ |Ĩ(kr)|2. It can be shown using

Plancherel theorem:∫
dnr |Ic(r)|2 =

∫
dn k |Ĩc(k)|2 =

∫
dn k |Ĩ(k)|2|F̃(k)|2 (F.6)

The kernel |F̃(k)|2 is supposed to be thin enough to act like a
Dirac function, and be close to zero when away from kr. We can
then rewrite Eq. F.6 as follows:∫

dnr |Ic(r)|2 '|Ĩ(kr)|2
∫

dn k |F̃(k)|2

=|Ĩ(kr)|2ε2Υ(n)kn
r

, (F.7)

where Υ(n) = 2n(a− 1
2 )−1πn(a+ 1

2 )n
(

n
2 + 1

)
is a constant which

depends on the dimension n. The idea now is to incorporate an
arbitrary mask, M, to remove unwanted pixels on the image. We
defined the new convolved image as follows:

Ic(r) =

(
Gσ1 ∗ I

Gσ1 ∗ M
−

Gσ2 ∗ I
Gσ2 ∗ M

)
× M. (F.8)

Then, including these changes in Eq. F.7, we can estimate
the power spectrum of the image by computing:

|Î(kr)|2 '
1

ε2Υ(n)kn
r

∫
dnr Ic(r)2∫
dnr M(r)

. (F.9)

The integrals in Eq. F.9 are simply expressed as the sum over
all cells (or pixels in 2D). This methodology intrinsically handles
border effects as well as point source exclusions in the data. We
test the effectiveness of this approach for an image generated
via a GRF Φ, with the exposure masks of A3266. In Fig. F.1,
we show a single realisation of this GRF along with the regions
used to compute the power spectra, along with the distribution
of their estimations for 1000 realisations of the GRF. We see a
good agreement between the power spectrum used to generate
the GRF and the reconstructed ones, with a slight bias, which is
investigated in detail by Arévalo et al. (2012).
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Fig. F.1. Assessing the efficiency of Mexican hats to compute the power spectrum of a field with arbitrary masks by computing the power spectra
of 1000 realisations of a random field with known power spectrum in various ring regions. Left panel: regions of interest overplotted on a single
realisation of the known random field with the A2319 exposure map. Right panel: recovered power spectra in the various regions of interest for
1000 realisations of the known random field, and comparison with the input power spectrum
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Appendix G: Correlation between σδ and the
morphological indicators

Here, we show the individual correlations between the normal-
isation of density fluctuation estimated inside R500 and the var-
ious morphological indicators introduced in Sect. 4.1 for each
cluster in the X-COP sample in Fig. G.1. We plot the best-fit dis-
tribution of a power law scaling for each correlation. This scaling
is defined as log10 y = a1 log10 x + a2. The best-fit values of a1
and a2 for each correlation are displayed in Table G.1.

Table G.1. Median values of a1 and a2 and difference with the 16th-84th

percentiles of the best fit for each scaling

a1 a2

σδ = f (cSB) −0.198+0.097
−0.134 0.129+0.06

−0.069

σδ = f (w) 0.123+0.057
−0.045 0.507+0.141

−0.1

σδ = f (G) −2.15+0.771
−0.988 −0.05+0.101

−0.118

σδ = f (CZ) 0.37+0.174
−0.179 0.355+0.061

−0.048
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Fig. G.1. Correlation between σδ evaluated in R500 for each cluster and the
morphological indicators defined in Sect. 4.1. The plain line and envelop
represent the median and 16th-84th percentiles of the best fit of a power law
scaling.
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