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Abstract
We present the first formalization of Milner’s classic translation of the λ-calculus into the π-calculus.
It is a challenging result with respect to variables, names, and binders, as it requires one to relate
variables and binders of the λ-calculus with names and binders in the π-calculus. We formalize it
in Abella, merging the set of variables and the set of names, thus circumventing the challenge and
obtaining a neat formalization.

About the translation, we follow Accattoli’s factoring of Milner’s result via the linear substitution
calculus, which is a λ-calculus with explicit substitutions and contextual rewriting rules, mediating
between the λ-calculus and the π-calculus. Another aim of the formalization is to investigate to
which extent the use of contexts in Accattoli’s refinement can be formalized.
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1 Introduction

Milner’s translation of the λ-calculus in the π-calculus [32] is a classic result relating two
paradigmatic formalisms. It gave rise to many studies, most notably by Sangiorgi, both
alone and with co-authors [39, 40, 18, 42, 27, 20], but also e.g. by Boudol [15, 14], Niehren
[35], Kobayashi [28], Cai and Fu [16], Toninho et al. [44], and Biernacka et al. [13].

Properties of the π-calculus have been formalized a number of times, for instance by
Melham [29], Aït Mohamed [34], Hirschkoff [25], Despeyroux [19], Röckl et al. [38], Honsell
et al. [26], Gay [24], Bengston and Parrow [12], Gabbay [21], Chauduri et al. [17], Orchard
and Yoshida [36], Perera and Cheney [37], Veltri and Vezzosi [45], and Ambal et al. [10].
To our knowledge, however, the correctness of the translation of λ into π has never been
formalized. Miller and Nadathur implement the translation in [30] (p. 274), but not the
proof of correctness. In [25], Hirschkoff clearly states that his work is preliminary to the
formalization of the correctness of the translation. He also says that one of the main obstacles
is the correspondence between term variables and process names, and that "some work should
be done to reformulate some parts of the proof in a way that would be more tractable for the
task of mechanisation". This was in 1997. In the meantime, the theory of proof assistants
has developed a variety of tools for dealing with names and binders, and Milner’s translation
has indeed been refactored, as we discuss below.
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5:2 Formalizing Functions as Processes
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Figure 1 Diagrams describing the relationships between terms and processes.

Variable, Names, and Binders. The translation of λ into π poses additional difficulties
with respect to studying a single language with bindings:

1. Variables/names relation: one has to relate two languages with binders and establish a
relationship between variables and binders in a term t and the names and binders in
its representation JtK as a process, in order to prove that rewriting steps on both sides
preserve the translation;

2. Not a bijection, and issues with de Bruijn: the process JtK uses more binders than t.
Typically, applications (which have no binders) are represented in π via the addition of
various binders. Therefore, adopting de Bruijn representations of terms and processes, a
variable occurrence of index i ∈ N in t is not represented with the same index in JtK.

3. Structural equivalence: reduction on processes is defined only up to structural equivalence,
which re-organizes the structure of binders by moving restrictions operators around.

Small-Step vs Micro-Step. Names are not the only difficulty. The ways in which the
λ-calculus and the π-calculus compute are inherently different. A first aspect is that the
π-calculus does not compute under prefixes, which corresponds to weak evaluation on the
λ-calculus, that is, to not compute under abstractions. This is however not the key point.

The λ-calculus rests on a small-step operational semantics, based on meta-level substitu-
tion, which replaces all occurrences of a variable at the same time with a whole sub-term. The
π-calculus instead has a micro-step approach: it only substitutes names, not sub-processes,
and does the analogous of replacing only one occurrence at a time, keeping sort of explicit
substitutions for the names that have not been fully substituted yet. In the context of
λ-calculi, the relationship between small-step and micro-step evaluation is well studied,
and dealt with via the notion of unfolding of explicit substitutions, which turns explicit
substitutions into meta-level ones. The problem, in the case of the π-calculus, is that the
unfolding operation has no natural analogous on processes.

The small-vs-micro-step issue implies that the simulation of λ into π, which relates weak
head reduction →wh on the λ-calculus with reduction in π, is not as strong as one might
expect. The diagram in Fig. 1.a indeed does not hold. One only has the diagram in Fig. 1.b,
for which JtK reduces to a process Q which is strongly bisimilar to JuK, that is, that behaves
equivalently externally (i.e. with respect to the environment), but which is in general very
different from JuK both structurally and with respect to internal reductions.
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Refactoring of the Translation. In his seminal work, Milner shows that Q can be seen as
the representation of a term JrK plus a set of processes corresponding to explicit substitutions
[x1�Jw1K] . . . [xk�JwkK], and that JuK = JrK{x1�Jw1K} . . . {xk�JwkK}, that is, turning the
explicit substitutions into meta-level ones and applying them to JrK (which is the unfolding
of Q, if seen as a λ-term with explicit substitutions) gives JuK.

In 2013, Accattoli refines Milner’s argument factoring the translation of λ into π via
a simple λ-calculus with explicit substitutions [2], namely Accattoli and Kesner’s linear
substitution calculus (LSC). The LSC is itself a refinement of a calculus by Milner [33], and
can be considered as the canonical micro-step λ-calculus: Accattoli, Kesner, and co-authors
have shown that it is strongly related to abstract machines [4, 8], linear logic proof nets [3],
reasonable cost models [7], multi types [9], and rewriting theory [5]. Back to the translation,
in [2] it is shown that the π-calculus evaluates λ-terms exactly as the LSC version →mwh of the
weak head strategy →wh of the λ-calculus. Once one replaces →wh with →mwh, indeed, the
diagrams in Fig. 1.c and Fig. 1.d hold, that is, there is a bijection of steps between →mwh and
π, and the translation becomes a strong bisimulation between the internal reductions of the
two (up to structural equivalence ≡), considerably tightening Milner’s result. Intuitively, the
problem with the unfolding is avoided altogether, since both the LSC and π are micro-step.

The other half of the simulation, that is, the relationship between the LSC and the
λ-calculus was studied independently by Accattoli and Dal Lago [6], as part of a study of
time cost models for the λ-calculus. It amounts to relate small-step and micro-step notions of
substitutions. The factorization via the LSC recasts such a study within a single formalism,
since the LSC is an extension of the λ-calculus, and allows one to present it using the
unfolding, which is natural in this setting, and makes the study conceptually cleaner.

This Paper. Here we present a formalization of the translation of λ into π, the first one
in the literature. We develop it in the Abella proof assistant [22, 11], the first version of
which appeared in 2008. It is based on Miller and Nadathur’s λ-tree syntax [30], a variant of
higher-order abstract syntax providing primitive support for binders and capture-avoiding
substitution, and Miller and Tiu’s ∇ (nabla) quantifier [31, 23], providing primitive support
for free variables. The difficulties of the translation related to names are fully circumvented
by defining terms and processes on the same type, as to share the set of variables/names. And
we follow Accattoli and decompose Milner’s result in two parts: first, the relationship between
the LSC and π, and then the one between the LSC and λ. The resulting formalization is
neat and compact.

Contexts and Distance. The LSC is a framework that relies on contexts, that is, terms with
a hole, and contextual rewriting rules, also called at a distance. Beyond the formalization of
the translation, this work also explores how to formalize the kind of context-based reasoning
arising in the theory of the LSC.

In [2], Accattoli gives a novel contextual presentation of the π-calculus communication
rules, the key property of which is that structural equivalence can be postponed. He uses this
fact to simplify the proof of the LSC/π correspondence. We also formalize the equivalence of
the new presentation with respect to the ordinary one.

2 λ-Terms, Contexts, Rules, and Processes, with Pen and Paper

Here we give the pen-and-paper definitions of the languages involved in our formalization.

ITP 2023
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λ-Terms and Contexts. We start by defining λ-terms and contexts.

λ-terms t, u, r ::= x | λx.t | tu Contexts C, D ::= ⟨·⟩ | λx.C | Cu | tC

Contexts are terms with exactly one hole ⟨·⟩, which is a placeholder for a removed sub-term.
The basic operation about contexts is plugging C⟨t⟩ of a term t for the hole of C, which
amounts to simply replacing the hole with t. The tricky aspect of plugging is that it is not
a capture-avoiding operation, and that it can capture many variables at once, that is, for
instance (λx.λy.⟨·⟩)⟨xyz⟩ = λx.λy.xyz. Capture-avoiding plugging is instead denoted with
C⟨⟨t⟩⟩. While Abella offers primitive first-class support for both binders and free variables,
it does not provide support for general contexts. More precisely, it supports contexts with
capture-avoiding plugging (i.e. C⟨⟨t⟩⟩), since it is an instance of capture-avoiding substitution
(where the bound variable has only one occurrence). What is not available is the capture-
allowing operation of plugging (i.e. C⟨t⟩). In our development, luckily, in the only point
where we really need contexts, we can limit ourselves to a capture-avoiding notion of plugging.

Weak Head Reduction. We shall only use the simplest possible evaluation strategy on
λ-terms, weak head reduction →wh, also known as (weak) call-by-name reduction.

Weak Head Reduction (λx.t)u →wh t{x�u}
t →wh u

tr →wh ur

We call monolithic the given definition of →wh. It can equivalently be defined in a split way,
by separating the root rule 7→wh and the general rule →wh obtained by the inductive closure
of 7→wh; or contextually, by further compacting the inductive cases via a notion of context.

Split definition

(λx.t)u 7→wh t{x�u}
t 7→wh u
t →wh u

t →wh u
tr →wh ur

Contextual definition

Applicative contexts A ::= ⟨·⟩ | At

(λx.t)u 7→wh t{x�u}
t 7→wh u

A⟨t⟩ →wh A⟨u⟩

These three definitions lead to different formalizations in Abella. For →wh, for which we
do not need to prove many properties, we shall adopt the monolithic one. The only two
properties of →wh that we shall use are the following ones.

▶ Lemma 1. 1. Determinism of →wh: if t →wh u and t →wh r then u = r.
2. Stability under substitution of →wh: if t →wh u then t{x�r} →wh u{x�r}.

Micro Weak Head Reduction. We do not define the whole reduction of the linear substitu-
tion calculus, but only micro weak head reduction (also known as linear weak head reduction),
the micro-step variant of weak head reduction. To define it, beyond explicit substitution
(shortened to ES) constructor we need the following contexts with ESs.

λ-terms with ESs t, u, r ::= x | λx.t | tu | t[x�u]
Substitution contexts S, S′ ::= ⟨·⟩ | S[x�u]

(Micro) weak head contexts W, W ′ ::= ⟨·⟩ | Wu | W [x�u]

An explicit substitution t[x�u] is an annotation for a meta-level substitution t{x�u} which
has been delayed. As such, it binds x in t but not in u. As it is standard for pen-and-paper
reasoning, we work silently modulo α-equivalence, thus in a term such as (xy)[x�xy] the left
and right occurrences of x are not occurrences of the same variable, as the left one is bound
and thus its name is not really x, given that (xy)[x�xy] =α (zy)[z�xy].
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Substitution contexts are simply lists of ESs. Weak head contexts are the extension to
ESs of the applicative contexts given above.

Micro weak head reduction →mwh is the union of two rules, β at a distance →dB and
micro substitution →ms, which are usually defined contextually. A peculiar aspect of their
definition is that contexts are used also in the root case.

(Weak head)
Beta at a distance S⟨λx.t⟩u 7→dB S⟨t[x�u]⟩

t 7→dB u

W ⟨t⟩ →dB W ⟨u⟩

(Weak head)
Micro substitution W ⟨⟨x⟩⟩[x�u] 7→ms W ⟨⟨u⟩⟩[x�u]

t 7→ms u

W ⟨t⟩ →ms W ⟨u⟩

Examples for β at a distance: (λx.t)[y�u]r 7→dB t[x�r][y�u] and (λx.t)[y�u]r[z�w] →dB

t[x�r][y�u][z�w]. The word distance refers to the presence of ESs – in fact the substi-
tution context S – between the abstraction and the argument, which then interact at a
distance. Examples for micro substitution: ((xx)t)[y�u][x�r] 7→ms ((rx)t)[y�u][x�r] and
((xx)t)[y�u][x�r]w →ms ((rx)t)[y�u][x�r]w. The word micro refers to the fact that the
rule replaces one occurrence of x at a time. Note the other occurrence of x in the example,
which is left untouched. Note also that the root rule 7→ms uses the capture-avoiding form of
plugging, while the contextual closure defining →ms uses the capture-allowing variant.

We give alternative inductive definitions of 7→dB / 7→ms, and of their contextual closures,
that shall be used in the discussion on how to formalize →mwh in Abella, in the next section.

Inductive
def of 7→dB

(λx.t)u 7→dB t[x�u]
tu 7→dB r

t[x�w]u 7→dB r[x�w]

Inductive
def of 7→ms

x[x�u] 7→ms u[x�u]
t[x�u] 7→ms u[x�u]

(tr)[x�u] 7→ms (ur)[x�u]
t[x�u] 7→ms u[x�u]

t[y�r][x�u] 7→ms u[y�r][x�u]

Ctx closure
of a ∈ 7→dB , 7→ms

t 7→a u
t →a u

t →a u
tr →a ur

t →a u

t[y�r] →a u[y�r]

Reachable Terms. Since, in the context of this paper, micro weak head reduction is just a
way to refine weak head reduction, we shall consider only terms with ESs that are reachable
from a term without ESs by →mwh. It is easily seen that the following characterization holds.

▶ Definition 2 (Reachable terms). Reachable terms (possibly with ESs) are defined as follows

x is reachable
t is reachable u has no ESs

tu is reachable

λx.t has no ESs
λx.t is reachable

t is reachable u has no ESs
t[x�u] is reachable

▶ Lemma 3. If t has no ESs and t →∗
mwh u then u is reachable.

Processes. The dialect of the π-calculus that we adopt contains only the constructs needed
to represent the λ-calculus. Namely, we use the asynchronous π-calculus (thus outputs are
not prefixes) with both unary and binary inputs and outputs, and pairing up unary inputs
with replication. The grammar is:

ITP 2023



5:6 Formalizing Functions as Processes

Processes P, Q, R ::= 0
∣∣ x⟨y⟩

∣∣ x⟨y, z⟩
∣∣ νxP

∣∣ x(y, z).P
∣∣!x(y).P

∣∣ P | Q

For channels, we use the same notation that we use for the variables of λ-terms. We postpone
the definition of structural equivalence and of the rewriting rules for processes to Sect. 4.

3 Our Approach to Formalizing λ-Terms, Processes, and Contexts

Reasoning Level. Abella has two layers, the specification level and the reasoning level. They
are based on different logics, the reasoning level being more powerful, having in particular
the ∇ (nabla) quantifier, and provided with special tactics to reason about the specification
level. In many formalizations in Abella, definitions are given at the specification level while
statements and proofs are given at the reasoning level. We follow another approach, giving
the definitions at the reasoning level. One of the reasons is that in this way we can exploit ∇
to formalize terms with free variables, obtaining definitions, statements, and reasoning that
are closer to those with pen and paper. The same approach is used also (at least) by Tiu
and Miller [43], Accattoli [1], Chaudhuri et al. [17], and section 7.3 of the Abella tutorial by
Baelde et al. [11].

In this paper, we show Abella code to explain how crucial concepts are formalized, but,
for lack of space, we do not systematically pair every definition/statement with its code (for
the link to the code see the first page, after the abstract). We also assume basic familiarity
with the representation of binders in higher-order abstract formalisms (the one adopted by
Abella is Miller and Nadathur’s λ-tree syntax [30]).

Induction on Types in Abella. In Abella, it is standard to define untyped λ-terms by
introducing a type tm and two constructors for applications and abstractions, without
specifying variables, as follows:

Kind tm type.
Type app tm -> tm -> tm.
Type abs (tm -> tm) -> tm.

Note that abs takes an argument of type tm -> tm which is how Abella encodes binders.
More precisely, an object-level binding constructor such as λx.t is encoded via a pair: an
ordinary constructor abs applied to a meta-level abstraction of type tm -> tm. For example,
the term λx.xx that binds x in the scope xx is encoded as abs x\app x x (that is parsed
as abs (x\app x x)) where x\app x x is a meta-level abstraction of type tm -> tm in the
syntax of Abella. In the rest of the paper, with an abuse of terminology, we call binders such
terms of type tm -> tm.

Reasoning by induction on the structure of tm terms is not possible in Abella because of
the open world assumption, stating that new constructors can always be added later to any
type. Thus, one rather defines a is_tm predicate, as follows, and reasons by induction over
it:

Define is_tm : tm -> prop by
nabla x, is_tm x;
is_tm (abs T) := nabla x, is_tm (T x);
is_tm (app T U) := is_tm T /\ is_tm U.

The first clause uses nabla to say that the free variable x is a term. Variables with capitalized
names in the last two clauses are implicitly quantified by ∀ at the clause level. The second
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clause states that an abstraction abs T is a term if its body is a term. The body is obtained
applying the binder T (of type tm -> tm ) to a fresh variable x to obtain a term of type T.
Such application corresponds in a pen-and-paper proof to the (usually implicit) logical step
that replaces the bound variable with a fresh one.

Predicates such as is_tm might seem an oddity. In our development, we exploit them
crucially, as we now explain.

One Type to Formalize Them All. We deal with three main syntactic categories, ordinary
λ-terms, λ-terms with ESs, and processes. In order to circumvent the issue of relating
term variables and process names, we formalize the three categories over the same type pt,
standing for processes and terms, and then distinguish them via dedicated predicates. The
constructors are defined as follows:

Kind pt type.

% terms
Type abs (pt -> pt) -> pt.
Type app pt -> pt -> pt.
Type esub (pt -> pt) -> pt -> pt.

% pi-calculus terms
Type zero pt.
Type nu (pt -> pt) -> pt.
Type par pt -> pt -> pt.
Type out pt -> pt -> pt.
Type out2 pt -> pt -> pt -> pt.
Type in pt -> (pt -> pt) -> pt.
Type in2 pt -> (pt -> pt -> pt) -> pt.

About terms, esub T U represents t[x�u]. For processes, nu is the restriction operator νxP ,
par is parallel composition P | Q, out and out2 are unary and binary output, and similarly
for inputs. Note the binders used by the input prefixes: in2 x P represents x(y, z).P ,
where y and z are implicit in the fact that P has type pt -> pt -> pt. They can be
made explicit using the equivalent representation in2 x (y\z\ P y z), where y\z\P y z
is an η-expansion of P: Abella identifies all meta-level abstractions up to α-renaming and
η-expansion.

We then use two predicates, one for isolating λ-terms with no ESs and one for reachable
λ-terms with ESs – processes shall not need one, as there shall be no inductions on processes.

Define tm_with_no_ES : pt -> prop by
nabla x, tm_with_no_ES x;
tm_with_no_ES (abs T) := nabla x, tm_with_no_ES (T x);
tm_with_no_ES (app T U) := tm_with_no_ES T /\ tm_with_no_ES U.

Define reachable_tm : pt -> prop by
nabla x, reachable_tm x;
reachable_tm (abs T) := tm_with_no_ES (abs T);
reachable_tm (app T U) := reachable_tm T /\ tm_with_no_ES U;
reachable_tm (esub T U) := (nabla x, reachable_tm (T x)) /\ tm_with_no_ES U.

Micro Weak Head Reduction. For the formal definitions of the two rules of →mwh we
explored various approaches. We started with the monolithic approach, but soon realized
that it was very difficult, if not impossible, to reason about the properties of the rules.
We then adopted a split approach. For both 7→dB and →dB (red_root_db and red_db
in the sources), we use the inductive definitions, because their use of context plugging is
capture-allowing. For both 7→ms and →ms, we initially used the inductive definitions, which
is enough to prove the relationship with the π-calculus. To prove the relationship between
→wh and →mwh, which requires a fine analysis of 7→ms / →ms steps, we were however led

ITP 2023



5:8 Formalizing Functions as Processes

to switch (in the whole development) to a mixed style: contextual definition of 7→ms, which
enables finer reasoning, and inductive definition of →ms. This is possible because – crucially
– the definition of 7→ms uses capture-avoiding plugging W ⟨⟨u⟩⟩. The idea is that weak head
contexts W can be formalized as follows (that is, as a function u 7→ W ⟨⟨u⟩⟩).

Define weak_head_ctx : (pt -> pt) -> prop by
weak_head_ctx (h\h);
weak_head_ctx (h\ app (W h) U) := weak_head_ctx W;
weak_head_ctx (h\ esub (x\ W x h) U) := nabla x, weak_head_ctx (W x).

We use h for hole. In the last clause, h\ esub (x\ W x h) U specifies that the explicit
substitution bounds a variable x which is not the one representing the hole.

We now describe the definition of 7→ms, based on two predicates, avoiding Abella code
for lack of space, but reflecting the Abella formalization faithfully.

Firstly, we need the predicate t has free head variable x, shortened fhv(t) = x, defined by:

fhv(x) = x
fhv(t) = x

fhv(tu) = x

fhv(t) = x

fhv(t[y�u]) = x

Secondly, the predicate t has free maximal weak head context W , shortened maxw(t) = W ,
defined by:

maxw(x) = ⟨·⟩ maxw(λx.t) = ⟨·⟩
maxw(t) = W

maxw(tu) = Wu

maxw(t) = W

maxw(t[x�u]) = W [x�u]

An immediate lemma guarantees that if fhv(t) = x then there exists a weak head context W

such that maxw(t) = W . Now, the micro substitution root rule 7→ms (red_root_ms in the
sources) is defined as follows:

fhv(t) = x and maxw(t) = W

t[x�u] 7→ms W ⟨⟨u⟩⟩[x�u]

Finally, the inductive contextual closure that defines →dB (red_db) and →ms (red_ms) is
obtained via a higher-order predicate ctx_cl_tm taking a relation and returning its contextual
closure defined as follows, where a ∈ {dB, ms}.

t 7→a u
t →a u

t →a u
tr →a ur

t →a u

t[x�r] →a u[x�r]

Note that it is not possible to use a contextual formalization of the contextual closure,
because the closure rests on capture-allowing plugging, which is not supported by Abella.

Finally, micro weak head reduction →mwh (red_mwh) is defined as →dB ∪ →ms.

4 The π-Calculus, at a Distance

Here we describe the formalization of the rewriting rules of the π-calculus. We start with
structural equivalence and give the standard presentation of the rules. Then, we redefine
them according to the at a distance approach developed by Accattoli [2].

Structural Equivalence. Processes are considered modulo structural congruence ≡, defined
in two steps. First, we define root structural equivalence P

.= Q (str_eq_root) via the
following clauses.

Neutrality of 0 with respect to parallel composition: P | 0 .= P , 0 | P
.= P , P

.= P | 0, and
P

.= 0 | P ;
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Irrelevance of vacuous name restrictions: νxP
.= P , and P

.= νxP if x /∈ fn(P )1;
Commutativity of parallel composition: P | Q

.= Q | P

Associativity of parallel composition: P | (Q | R) .= (P | Q) | R and (P | Q) | R
.= P | (Q | R);

Permutation of name restriction and parallel composition: νx(P | Q) .= P | νxQ and
P | νxQ

.= νx(P | Q) if x /∈ fv(P ), νx(P | Q) .= νxP | Q and νxP | Q
.= νx(P | Q) if

x /∈ fv(Q);
Commutativity of name restrictions: νxνyP

.= νyνxP .
Note that all clauses but the commutativity ones have symmetric clauses. It is natural to
wonder whether is it possible to have only half of the clauses plus a rule for the symmetry of
.=. Such an alternative does not seem to work, as it shall be explained in the next section.

The second step is defining structural equivalence ≡ (str_eq) as the equivalence and
contextual closure of .=, what is sometimes called the congruence closure. The symmetric
definition of .= spares us a symmetry rule in the definition of ≡, as proved after the definition.

Defining structural equivalence on top of root structural equivalence
P

.= Q

P ≡ Q P ≡ P
P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

νxP ≡ νxQ

P ≡ Q

P | R ≡ Q | R

P ≡ Q

R | P ≡ R | Q

▶ Lemma 4.
1. Symmetry of .=: if P

.= Q then Q
.= P .

2. Symmetry of ≡: if P ≡ Q then Q ≡ P .

Proof. Point 1 is by case analysis: every clause of .= is either symmetric or has a symmetric
clause. Point 2 is by induction on P ≡ Q, using Point 1 in the case for .=. ◀

The Ordinary Rewriting Rules. The π-calculus at work here has two rewriting rules, a linear
one for binary communication and a rule involving process replication for unary communica-
tion. The root binary and replication rules are defined as follows (ord_pi-red_root_bin P Q
and ord_pi-red_root_rep P Q in Abella).

x⟨y, z⟩ | x(y′, z′).Q 7→bin Q{y′�y}{z′�z} x⟨y⟩ | !x(z).Q 7→! Q{z�y} | !x(z).Q

The root rules are closed contextually under restrictions and parallel composition as follows.

Contextual closure of root rules on processes, a ∈ {bin, !}

P 7→a Q

νxP →a νxQ

P →a Q

νxP →a νxQ

P →a Q

P | R →a Q | R

P →a Q

R | P →a R | Q
(1)

In Abella, the closure is realised via a higher-order closure predicate ctx_cl_pr, similarly to
what is done for micro weak head reduction.

The rules at work in the π-calculus are actually →bin and →! modulo ≡, that is, one
rather considers the rules →bin/≡ and →!/≡ where P →bin/≡ Q if there exist P ′ and Q′

such that P ≡ P ′ →bin Q′ ≡ Q (one might also compactly write →bin/≡ := ≡→bin≡) and
similarly for →!/≡.

1 In [2], Accattoli uses νx0 .= 0, and 0 .= νx0, which is correct, but then requires one to prove the general
version as an easy lemma.
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Towards Communication at a Distance. The use of structural equivalence in the definition
of the rewriting relation of the π-calculus induces some annoying complications when one
tries to reflect process reductions on terms. We are then going to reformulate the π-calculus
reduction rules at a distance, that is, in a way that allows us to prove a postponement
theorem with respect to structural equivalence, inspired by Accattoli [2] but in a slightly
different way. Let us recall the idea from [2].

The first step is to define non-blocking contexts, which are the contexts used in the
contextual closure in (1), as follows:

Non-blocking ctxs N, M ::= ⟨·⟩
∣∣ N | Q

∣∣ P | N
∣∣ νxN

The second step is to generalize the root case of, say, the binary rule, as follows:

N and M do not capture x

N⟨x⟨y, z⟩⟩ | M⟨x(y′, z′).Q⟩ 7→bin N⟨M⟨Q{y′�y}{z′�z}⟩⟩
(2)

and then one closes the root rule by contexts as in (1). To be precise, since the aim is to
avoid structural equivalence in rewriting steps, one also needs the symmetric case of (2). The
idea behind the postponement is that the role of structural equivalence ≡ in the ordinary
approach is to re-organize the term as to move the non-blocking contexts N and M out of
the way, that is, as to obtain:

N⟨x⟨y, z⟩⟩ | M⟨x(y′, z′).Q⟩ ≡ N⟨M⟨x⟨y, z⟩ | x(y′, z′).Q⟩⟩

to then allow one to apply the ordinary communication rule. The approach at a distance
avoids the re-organization altogether, by defining communication up to non-blocking contexts.

Here, we slightly refine the presented idea, in two respects. Firstly, the plugging at work
in (2) is capture-allowing (in contrast to the root case of 7→ms for terms), so that we replace
it with an inductive contextual closure. Secondly, the scheme in (2) is asymmetric: in the
reduct, the contexts are composed as N⟨M⟩, while the opposite composition would work as
well. By turning to an inductive contextual closure, we can restore the symmetry. In fact,
we obtain a strictly more permissive rule, as we permit the reduct to have any shuffling of
the constructors in N and M. The rule is then non-deterministic, but harmlessly so, as all
the reducts of a same redex are structurally equivalent.

Communication at a Distance. The rule at a distance for binary prefixes ⇛bin is obtained
by first defining its root variant ⇒bin (new_pi-red_root_bin P Q in Abella), as follows.

x⟨y, z⟩ | x(y′, z′).Q ⇒bin Q{y′�y}{z′�z} x(y′, z′).Q | x⟨y, z⟩ ⇒bin Q{y′�y}{z′�z}

P | Q ⇒bin R

(P | O) | Q ⇒bin R | O

P | Q ⇒bin R

P | (Q | O) ⇒bin R | O

P | Q ⇒bin R

νxP | Q ⇒bin νxR

P | Q ⇒bin R

(O | P ) | Q ⇒bin O | R

P | Q ⇒bin R

P | (O | Q) ⇒bin O | R

P | Q ⇒bin R

P | νxQ ⇒bin νxR

Then, ⇛bin (new_pired_bin P Q in Abella) is obtained by applying the same context closure
as in (1) to ⇒bin.

The rule for unary prefixes ⇛! is obtained via the same construction by simply changing
the base case. The root case ⇒! (new_pi-red_root_rep P Q in Abella) follows.
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x⟨y⟩ | !x(z).Q 7→! Q{z�y} | !x(z).Q !x(z).Q | x⟨y⟩ 7→! !x(z).Q | Q{z�y}

P | Q ⇒! R

(P | O) | Q ⇒! R | O

P | Q ⇒! R

P | (Q | O) ⇒! R | O

P | Q ⇒! R

νxP | Q ⇒! νxR

P | Q ⇒! R

(O | P ) | Q ⇒! O | R

P | Q ⇒! R

P | (O | Q) ⇒! O | R

P | Q ⇒! R

P | νxQ ⇒! νxR

The general rule (new_pi-red_rep P Q in Abella) is then obtained by a contextual closure,
as for ⇛bin. Finally, we set ⇛ :=⇛bin ∪ ⇛!. Some basic properties of reduction follow.

▶ Lemma 5. Let a ∈ {bin, !}.
1. No creation of free names: if P ⇛a Q then fv(Q) ⊆ fv(P ).
2. Parallel symmetry: if P | Q ⇒a R then exists O such that Q | P ⇒a O and O ≡ R.

5 Postponement of ≡ and Equivalence of the Presentations

The main property of the presentation at a distance is that ≡ strongly postpones with respect
to ⇛bin and ⇛!, that is, it is not required for reduction. A noticeable point of the proof is
that the two cases of ⇛bin and ⇛! are handled in the exact same way: all the statements and
all the proofs are indeed parametric in the reduction rule (the Abella proofs are identically
structured but not proved parametrically). We need two auxiliary lemmas.

▶ Lemma 6 (Auxiliary properties for postponement of structural equivalence). Let a ∈ {bin, !}.
1. If (P | Q) | R ⇒a O then (exists O′ such that P | R ⇒a O′ and O ≡ O′ | Q) or (exists O′

such that Q | R ⇒a O′ and O ≡ P | O′).
2. If νxP | Q ⇒a R then there exists O such that P | Q ⇒a O and νxO ≡ R.

Proof. Every point is by induction on the ⇒a step in its hypothesis. In Point 1, for a = bin

one actually has O = R. ◀

The lemma allows us to prove the postponement in the root case of structural equivalence,
that we prefer to isolate to stress that it does not need an induction and because it does not
need the lemma that follows it.

▶ Proposition 7 (Root strong postponement of ≡ wrt ⇛). Let a ∈ {bin, !}. If P
.= P ′ and

P ⇛a Q then there exists Q′ such that P ′ ⇛a Q′ and Q′ ≡ Q.

Proof. By case analysis of P
.= P ′, using Lemma 5 and Lemma 6. ◀

To deal with the general case of structural equivalence, we need a further auxiliary lemma.

▶ Lemma 8. Let a ∈ {bin, !}. If P ≡ P ′ and P | Q ⇛a R then there exists R′ such that
P ′ | Q ⇛a R′ and R ≡ R′.

Proof. By case analysis of P
.= P ′, using Lemma 5 and Lemma 6. ◀

▶ Theorem 9 (Strong postponement of ≡ wrt ⇛). Let a ∈ {bin, !}. If P ≡ P ′ and P ⇛a Q

then there exists Q′ such that P ′ ⇛a Q′ and Q′ ≡ Q.

Proof. By induction on P ≡ P ′. The case for .= is exactly Prop. 7. The case of reflexivity
is immediate. The case of contextual closure with respect to parallel composition on the
right uses Lemma 8, and the case on the left uses Lemma 8 and Lemma 5.2. The other cases
(transitivity and name restriction closure) follow by the i.h. ◀
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▶ Remark 10. We can now explain why adding a symmetry rule to the definition of ≡ (or .=),
and so dividing by 2 the number of cases defining .=, does not work. Consider the proof of
the strong postponement property for the symmetry case: the hypotheses of the theorem are
P ≡ P ′ and P ⇛a Q, and the inductive case we are facing is that P ≡ P ′ because P ′ ≡ P .
To be able to apply the i.h. one should have P ′ ⇛a R for some R, which is what we actually
have to prove. Note also that P ′ ⇛a R is not enough because the i.h. would then give a
process O which is not necessarily Q. Therefore, to prove the statement one should have
P ′ ⇛a Q, which is not even true.

Equivalence of Presentations. The strong postponement property is the key point in
showing that ⇛a≡ is equivalent to →a/≡ for a ∈ {bin, !}.

▶ Lemma 11. Let a ∈ {bin, !}. If P →a Q then P ⇛a Q.

▶ Theorem 12 (Ordinary and new presentations are equivalent). Let a ∈ {bin, !}.
1. If P →a/≡ Q then there exists R such that P ⇛a R ≡ Q.
2. If P ⇒a Q then P →a/≡ Q.
3. If P ⇛a Q then P →a/≡ Q.

Proof.
1. Explicitly, P ≡ P ′ →a Q′ ≡ Q. By Lemma 11, P ′ ⇛a Q′. By strong postponement

(Theorem 9), there exists R such that P ⇛a R ≡ Q′, and, by transitivity of structural
equivalence, P ⇛a R ≡ Q.

2. Immediate induction on P ⇒a Q.
3. Immediate induction on P ⇛a Q, using the previous point in the base case. ◀

6 Translation and Simulations

Milner’s Translation. Here we present Milner’s call-by-name translation JtK of the λ-calculus
to the π-calculus, extended to account also for ESs. Let a, b, c, . . . be special channel names.
Milner presented the translation as JtKa, that is, as parametrized by a special channel name
a, meant to be the channel on which t itself can be communicated. Sometimes, typically by
Sangiorgi, the translation is rather presented moving the parametrization on the π-calculus
side, stating that the representation of a λ-term (with ESs) is a function λλ a.P (where λλ a.

is a meta-level notation not part of the syntax of processes) which when applied to b gives
the process (λλ a.P )b = P{a�b}. While both approaches are viable (and we explored both),
we prefer Sangiorgi’s. Firstly, it can easily be represented in Abella, by seeing the functions
λλ a.P as process binders. Secondly, it reduces the amount of free names that have to be
managed (too many free names make Abella produce unreadable intermediate goals during
the formalization). The translation is then defined as follows.

Translation of terms with ESs to processes

JxK := λλ a.x⟨a⟩
Jλx.tK := λλ a.a(x, b).JtKb a /∈ fv(JtKb)

JtuK := λλ a.νbνx(JtKb | b⟨x, a⟩ | !x(c).JuKc) a, b /∈ fv(!x(c).JuKc)
a /∈ fv(JtKb), x /∈ fv(t) ∪ fv(u)

Jt[x�u]K := λλ a.νx(JtKa | !x(b).JuKb) a /∈ fv(JuKb)

Beyond the given side conditions, the translation rests on the assumption that the special
names do not occur as variables of terms. Note that the subjects of binary input/outputs
are always special names, while the subjects of unary input/outputs are variable names. We
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distinguish special names from variables for readability and because the distinction helps
us understand the translation. There is no formal need to distinguish them, however, and
indeed our Abella formalization, which follows, does not use a separate category for them.

Define translation : pt -> (pt -> pt) -> prop by
nabla x, translation x (out x);
translation (abs T) (a\in2 a P) := nabla x, translation (T x) (P x);
translation (app T U) (a\nu b\nu x\par (P b) (par (out2 b x a) (in x Q)))

:= translation T P /\ translation U Q;
translation (esub T U) (a\nu x\par (P x a) (in x Q))

:= (nabla x, translation (T x) (P x)) /\ translation U Q.

Note the use of out x in the translation of a variable x. The type of out x is pt -> pt -> pt,
so the unary output x⟨a⟩ is represented by out x a. But the translation uses out x instead:
this is done to map x to the function (or binding) λλ a.x⟨a⟩ rather than to x⟨a⟩. Similar
remarks apply to the other cases. Note also that the Abella definition states the side
conditions dually, by saying where variables can appear, rather than where they do not, e.g.
b can appear in P b but not in Q, in the application case.

π Simulates →mwh. A single step of the micro weak head reduction rules →dB and →ms

is simulated in the π-calculus by exactly one step of ⇛bin and ⇛!, respectively, followed by
structural equivalence. We detail the case of →ms, mimicking closely the proof in Abella.
One needs an auxiliary lemma essentially capturing the simulation of the root case 7→ms by
the root case ⇒!, and then the simulation extends smoothly to the contextual closures.

▶ Lemma 13 (Auxiliary lemma for 7→ms). Let fhv(t) = x, maxw(t) = W , Jt[x�u]K = λλ a.νxP ,
and JW ⟨u⟩[x�u]K = λλ a.νxQ. Then there exists R such that P ⇒! R and R ≡ Q.

Proof. By induction on fhv(t) = x. Note that Jt[x�u]K = λλ a.νx(JtKa | !x(b).JuKb) and
JW ⟨u⟩[x�u]K = λλ a.νx(JW ⟨u⟩Ka | !x(b).JuKb), thus we have to prove that there is R such that

P = JtKa | !x(b).JuKb ⇒! R ≡ JW ⟨u⟩Ka | !x(b).JuKb = Q.

Cases of fhv(t) = x:
1. Head variable, that is, t = x. Then W = ⟨·⟩ and W ⟨u⟩ = u. We have:

P = JxKa | !x(b).JuKb = x⟨a⟩ | !x(b).JuKb ⇒! JuKa | !x(b).JuKb = Q

2. Left of application, that is, t = rw with fhv(r) = x. Then W = W ′w and W ⟨u⟩ = W ′⟨u⟩w.
By i.h., there exists R′ such that

JrKa | !x(b).JuKb ⇒! R′ ≡ JW ′⟨u⟩Ka | !x(b).JuKb.
Then:

P = JrwKa | !x(b).JuKb =
νcνy(JrKc | c⟨y, a⟩ | !y(d).JwKd) | !x(b).JuKb ⇒! (i.h.)
νcνy(R′ | c⟨y, a⟩ | !y(d).JwKd) ≡ (i.h.)
νcνy(JW ′⟨u⟩Ka | !x(b).JuKb | c⟨y, a⟩ | !y(d).JwKd) ≡
νcνy(JW ′⟨u⟩Ka | c⟨y, a⟩ | !y(d).JwKd) | !x(b).JuKb =
JW ⟨u⟩wKa | !x(b).JuKb = Q

3. Left of substitution, that is, t = r[y�w] with fhv(r) = x. Then W = W ′[y�w] and
W ⟨u⟩ = W ′⟨u⟩[y�w]. By i.h., there exists R′ such that

JrKa | !x(b).JuKb ⇒! R′ ≡ JW ′⟨u⟩Ka | !x(b).JuKb.
Then:
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P = Jr[y�w]Ka | !x(b).JuKb =
νy(JtKa | !y(c).JwKc) | !x(b).JuKb ⇒! (i.h.)
νy(R′ | !y(c).JwKc) ≡ (i.h.)
νy(JW ′⟨u⟩Ka | !x(b).JuKb | !y(c).JwKc) ≡
νcνy(JW ′⟨u⟩Ka | !y(c).JwKc) | !x(b).JuKb =
JW ⟨u⟩[y�w]Ka | !x(b).JuKb = Q

◀

▶ Proposition 14. Let t be reachable.
1. If t 7→ms u then JtK ⇛! JuK.
2. If t →ms u then JtK ⇛! JuK.

Proof. For Point 1, note that if t 7→ms u then t = r[x�w] with fhv(r) = x and maxw(r) = W ,
so that u = W ⟨w⟩[x�w]. Since the translation of ESs starts with λλ a.νx, we apply Lemma 13
and obtain JtK ⇒! JuK. Point 2 is an induction on t →ms u using Point 1 in the base case. ◀

→mwh Simulates π. The converse simulation follows exactly the same schema, the root
case needs an auxiliary lemma (proof omitted), and then the simulation smoothly lifts to the
contextual closures. The only difference, in Abella, is that the case analyses of π-calculus
reduction require a few simple lemmas (omitted here) to rule out some impossible cases.

▶ Lemma 15 (Auxiliary lemma for ⇒!). Let JtK = λλ a.P , JuK = λλ b.Q. If P | !x(b).Q ⇒! R

then fhv(t) = x and ∃ W and O s.t. maxw(t) = W , JW ⟨u⟩[x�u]K = λλ a.νxO, and O ≡ R.

▶ Proposition 16.
1. If JtK = λλ a.νxP and P ⇒! Q then ∃ u and R s.t. t 7→ms u, JuK = λλ a.νxR and Q ≡ R.
2. If JtK = λλ a.P and JtKa = P ⇛! Q then ∃ u and R s.t. t →ms u, JuK = λλ a.R and Q ≡ R.

Proof.
1. For P ⇒! Q to hold, t has to be an ES t = r[x�w] and r and w verify the hypotheses of

Lemma 15. Then the conclusions of the lemma are exactly that r = W ⟨x⟩, and so t 7→ls u

with u := W ⟨w⟩[x�w], and that there exist processes as in the statement.
2. By induction on JtK = λλ a.P . Cases:

a. Variable: t = x. Impossible because then P = x⟨a⟩ which is ⇛!-normal.
b. Abstraction: t = λx.r. Impossible, because P = a(x, b).JtKb is ⇛!-normal.
c. Application: t = rw. Then P = νbνx(JrKb | b⟨x, a⟩ | !x(c).JwKc). Cases of P ⇛! Q:

i. Root step of P ′ = JrKb | b⟨x, a⟩ | !x(c).JwKc ⇒! Q′. Since by definition of the transla-
tion x /∈ fv(JrKb), there cannot be any root step in P ′. In Abella proving this fact
requires a couple of straightforward auxiliary lemmas.

ii. Inductive, that is, P ⇛! Q because JrKb ⇛! Q′ for some Q′. By i.h., there exist u′

and R′ such that r →ls u′, Ju′K = λλ b.R′, and Q′ ≡ R′. Then t = rw →ls u′w = u.
By applying these equalities to the step P ⇛! Q we obtain:

P = νbνx(JrKb | b⟨x, a⟩ | !x(c).JwKc)
⇛! νbνx(Q′ | b⟨x, a⟩ | !x(c).JwKc)

(i.h.) ≡ νbνx(R′ | b⟨x, a⟩ | !x(c).JwKc)
(i.h.) ≡ νbνx(Ju′Kb | b⟨x, a⟩ | !x(c).JwKc) =: R

Note that JuK = Ju′wK = λλ a.R.
d. Substitution: t = r[y�w]. Then P = νx(JrKa | !x(b).JwKb). Cases of P ⇛! Q:

i. Root step of JrKa | !x(b).JwKb ⇒! Q′. Then it follows from Point 1.
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ii. Inductive, that is, P ⇛! Q because JrKa ⇛! Q′ for some Q′. By i.h., there exist
u′ and R′ such that r →ls u′, Ju′K = λλ a.R′, and Q′ ≡ R′. Then t = r[y�w] →ls
u′[y�w] = u. By applying these equalities to the step P ⇛! Q we obtain:

P = νx(JrKa | !x(b).JwKb)
⇛! νx(Q′ | !x(b).JwKb)

(i.h.) ≡ νx(R′ | !x(b).JwKb)
(i.h.) ≡ νx(Ju′Ka | !x(b).JwKb) =: R

Note that JuK = Ju′wK = λλ a.R. ◀

Summing Up. By iterating the simulation of single steps, and postponing structural
equivalence, we obtain our first main result (point 1 is redn_pi_simulates_redn_mwh and
point 2 is redn_lwh_simulates_redn_pi in the sources).

▶ Theorem 17.
1. π simulates LSC: if t is reachable and t →n

mwh u then for every a there exists Q such that
JtKa ⇛n Q and Q ≡ JuKa.

2. LSC simulates π: if JtKa ⇛n Q then there exists u such that t →n
mwh u and JuKa ≡ Q.

By composing Theorem 17 with the equivalence of presentations for the reduction of π

(Theorem 12), one can also relate the LSC to the ordinary reduction of π.

7 Relating Weak Head Reduction and Micro Weak Head Reduction

Here we study the relationship between →wh and →mwh via the unfolding of ESs. We present
the pen-and-paper analogous of the Abella formalization, omitting trivial lemmas.

Unfolding. Terms with ES can be unfolded into terms without ESs by turning ESs into
meta-level substitutions. As explained in Sect. 2, we restrict to reachable terms with ESs,
characterized by having no ESs in arguments, inside ESs, and under abstractions. Accordingly,
the following definition of unfolding t

→ assumes that it is applied to a reachable term t.

Unfolding
x

→ ::= x (tu) → ::= t

→

u

(λx.t)→ ::= λx.t t[x�u] → ::= t

→

{x�u}

Projection Via Unfolding. The unfolding turns every weak head β at a distance step →dB

into exactly one weak head step →wh on the unfolded terms, and every micro substitution
step →ms into an equality. Here we detail only the proof for →ms steps, which is more
interesting and requires an auxiliary lemma.

▶ Proposition 18. Let t be a reachable term. If t →dB u then t

→

→wh u

→ .

▶ Lemma 19 (Auxiliary lemma for 7→ms). Let maxw(t) = W , t be reachable, u be a term with
no ES, and x /∈ fv(u). Then W ⟨x⟩

→

{x�u} = W ⟨u⟩

→

{x�u}.

The proof is an easy induction but Abella has trouble with it because the conclusion of the
statement is a non-pattern equality. Therefore, the inductive cases need help from the user.

Proof. By induction on maxw(t) = C. Cases:
maxw(y) = ⟨·⟩, maxw(x) = ⟨·⟩, and maxw(λx.r) = ⟨·⟩ are identical: W ⟨x⟩

→

{x�u} =
x{x�u} = u = u{x�u} =∗ u

→

{x�u} = W ⟨u⟩

→

{x�u}, where the =∗ steps holds because
unfolding terms with no ES does nothing (it is an easy omitted lemma).
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maxw(rw) = W ′w because maxw(r) = W ′. Note that t reachable implies r reachable.
By i.h., W ′⟨x⟩

→

{x�u} = W ′⟨u⟩

→

{x�u}. Then W ⟨x⟩

→

{x�u} = W ⟨x⟩

→

{x�u}w{x�u} =
W ′⟨u⟩

→

{x�u}w{x�u} = W ⟨u⟩

→

{x�u}.
maxw(r[y�w]) = W ′[y�w] because maxw(r) = W ′. Similar to the previous point. ◀

▶ Proposition 20. Let t be a reachable term.
1. If t 7→ms u then t

→ = u

→ .
2. If t →ms u then t

→ = u

→ .

Proof.
1. Unfolding the hypothesis, we obtain t = W ⟨x⟩[x�r] 7→ms W ⟨r⟩[x�r] = u. Note that

t

→ = W ⟨x⟩

→

{x�r} and u

→ = W ⟨r⟩

→

{x�r}. By Lemma 19, they coincide.
2. By induction on t →ms u using point 1 in the base case. ◀

Converse Simulation. The converse simulation, that is, that every →wh step is simulated
by a sequence of →mwh steps, is less easy, and it is where the difficulty of relating small-step
and micro-step formalisms lies. While it is true that if t is a term with no ESs and t →wh u

then t →dB r and r

→ = u, such a property cannot be used for the simulation of rewriting
sequences, as it does not compose for consecutive steps: if then u →wh u′ we cannot apply the
property again because r ̸= u. One needs the following refined one-step reflection property:

If t

→

→wh u then there exists r and w such that t →∗
ms r →dB w and w

→ = u

To prove such a reflection, we need various properties, in particular that →ms terminates.

Micro Substitution Normal Terms. For proving the termination of →ms we use a predicate
characterizing →ms-normal terms. We need the concept of answer.

▶ Definition 21 (Answer). An answer is a term of the form a ::= λx.t | a[x�t].

The predicate characterizing →ms-normal terms is the disjunction of three predicates.

▶ Definition 22 (ms-normal). The predicate t is ms-normal is defined as follows.

a answer
a is ms-normal

fhv(t) = x

t is ms-normal
t →dB u

t is ms-normal

The characterization takes the following form in Abella. Curiously, our proof of termination
of →ms relies on the ms-normal predicate but never uses its characterization (which we have
nonetheless formalized).

▶ Proposition 23 (Characterization of being →ms-normal). The following two facts cannot
co-exist (that is, together they imply false):
1. t →ms u;
2. t is ms-normal.

Termination of Micro Substitutions. The proof of termination of →ms is neat, as we do
not need a termination measure, we simply prove it by induction on the structure of terms,
via two auxiliary lemmas.

▶ Lemma 24. If W is a weak head context, W ⟨t⟩ is ms-normal, and x /∈ fv(t) then W ⟨t⟩[x�u]
is ms-normal.
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Proof. By case analysis of W ⟨t⟩ is ms-normal. The answer and →dB-step case are immediate.
If fhv(W ⟨t⟩) = y ̸= x then fhv(W ⟨t⟩[x�u]) = y, and so W ⟨t⟩[x�u] is ms-normal. Finally,
fhv(W ⟨t⟩) = x is impossible, because by hypothesis x does not occur in t. ◀

▶ Lemma 25. If t has no ESs and W is a weak head context not capturing variables of t

then W ⟨t⟩ is ms-normal.

Proof. By induction on W . Cases:
Empty, that is, W = ⟨·⟩. Then W ⟨t⟩ = t. The statement is given by the fact that terms
with no ESs are ms-normal (easy omitted lemma).
Application, that is W = W ′u. The statement is given by the i.h. and the stability of
ms-normal by application (easy omitted lemma).
Substitution, that is W = W ′[x�u]. By i.h., W ′⟨t⟩ is ms-normal. By hypothesis, x /∈ fv(t).
Then by Lemma 24 W ′⟨t⟩[x�u] = W ⟨t⟩ is ms-normal. ◀

▶ Proposition 26 (→ms terminates). If t is reachable then t →∗
ms u with u ms-normal.

Proof. By induction on t is reachable. Cases:
Variable and abstraction: immediate since t cannot →ms-reduce and it is ms-normal.
Application, that is t = rw: by i.h., r →∗

ms u′ with u′ ms-normal. Then rw →∗
ms u′w and

u′w is ms-normal because being ms-normal is stable by application (omitted lemma).
Substitution, that is t = r[x�w]: by i.h., r →∗

ms u′ with u′ ms-normal. Then r[x�w] →∗
ms

u′[x�w]. Case analysis of u′ ms-normal:
If u′ is an answer, a →dB-step, or fhv(u′) = y ̸= x then so is for u′[x�w].
fhv(u′) = x. Then there is a weak head context W such that maxw(u′) = W . Then
u′[x�u] →ms W ⟨u⟩[x�u]. Since W does not capture variables of u, by Lemma 25 we
have that W ⟨u⟩ is ms-normal. Since x /∈ fv(u), by Lemma 24 W ⟨u⟩[x�u] is ms-normal.
The statement holds because r[x�w] →∗

ms u′[x�w] →ms W ⟨u⟩[x�u]. ◀

Reflection of →wh Steps. We can finally prove the one-step reflection property. It rests on
the auxiliary case of reflection on ms-normal terms, which is given here without proof.

▶ Proposition 27 (ms-normal terms reflect →wh steps as →dB steps). If t is reachable,
t

→

→wh u and t is ms-normal then exists r such that t →dB r.

▶ Proposition 28 (Reflection of →wh steps). If t is reachable, t

→

→wh u then exists r and w

such that t →∗
ms r →dB w and w

→ = u.

Proof. By termination of →ms (Prop. 26), there exists r such that t →∗
ms r and r is ms-

normal. By →ms-projection (Prop. 20.2), t

→ = r

→ . We can then apply Prop. 27, obtaining
that there exists w such that r →dB w. Since r is reachable, by →dB-projection (Prop. 18)
r

→

→wh w

→ . Since →wh is deterministic (Lemma 1), u = w

→ . ◀

Summing Up. We then conclude with our second main result. In the Abella sources, point
1 is micro_to_small_simulation and point 2 is small_to_micro_simulation_no_ES.

▶ Theorem 29. Let t be reachable.
1. Micro to small steps: if t →∗

mwh u then t

→

→∗
wh u

→ .
2. Small to micro steps: if t has no ES and t →∗

wh u then there exists r such that t →∗
mwh r

and r

→ = u.

ITP 2023



5:18 Formalizing Functions as Processes

Proof. Point 1 is an easy induction on the length of t →∗
mwh u, using the projection properties

(Prop. 18 and Prop. 20). For point 2, one proves that if t is reachable and t

→

→∗
wh u then

there exists r such that t →∗
wh r and r

→ = u, by induction on the length of t

→

→∗
wh u using

the reflection property (Prop. 28). The statement follows from the fact that terms without
ES are reachable and satisfy t

→ = t. ◀

Putting it All Together? At this point, it is natural to expect that our two main results –
namely the relationships LSC/π (Theorem 17) and λ/LSC (Theorem 29) – can be composed,
obtaining a final theorem relating λ and π. This is however not possible, because the key
concept for connecting λ and the LSC is the unfolding t

→ of ESs, which has no analogous on
processes. It is exactly such a difficulty that, in presentations without ESs, forces the use of
strong bisimulation on processes to close the simulation diagram between λ and π.

At first sight, turning an ES t[x�u] into a meta-level substitution t{x�u}, which is the
operation iterated by the unfolding, corresponds on processes to a broadcast, that is, to send
JuK to all sub-processes of Jt[x�u]Ka that can perform an input on channel x, but this is
misleading because occurrences of x actually correspond to outputs, not inputs, and the
sub-process encoding [x�u] is an input, not an output.

8 Conclusions

We provide the first formalization of Milner’s translation of λ to π, by actually formalizing
Accattoli’s factorization of the translation via the linear substitution calculus. The difficulties
with names and binding are circumvented thanks to the features of the Abella proof assistant,
and by defining terms and processes over the same variables.

About future work, it would be interesting to extend our formalization to Sangiorgi’s
result relating barbed congruence in the π-calculus with his normal form bisimulation in the
λ-calculus [41]. It would also be interesting to see how to exploit the new presentation of the
rewriting rules of the π-calculus for formalizing other results of its theory.
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