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Abstract: In the rapidly evolving landscape of next-generation 6G systems, the integration of AI
functions to orchestrate network resources and meet stringent user requirements is a key focus.
Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication
systems, plays a pivotal role. Vehicular applications, representing various services, are likely to
benefit significantly from the advances of 6G technologies, enabling dynamic management infused
with inherent intelligence. However, the deployment of various DL methods in traditional vehicular
settings with specific demands and resource constraints poses challenges. The emergence of dis-
tributed computing and communication resources, such as the edge-cloud continuum and integrated
terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these
resources and simultaneously implementing diverse DL methods becomes crucial, and Network
Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable
for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-
a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of
DL algorithms. This approach allows for the effective management of heterogeneous services with
varying requirements. The proposed framework is exemplified through a detailed case study in a ve-
hicular integrated T/NTN with diverse service demands from specific regions. Performance analysis
highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement,
added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario.

Keywords: distributed learning; vehicular networks; network slicing; edge intelligence; integrated
terrestrial non-terrestrial networks

1. Introduction

Recently, Machine Learning (ML) techniques, especially those belonging to the Dis-
tributed Learning (DL) class, have gained huge popularity in dynamic wireless scenarios
such as the Internet of Vehicles (IoV) with their added advantages in terms of learning
efficiency, reliability, and data security [1]. With this, various DL methods, such as Feder-
ated Learning (FL), Multi-Agent Learning, and Collaborative Learning, are considered in
vehicular domains [2]. Additionally, various ML tools and techniques have been consid-
ered to form suitable DL methods, such as multi-agent FL, DL with model split, DL with
meta-Learning, and DL with swarm learning. In this way, a rich ecosystem of DL methods
with specific characteristics, performance, and demand is formed and made available to
serve users [3].

From a networking point of view, several new advances have recently been intro-
duced, especially with the innovations of 5G and B5G technologies. Different computing
paradigms, such as Edge/Cloud Computing, have been introduced to implement new
services and applications with better performance [4]. Technologies, such as network soft-
warization through Network Function Virtualization (NFV), Software Defined Networking
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(SDN), and Network Slicing (NS), have revolutionized the networking process and opened
the doors to a multitude of applications and services with different demands and additional
flexibility [5]. Furthermore, distributed computing and communication technologies, such
as the edge-to-cloud continuum [6], and joint Terrestrial and Non-Terrestrial Networks
(T/NTN) [7], have gained huge popularity in terms of capacity, coverage, and reliability
for serving end users.

In the realm of advanced 6G technologies for NTN and satellite–terrestrial integrated
networks, the contributions are notable as follows. Ref. [8] delves into secrecy–energy-
efficient hybrid beamforming, proposing robust schemes for single and multiple earth
stations. The authors in [9] focused on a destructive beamforming design, introducing
low-complexity schemes for known and unknown malicious reconfigurable intelligent
surfaces (RIS). Ref. [10] addresses joint beamforming for hybrid satellite–terrestrial relay
networks, optimizing power while ensuring user rate requirements. Lastly, the authors
in [11] proposed a multilayer RIS-assisted secure integrated terrestrial–aerial network
architecture, maximizing system energy efficiency and defending against attacks.

Shifting focus to broader aspects of wireless communication, some of the latest key
technologies that contribute to the applications of different 6G techniques in Intelligent
Transportation Systems (ITS) and IoV, and the vision for 6G-enabled smart cities are as
follows. Ref. [12] emphasizes cooperation between cognitive users for better cognitive radio
network performance. The authors of [13] explored the role of 3GPP in the evolution of
cellular communication, highlighting the sharing of resources in the context of the Internet
of Vehicles. Ref. [14] delves into interference in cognitive radio networks, discussing
terminologies and mitigation techniques. Finally, Ref. [15] provides a visionary perspective
on 6G-enabled Internet of Things (IoT) networks for sustainable smart cities, incorporating
artificial intelligence, machine learning, and novel architectures.

These technologies, along with different ML methods, are creating a new paradigm,
known as Edge Intelligence, to enable distributed near-user intelligent wireless networks
in different domains [16]. However, there are still some gaps between the potential of these
innovative technologies and their possible uses to create a safe, reliable, and intelligent
vehicular system. When focusing on the IoV scenario, users demand an increased number
of services, each tailored to specific requirements [17]. For example, autonomous driving
may require huge data processing and low latency, while infotainment applications may
require ultra-broadband connections. The need to cope with several applications has
a large impact on the need to create an intelligence-at-the-edge environment that can
adapt to varying demands and different requirements proactively. To this end, NS is a
perfect tool, enabling the possibility of logically managing network resources from both
the communication and processing points of view, thus the possibility of providing several
services in a flexible way at the same time [18].

In this environment, we focus on the proposed framework, where different DL algo-
rithms, each tailored to specific requirements, can be deployed, allowing the possibility of
managing heterogeneous intelligent services simultaneously. Although in the landscape of
advanced 6G technologies for integrated T/NTN the literature highlights advancements, a
comprehensive integration of DL techniques with NS in the IoV context is underexplored.
Our motivation stems from the identified gaps in recent works, leading us to propose a
DL-as-a-Service (DLaaS) framework for vehicular environments within 6G NTN scenarios.
The existing literature focuses on specific aspects, but a holistic framework that seamlessly
integrates DL, NS, and distributed computing/communication methods for proactive
delivery of intelligent services is missing.

Our main contributions include:

• Comprehensive Analysis: We conduct an in-depth exploration of key technolog-
ical innovations and various DL methods, laying the groundwork for subsequent
developments.
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• DLaaS Framework: We introduce an innovative DLaaS framework, representing a
paradigm shift that seamlessly integrates DL, NS, and distributed computing/communication
methods.

• Adaptation for IoV: We elucidate the adaptation of the framework specifically
for IoV applications, revealing its potential in shaping the future of intelligent
vehicular networks.

• Case Study and Performance Analysis: We provide a detailed case study and perfor-
mance analysis, offering empirical evidence of the efficacy and practical implications
of DLaaS in real-world scenarios.

Finally, we will see that our proposed DLaaS approach offers advantages in terms of en-
hanced performance, flexibility, scalability, and intelligence, thus addressing the identified
gaps and contributing to the evolution of intelligent vehicular communication systems.

To elaborate more on our proposal, Section 2 delves into a meticulous analysis of key
technological innovations alongside various DL methods, laying the foundation for our
subsequent developments. Section 3 introduce the innovative DLaaS framework. This
framework represents a paradigm shift that seamlessly integrates DL, NS, and distributed
computing/communication methods. Integration empowers the proactive delivery of intel-
ligent services to users, fostering a dynamic environment that caters to diverse and evolving
requirements. Furthermore, we elucidate the adaptation of this framework specifically
for IoV applications, unveiling its potential in shaping the future of intelligent vehicular
networks. This section also provides a nuanced examination of both the challenges and
advantages associated with the DLaaS framework. The culmination of our exploration
is presented in Section 4, where we present a detailed case study accompanied by a per-
formance analysis. This case study serves as a tangible demonstration that illustrates
the advantages that the DLaaS approach offers in terms of flexibility, performance en-
hancement, and infusion of added intelligence into vehicular communication systems.
Through this detailed study, we not only contribute to the theoretical framework but
also provide empirical evidence of the efficacy and practical implications of DLaaS in
real-world scenarios.

2. IoV Distributed Intelligence
2.1. Edge/Cloud Computing

Cloud-based infrastructures with abundant resources to meet end-user requirements
were one of the popular solutions in the early part of the last decade. However, over time,
several issues occurred when considering cloud-based infrastructures to compute end-user
data. Longer transmission distances and the corresponding communication costs, data
security threats, and backhaul congestion were among the main issues that reduced the
impact of cloud technology over time. Furthermore, with the new advanced technologies,
such as 5G, new services with limited latency and high data rate requirements were enabled,
further placing additional burdens on cloud facilities. However, with new technologies, the
end devices also evolved to have powerful on-board computation capabilities, and with
that, abundant computation power distributed over the network area was added. This
gives birth to Fog/Edge computing technologies, bringing cloud computing facilities closer
to end users [19]. Over the years, edge computing has achieved great success in terms of
providing end users with high-quality services with limited latency [20].

Although edge computing has solved some of the cloud computing problems, its size
limitations place additional restrictions on the computation, communication, and storage
resources of edge facilities [21]. In recent times, as we move toward 6G, it has been seen that
edge computing facilities are overwhelmed, and new solutions are required to fulfill the
demands of new services. With this, different distributed networking infrastructures, such
as the edge-cloud continuum and the Integrated T/NTN infrastructure, are considered and
expected to play an essential role in the near future IoV scenarios [7,22]. These distributed
networking infrastructures can have large sets of diverse networking nodes with on-board
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computing/storage resources. Furthermore, with different communication technologies,
these devices can communicate effectively with each other and with end users. Thus, a
huge amount of distributed computing and communication power is available for the
implementation of DL methods in such distributed networking infrastructures.

2.2. Network Slicing

Network softwarization is an important emerging trend in 5G and B5G-based network-
ing systems aimed at creating a flexible network architecture with a reduced time to market
for new services. NS is one of the major enabling technologies of the network softwarization
realm allowing one to support diverse sets of services. NS has been introduced in the
context of 5G, allowing mobile operators to create and customize their networks to provide
optimized solutions for different market scenarios with diverse requirements [5]. Among
others, Automation, Isolation, Customization, Elasticity, Programmability, End-to-End, and
Hierarchical abstraction are the main principles of NS technology. NS provides dynamic
resource management by enabling efficient resource sharing by considering various key
performance indicators (KPIs) for each slice. NFV and SDN are two of the main tech-
nologies that enable NS over a common networking infrastructure. With NFV, network
functions can be decoupled from proprietary hardware and run as software instances over
virtualized environments, allowing them to overcome the lack of flexibility of traditional
hardware-based network functions. On the other hand, SDN can help to create a fully
softwarized wireless network by logically separating the data and control plane.

Recently, the vehicular community has shown great interest in NS technology for
providing emerging services with complex structures to end users in a limited time [23].
Thus, the implementation of vehicular services over a distributed Vehicular Network (VN)
through the deployment of several logical slices is gaining importance. Within this scenario,
DL is a fundamental element required to support advanced IoV services. In the context
of the DL ecosystem, a set of functions with different interdependencies is required to be
executed. For example, in the case of centralized FL, functions such as data acquisition,
data cleaning, hyperparameter settings, learning technique selection, data training, the
transmission of learning data from devices to servers, data processing at the server, the
averaging process performed by the server, and broadcasting of global model data from
the server to devices are required to be implemented for completing one single learning
iteration. Different forms of FL with advanced learning tools and technologies (i.e., FL with
transfer learning) can require additional sets of functions. Several of these functions can
be implemented as virtualized learning functions on network infrastructures. With the
availability of distributed computing and communication infrastructures, such as the edge-
cloud continuum and integrated T/NTN, along with virtualization technologies, these
learning functions can be implemented at different locations based on their characteristics
and requirements.

2.3. Overview of Distributed Learning Methods

In this part, we will discuss the fundamental structures and the distinctions between
centralized learning and various distributed learning approaches, which are illustrated in
Table 1. For more explanation, see [3,24].

Centralized Learning (CL): In the case of Centralized Learning (CL), a set of dis-
tributed wireless nodes (e.g., vehicles) needs to communicate their collected local datasets
over an unreliable communication channel to the centralized entities (i.e., base stations,
clouds, etc.) for the ML model training. This process often results in higher data transmis-
sion costs, training latency, data security issues, etc. In the case of resource-constrained
nodes, such as the IoV scenario, these issues become more critical. For this reason, DL is
preferred to latency-critical VNs to perform various learning tasks.
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Table 1. Advantages, challenges, conditions and KPIs for different learning paradigms.

Learning Method Advantages Challenges Conditions KPIs

Centralized Learning (CL)

• Able to train complex ML models
• Better performance for non-convex

applications
• Less impact of communication link

imperfections on training

• Sharing private data with a central-
ized controller

• Significant transmission overhead
for data collection

• Difficulty of implementation for
edge devices with limited resources
and energy

• Additional delays brought on by
far-reaching transmission to a cen-
tralized server

• Devices’ readiness to share their
private data

• Possibility of devices to transmit
data

• Tasks with relaxed latency require-
ments

• ML models with complex Training
Process

• Delay: High
• Privacy: Low
• Mobility: Low
• Processing: High

Federated Learning (FL)

• Elevated Sensitive Data Privacy
• Learning a common ML model in

a distributed way
• Training ML models at the

edge/device level

• Heterogeneous nodes with differ-
ent amounts of data

• Third-party attacks on parameter
server (single point of failure)

• Unreliable Communication Envi-
ronments between devices and
server

• Large communication overhead
proportional to the number of pa-
rameters and/or training iterations

• Reliable communication between
nodes and parameter servers

• Training tasks with limited com-
plexity ML models

• End devices capability to train ML
model locally

• Delay: Medium
• Privacy: Medium
• Mobility: Low
• Processing: Medium

Collaborative Federated Learning (CFL)

• Elevated Sensitive Data Privacy
• Capability to include more training

data
• Scalability to large-scale systems

• Impact of transmission inefficiency
on training

• Lower convergence rate when com-
pared to FL

• Difference in convergence and ac-
curacy of different devices’ model

• Reliable communication links be-
tween devices

• Ability of devices to
train/aggregate the local/received
ML

• Delay: Low
• Privacy: Low
• Mobility: Medium
• Processing: Medium

Group ADMM (GADMM) • Competition of only half of the
devices at every communication
round

• Limiting communication to the two
neighbouring devices

• Reduced communication energy

• High communication payload
• Limited scalability
• Hampering the exchange of DNN

parameters, especially when com-
munication resources are limited

• Stable connections in high dynam-
icity environments

• Limited coverage of nodes
• Abundant communication and

computation resources

• Delay: Low
• Privacy: Low
• Mobility: High
• Processing: Low
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Table 1. Cont.

Learning Method Advantages Challenges Conditions KPIs

Federated Distillation (FD)
• Less communication burden due to

only exchanging the models’ out-
puts

• Suitable for limited wireless re-
sources

• Capable of coping with heteroge-
neous models

• Extensibility to an RL application
by averaging operations across
neighbouring states

Vulnerable to the problem of non-IID
data distributions

• All the devices should have the
same output task

• Having IID data distribution

• Delay: Medium
• Privacy: Medium
• Mobility: Low
• Processing: Medium

Split Learning (SL)

• Fitting large-sized DNN into edge
devices’ small memory by divid-
ing a single NN into multiple seg-
ments and distributing the lower
segments across multiple workers

• Robustness against non-IID data
distributions

• Less communication efficiency be-
cause of instantaneous exchanging
model updates in feedforward and
backward propagation

• Dependency of communication
cost on the NN architecture and
how to cut the layers

• Stable communication link be-
tween associated vehicular edge de-
vices

• Determining how to cut layers and
NN structure based on the vehicu-
lar scenario

• Delay: Medium
• Privacy: High
• Mobility: Low
• Processing: High

Multiagent Reinforcement
Learning (MARL)

• Capabilities of both exploration
and exploitation

• Agents can learn the dynamics of
the environment and adapt their
strategies through the experience
obtained from their interactions
with the environment and other
agents

• Not guaranteeing the equilibrium
of the constituted policies of indi-
vidual agents

• Requiring additional communica-
tion to guarantee the convergence

• Stable communication link be-
tween users and the learning envi-
ronment

• Being assured of the convergence
to the equilibrium

• Enough communication resources
available

• Delay: High
• Privacy: Low
• Mobility: Medium
• Processing: High

Transfer Learning (TL)

• Improved quality and quantity of
training data

• Increased learning rate
• Less computational demands
• Less communication overhead
• Preserved data privacy

• Determining source task
• Specifying what to transfer
• Determining the TL parameters
• Choosing an appropriate number

of layers for fine-tuning

• Existence of past experience avail-
able for all the devices

• Availability of current/online data
• Having enough memory to store

past knowledge/experience

• Delay: Low
• Privacy: Medium
• Mobility: Low
• Processing: High
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In the following, the main DL methods are discussed in terms of characteristics,
requirements and suitability to solve vehicular problems [25], where the main difference
in DL versus CL is due to the fact that the ML model is trained at different locations and
proper information exchange is performed among nodes.

Federated Learning (FL): FL is one of the most widely used DL techniques, where
wireless nodes perform distributed training operations with the help of a centralized
parameter server. The FL process includes two main steps. First, devices with their
local datasets perform the model training operation and communicate parameter updates
to a server without the need to share their sensitive raw data. In the second step, the
parameter server collects and aggregates the model updates from all devices to create
a global learning model that has the benefit of aggregated training experiences from all
devices. This global model is then used again by the nodes in the next FL iteration, allowing
them to learn from the other devices’ training experiences. It is especially helpful in IoV,
where FL enables collaborative model training while respecting individual data ownership
and security [26]. In some situations, the traditional centralized FL is not convenient
and further optimization is needed. For this reason, in the recent past, different forms
of FL have been proposed, especially to optimize FL performance according to learning
environments [27]. Hierarchical FL with FL process distributed over several layers of edge
devices [28], Federated Distillation (FD) [29], FL with transfer learning and FL with split
learning [30] are examples of updated FL-based techniques.

Collaborative Federated Learning (CFL): In reality, devices may not be able to connect
to the central node due to energy constraints or possibly high transmission latency. To
address this issue and make FL more accessible in real-world scenarios, the concept of CFL
has been introduced, which allows vehicles to participate in FL without communicating
with the central unit [31]. Devices that cannot connect directly to the central node can
interact with adjacent vehicles. In this paradigm, each device can be connected to its nearest
vehicle. This learning method is also trained iteratively. First, each device sends its trained
local FL model to its connected devices or to the central node. The central node then
produces the global FL model and sends it to the corresponding devices. Finally, each
device changes its local FL model depending on the FL parameters received from other
devices or the BS. In FL, each device may train its local FL model using gradient descent
(GD) techniques, while the BS aggregates the local FL models. In CFL, however, each device
must both aggregate the local FL models received from other devices and train its own
local FL model.

With the presence of high-quality computation hardware such as multi-core Central
Processing Units (CPUs), Graphical Processing Units (GPUs), and Tensor Processing Units
(TPUs), vehicular nodes can themselves train the learning models without the need for
parameter servers. In some cases, with reduced mobility, and through V2X technology,
vehicular nodes can collaborate to solve learning tasks. Such a CFL approach can be highly
efficient in terms of training. Without the presence of a third party in the learning process,
this can also further strengthen vehicular data security and improve model convergence and
efficiency, making it applicable to IoV scenarios with diverse and dynamic data sources [32].

Federated Distillation (FD): FD leverages outputs from models rather than the pa-
rameters in FL. Since the output dimensions are significantly smaller than the model sizes,
it is much more communication efficient [29]. For example, each device in a classification
task performs local iterations while saving the average model output for each class. These
local average outputs, which aggregate and average the local average output among agents
in each class, are sent to the central node regularly. Each device downloads the results
that constitute the resultant global average. Finally, each agent runs local iterations with
their loss function in addition to a regularizer that measures the difference between its
prediction output of a training sample and the global average output for the given class
of the sample, which is called knowledge distillation (KD), to translate the downloaded
global knowledge into local models. FD can also be beneficial in IoV to improve model
performance in a network of vehicles [33].
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Group alternate direction method of multipliers (GADMM): The FL central node
may not be able to communicate with remote edge devices. It can also be vulnerable to
failure or act as a single point of attack. To this aim, GADMM intends to provide distributed
learning without a central entity by using the alternate direction method of multipliers
(ADMM) technique and interacting exclusively with surrounding devices by splitting the
devices into head and tail groups. Only two devices from the tail/head group are selected
and create a chain, with each device from the head or tail group exchanging variables.
With GADMM, only half of the agents compete for the restricted bandwidth during each
communication cycle. Furthermore, by restricting communication to two nearby agents,
the communication energy may be greatly reduced [34]. In IoV, GADMM can be used for
collaborative decision making, traffic flow optimization, or other distributed tasks, such as
energy-efficient resource allocation [35].

Split Learning (SL): SL is a technique that allows resource-limited wireless devices to
train complex models such as Deep Neural Networks (DNN). During the DNN training
process, the model can be split vertically or horizontally, allowing multiple nodes to train a
portion of the model with limited data samples and training latency. SL combined with
different forms of DL can be useful in dynamic vehicular settings for producing reliable
complex learning models. Moreover, since SL does not exchange raw data, data privacy
is somewhat maintained [30]. This approach is particularly relevant for IoV applications
where model inference can occur locally on vehicles.

Multi-Agent Reinforcement Learning (MARL): When environmental dynamics in-
fluence agents’ decisions, they must learn about these dynamics and adjust their methods
based on experience gained via agent-to-environment and agent-to-agent interactions. In
this regard, Reinforcement Learning (RL) with exploration and exploitation abilities is
critical. Exploring in RL allows agents to understand the dependencies of their decisions
on the environment and other agents (policy) and on the consequences (value), which
may then be used to improve long-term rewards. Even in single-agent instances, the data
necessary to understand policy and value might be dispersed over several agents acting as
helpers. FL, FD, and GADMM can improve learning policies and value over distributed
helpers despite communication and privacy constraints. Within the MARL paradigm, the
interactions of several agents in the same environment while making decisions based on
local observations are investigated [36]. MARL is classified into centralized/decentralized
and cooperative/competitive frameworks based on the presence of a central controller and
the sorts of interactions. Centralized MARL frameworks assume a central controller that
learns decision-making rules by gathering all agents’ experiences, which include observed
states, actions taken, and rewards received. Exchanging such information may use a signifi-
cant amount of communication and memory resources, while jeopardizing data privacy.
Decentralized MARL without a central controller does not have these disadvantages, but it
does not ensure individual agents’ convergence to equilibrium policies, even in cooperative
MARL where all workers aim for the same objective. In IoV, MARL can be applied to edge
caching [37], cooperative navigation [38], traffic optimization [39], and other scenarios in
which vehicles interact with each other.

Transfer Learning (TL): With the involved dynamicity, resource limitations, and
latency constraints, performing full-scale model training is not always feasible in vehicular
environments. To this end, TL can be very useful for performing model training. In the case
of TL, learning agents can utilize past learning experiences through knowledge transfer (KT)
to perform new learning tasks. TL approaches can increase the convergence rate, minimize
reliance on labeled data, and improve the robustness of machine learning techniques in
different vehicle settings [40]. There are various forms of TL based on KT strategies. For
example, the experiences gathered in terms of learning data, e.g., data features and learning
data scope, can be transferred for efficient learning of target tasks. On the other hand,
knowledge depending on a trained model, for example, the structure and parameters of
the model, can also be shared with a target task to improve training performance [41].
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The advantages, challenges, conditions, and Key Performance Indicators (KPIs) of
these fundamental structures are illustrated in Table 1 in order to distinguish them in
different applications. The main KPIs, which are used later in the case study section,
including delay, preserved privacy, mobility of handled vehicles, and gained processing
capability, are ranked in the last column of the table.

2.4. Intelligence at the Edge for IoV
2.4.1. Applications

The fusion of IoT and Artificial Intelligence (AI), known as AIoT, is transforming
IoV to improve road safety, efficiency, and mitigate traffic issues [42]. The IoV landscape
comprises three main categories: Autonomous Driving (AD), Safe Driving Monitoring
Systems, and Cooperative Vehicle Infrastructure Systems (CVIS).

Autonomous Driving: To address the challenges of massive data generation (i.e.,
4000 TB per day) and the need for real-time decision making, edge computing emerges
as a viable solution [43]. AD signifies a shift toward intelligent vehicles capable of AI-
driven decision making. Edge computing, exemplified by vehicles such as HydraOne [44]
and HydraMini [45], addresses the challenges of massive data generation and allows
real-time decision making in critical scenarios. Furthermore, edge-based systems such as
EdgeDrive improve safety through real-time Advanced Driver Assistance Systems (ADAS)
applications [46].

Safe Driving Monitoring Systems: Driver monitoring systems, crucial for safe driving,
combat issues such as drowsiness. In [47], a Raspberry Pi 3-based system was implemented
that uses a DL algorithm for real-time alerts by analyzing facial features captured in both
day- and night-drive scenarios.

Cooperative Vehicle Infrastructure Systems: CVISs establish real-time road informa-
tion networks by connecting vehicles, pedestrians, and infrastructure. Using distributed
infrastructure, including vehicles, base stations (BSs), and roadside units (RSUs), edge
computing reduces transmission delays for timely communication. In [48], the authors
proposed a you only look once (YOLO) DL model for car accident detection (YOLO-CA)
system that uses 5G networks detects accidents promptly, using the CAD-CVIS dataset for
improved accuracy.

In conclusion, the integration of edge intelligence into IoV brings notable advances in
AD, safe driving monitoring, and CVIS, addressing data challenges and fostering coopera-
tive systems for improved road safety and traffic management. The reviewed literature
emphasizes the transformative impact of AI at the edge in the IoV landscape.

2.4.2. Aspects and Advantages

Intelligence at the edge in the context of the IoV refers to the deployment of compu-
tational and analytical capabilities directly within the vehicles or at the network’s edge,
rather than relying solely on centralized cloud-based processing. In IoV applications, as
mentioned above, the need for real-time decision-making, decreased latency, increased
efficiency, and improved privacy is what motivates this strategy. Here are key aspects and
advantages related to intelligence-at-the-edge in IoV:

1. Real-time Decision-Making: By embedding intelligence at the edge, vehicles can
make local, real-time decisions without relying on a centralized cloud server. This
is critical for applications such as emergency braking and collision avoidance that
require quick reactions [49].

2. Reduced Latency: Edge computing minimizes the delay in processing the data, since
computations occur closer to the source of the data. This is particularly crucial in the
IoV, where accurate and timely responses to dynamic traffic conditions depend on
low-latency communication [50].

3. Bandwidth Efficiency: Processing data at the edge reduces the need to transmit large
amounts of raw data to a central server for analysis. Instead, only relevant or summa-
rized information can be sent, optimizing bandwidth usage in IoV networks [51].
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4. Enhanced Privacy and Security: Edge intelligence allows data processing to occur
locally, addressing concerns related to privacy and security. Sensitive information can
be processed within the vehicle, minimizing the exposure of personal data to external
networks [52].

5. Distributed Computing: Edge computing in IoV involves a distributed computing
paradigm where intelligence is distributed across vehicles and road infrastructure.
This decentralized approach enables collaborative decision-making and more efficient
utilization of resources [53].

6. Scalability: Edge computing supports scalability in IoV applications. As the number
of connected vehicles increases, edge devices can handle processing tasks locally,
preventing bottlenecks on centralized cloud servers [54].

7. Adaptive learning: Intelligent edge devices can employ machine learning algorithms
to adapt and improve their performance based on the data they process. This adapt-
ability is valuable in IoV scenarios where traffic patterns and conditions can change
dynamically [55].

8. Offline operation: Edge intelligence allows vehicles to perform certain tasks even
when not connected to the central network. This offline operation is beneficial in
scenarios where network connectivity may be intermittent or unavailable [56].

In summary, deploying intelligence at the edge in IoV applications offers the above-
mentioned advantages. This approach aligns with the dynamic and distributed nature of
IoV, which contributes to more efficient and responsive connected vehicle systems.

3. Network Sliced Distributed Learning

As introduced, DL is a promising technology for designing intelligent vehicular
networking systems. However, mapping different DL functions for different IoV services
and requirements represents a challenge. We propose here a DLaaS concept that allows the
implementation of multiple DL operations over the distributed VN through the deployment
of specific learning slices, where each DL method can be seen as the composition of multiple
virtual functions.

3.1. End-to-End Functional Decomposition of DL

As described in the previous section, different DL methods can be characterized by
different sets of functions that must be implemented in distributed networks to have the
proper benefits. Thus, each DL approach can be implemented as a set of functions coor-
dinated through a chain characterized by functional dependencies. For this, an adequate
functional decomposition providing a set of typical DL functions is needed. After having
discussed the different learning techniques in distributed environments, here we propose a
set of possible learning functions that are needed for implementing various DL methods:

• Data Acquisition Function (DAF): Generally, distributed training operations involve
several learning devices collaboratively performing the learning process. In the case
of vehicular scenarios, this can be geographically distributed sets of vehicles moving
across road networks. For the case of DL, learning devices need their own datasets
to perform the training process, which can be collected through a data acquisition
mechanism that involves a set of sensory nodes, processing devices, and data collection
devices. The process that allows the composition of the learning dataset can be defined
through a typical data acquisition function. Note that such functions can only be
implemented on nodes/devices with typical hardware settings. With new vehicular
nodes equipped with several sensory nodes, they can collect large amounts of data
samples over time through DAF that can be exploited for a successful implementation
of DL.

• Data Preprocessing Function (DPrF): In general, the learning data acquired through
DAF can be in different formats, e.g., texts, images, videos, etc. Based on the learning
tasks, the selected learning method, and their requirements, these data need to be
pre-processed in a typical form. This can be achieved through learning data prepro-



J. Sens. Actuator Netw. 2024, 13, 14 11 of 24

cessing methods implemented through a Data Preprocessing Function (DPrF). This
function can have methods for data cleaning, data dimensionality reduction, data
normalization, etc. DPrF function can help reduce the overall size of the original
datasets, and thus reduce the communication overhead for some typical DL methods
where data parallelization techniques involving learning data transfer are needed.
Thus, preferably, this function needs to be implemented alongside the DAF function
to avoid possible communication overheads.

• Distributed Learning Function (DLF): In DL frameworks, the learning process can
be performed on different nodes, e.g., end devices or edge nodes, according to the
learning frameworks adopted. The end devices can do the learning process themselves
for some simplified learning tasks. In some cases, collaborative learning frameworks
can be adopted for complex learning models such as DNN, allowing different devices
to collaboratively train the models (e.g., through different model split techniques).
In another case, a data parallelism approach can be adopted, allowing struggling
end devices with limited computational resources to send their data to the nearby
devices/edge nodes to complete the training process in time. Therefore, a distributed
learning function (DLF) is needed that adopts the selected learning strategy for the suc-
cessful implementation of DL. Typical learning steps, such as learning model selection,
hyperparameter settings, stochastic gradient descent (SGD), and backpropagation,
can be part of a holistic DLF that can be implemented on distributed nodes.

• Data Post Processing function (DPsF): In a typical DL process, after performing the
learning steps through DLF, the parameter updates must be sent to the parameter
server or other learning nodes based on the adopted learning strategy. Often, data
processing is needed to avoid communication overhead, limit data security risks, and
add the appropriate weighting coefficients to the learning process results. This method
can be implemented through a Data Post Processing Function (DPsF) that processes
the learned data before its transmission to the outside world.

• Data Collection Function (DCF): In each DL cycle, parameter servers are required
to collect learning updates from the devices and create a global update that can be
used for the next round of communication. The data received by the servers may
have additional information, encryption, noise, etc., and are required to be processed
before taking into account the global model update. The Data Collection Function
(DCF) includes the steps to collect data from learning devices and prepare them for
the global update to be performed.

• Global Model Update Function (GMUF): The Global Model Update Function (GMUF)
performs the updates of the learning model based on learning data. The DCF function
results are further processed with some mechanisms, i.e., the averaging process for
creating a global model. These model parameters are sent back to the devices or upper
layers for further processing. GMUF function can have methods for generating, pre-
processing, and transmitting global model parameters over different distributed nodes.

• Distributed Model Inference Function (DMIF): Model inference is an important
step that must be considered for the successful implementation of AI applications
based on DL. End users can adopt various forms of inference mechanism for the
successful implementation of DL applications based on resource availability and appli-
cation requirements. These methods and processes can be included in the Distributed
Model Inference Function (DMIF). Based on resource availability and application
performance requirements, different model inference strategies can be adopted. If
a model in question is simple and requires limited computations, inference can be
performed on the device itself, increasing the data security. However, in the case
where the model requires a large number of parameters with a large computation cost,
inference operations can be performed at edge or cloud layers. In some cases, joint
strategies (e.g., device-edge, device-edge-cloud) can also be adopted with model-split
operations. This creates different possible deployment options for the DMIF function.
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This set of functions can be used to implement various DL methods in the IoV scenario
using the NS principle, aiming to logically deploy multiple intelligent services at the
same time.

3.2. DL-as-a-Service for IoV Applications
3.2.1. Proposed Methods

The IoV scenario considered is implemented through an integrated T/NTN equipped
with edge computing platforms. Different networking nodes, such as Road Side Units
(RSUs), Low-Altitude Platforms (LAPs), High-Altitude Platforms (HAPs), and Satellite
nodes, are distributed throughout the service area. The system is able to take advantage
of different DL methods to cope with the requirements of heterogeneous users. Since
the scenario considered includes a massive amount of computation, communication, and
storage resources distributed over the ground, air, and space networks, these resources can
be utilized to create an intelligent VN through proper deployment of required DL methods,
where each network device is able to host the virtual functions enabling the different DL
execution. In such a system, a slice-based approach is considered, where each slice is
a logical entity that enables the interconnection of different functions to build a specific
DL method.

Without loss of generality, in Figure 1, four DL methods implemented in the form of
slices are represented. The first slice aims to deliver an FL service performed on different
layers of edge devices. In particular, end devices have their datasets to perform the learning
process. For this, the DAF, DPrF, and DLF functions are deployed on a VU layer to enable
the learning process. The learned parameters are then transmitted to nearby edge nodes
(i.e., RSUs) through DPsF, limiting communication costs. The RSU node then collects the
data from the VUs and performs the aggregation operations, for which DCF and GMUF
are placed over it. The GMUF results are then transferred to the upper layer, where
appropriate functions are present. The second slice aims to deliver DL with collaborative
learning frameworks. The learning part is performed collaboratively over the user devices,
and appropriate learning functions are placed over the VUs cloud. The upper layers are
used to create a generalized global model by aggregating the local models. The third
slice is for the case of split learning, where a data parallelization technique is adapted to
split the learning process over the device and edge layers. Thus, learning functions are
implemented both on the device and on the edge layer. Additionally, the HAP layer is used
to create a global model. For latency-critical applications, a transfer learning-based DL slice
can be considered, where past learning experiences are integrated into current learning
cycles to limit the learning process costs. The learning process is distributed over different
edge layers.

Figure 2 shows a more detailed view of the DLaaS concept, where the virtual learning
functions of a single slice are reported. A multi-layer FL is considered representative,
involving data collection and learning at the VU nodes, local/intermediate model updates
collections and processing, i.e., averaging at the intermediate layers of RSUs, LAPs, HAPs,
satellites, and model inference operation at VUs.

3.2.2. DLaaS Advantages

The proposed DLaaS approach introduces several advantages in terms of performance
enhancement, flexibility, scalability, and intelligence. With the presence of multiple DL
slices, the IoV system has better performance in terms of latency, energy costs, and overall
learning performance. DLaaS allows different DL functions to be implemented on dis-
tributed platforms according to their specific requirements, local network conditions, and
resource availability. This can improve performance by allowing several users/devices to
participate in the learning process efficiently. Implementing various DL methods as slices
on distributed computing platforms can provide additional flexibility in terms of resource
sharing and slice function deployments. The NS approach also allows for better scalability,
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as it can enable a higher number of DL methods. This approach can also boost vehicle
intelligence through the deployment of several possible DL slices simultaneously.

Figure 1. Distributed learning as a service over NS for IoV applications.

Figure 2. Multi-layer Federated Learning as a slice for IoV scenarios.

3.2.3. DLaaS Challenges

Though the proposed DLaaS method can have many advantages, several challenges
must be considered while performing slice function deployments. These challenges
can be based on application requirements, user-side demands, network restrictions, etc.
The following key challenges should be considered in the proposed DLaaS method for
proper benefits.

Learning Function placement: The DL functions can have specific requirements in
terms of communication, computation, storage resources, and hardware dependencies.
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When placing the functions, it is also important to take into account the functional depen-
dencies to avoid excess costs; for example, DPrF and DAF should be placed together to
avoid the communication burden. The mobility of VUs, application requirements, and
limited edge resources can add additional challenges. Thus, several of these issues can
make the placement of the slice functions quite challenging, and improper placement of
the functions can lead to an inefficient learning environment.

Network Resource Allocations: Learning slices can be data-intensive, computation-
intensive, or communication-intensive based on their higher demands for storage, com-
puting, and communication resources, respectively. Edge nodes can have a limited set of
available resources that can change over time with various demands. Additionally, each
node may host several learning functions from different DL slices. Additional constraints,
such as mobility, unstable communication environments, and application requirements,
can make the network resource allocation problem quite challenging.

Multi-slice Implementations with Specific Demands: DL slices are characterized
by different function chains, requirements, etc., and implementing them over a common
infrastructure can be challenging. Each slice can have an impact on other slices’ performance
as a result of resource sharing. Multiple communication links enabled through a different
set of slices can increase issues like noise, interference, etc.

Security Threats: Due to the presence of multiple DL slices with different user groups,
the overall threat to data security can be elevated. Some slices/users can be more vulnerable
to outside attacks and can end up impacting and compromising the security of other
learning processes.

High-Speed Distributed Computing and Communication Environment: The chal-
lenge of resource management in a high-speed distributed computing and communication
environment is crucial for the efficient functioning of the DLaaS framework. As vehicular
networks operate in dynamic and high-speed environments, ensuring optimal resource
allocation for fast-paced distributed computing becomes a significant challenge [57]. The
need to manage resources such as computation, communication, and storage in real-time,
considering the rapid movement of vehicles and the evolving nature of network conditions,
adds complexity to the DLaaS implementation.

Thus, several of these challenges need to be properly addressed in order to
have the additional benefits of DL as a Slice concept over a distributed vehicular net-
working environment.

3.3. DLaaS Architecture for IoV

Different IoV parameters, such as VUs’ geographical positions, speed, edge node den-
sities, application requirements, etc., can impact the VUs’ demands for one of the available
DL slices. Here, in Figure 3, we consider a case study of realistic IoV scenarios with different
slice demands. A centralized orchestrator/manager considers the scenario requirements
where, thanks to specific DL slice descriptors, is able to deploy the Learning Functions
to the different nodes. To this aim, proper descriptions of T/NTN layers are considered,
where specific communications and computing capabilities are mapped. When assigning
DL slices to the different VUs, they can be considered logically organized in clusters, where
each cluster is characterized by specific applications, environmental conditions, and/or
vehicular characteristics.

As can be seen in Table 1, different DL algorithms can behave differently and, therefore,
their selection depends on the selected IoV application, environmental conditions and
characteristics of the IoV scenario, among others. For example, when using CFL, we must
ensure that latency is not a critical factor, but we must also have a physical configuration
that allows communication between nearby devices. To demonstrate the best approach,
in Figure 3, we set up a configuration of vehicles, RSUs, LAPs, HAPs, and satellites
with different physical conditions based on the three qualitative vehicle speed levels,
vehicle/edge density and scenario dynamicity.
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Figure 3. Slice and DL Function Deployment for regions with different IoV characteristics.

Different application requirements, i.e., latency, privacy, and reliability, can dictate
the choice of the DL slice along with the local environmental parameters. The orchestrator
node must consider all these parameters and requirements before assigning the DL slices to
the users. This approach can improve the performance of the DL in terms of model training
costs, reliability, and user satisfaction.

In Figure 3, Region 1 represents an area where a large group of VUs is moving
slowly (e.g., city centers, ring roads, traffic hotspots in the city). In addition, the area is
covered with a moderate number of edge nodes on the ground and in space, providing
distributed computing/communication services. In such scenarios, VUs collaboration
needs to be exploited for efficient DL processes. To this end, collaborative FL or SL can be
the best choice.

Region 2 highlights a road scenario with typical road environments (i.e., highways)
having a limited number of edge nodes, to provide server VUs with steady speed. In such
cases, the density of VUs will be limited, and collaborative learning might be challenging.
Furthermore, with the limited number of edge nodes, advanced learning techniques, such
as hierarchical FL, might not be feasible. However, with low edge node densities, only a
few VUs might be able to connect to the servers. Such scenarios can be adequate to explain
the benefits of GADMM-based DL.

Region 3 lacks terrestrial/aerial edge nodes and stable connections between users
due to challenging physical conditions (i.e., dense forests, and hillsides). Such cases can
motivate the use of FL for privacy-preserving applications.

Region 4 shows extremely good road conditions with high-speed VUs. Frequent
handovers, limited training data, and unstable channel conditions can be some of the main
concerns in these regions. In such cases, advanced learning methods, such as TL, can
be ideal.

Region 5 is similar to Region 2 with additional edge nodes. Such a high density of edge
nodes can enable multilayer FL with hierarchical learning methods or MARL to improve
latency and user data privacy. Additionally, collaborative learning between proximal edge
nodes and VUs can also be available for strugglers, allowing more users to participate in
DL training.

Note that, although Figure 3 shows only one case of each IoV scenario, such conditions
can be replicated throughout the service areas, and thus the orchestrator needs to consider
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the different groups of users simultaneously while assigning the slices. However, the
scenarios are not limited to those stated and one may stumble upon a combination of the
physical conditions illustrated in Figure 3. In general, we can use TL and GADMM for
latency-critical tasks, SL and Hierarchical Learning for computationally intensive tasks,
and FD and CFL for those that require privacy preservation. Subsequently, we can dedicate
a slice to the scenario based on the conditions and applications the user demands. Note
that the same physical infrastructure node (e.g., satellite) can be used for multiple logical
slices at the same time.

4. Case Study
4.1. Scenario Description

The introduced DLaaS framework holds considerable potential in enhancing perfor-
mance, bolstering flexibility, ensuring scalability, and fostering heightened intelligence
within VNs. This study conducts a rigorous evaluation of the efficacy of the DLaaS concept
in a resource-constrained Internet of Vehicles (IoV) scenario, depicted in Figure 3, within
the Matlab environment. Assessment focuses on discerning performance improvements
relative to conventional approaches. In this scenario, VUs are spatially distributed through-
out a service area, seeking various DL slices aligned with their localized environmental
conditions and application requirements. Five distinct regions are considered, each express-
ing a demand for a unique set of five DL slice types. As elucidated in the preceding section,
the slice allocation encompasses SL for Region 1, GADMM for Region 2, FD for Region 3,
TL for Region 4, and Multilayer FL for Region 5.

4.2. Function Deployment

Each requested DL slice is modeled through a chain of seven learning functions that
include DAF, DPrF, DLF, DPsF, DCF, GMUF and DMIF. A multi-layered integrated T/NTN
infrastructure including vehicular, RSU, UAV, HAP, and satellite layers is considered. From
a functional deployment perspective, Region 5, corresponding to Slice 5, is configured
with Multilayer FL, a methodology designed to execute FL across distinct layers of edge
devices. Specifically, end devices use their data sets to perform the learning process. The
deployment involves the placement of DAF, DPrF, and DLF on a VU layer, facilitating the
learning process. Subsequently, the acquired parameters are communicated to neighboring
edge nodes, represented by RSUs, via DPsF to optimize communication costs. RSUs collect
data from VUs and perform aggregation operations with the assistance of DCF and GMUF.
The GMUF results are then transmitted to the upper layer, where the relevant functions
reside. The deployment of the function for the third slice utilizing FD mirrors the FL
process described. For Slice 1, employing SL, a data parallelization technique divides the
learning process between the device and edge layers, implementing learning functions on
both levels. In addition, the HAP layer is employed to formulate a global model. In the
case of Slice 2, which employs GADMM, collaborative learning occurs across user devices,
with appropriate functions located on the VUs cloud. The upper layers contribute to the
creation of a generalized global model by aggregating local models. Slice 4, which caters to
latency-critical applications, adopts a Transfer Learning-based DL approach, integrating
past learning experiences into current cycles to mitigate learning process costs. The learning
process is distributed across various edge layers.

4.3. Network Resources and Simulation Parameters

Each layer has limited computational, storage, and communication resources available
to implement the DL slices, which are indicated in Table 2. These values reflect the current
and anticipated capabilities of NTN devices. For example, VUs are typically equipped with
mobile processors that can provide up to 10,000 FLOPS. RSUs tend to be more powerful
than VUs, boasting computational capabilities of up to 30,000 FLOPS. LAPs and HAPs
are typically equipped with specialized networking hardware that can provide up to
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50,000 FLOPS. Satellites, on the other hand, are constrained by available power and cooling,
and their computational capacities typically range from 70,000 FLOPS to 100,000 FLOPS.

Table 2. Network Resource Allocation Across Layers.

Integrated
T/NTN
Layer

Computation
Resources
(FLOPS)

Communication
Resources
(Mbps)

Storage
Resources
(GB)

VU 10,000 20 10

RSU 30,000 40 30

LAP 30,000 30 10

HAP 50,000 50 50

Satellite 70,000 90 100

The communication bandwidth values represent the current capabilities of Long-
Term Evolution (LTE) and 5G and beyond cellular networks. VUs are typically connected
to 5G networks with bandwidths of up to 20 Mbps. RSUs can connect to higher speed
networks with bandwidths of up to 40 Mbps. LAPs and HAPs can also connect to higher-
speed networks, with bandwidths of up to 50 Mbps. Satellites, however, are limited by
the available bandwidth of the satellite link, and their bandwidth typically ranges from
90 Mbps to 100 Mbps.

The storage resource values represent the current capabilities of flash memory and
solid-state drives. VUs typically have storage capacities of up to 10 GB. RSUs can have
storage capacities of up to 30 GB. LAPs and HAPs can have storage capacities of up to
50 GB. Satellites, on the other hand, are constrained by the available storage space in the
satellite, and their storage capacities typically range from 100 GB to 200 GB.

These values were employed as a starting point for our simulations and analyses. Of
course, the specific values that one utilizes will depend on the specific applications and
scenarios that they are considering. Finally, the LAP, HAP, and LEO nodes are located at
distances of 1.2, 20, and 1000 km from the Earth’s surface, respectively. Shannon’s channel
capacity formula is adopted to model the channel between different layers [58].

4.4. Key Performance Indicators

In the evaluation of our IoV scenario, we quantified user satisfaction across various Key
Performance Indicators (KPIs)—Latency, Privacy, Mobility, and Computing Capacity. The
Matlab simulation environment facilitated a comprehensive analysis of the performance of
the DLaaS framework under various conditions. The definitions and formulas of the KPIs
we use are as follows:

• Latency:

– Definition: Latency measures the delay experienced by Vehicular Users (VUs) in
obtaining responses from the DLaaS framework.

– Simulation: The latency satisfaction, denoted as SLatency, is calculated as the
percentage of users for whom the latency requirements are met:

SLatency =
Number of users meeting latency requirements

Total number of users
× 100%

• Privacy:

– Definition: Privacy represents the level of data security and confidentiality
maintained during DL processes.

– Simulation: Privacy satisfaction, denoted as SPrivacy, is calculated similarly based
on the percentage of users for whom privacy requirements are met.
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SPrivacy =
Number of users meeting privacy requirements

Total number of users
× 100%

• Mobility:

– Definition: Mobility reflects the ability of VUs to maintain seamless connectivity
while traversing diverse geographical regions.

– Simulation: Mobility satisfaction, denoted as SMobility, is calculated based on the
percentage of users meeting mobility requirements.

SMobility =
Number of users meeting mobility requirements

Total number of users
× 100%

• Computing Capacity:

– Definition: Computing capacity denotes the ability of the DLaaS framework to
handle computational demands efficiently.

– Simulation: Computing capacity satisfaction, denoted as SComputing, is calcu-
lated similarly based on the percentage of users meeting computing capacity
requirements.

SComputing =
Number of users meeting computing capacity requirements

Total number of users
× 100%

4.5. Impact of Multiple Slices on User Satisfaction

In Figure 4, user satisfaction with respect to Latency, Privacy, Mobility, and Computing
Capacity is illustrated. Different types of DL slices were used, each tailored to specific
computational and communication characteristics, as detailed in Table 1. The results
demonstrate that with five slices, all considered KPIs achieve high satisfaction levels for all
users. Conversely, with only one slice, satisfaction levels drop significantly, underscoring
the effectiveness of the proposed multi-slice DLaaS framework.

4.5.1. Mobility

In Figure 5, we observe the impact of varying the number of slices on user satisfaction
with respect to mobility for different numbers of VUs. The results highlight a notable
trend. As the number of slices increases, there is an evident improvement in mobility
satisfaction. This improvement is attributed to the ability to cover larger areas of the ground
efficiently. With multiple slices, the service infrastructure can span wider geographical
regions, allowing VUs to traverse expansive areas without experiencing loss of connectivity
to the server or higher-layer entities, such as UAVs.

Figure 4. User satisfaction in different KPIs vs the number of slices.
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Figure 5. User satisfaction with respect to mobility versus the number of slices for different number
of VUs.

In particular, when only one slice is utilized, the coverage of the entire area is based on
a single slice and the FL method. This limitation presents challenges in efficiently serving
diverse VU mobility patterns. However, as the number of slices increases, the system gains
the ability to take advantage of different layers of NTN, leading to a significant increase
in user satisfaction. This is particularly advantageous as the number of VUs increases,
demonstrating the adaptability of the proposed framework to scale and accommodate
growing demands without compromising user satisfaction in terms of mobility.

4.5.2. Processing Capacity

The insights derived from Figure 6 accentuate the positive impact of employing
multiple slices on user satisfaction with the average processing capacity, especially in the
presence of varying numbers of VUs. The figure manifests a clear trend in which the use of
the slices contributes to a substantial improvement in the overall satisfaction of the VUs
with respect to the processing capacity.

Figure 6. User satisfaction with respect to average processing capability versus the number of slices
for different number of VUs.
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As expected, the provision of more resources through the implementation of slices in
each layer empowers the system to quickly meet the increasing demands of a growing VU
population. This resilience is particularly noteworthy, as the figure demonstrates sustained
improvements in processing capability satisfaction even with a higher influx of VUs. The
results reiterate the superiority of the proposed DLaaS structure in efficiently catering to
the computational needs of a dynamic and expanding user base.

4.5.3. Average Latency

Figure 7 delves into the realm of latency satisfaction, shedding light on the influence
of the number of slices on the user experience, depending on the varying number of
VUs. The results portray enhanced performance in terms of latency satisfaction as the
number of slices increases. This improvement can be attributed to the increased bandwidth
available for communication, resulting in reduced communication and transmission delays.
Additionally, the increased resources in each slice and layer contribute to serving VU
demands with reduced computation delay.

Figure 7. User satisfaction with respect to average latency versus the number of slices for different
number of VUs.

The observed decrease in total latency, resulting from optimized communication
and computation resources, underscores the efficacy of the proposed DLaaS structure.
Interestingly, the figure reveals that even with a doubling of the number of VUs, the latency
KPI does not undergo a proportional decrease. This phenomenon signifies the strategic
utilization of additional resources made available through multiple slices, showcasing the
system’s resilience to scalability challenges.

4.6. Average Response Time

On the other hand, we would like to show how slicing can be beneficial in reducing
the time required to respond to the varying tasks demanded by users. To achieve this,
we assume that the probability density function (PDF) of the requested tasks is Poisson
distributed with a parameter λ, which represents the average frequency of requests for
each VU. The expected time value required for the slices to reconfigure to a new state for
the requested services is reported, showing how much time is needed between consecutive
requests to deploy a slice. Figure 8 shows this variable versus the number of slices for
five different values of λ in requests per second. This figure leads us to conclude that the
more slices, the lower the reconfiguration frequency, and five slices are enough for the
reconfigurability to go to zero.
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Figure 8. Reconfigurabilty vs the number of slices.

5. Conclusions

In this paper, we have proposed a DLaaS concept to implement various DL slices in
distributed vehicular environments through virtualization on NTNs. We have analyzed
various technologies, including edge computing, distributed computing/communication,
network slicing, and different DL methods. An end-to-end functional decomposition
of typical DL methods and their possible implementation as slices over the distributed
networking platforms is discussed. A detailed case study of a typical vehicular scenario is
considered. Through simulation, it has been shown that the proposed DLaaS concept can
have several advantages in terms of user satisfaction, flexibility, scalability, performance
boosts, and added intelligence. Some key challenges of the proposed DLaaS concept are
also provided to motivate future research.
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