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Abstract

This paper studies the problem of rescheduling trains in a large-scale railway network with the

characteristics of long distance, long time horizon and a large number of trains, where a disruption

causes the paralysis of a significant part of the network for a long duration. As rescheduling measures

we consider train reordering and retiming as well as the option of rerouting trains along alternative

paths in the railway network. Although rerouting was not previously employed in large-scale long-

distance networks, we show its benefit in reducing passenger delays. We formulate the problem as

an integer linear programming (ILP) model on a space-time network with the goal of minimizing

the total passenger delay and the number of passengers that could not reach their destination. In

order to effectively solve the ILP model for real-world instances, we propose a heuristic algorithm

(LR-H), based on the Lagrangian relaxation (LR) of a subset of constraints in the ILP model. LR

allows decomposing the problem into a series of independent train-based subproblems which are easy

to solve. Due to the large number of constraints and to cope with the real-time requirement, LR-H

employs dynamic constraint-generation.

We tested LR-H on railway networks of different sizes under several disruption scenarios: first,

we compared the results obtained by LR-H on a small-size instance with those found by the general-

purpose ILP solver GUROBI, showing that LR-H can find near-optimal solutions in significantly

shorter computing times. Then, we applied LR-H to a real-world instance of a railway network in

China with 350 trains in different disruption scenarios. The experimental results show that, LR-H

can obtain near-optimal solutions with an average optimality gap of 2.27% in an average computing

time of about 300 seconds.

Keywords: Disruptions; Real-time train rescheduling; Integer linear programming; Lagrangian

relaxation.

1 Introduction

In daily operations, disruptions may suddenly occur in a railway system due to several factors such as

bad weather conditions, malfunctioning railway infrastructure, rolling stock breakdown. For instance,

Jespersen-Groth et al. (2009) report that there are about 17 infrastructure-related disruptions in the

Dutch railway network every day, with an average duration of 1.8 h. Zhu and Goverde (2017), by

analyzing historical disruption data of the Netherlands railways, show that the unexpected disruptions

occur in railways on a daily basis. Xu et al. (2016) report, based on data from the Chinese high-speed

railway, that although the frequency of disruptions is relatively low, once a disruption occurs, it has a

large impact on the running traffic. According to the statistics published by China Daily, on August 24,

2017, a sudden heavy rain in Wuhan caused the Wuhan station to be flooded, and normal operations were
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not restored after more than four hours. On May 1, 2021, due to the impact of strong wind on railway

power supply, dozens of trains travelling on the Beijing-Guangzhou high-speed railway line were delayed

for more than three hours, leading to a very poor travel experience for a large number of passengers.

When a disruption occurs, especially if it lasts several hours, a large number of trains have to deviate

from their original timetable. Disruption management requires dispatchers to adjust the planned train

schedules in real-time, by considering some strategies, such as reordering, retiming and rerouting, to en-

sure safety and reduce passenger dissatisfaction. The motivation of this research is to develop an effective

algorithm to quickly generate solutions to the train rescheduling problem for large-scale disruptions. In

particular, we focus on a large-scale railway network in China with a total length of 1935 km in which

a disruption causes the complete blockage of part of the network (e.g., all tracks connected to an in-

termediate station are blocked), and consider duration of the disruption between two and six hours. A

large-scale disruption in a large-scale railway network can affect many trains, especially if it lasts several

hours, and these trains run for a long time period between their origin and destination stations: thus,

the train rescheduling problem has to be solved by considering a long time horizon (Zhan et al. (2015)).

Note that, due to the complexity of the problem, we do not integrate rolling stock circulation re-planning

and crew rescheduling into the studied train rescheduling problem.

Rescheduling decisions found in the literature consist in train retiming and reordering, train service

cancellations, short-turning (i.e., short-turn trains at a stations before the blocked segment to execute

a train service in the opposite direction), flexible stopping and train rerouting. While short-turning is

frequently used in European countries such as The Netherlands (Louwerse and Huisman (2014), Veelenturf

et al. (2016), Ghaemi et al. (2017), Ghaemi et al. (2018a), Zhu and Goverde (2019)), a common strategy

at Chinese railways is to stop the disrupted trains before the blocked segment until the disruption is

solved (Zhan et al. (2015), Zhan et al. (2021)). This is mainly due to the seat reservation mechanism

that does not allow passengers to directly travel on a different train than the booked one. However, if

disrupted trains have to wait until the disruption is over, passengers can experience long delays. Existing

works that consider long-distance networks employ train retiming, reordering and cancellation (Zhan

et al. (2015), Zhan et al. (2016), Zhan et al. (2021)), but do not apply rerouting. In this paper, in

addition to train retiming and reordering, we investigate the rerouting strategy in a large-scale network

with the characteristics of long distance, long time horizon and a large number of trains to allow trains

(that have not entered the blocked segment when the disruption occurs) to travel on alternative paths:

in this way, trains can avoid the disrupted area, and passenger delays can be reduced.

Train rerouting involves the choice of changing the planned route and/or skipping some planned stops,

and consequently some passengers may not reach their destination. Therefore, there is a trade-off between

reducing passenger delays and increasing the number of abandoned passengers. Note that, we divide the

trains into two types, namely the directly-affected trains and not-directly-affected trains, in which only

the former trains may have the option of rerouting. A train is directly affected by a disruption, if the

planned route of the train intersects the blocked sections during the blockage period, where the blocked

section is the track or station blocked because of the disruption, and the duration of the disruption is the

blockage period. In this setting, the experiment results show that, train rerouting turns out to effectively

decrease passenger delays with a low percentage of abandoned passengers. In addition, all passengers

who are not abandoned will stay on the booked train, thus respecting the seat reservation mechanism.

In the next section, we give a more detailed overview of the literature on train rescheduling.

1.1 Literature review

The train rescheduling problem has attracted significant attention from railway operators and researchers,

as shown in the recent surveys by Cacchiani et al. (2014), Fang et al. (2015), and Lamorgese et al. (2018).

Compared to the train scheduling problem that is solved in planning, the train rescheduling problem

requires to be solved in shorter computing times, and aims at reducing the inconvenience caused by

disturbances and disruptions, often measured with respect to the planned schedule. According to the

classification by Cacchiani et al. (2014), disturbances are relatively small perturbations, while disruptions

are relatively large incidents. The former can usually be handled by adjusting the train timetable, while
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the latter sometimes requires changes both to the timetable and to the rolling stock plan and crew

duties. To meet the real-time requirement, when dealing with disruptions, usually first the timetable

is rescheduled and then the needed changes are applied to rolling stock circulation and crew duties

(Dollevoet et al. (2016)). Therefore, different approaches have been proposed in the literature for dealing

with disturbances or disruptions. We first briefly review, in Section 1.1.1, the literature related to train

rescheduling under disturbances, and then analyze, in Section 1.1.2, works on train rescheduling under

disruptions, that is the topic of our work. Finally, in Section 1.1.3 we report a comparison with the

papers that are most related to our work.

1.1.1 Train rescheduling under disturbances

Most of the works in this category propose microscopic approaches, i.e., deal with a detailed descrip-

tion of the railway infrastructure. Many solution methods are based on formulating the problem as a

job-shop scheduling problem by using the alternative graph model (Mascis and Pacciarelli (2002)). In

particular, D’Ariano et al. (2007a), D’Ariano et al. (2007b), D’Ariano et al. (2008) and Corman et al.

(2010) develop branch-and-bound algorithms and tabu search heuristics for train rescheduling, that are

employed in a real-time traffic management system, called Railway traffic Optimization by Means of

Alternative graphs (i.e., ROMA), to support controllers when handling disturbances. Some works fo-

cus on train rescheduling from the passenger perspective, i.e., how to determine a disposition timetable

that minimizes the inconvenience for the passengers as much as possible. In particular, delay manage-

ment consists of deciding if connecting trains should wait, thus guaranteeing the passengers connections,

or should depart on time to reduce delays (Schöbel (2007), Schöbel (2009), Schachtebeck and Schöbel

(2010)). Dollevoet et al. (2012) and Dollevoet et al. (2015) extend the delay management models by

including passenger rerouting. Corman et al. (2017) propose a model for the integrated train scheduling

and delay management to provide lower bounds for large instances, and develop heuristic algorithms

based on decomposing the problem into a train scheduling problem and a passenger routing problem.

Benders decomposition exact approaches are proposed by Lamorgese and Mannino (2015) and Lamorgese

et al. (2016): in these approaches, the train rescheduling problem is decomposed into a line rescheduling

problem and a set of station problems where train rerouting can be applied. A Mixed Integer Linear

Programming (MILP) based heuristic, called RECIFE-MILP, is proposed by Pellegrini et al. (2014) to

consider the infrastructure with fine granularity, and improved by Pellegrini et al. (2019) who introduced

valid inequalities. A fast and effective parallel iterative heuristic algorithm, based on a space-time graph

formulation, is proposed by Bettinelli et al. (2017): at each iteration, trains are scheduled following a

given order, and then shaking methods are applied between consecutive iterations to consider different

train orders. Gao et al. (2017) integrate the dynamic information of fault handling into the real-time

automatic rescheduling strategy to deal with small disturbances. In dense railway systems, Altazin et al.

(2020) combine a multi-objective optimization approach, that considers recovery time and the quality

of service for passengers, with macroscopic simulation used to evaluate the passenger flows through the

railway system. In single-track high-speed railway system, Zhang et al. (2021) propose a real-time train

rescheduling strategy by considering disturbance uncertainties.

1.1.2 Train rescheduling under disruptions

Compared to disturbances, disruptions more deeply affect the train schedule, and require significant

changes. Due to this additional complexity, most of the works propose macroscopic approaches, in

which the railway infrastructure is represented at a high level. In addition, complete track blockages

(i.e., disruptions that do not allow any train to run along the disrupted area) are often studied in the

literature, since these disruptions impact on the train schedule more seriously than partial blockages.

The earliest works dealing with train rescheduling under disruptions were presented by Meng and Zhou

(2011), Narayanaswami and Rangaraj (2013) and Louwerse and Huisman (2014)), and consider single or

double track lines. In particular, Meng and Zhou (2011) consider a disrupted single-track rail line, and

take into account random variations both in the running times and in the duration of the disruption.

They propose a stochastic programming model and a multi-layer branching solution procedure that
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applies train retiming as a rescheduling measure. Narayanaswami and Rangaraj (2013) propose a MILP

model that applies train retiming and reordering on a single-track railway line to minimize the total delay

of trains measured at their destinations. The model is solved by a general-purpose solver on a small-scale

artificial line. Louwerse and Huisman (2014) address both partial and complete blockages of a double

track railway line. They develop an event-activity network ILP model that, in addition to train retiming

and reordering, applies cancellation and short-turning. Constraints are imposed to respect the available

number of rolling stock units, and to balance the number of non-canceled services in each direction. The

model is tested on instances of the Dutch railways.

More recently, studies have focused on railway networks or long-distance lines with the aim of min-

imizing train delays and cancellations. Depending on the considered case study, different rescheduling

measures are applied to reschedule trains. In particular, Zhan et al. (2015) consider a complete blockage

of a long-distance high-speed railway line. They do not apply short-turning and rerouting: hence, trains

have to wait outside the disrupted area until the disruption is solved. They develop an event-activity

network MILP model that determines train reordering and retiming to be applied after the disruption is

over, and train cancellation with the goal of minimizing the total weighted train delay and the number of

canceled trains. The model is tested on the real data of Beijing-Shanghai high-speed line, by considering

rescheduling the timetable for a whole day, since a large disruption on long-distance lines can influence

all scheduled trains. Zhan et al. (2016) solve the train rescheduling problem on a double-track high-speed

railway in case of a partial blockage, by considering that trains of both directions can share the same

track, and employing retiming, reordering and cancellation. They consider three adjustment strategies

used in practice, and propose three event-activity network MILP models to compare them. A rolling

horizon approach is proposed in order to split the rescheduling problem into several stages (where at

each stage, the information on the duration of the disruption is updated). The approach is tested on an

instance of the Beijing-Shanghai high-speed line. Veelenturf et al. (2016) extend the work by Louwerse

and Huisman (2014) to deal with complete and partial track blockages in a railway network, and to

include train rerouting along different paths to avoid the disrupted area with the goal of minimizing the

number of canceled train services and the train delays. Instances of the Dutch railways are tested under

several disruption scenarios. Ghaemi et al. (2018a) consider a disruption causing a complete blockage,

and propose a MILP model that allows for short-turning at two alternative stations for each train. They

tested it on a dense double-track Dutch railway corridor showing that different disruption periods and

lengths result in different optimal short-turning choices. A complete blockage in a metro line is consid-

ered by Wang et al. (2021), who propose a multi-objective MILP model for the problem of integrated

train rescheduling and rolling stock circulation re-planning. The goals consist of minimizing deviations

from the planned timetable, cancellations and headway deviations. A two-stage approach, that employs

retiming, cancellation and short-turning, combined with a heuristic constraints filtering is proposed and

tested on real-world instances of Beijing Subway lines.

As mentioned above, the majority of the works consider the infrastructure described at macroscopic

level: an exception is the work by Ghaemi et al. (2017) who extend the MILP model by Pellegrini et al.

(2014) to deal with complete blockages at microscopic level, and apply it on two corridors of the Dutch

railway network including a large station with multiple routes and platform tracks. In addition, most

works assume that the length of the disruption is provided: differently, Ghaemi et al. (2018b) and Zhu

and Goverde (2020a) take into account the uncertainty of the disruption duration. The former proposes

an iterative approach that starts with a duration prediction, and then updates the train schedule, based

on a new duration prediction, while the latter develops a rolling horizon two-stage stochastic model. Both

approaches are tested on a part of the Dutch railway network. Usually, due to the problem complexity,

a single disruption at a time is considered: on the contrary, Zhu and Goverde (2021) develop a MILP

model and a rolling horizon algorithm to deal with multiple connected disruptions (i.e., disruptions that

occur at different geographic locations but have overlapping periods), and test them on instances of a

Dutch network.

All the above mentioned papers consider the minimization of train delays and cancellations, however

several works focus on passenger-oriented rescheduling, i.e., integrate passenger behavior or passenger

rerouting in the problem or consider passenger demand as a weight of the impact of rescheduling decisions
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on the passenger inconvenience. In particular, Cadarso et al. (2013) consider a disruption in a rapid transit

network, and propose a two-step approach for an integrated rescheduling of the timetable and rolling

stock, taking into account the passenger demand behavior. In the first step, the approach computes

the disrupted demand before adjusting the timetable, and, in the second step, solves a MILP model

for the timetabling and rolling stock scheduling problem. The approach is tested on instances of the

regional network in Madrid. Binder et al. (2017) formulate a multi-objective ILP model based on a

space-time graph with integrated passenger rerouting (i.e., passengers adapt their travel routes based on

the rescheduled train services). The aim is to minimize the generalized travel time of the passengers,

the operational cost of running trains and the deviation from the undisrupted timetable. Rescheduling

strategies consist of train reordering and retiming, cancellations, rerouting and adding emergency trains.

The second and third objectives are included as ε-constraints, and the Pareto frontier is derived to evaluate

the trade-off between the three goals. The approach is tested on a heavily utilized part of the Dutch

railway network. Veelenturf et al. (2017) propose a heuristic iterative approach for timetable and rolling

stock rescheduling, and passenger rerouting: in this case, timetable rescheduling is limited to cancellations

and flexible stopping. The approach updates the timetable and the rolling stock schedule, and uses a

deterministic simulation procedure to determine the passenger flows. The approach is tested on a busy

part of the Dutch railway network. In Zhu and Goverde (2019), the goal accounts for the impact of train

cancellations and delays on passengers by considering these rescheduling decisions as weighted according

to the time-dependent passenger demand. In particular, the impact of the dispatching operations is

measured in terms of passenger planned paths that are used as weights in the objective function. They

extend the MILP model by Ghaemi et al. (2018a) by allowing for flexible stopping and more flexible

short-turning strategies (i.e., a train can short-turn at one among all short-turn stations before the

disrupted area). The model is applied on a Dutch railway network under several disruption scenarios.

Integrated passenger rerouting and timetable rescheduling is studied by Zhu and Goverde (2020b) who

propose an event-activity network MILP model, that includes the dispatching measures of re-timing, re-

ordering, cancellation, flexible stopping and short-turnings, with the goal of minimizing the generalized

passenger travel times. The model employs a transition network used to describe the alternative paths

available to passengers. An Adapted Fix-and-Optimize algorithm, that iteratively solves the model

with a limited number of passenger groups, is designed to solve the problem and tested on a part of

the Dutch railways. Hong et al. (2021) formulate a bi-objective MILP model for the integrated train

rescheduling and passenger reassignment to determine how many disrupted passengers should be assigned

to each train, in order to deal with a seat reservation mechanism and limited train capacity. The two

objectives are the maximization of the number of disrupted passengers reaching their destination and the

minimization of the total weighted train delay. Retiming, reordering, rerouting (applied inside stations for

platform assignment), and additional stops are used as rescheduling strategies. Pareto optimal solutions

are determined by a weighted-sum approach tested on a section of the Beijing-Shanghai high-speed line.

Zhan et al. (2021) propose an ILP model based on a space-time graph for the integrated train rescheduling

and passenger rerouting problem. The objective is the minimization of the total passenger travel cost

(accounting for passenger travel time and number of transfers) and the cost for operating trains. The

model is decomposed into two subproblems dealing with train rescheduling and passenger rerouting,

respectively, and is solved by an alternating direction method of multipliers algorithm that considers

train reordering, retiming and cancellation. The algorithm is tested on a part of the Chinese high-speed

railway network.

1.1.3 Comparison with the literature

Table 1 summarizes studies that are closely related to our work. In particular, we consider a railway

network described at a macroscopic level of detail, and assume that the disruption duration is known. We

compare the existing works based on three aspects: solution method, problem description (i.e., objective,

train rescheduling measures, and consideration of passengers in the rescheduling process), and reported

computational experiment scale. We divide the table into two parts: in the top part we report works

that consider railway lines and in the bottom one those that consider railway networks.
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Table 1: Comparison of closely related references

Publication Solution

method

Objective function Rescheduling

measure

Passengers Largest instance size

Zhan et al. (2015) CPLEX Min. C & TD RT,RO,C N Line (LD), S=23, T=42,

D=2h, H=[8:00, 20:00]

Zhan et al. (2016) CPLEX+

Rolling

horizon

Min. C & Dev RT,RO,C N Line (LD), S=23, T=180,

D=2h, H=[8:00, 20:00]

Ghaemi et al.

(2018a)

GUROBI Min. C & TD RT,C,S N Line, S=13, T=28 (per

hour), D=5h

Hong et al. (2021) CPLEX Multi-obj-1 RT,RO,RR R Line (LD), S=8, T=20,

D=55min, H=[19:19, 23:19]

Veelenturf et al.

(2016)

CPLEX Min. C & TD RT,RO,C,S,RR N Network, S=26, T=165,

D=2h, H=2.75h

Binder et al.

(2017)

CPLEX+ε

constraints

Multi-obj-2 RT,RO,C,RR R Network, S=11, T=24,

D=2h, H=2h

Zhu and Goverde

(2019)

GUROBI Min. C & PD RT,RO,C,S S Network, S=17, T=24 (per

hour), D=3h, H=[7:00,

12:00]

Zhu and Goverde

(2020b)

AFaO Min. GPTT RT,RO,C,S R Network, S=17, T=24 (per

hour), D=2h, H=[7:00,

11:00]

Zhan et al. (2021) ADMM Min. PTC&TOC RT,RO,C R Network (LD), S=17, T=20,

D=2h, H=[10:00, 16:00]

This paper Lagrangian

heuristic

Min. C & PD RT,RO,C,RR S Network (LD), S=47,

T=350, D=6h, H=[6:00,

24:00]

Solution method: Adapted Fix-and-Optimize (AFaO); Alternating direction method of multipliers (ADMM).

Objective function: Cancellations (C); Train delays (TD); Deviations (Dev); Passenger delays (PD); Generalized

passenger travel times (GPTT); Passenger travel cost and train operation cost (PTC&TOC);

Maximize the number of saved passengers and minimize the weighted total train delay (Multi-obj-1).

Minimize passenger inconvenience, operational cost and deviation from undisrupted timetable (Multi-obj-2);

Rescheduling measure: Retiming (RT); Reordering (RO); Cancelling (C); Short-turning (S); Rerouting (RR).

Passengers: Not considered (N); Static passenger demand (S); Passenger Rerouting (R).

Largest instance size: Line or network and if long-distance (LD); Number of stations (S); Number of trains (T);

Disruption duration (D); Planning time horizon (H).

From Table 1, that summarizes our literature overview, we can observe that works dealing with large-

scale long-distance networks do not apply train rerouting. The only exception is the model by Hong

et al. (2021) that, however, focuses on a single direction line, and applies rerouting inside stations. In our

work, rerouting is applied to select alternative paths in the railway network. As mentioned in Veelenturf

et al. (2016), one advantage of having the option to reroute a train service is that passengers wishing to

use this train service do not have to reroute themselves. Note that some studies (e.g., D’Ariano et al.

(2019), Zhang et al. (2020) and Zhang et al. (2022)) on the integrated optimization of train scheduling

and maintenance planning in railway networks also consider the selection of train routes. However, this

integrated optimization problem belongs to the tactical level, and there are less strict requirements for

computing time. Besides, the cancelling action in our work represents the train service cancellation, which

consists only in cancelling some planned stops (since trains are rerouted and thus may skip a subset of

stations), while all other train services are executed (possibly after the disruption is over). We consider

a rescheduling problem in a network with a long time horizon, e.g., from the end of a disruption to the

end of a day. As a result, there are enough alternative space-time routes for the involved trains, which

is verified by our experiments. Since partial service cancellation can reduce the impact on the planned

rolling stock schedule, we do not consider complete service cancellation. However, it is not difficult to

include the option of train cancellation in our model by adding the candidate cancellation arcs for each

train in the space-time network. Based on the above considerations, in Table 1, we also include the train
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cancelling strategy (i.e., train service cancellation) as one of the rescheduling measures.

Since we deal with a large-scale long-distance network, we have to consider a longer time horizon and

a larger number of trains compared to most of the previous works, which make the considered problem

challenging. We consider disruption durations between two and six hours: although the latter ones are

less common, we want to evaluate the performance of the proposed algorithm in this complex case as it

may occur in practice. As observed from the literature analysis, some recent works focus on passenger-

oriented rescheduling: to keep the computing time short, we choose to employ a static passenger demand

as in Zhu and Goverde (2019), i.e., we neglect the passenger rerouting but consider the impact that

rescheduling decisions have on passengers by weighting cancellations and delays according to the number

of affected passengers. Most of the works consider a time limit of 300 s, although longer computing times

are sometimes required, especially when passenger rerouting is integrated with timetable rescheduling

(Binder et al. (2017), Zhan et al. (2021)). In our computational experiments, we consider a time limit

of 300 s, and we also evaluate the performance of the algorithm with shorter (1 min) and longer (10

min) computing times. Similar to Zhu and Goverde (2020b) and Zhan et al. (2021), due to the high

problem complexity and the real-time requirement, we propose a customized algorithm, and directly

apply a general-purpose solver to solve the proposed model only for comparison purposes.

1.2 Contributions

Disruption management is a very challenging task in railway operations, especially due to the real-

time requirement, and is relevant from a practical perspective as disruptions deeply affect passenger

satisfaction. We aim at defining a suitable model and developing an efficient heuristic algorithm to solve

the train rescheduling problem in a railway network with the goal of reducing passenger inconvenience.

The main contributions of this paper are as follows:

• We incorporate the rerouting strategy in train rescheduling in a large-scale railway network in which

a large-scale disruption causes the complete blockage of part of the network (e.g., all tracks connected

to an intermediate station are blocked). The large-scale railway network we study includes three

main characteristics: long distance, long time horizon and a large number of trains. In previous

studies, the rerouting strategy was not considered in such a large-scale network. We want to

investigate how it can help reduce passenger delays. In a long-distance network, when a large-

scale disruption occurs, more trains have to be considered in the rescheduling process and a longer

planning time has to be taken into account, especially when rerouting is applied to trains that travel

along alternative lines. These features make the problem more challenging.

• An efficient Lagrangian relaxation based heuristic algorithm (LR-H) is proposed to solve this Train

Rescheduling Problem (TRP). LR-H is based on an ILP model formulated on a space-time network

(with 1 min time discretization), in which track capacity and station capacity are also considered.

The model minimizes the number of passengers that could not reach their destination, and the total

delays of all passengers that reached their destination. LR-H applies Lagrangian relaxation of a

subset of constraints in the ILP model to decompose the problem into a series of independent sub-

problems, and employs dynamic constraint-generation to handle the large number of constraints in

the model. LR-H is compared with the general-purpose solver GUROBI on a small-size instance,

and applied to solve a real-world instance of a railway network in China with 350 trains: the results

show that, in most disruption scenarios, high quality solutions are obtained within 60 seconds

of computing time, and improved optimality gaps (on average 2.27%) are achieved in an average

computing time of about 300 seconds.

The remainder of the paper is organized as follows. Section 2 gives a detailed description of the

considered problem and lists the relevant assumptions we make. Section 3 describes how we construct a

space-time network used to formulate the proposed ILP model for the TRP, presented in Section 4. In

Section 5, we present the proposed heuristic algorithm LR-H, based on Lagrangian relaxation, and, in

Section 6, we report the results of the computational experiments we carried out on two railway networks

7



with different size to verify the effectiveness of the method. Finally, some conclusions and future research

directions are presented in Section 7.

2 Problem Description and Assumptions

To illustrate the considered TRP, we first provide an example in Section 2.1. Then, we list all assumptions

in Section 2.2, and finally describe the TRP in Section 2.3.

2.1 Example

Figure 1 shows a railway network with three lines, including 7 stations and 8 sections, in which the

running time between stations is marked with red numbers. Due to a large-scale disruption, station 3

and all connected sections (2-3), (3-6) and (3-4) are blocked. Assume that the disruption starts at time

σ1 and lasts until time σ2. Consider three trains scheduled in this network, as shown in the figure (a

black circle represents a train stop): according to the planned schedule, train 1 departs from station 1 to

station 4 and stops at station 3, train 2 departs from station 1 to station 7 and stops at stations 3 and 6,

and train 3 departs, in the opposite direction, from station 7 to station 1 and stops at stations 6, 3 and

2.

1 2 43

disruption

5 6 7

 2min 2min 2min

2m
in

2min 2min

2
m

in

2m
in

Train 1 

Train 2

Train 3

Figure 1: Example of a railway network with a disruption that affects station 3 and connected sections.

When the disruption occurs at station 3, it is necessary to quickly compute the rescheduled timetable for

the three trains that run in the network. To obtain a feasible timetable, we consider four strategies: train

retiming, train reordering, train service cancellation and train rerouting. However, we limit cancellation

to those services that are not executed because of train rerouting. Therefore, when the disruption occurs,

there are two choices for each train: one is to wait until the disruption is over and then continue on

the original route, while the other is to choose an alternative route that avoids the disrupted area and

possibly skips some stops, thus abandoning some passengers. Both alternatives then may require retiming

and reordering. Clearly, if a train has already departed when the disruption occurs, then only the first

option can be considered. For the other trains, it is necessary to determine which route has less impact

on passengers taking into account the passenger delay and the number of abandoned passengers. In

Figure 2, we show the planned (Route k-Ori) and alternative (Route k-Re) routes for each train k, where

the disrupted station 3 is represented with a black circle.
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Figure 2: Planned and alternative train routes.

Assume that the disruption start time σ1 and end time σ2 are 5 and 12 respectively, and the departure

time of trains 1, 2 and 3 from the origin station are 2, 4 and 2 respectively. Besides, assume that

the number of passengers getting on and off each train at each station is 1 if the train has a planned

stop at that station, and the penalty factor for abandoning each passenger is set to 10. We report the

rescheduling strategies of the three trains in Table 2, where “Orig” represents the original schedule,

“No-Rer” and “Rer”, respectively, represent the strategy of not considering rerouting or allowing it.

In particular, “No-Rer” corresponds to always selecting Route k-Ori, while “Rer” to performing either

Route k-Ori or Route k-Re flexibly according to the actual situation. Column “Timetable” reports the

sequence of visited stations according to the selected strategy and, in brackets, the corresponding arrival

and departure times. For example, for the third train in the original schedule “Orig”, 6(4, 7) means

that train 3 arrives at station 6 at 4 min and departs from station 6 at 7 min. In bold, we show the

timetable changes with respect to the original schedule (retiming). In addition, f∗ represents the sum of

the passenger delays (including arrival and departure delays) and penalty for the abandoned passengers

for each train, and F ∗ represents the sum of the total delay of all serviced passengers and the penalty for

all abandoned passengers.

Table 2: Timetables under different rescheduling strategies.

Strategy Train Timetable Choice f∗ F ∗

1 1(2) → 2(4, 4) → 3(6, 8) → 4(10) Route 1-Ori −
Orig 2 1(4) → 2(6, 6) → 3(8, 10) → 6(12, 14) → 7(16) Route 2-Ori − −

3 7(2) → 6(4, 7) → 3(9, 11) → 2(13, 15) → 1(17) Route 3-Ori −
1 1(2) → 2(4, 4) → 3(13,15) → 4(17) Route 1-Ori 21

No-Rer 2 1(4) → 2(6,12) → 3(14, 16) → 6(18, 20) → 7(22) Route 2-Ori 30 81

3 7(2) → 6(4,12) → 3(14, 16) → 2(18, 20) → 1(22) Route 3-Ori 30

1 1(2) → 2(4, 4) → 3(13,15) → 4(17) Route 1-Ori 21

Rer 2 1(4) → 2(6,6) → 5(8,10) → 6(12, 14) → 7(16) Route 2-Re 20 61

3 7(2) → 6(4,7) → 5(9,11) → 2(13, 15) → 1(17) Route 3-Re 20

We can see that, both in “No-Rer” and “Rer” cases, train 1 has to wait at station 3 since, when

departing from station 2, it has not yet received information that station 3 is disrupted. Therefore, train

1 can only choose Route 1-Ori and temporarily stop at the track between stations 2 and 3 until the end

of the disruption. For this train, there are no abandoned passengers since the route is unchanged, but

passengers experience a delay of 21 minutes (7 minutes of delay for the passenger arriving at station 3, 7

for the passenger departing from station 3, and 7 for the passenger arriving at station 4). On the contrary,

both trains 2 and 3 receive information on the disruption, hence their routes can be selected flexibly. If

train 2 selects the alternative route (“Rer” strategy), then it will abandon two passengers (who want to

arrive or depart from station 3) with a penalty of 20 but no delay: train services to and from station 3
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are cancelled in this case. If instead it selects the original route (“No-Rer” strategy), no passenger will be

abandoned, but there will be a delay of 30 minutes (no delay at station 2 because there was no planned

stop, 6 minutes of delay for the passenger arriving at station 3, 6 for the passenger departing from station

3, 6 for the passenger arriving at station 6, 6 for the passenger departing from station 6, and 6 for the

passenger arriving at station 7). A similar situation occurs for train 3. By comparing the strategies in

terms of F ∗ that accounts both for delays and abandoned passengers, it is found that the rescheduling

strategy considering rerouting of trains 2 ad 3 is preferred. Obviously, the best rescheduling strategy

also depends on the penalty associated with abandoning passengers: in Section 6, we will compare the

outcome with different penalty values.

2.2 Assumptions

We consider the following assumptions:

• Assumption 1. The duration of the disruption is known in advance.

• Assumption 2. Before the disruption occurs, all trains run normally according to the original

timetable.

• Assumption 3. The trains that are already travelling towards the disrupted area when the disruption

occurs have to wait at stations or tracks before the disrupted area until the end of the disruption.

• Assumption 4. The routes and stop plans of the not-directly-affected trains remain unchanged, but

retiming and reordering can be applied to these trains (i.e., the arrival times, departure times and

dwell times of the trains can be adjusted).

• Assumption 5. The rerouting strategy can only be employed when the rerouting requirements are

respected. Specifically, the operation standards and signal systems of the lines before and after the

rerouting must be consistent.

• Assumption 6. Once the disruption occurs, the trains can immediately receive the disruption

information without any information delay.

• Assumption 7. Passenger reassignment is not considered: abandoned passengers (who are unable

to reach their destination due to train rerouting) will get off at the last station before the train

route changes.

As in many previous studies, we do not consider uncertainty of the disruption duration by Assumption 1.

Assumptions 2-4 concern how the trains operate before and after the disruption occurs. In general, trains

in the railway network operate regularly according to a given timetable before the disruption. After the

disruption occurs, by Assumption 3 the trains, that are travelling towards the blockade area, cannot

continue their trip, hence they stop before the disrupted area, since we do not consider short-turning,

until the disruption is over for safety reasons. Considering that the railway dispatchers try to preserve

the original plan of the trains, we especially make Assumption 4, which ensures that the routes of

the not-directly-affected trains remain unchanged: rerouting is a major change that can cause skipping

stops, hence it is only applied to trains that have to traverse the disrupted area. A not-directly-affected

train is a train that, if it were the only train in the railway network, it would travel according to its

original operation plan even during the disruption. In other words, it is a train whose planned route

does not intersect the blocked sections during the blockage period. A not-directly-affected train may be

rescheduled due to the knock-on effect of rescheduling the directly-affected trains. Assumption 5 specifies

the requirements needed for adopting the rerouting strategy. Assumption 6 ensures that the disruption

information is promptly transmitted to the train, so as to guarantee the safety of train operation.

Assumption 7 specifies that we do not consider passenger reassignment to different trains nor passenger

rerouting: thus, when a train has to abandon some passengers, they will choose the nearest station to

get off. Clearly, we account for minimizing the number of abandoned passengers, and aim at finding a

rescheduled timetable in short computing time, so as to minimize the impact of disruption on passengers.

10



2.3 Problem description

We now describe the studied TRP, and introduce the used notation. Let H be the planning horizon, N

the set of stations, L the set of tracks, and K the set of trains.

For each station s ∈ N , we are given its capacity Bs corresponding to the number of trains that can

be simultaneously present at the station at any time. For each train k ∈ K, we are given the subset

N̂k ⊆ N of stations that k visits, and the subset N̂k
d ⊆ N of stations where k has to stop according

to the planned timetable. Moreover, for each train k ∈ K, we are given the minimum and maximum

travel times between any pair of consecutive stations: in particular, let rks1,s2 be the minimum travel time

of train k from station s1 to station s2, and Rk
s1,s2 the maximum one ((s1, s2) ∈ L). In addition, for

each station s ∈ N , we are given the minimum dwelling time ξs at the station, the minimum departure

headway time hd
s and the minimum arrival headway time ha

s .

Since we deal with a rescheduling problem, we are also given the planned timetable, i.e., for each train

k ∈ K, we know the scheduled departure time T̂ d
k,s and the scheduled arrival time T̂ a

k,s at each station

s ∈ N̂k. In addition, we have information on the disruption: we know the disruption duration Dt, and

the set Ds of tracks that are blocked. Based on the time and location of the disruption, we identify the

subset K1 ⊆ K of trains it directly affects, and the subset K0 = K \K1 of trains that do not travel along

the disrupted area during the disruption period.

Finally, we are given the number of passengers booked on each train k ∈ K: in particular, let qonk,s be

the number of passengers who get on train k at station s, qoffk,s the number of passengers who get off train

k at station s, and Qk,s their sum (s ∈ N̂k).

Since the disruption blocks some tracks, the planned timetable is often no longer feasible, and a

rescheduled timetable has to be determined. Clearly, the departure times of all trains cannot be earlier

than in the planned timetable, in order to allow passengers to get on the trains. In addition, no train can

travel along the disrupted area. We assume that trains already running towards the disrupted area when

the disruption occurs can only wait at a station or track until the disruption is over. To reschedule trains

we apply retiming, reordering and rerouting, but the latter strategy is only used for the directly-affected

trains: indeed, by modifying the route, some stops may be skipped, thus causing abandoned passengers.

Therefore, rerouting can cause the cancellation of some services. Since we deal with long-distance trains,

retiming, reordering and rerouting can also affect trains running considerably later than the end of the

disruption: therefore, we apply the rescheduling process until the end of the time horizon.

To obtain a feasible rescheduled timetable, track capacity constraints must be satisfied. In particular,

the minimum headway time between consecutive departures of trains from the same station must be

respected. Similarly, the minimum headway time between consecutive arrivals of trains at the same

station must be respected. In addition, overtaking can only take place at stations and not along a track.

For each train, travel times and dwell times must be satisfied. Finally, for each station, its capacity must

be respected.

The goal is to minimize passenger departure and arrival delays, and, at the same time, minimize the

number of passengers abandoned due to train rerouting. To better account for passengers inconvenience,

we weight the terms in the objective according the number of affected (delayed or rerouted) passengers.

3 Space-time Network

A space-time network is an effective representation method to capture and analyze the spatial and

temporal characteristics of dynamic traffic systems. It can combine the physical railway network with

time-dependent train paths (timetables). We incorporate time-dependent train paths and disruption area

and period into a space-time network that will be used to formulate an ILP model to find an effective

train rescheduling strategy.

To construct the space-time network, we discretize the time horizon H (e.g., in minutes), and represent

all stations in N and connections between them in L expanded in time. The space-time network is

represented as an acyclic directed graph G = (V,A), where V and A represent, respectively, the sets of

nodes and arcs. Node set V contains three types of nodes for each station s ∈ N : arrival nodes (that
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belong to set As), departure nodes (that belong to set Ds) and passing nodes (that belong to set P s).

An example for two stations is shown in Figure 3: A1, D1 and P 1 represent, respectively, the set of

arrival nodes, departure nodes and passing nodes at station 1 (and similarly A2, D2 and P 2 for station

2). Nodes in P 1 are constructed for the trains that do not need to stop at station 1. Specifically, if a

train does not stop at station 1, its path arrives at a node in P 1 and then departs from the node directly;

if the train stops at station 1, its path must first arrive at a node in A1, and then depart from a node

in D1. Besides, node set V also includes a dummy source node σk and dummy sink node τk for every

train k ∈ K.

2

1

Station
t1 t2 t3 t4 t5 t6 t7

Node in space-time network

Waiting arc (the second type)

A2

D2

P2

A1

D1

P1

Traveling arc

W1

W2

T1

T2

T3
T4

Waiting arc (the first type)

Figure 3: Illustration of the waiting arc and traveling arc in the space-time network

Arc set A contains four categories of arcs: waiting arcs, traveling arcs, disruption arcs and dummy

arcs. Figure 3 shows an example of waiting and traveling arcs. We distinguish two types of waiting arcs,

represented by dashed arrows in the figure: arcs of the first type (e.g., W 1) connect two different arrival

nodes of the same station and represent a stop longer than the minimum dwelling time, while arcs of the

second type (e.g., W 2) connect an arrival node and a departure node of the same station, and are used

to ensure the minimum dwelling time of the train at the station. In addition, we distinguish four types

of traveling arcs, represented by solid arrows in the figure, based on whether the train path stops or not

at the starting and ending stations of the arc: T 1 is the traveling arc of trains that stop both at stations

1 and 2, while T 4 is the traveling arc of trains that do not stop at any of the two stations; T 2 is the

traveling arc of trains that stop at station 1 but do not stop at station 2, while T 3 is the traveling arc

of trains that do not stop at station 1 but stop at station 2. By considering different types of arcs and

passing nodes P s, we can obtain two advantages: (1) we can integrate the acceleration and deceleration

times when the train stops at a station into the model; (2) we can ensure that the minimum dwelling time

constraints of the trains can be satisfied by constructing as few arcs as possible. Waiting arcs at station s

are denoted by As
a and those of the first type by As

a′ . Traveling arcs are indicated by At, while outgoing

arcs associated with the departure nodes of station s by As
d. Note that we only introduce the definition

of the set of arcs directly used in the ILP model to limit heavy notation (the definition of the set of arcs

that do not appear in the model is not explicitly provided). Besides, disruption arcs, represented by AD,

correspond to all arcs contained in the disrupted area: they are used to identify waiting and traveling

arcs that cannot be selected in any train path. Finally, dummy arcs connect the dummy source node and

the dummy sink node, respectively, to all departure nodes of the train from its origin station, and to all

arrival nodes of the train at its destination station.

Each train k ∈ K visits a subset N̂k ⊆ N of the stations and has specific travel and dwell times.

Therefore, we define Vk ⊆ V and Ak ⊆ A, respectively, as the set of nodes and arcs of train k ∈ K. We

show, in Figure 4, three paths of the space-time network, corresponding to the original and alternative

routes of train 2 reported in Table 2 (for the railway network of Figure 1).
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Figure 4: Space-time network of the given railway network

In Figure 4, we show the seven stations of the railway network, and the discretized time horizon with

instants from 0 to 22 (i.e., all time instants used in Table 2). The disrupted area during the disrupted

time period is shown in light green. The original timetable of train 2, that traverses the disrupted area,

is represented by black lines, while we use blue and red lines to depict the alternative timetables of train

2 that avoid the disrupted area. In particular, the Rescheduled timetable 1 in blue represents the no

rerouting strategy of Table 2, while the Rescheduled timetable 2 in red corresponds to the rerouting one.

In the former case, train 2 waits until the disruption is over to continue running according to the original

route, while in the latter one it selects another route that abandons the passengers of station 3, but

reaches station 6 at the same time as in the original timetable (the black and the red lines coincide). We

only reported two alternative timetables (paths) for train 2, but, obviously, the space-time network can

contain a very large number of time-dependent paths for each train.

4 Model Formulation

4.1 Notation

The notation used in this paper is listed in Tables 3 and 4. In Table 3, we report the notation used

for the given data, and in Table 4, we report the parameters used to formulate the ILP model (and its

Lagrangian relaxation).
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Table 3: Notation used for the given data

Notations Definition

H planning time horizon.

N set of stations.

L set of tracks.

K0 set of the not-directly-affected trains.

K1 set of the directly-affected trains.

K set of all trains, K = K0

⋃
K1.

Bs maximum capacity of station s.

N̂k
d set of stations where train k is scheduled to stop in the original timetable.

N̂k set of all stations that train k visits in the original timetable.

T̂ d
k,s departure time of train k from station s in the original timetable.

T̂ a
k,s arrival time of train k at station s in the original timetable.

rks1,s2 minimum travel time of train k between s1 and s2.

Rk
s1,s2 maximum travel time of train k between s1 and s2.

ξs minimum dwelling time of each train at station s.

hd
s minimum headway between consecutive departures from station s.

ha
s minimum headway between consecutive arrivals at station s.

Dt disruption period.

Ds disruption location (set of blocked tracks).

qoffk,s number of passengers booked on train k that need to get off at station s.

qonk,s number of passengers booked on train k that need to get on at station s.

Qk,s total number of passengers booked on train k that need to get off and on at station s,

Qk,s = qoffk,s + qonk,s.

Table 4: Notation used in the formulation

Notations Definition

V set of nodes.

A set of arcs.

Vk set of nodes of train k.

Ak set of arcs of train k.

i, j index of nodes, i, j ∈ V.
k index of trains, k ∈ K.

s index of stations, s ∈ N .

As set of arrival nodes at station s.

Ds set of departure nodes from station s.

P s set of passing nodes through station s.

At set of traveling arcs.

As
a set of waiting arcs of station s.

As
a′ set of the first type of waiting arcs of station s.

As
d set of outgoing arcs associated with the departure nodes of station s.

As set of outgoing arcs associated with the nodes of station s.

AD set of arcs on the disrupted area.

σk/τk dummy origin/destination nodes for train k.

θ(i) time instant associated with a given node i ∈ V.
Ck

i,j Lagrangian cost of arc (i, j) for train k.

δ penalty factor of abandoning a passenger.

To model the TRP, we introduce the following binary decision variables:
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ykij = 1 if train k uses arc (i, j), k ∈ K, (i, j) ∈ Ak (= 0 otherwise).

For each train k ∈ K and each arc (i, j) ∈ Ak, ykij is equal to 1 if and only if the path of train k

contains arc (i, j). These variables identify the time-dependent train paths (timetables) in the space-time

network.

4.2 Constraints

In this section, we present the model constraints divided into categories according to their scope.

4.2.1 Flow balance constraints

They are used to ensure the feasibility of every time-dependent path of each train k ∈ K, that starts

from the dummy source node σk and ends at the dummy sink node τk, as follows:

∑
(i,j)∈Ak

ykij −
∑

(j,i)∈Ak

ykji =


1, i = σk

−1, i = τk ∀k ∈ K

0, otherwise

(1)

These constraints implicitly impose to respect, for each train k ∈ K, its travel time between each pair

of visited stations and its minimum dwelling time at all visited stations, since only arcs in Ak can be

selected for train k. Note that, since we distinguish between departure nodes and passing nodes in the

space-time network, the flow conservation constraints guarantee that acceleration and deceleration times

are correctly considered in the travel time, based on whether the train stops or not at a station.

4.2.2 Disruption related constraints

These constraints are required to deal with the disruption. There are four classes of constraints.

Departure time constraints They are used to ensure that, for each train k ∈ K and each station

s ∈ N̂k
d where the train was planned to stop, the actual departure time of k from s is not earlier than

the departure time T̂ d
k,s in the planned timetable.∑

(i,j)∈As
d,θ(i)<T̂d

k,s

ykij = 0, ∀k ∈ K, s ∈ N̂k
d (2)

In particular, constraints (2) require that no arc (i, j) with a departure time instant θ(i) from station

s before the planned one T̂ d
k,s is selected for train k.

Route unchanged constraints To ensure that, for each not-directly-affected train k ∈ K0, the route

remains unchanged, the following constraints are imposed:∑
(i,j)∈As

ykij ≥ 1, ∀k ∈ K0, s ∈ N̂k (3)

Constraints (3) require train k to select at least one outgoing arc among all arcs As from the nodes

corresponding to station s ∈ N̂k, so as to ensure the consistency of train passing route. Recall that N̂k

represents the set of stations that train k visits in the original timetable.

Stop plan constraints To ensure that, for each train k ∈ K0, the original stop plan is not modified,

the following constraints are imposed:∑
(i,j)∈As

d

ykij = 1, ∀k ∈ K0, s ∈ N̂k
d (4)
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In particular, if train k was planned to stop at station s in the planned timetable, then k will stop at

s in the rescheduled timetable as well: this is imposed by requiring that train k selects exactly one arc

from departure nodes corresponding to station s ∈ N̂k
d .

Disrupted area constraints When an area is blocked by a disruption, no train can enter it, i.e., none

of the arcs traversing the disrupted area can be selected:

ykij = 0, ∀k ∈ K, (i, j) ∈ AD (5)

4.2.3 Conflict-free constraints

These constraints guarantee that a conflict-free timetable is determined. There are two classes of con-

straints.

Train-incompatibility constraints The track capacity constraints are imposed to respect the min-

imum headway times between train departures or arrivals, and to avoid train overtaking between con-

secutive stations along a line. They are formulated by introducing incompatible arc sets as proposed

by Caprara et al. (2002). For clarity, we take two arcs (i
′
, j

′
) and (i, j) as an example to illustrate the

definition of incompatibility. To ensure the safety of train operations, we must ensure that certain pairs of

arcs associated with different trains cannot be simultaneously selected in a feasible solution. Therefore,

for each pair of trains k and k
′
, the two arcs (i

′
, j

′
) and (i, j) can not be simultaneously selected if at

least one of the following conditions holds:

• the time instant of node i
′
precedes that of node i (i.e, i

′≺ i), and the time interval between the time

instants associated with i
′
and i is smaller than hd

s (i.e., θ(i)-θ(i
′
)<hd

s); see Figure 5(a).

• the time instant of node j
′
precedes that of node j (i.e, j

′≺ j), and the time interval between the

time instants associated with j
′
and j is smaller than ha

s+1 (i.e., θ(j)-θ(j
′
)<ha

s+1); see Figure 5(b).

• the two arcs cross each other (i.e., i
′≺ i and j≺ j

′
); see Figure 5(c).

s

s+1

i'

j'

i

j

s

s+1

i'

j'

i

j

s

s+1

i'

j'

i

j

(a) (b) (c)

Figure 5: Incompatible pairs of arcs.

Such a pair of arcs (i
′
, j

′
) and (i, j) is called incompatible, thus the set consisting of all arcs that are

incompatible with arc (i
′
, j

′
) is called the incompatible arc set associated with arc (i

′
, j

′
). As an example,

Figure 6 further shows the departure incompatible arc set corresponding to travel arc (i
′
, j

′
): these arcs

are incompatible due to the violation of the minimum departure headway time hd
1 from station 1.
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Figure 6: Illustration of the departure headway constraints.

In particular, all arcs representing departures from station 1 (even without a stop at station 1) that

occur at a time instant between t1 (the time instant of node i′) and t3 (with t3 = t1 + hd
1 − 1) are

incompatible because they do not respect the minimum departure headway time. Hence, at most one

arc can be selected from this set. Similarly, incompatible arc sets are identified due to violation of the

minimum arrival headway time or of the overtaking constraints.

For each travel arc (i
′
, j

′
), we construct an incompatible arc set Ψ(i

′
, j

′
) containing all arcs that are in

conflict with arc (i
′
, j

′
). As a result, the train-incompatibility constraints are formulated as:∑

k∈K

∑
(i,j)∈Ψ(i′ ,j′ )

ykij ≤ 1, ∀(i
′
, j

′
) ∈ At (6)

Station capacity constraints At any time, each station s ∈ N cannot accommodate a number of

trains exceeding the station capacity limit Bs. The capacity Bs includes only the platforms for trains

that stop at station s: indeed, trains passing through the station use another track, and, due to the

headway constraints (6), no more than one of these trains can be present at the station at the same time.

Therefore, station capacity constraints are referred to trains stopping at the station. To express these

constraints, we introduce, for each waiting arc (i′, j′) ∈ As
a′ , the set φ(i

′
, j

′
) of waiting arcs in station s

crossing time instant θ(i
′
). An example is shown by the arcs plotted in Figure 7, where, at time instant

θ(i
′
), three trains are present at station s: two trains stop for the minimum dwelling time, while another

train stops for an additional time instant (dashed arc (i′, j′) ∈ As
a′). If the capacity Bs of station s is

two, then the trains that choose the three arcs in set φ(i
′
, j

′
) at the same time are in conflict.

As

Ds

Ps

Timet-2ᵟ t-ᵟ t+ᵟ t+2ᵟ t (     )'( )i

 

i' j'

Figure 7: Illustration of the set of waiting arcs at time t.

Based on the introduced sets φ(i
′
, j

′
), the station capacity constraints can be formulated as:∑

k∈K

∑
(i,j)∈φ(i′ ,j′ )

ykij ≤ Bs, ∀(i
′
, j

′
) ∈ As

a′ , s ∈ N (7)

17



Note that we only have to impose these constraints for the waiting arcs of the first type, i.e., those in

set As
a′ , since waiting arcs of the second type (corresponding to the minimum dwelling times) will always

appear in some set φ(i
′
, j

′
) of a waiting arc (i

′
, j

′
) of the first type.

4.3 Objective function

When a disruption occurs, the goal is, on one hand, to limit the delays of passengers as much as possible

and, on the other hand, to minimize the number of abandoned passengers, because train rerouting can

make some passengers not able to reach their destination. We consider these two objectives in a weighted

sum, where parameter δ is used to weight the respective importance of the two terms. In order to account

for the passenger inconvenience, we consider the delay weighted by the static passenger demand: for each

station s and train k, we consider the departure delay weighted by the number qonk,s of passengers that

get on train k at station s, and the arrival delay weighted by the number qoffk,s of passengers that get off

train k at station s. The objective function is formulated in the following way:

F0 =
∑
k∈K

∑
s∈N̂k

d

δ ×Qk,s ×
(
1−

∑
(i,j)∈As

d

ykij

)
+

∑
k∈K

∑
s∈N̂k

d

qonk,s ×
[ ∑
(i,j)∈As

d

ykij ×
(
θ(i)− T̂ d

k,s

)]
+

∑
k∈K

∑
s∈N̂k

d

qoffk,s ×
[ ∑
(i,j)∈As

d

ykij ×
(
θ(i)− ξs − T̂ a

k,s

)
−

∑
(i,j)∈As

a′

ykij

]
(8)

The first term in the objective function (8) represents the penalty for abandoned passengers due to

the selection of alternative routes for some trains. In particular, if no departure arc in As
d is selected for

train k from station s, i.e.,
∑

(i,j)∈As
d
ykij = 0, then the passengers booked on that train cannot get on

and off train k at station s. Hence, we consider as penalty δQk,s, where Qk,s is the number of abandoned

passengers. For clarity, we report, in Figure 8, an example of objective function computation for train k

scheduled to stop at station s, in which the planned timetable is shown in black. Two passengers book

on train k: at station s, the green passenger gets off while the orange passenger gets on. In particular,

Figure 8(a) shows a situation in which the rescheduled timetable (shown in purple) does not respect

the original train stop plan. Indeed, it is obtained by rerouting train k that skips station s and travels

through station s
′′
(whose nodes are indicated with lighter color in the figure). Hence, both passengers

are abandoned with total penalty 2δ.

The second term in the objective function (8) represents the departure delay of passengers who are

not abandoned, i.e.,
∑

(i,j)∈As
d
ykij = 1. This term considers, for train k and station s ∈ N̂k

d , the delay

given by the difference between the actual departure time θ(i) of the selected departure arc (i, j) ∈ As
d

and the planned departure time T̂ d
k,s, and weights the delay by the number qonk,s of passengers departing

from station s on train k. Figure 8(b) shows that the train stop plan is not modified, but the arrival

and departure times of the train at station s are adjusted. Specifically, in the red rescheduled timetable,

train k stops at station s but retiming is applied: the orange passenger has to depart at time θ(6) = t7
while the planned departure time was T̂ d

k,s = t4, hence experiences a delay of 3 time instants (i.e., the

part corresponding to the blue curve I).
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Figure 8: Illustration of objective function

The third term in the objective function (8) represents the arrival delay of passengers who are not

abandoned, i.e.,
∑

(i,j)∈As
d
ykij = 1. This term considers, for train k and station s ∈ N̂k

d , the delay given

by the difference between the actual arrival time of train k and its planned arrival time T̂ a
k,s, and weights

the delay by the number qoffk,s of passengers arriving at station s on train k. The part corresponding to

the blue curve II in Figure 8(b) shows the arrival delay of green passenger. Note that the arrival arc x is

an incoming arc of an arrival node at station s, which is not explicitly defined in Table 4. For the sake

of notation simplicity, we deduce the calculation formula of the actual arrival time as a function of the

departure arcs and waiting arcs at station s. Obviously, the arrival time associated with arrival arc x in

Figure 8(b) is equivalent to (θ(6) - ξs) - (y
k
4,5 + yk3,4) = t3, so the arrival delay experienced by the green

passenger is t3 - T̂ a
k,s(i.e., t1) = 2 time instants. According to the definition of departure arc and waiting

arc, we have
∑

(i,j)∈As
a′
ykij = 0 if

∑
(i,j)∈As

d
ykij = 0, which implies that the dwelling time is 0 if train k

does not stop at station s. Therefore, the arrival delay can be expressed in the third term of objective

function (8). We mention that the passenger arrival delay at the last station of each train k ∈ K is

taken into account by considering the arcs that connect nodes of the last station to the sink node τk, as

a special case of departure nodes.

Note that we consider both departure and arrival delays in the objective function mainly for the

following reasons: (1) we consider the double dissatisfaction of passengers. In the journey of passengers,

we find that, in addition to the dissatisfaction caused by train arrival delay, departure delay can also

cause passengers’ anxiety; (2) considering both aspects of delay makes the model more general: if the

second term in the objective function is removed, the problem only considers minimizing the arrival delay.

The model for TRP can be summarized as follows:
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minF0

s.t.

Constraints (1)− (7)

ykij ∈ {0, 1},∀k ∈ K, (i, j) ∈ Ak.

(9)

5 Solution method

In this section, we present the developed Lagrangian relaxation based heuristic algorithm (LR-H). In

particular, we relax, in a Lagrangian way (Fisher (1981)), the train-incompatibility constraints (6) and

the station capacity constraints (7) by incorporating them into the objective function with non-negative

multipliers, respectively, λij with (i, j) ∈ At, and ρij with s ∈ N and (i, j) ∈ As
a′ . By applying this

relaxation, the problem decomposes into |K| train-specific subproblems. For each train k ∈ K, the

subproblem consists in determining the time-dependent path in the space-time network G from σk to τk

that satisfies all disruption related constraints and has the smallest Lagrangian cost: the latter accounts

for the penalty due to the abandoned passengers, the passenger departure and arrival delays, and the

Lagrangian penalties due to the violation of the relaxed constraints. In Section 5.1, we report the relaxed

model and its decomposition into subproblems, and in Section 5.2, we describe the LR-H algorithm.

5.1 Lagrangian-relaxed model and decomposition

By relaxing, in a Lagrangian way, constraints (6) and (7), the Lagrangian-relaxed model (LRM) reads as

follows:

minF1 = F0 +
∑

(i′ ,j′ )∈At

λi′ j′ ×
( ∑

k∈K

∑
(i,j)∈Ψ(i′ ,j′ )

ykij − 1
)

+
∑
s∈N

∑
(i′ ,j′ )∈As

a′

ρi′ j′ ×
( ∑

k∈K

∑
(i,j)∈φ(i′ ,j′ )

ykij −Bs

)
s.t.

Constraints (1)− (5)

λi′ j′ ≥ 0, ∀(i′ , j′
) ∈ At

ρi′ j′ ≥ 0, ∀s ∈ N, (i
′
, j

′
) ∈ As

a′ .

Since all constraints that involve more than one train are relaxed, LRM can be decomposed into |K|
train-specific subproblems. The objective function F k

1 of each subproblem (k ∈ K) is reported in (10),

where we explicitly write F0 as in (8), and group terms related to the same arc type:

F k
1 =

∑
s∈N̂k

d

∑
(i,j)∈As

d

[
qonk,s ×

(
θ(i)− T̂ d

k,s

)
+ qoffk,s ×

(
θ(i)− ξs − T̂ a

k,s

)
− δ ×Qk,s

]
× ykij

−
∑
s∈N̂k

d

∑
(i,j)∈As

a′

qoffk,s × ykij +
∑
s∈N̂k

d

δ ×Qk,s +
∑

(i′ ,j′ )∈At

λi′ j′ ×
( ∑

(i,j)∈Ψ(i′ ,j′ )

ykij − 1
)

+
∑
s∈N

∑
(i′ ,j′ )∈As

a′

ρi′ j′ ×
( ∑

(i,j)∈φ(i′ ,j′ )

ykij −Bs

)
=

∑
(i,j)∈A

Ck
ij × ykij +

∑
s∈N̂k

d

δ ×Qk,s −
∑

(i′ ,j′ )∈At

λi′ j′ −
∑
s∈N

Bs

∑
(i′ ,j′ )∈As

a′

ρi′ j′ . (10)

In (10), Ck
ij represents the Lagrangian cost of arc (i, j) ∈ Ak of train k. Depending on the arc type,

different penalty terms have to be considered in Ck
ij , as shown in (10). In particular, we distinguish:

1. Departure arcs after a stop, i.e., (i, j) ∈ As
d, s ∈ N̂k

d . In this case, we have to consider the passenger

departure and arrival delays, a reward (if the arc is selected we do not have to account for abandoned

20



passengers), and the penalties λi′ j′ for all violations of incompatibility-arc constraints:

Ck
ij = qonk,s ×

(
θ(i)− T̂ d

k,s

)
+ qoffk,s ×

(
θ(i)− ξs − T̂ a

k,s

)
− δ ×Qk,s +

∑
(i′ ,j′ )∈At:(i,j)∈Ψ(i′ ,j′ )

λi′ j′ (11)

In particular, the last term considers all constraints (6) (defined by any arc (i
′
, j

′
) ∈ At) in which

traveling arc (i, j) appears, and sums the Lagrangian multipliers of each of these constraints.

2. Travel arcs for which the train does not stop at the departure station, i.e., (i, j) ∈ At\As
d, s ∈ N̂k

d .

In this case, since the train does not stop at the station, we have only to consider the penalties λi′ j′

for all violations of incompatibility-arc constraints:

Ck
ij =

∑
(i′ ,j′ )∈At:(i,j)∈Ψ(i′ ,j′ )

λi′ j′ . (12)

3. Waiting arcs (of the first type) corresponding to a stop longer than the minimum dwelling time, i.e.,

(i, j) ∈ As
a′ , s ∈ N̂k

d . In this case, we have to consider the passenger arrival delays (to complete the

computation together with the departure arcs (i, j) ∈ As
d), and the penalties ρi′ j′ for all violations

of station capacity constraints:

Ck
ij = −qoffk,s +

∑
(i′ ,j′ )∈As

a′ :(i,j)∈φ(i′ ,j′ )

ρi′ j′ , (13)

In particular, the last term considers all constraints (7) (defined by any arc (i
′
, j

′
) ∈ As

a′) in which

waiting arc (i, j) appears, and sums the Lagrangian multipliers of each of these constraints.

4. Other waiting arcs (of the second type) corresponding to a minimum dwelling time stop, i.e.,

(i, j) ∈ As
a\As

a′ , s ∈ N̂k
d . In this case, we only have to take into account the penalties ρi′ j′ for all

violations of station capacity constraints:

Ck
ij =

∑
(i′ ,j′ )∈As

a′ :(i,j)∈φ(i′ ,j′ )

ρi′ j′ . (14)

Note that, although the waiting arcs of the second type do not define station capacity constraints,

they can appear in station capacity constraints defined by waiting arcs of the first type, hence, the

Lagrangian multiplier must be associated with their cost.

Obviously, the relaxed problem after relaxing constraints (6) and (7) is easier to solve than the original

problem. However, by further observing the relaxed model, we can find that, if constraints (2)-(5) are

removed, the model can be transformed into a series of shortest path problems, one for each train.

Fortunately, constraints (2)-(5) can be easily removed from the model by modifying the space-time

network G, as follows:
Constraints (2): by analyzing each train k ∈ K and each station s ∈ N̂k

d where the train was planned

to stop, we mark the outgoing arcs associated with the departure nodes having departure time earlier

than the departure time T̂ d
k,s in the planned timetable as infeasible arcs. In the process of searching

feasible solutions, it is not allowed to select these infeasible arcs.

Constraints (3): based on the route information of not-directly-affected train k ∈ K0, we identify all

possible routes that train k can use and mark them as feasible routes. In the solving process, train k can

only choose arcs from the feasible routes.

Constraints (4): on the basis of identifying the feasible routes of not-directly-affected trains, we further

analyze set N̂k
d and mark the outgoing arcs associated with the departure nodes from the corresponding

station s in set N̂k
d as feasible ones, while the outgoing arcs associated with the passing nodes through

station s are labeled as infeasible ones, to ensure that constraints (4) are not violated.

Constraints (5): after obtaining disruption information, it is easy to derive the relevant disruption

arcs in the constructed space-time network G, which are marked as infeasible ones for all trains to ensure

that constraints (5) are satisfied.
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By the aforementioned processing, we obtain the feasible space-time arcs of the considered trains,

which respect constraints (2)-(5). Therefore, we can directly remove constraints (2)-(5) from the model

since they are enforced by graph construction. Furthermore, we observe that, for each train k ∈ K, the

subproblem corresponds to finding a shortest path from σk to τk with arc costs given by Ck
ij for each

arc (i, j) ∈ Ak. By solving the |K| subproblems, we obtain a lower bound for the TRP, since obviously

(some of) the relaxed constraints can be violated. In order to get a better lower bound, we apply a

subgradient optimization procedure (see e.g., Caprara et al. (2002), Meng and Zhou (2014), Zhang et al.

(2019)) to iteratively improve the Lagrangian multipliers λ and ρ until a termination condition is reached.

In particular, multipliers are updated at iteration n + 1 from the previous iteration n according to the

following expressions:

λn+1
i′ j′

= max
{
λn
i′ j′

+ αn
[ ∑
k∈K

∑
(i,j)∈Ψ(i′ ,j′ )

ykij − 1
]
, 0
}

(15)

ρn+1
i′ j′

= max
{
ρn
i′ j′

+ αn
[ ∑
k∈K

∑
(i,j)∈φ(i′ ,j′ )

ykij −Bs

]
, 0
}

(16)

where αn is the step parameter that is updated by αn = Ω/(n+1) (with Ω a constant value). We consider

three termination conditions, and stop as soon as one of them is satisfied: (i) the optimality gap between

the best upper and lower bounds is smaller than a threshold ε∗; (ii) the total number of iterations is

greater than the maximum number of iterations N ∗; (iii) the iteration time exceeds the preset maximum

computing time τ∗.

5.2 LR-H algorithm

We use the information of the solutions of model LRM to construct feasible solutions for the original

problem during the subgradient optimization procedure, and then return the best feasible solution found.

More precisely, the LR-H algorithm, shown in Algorithm 1, consists of six steps, described in the following,

that are iteratively executed until a termination condition is satisfied.
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Algorithm 1: The LR-H Algorithm

Input:

1: Space-time network G = (V,A).

2: The original timetable and passenger demand Qk,s k ∈ K, s ∈ N .

3: Arc cost Ck
ij in the space-time network for each train k ∈ K, and arc (i, j) ∈ Ak.

4: The disruption information AD.

Output: The solution of train rescheduling

• Step 1: Initialization

Initialize the iteration number n = 0;

Initialize multipliers λij and ρij to 0;

Initialize the best lower bound LB∗ := −∞ and best upper bound UB∗ := Minit;

Initialize the constraint pool = ∅.
• Step 2: Generate the lower bound solution

For k ∈ K do

Compute the shortest path of train k by label setting algorithm with multipliers λn
ij and ρnij

End For

Compute lower bound LBn by equation (10) and update LB∗ = max{LB∗, LBn}
• Step 3: Find a feasible upper bound solution

Find feasible solution based on heuristic Algorithm 2 with multipliers λn
ij and ρnij ;

Calculate upper bound UBn by equation (8) and update UB∗ = min{UB∗, UBn}
• Step 4: Calculate relative gap

Calculate the relative gap ε = (UB∗ − LB∗)/UB∗

• Step 5: Update constraint pool and Lagrangian multipliers

Update constraint pool by using a dynamic constraint-generation technique;

Update λn+1
i′ j′

and ρn+1
i′ j′

based on the updated constraint pool and subgradient method by equa-

tions (15) and (16)

n := n+ 1

• Step 6: Test termination conditions

Stop as soon as one of the termination conditions is satisfied; Otherwise, go to Step 2.

In Step 1, we initialize all elements used by LR-H. In particular, to efficiently handle the relaxed

constraints (6) and (7), we employ a constraint pool that is dynamically updated. Indeed, the sets of

constraints (6) and (7) are too large to be handled explicitly within the short computing time required

by the application. Since most of the constraints are inactive for a feasible solution, we apply a dynamic

constraint-generation technique. Specifically, in Step 1, the constraint pool is initialized as an empty set,

and, at each iteration, it is updated by identifying and adding the constraints (6) and (7) violated by the

current relaxed solution (lower bound) to the pool. In addition, we set the initial upper bound value to

Minit, which is the objective value of a feasible solution obtained by assuming that the trains affected by

the disruption in the operation process stop and wait in the safe area (including station and track), until

the disruption is over.

In Step 2, we compute a lower bound by solving model LRM through a label setting algorithm: it

computes the shortest path for each train k ∈ K by considering Lagrangian costs Ck
ij for each arc

(i, j) ∈ Ak. Note that, in order to speed up the solution process, we first perform topological sorting on

the constructed space-time network G to avoid traversing some invalid nodes when executing the shortest

path algorithm. This topological sorting only needs to be carried out once, since the topological structure

of the space-time network is not changed during the iterations of the algorithm.

In Step 3, we compute an upper bound (feasible heuristic solution) based on the relaxed solution

obtained at Step 2. In particular, we construct two feasible solutions by considering the trains ordered

according to two alternative train sequences, S1 and S2, and select the better one. In the first sequence S1,

the involved trains are ordered in the increasing order of the Lagrangian cost of the corresponding shortest

path computed in Step 2, while in the second one S2, the involved trains are ordered randomly. Given
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sequence S1 or S2, the involved trains are rescheduled one after another. For each train, we compute a

path in the space-time network by a label setting algorithm, which is output as the rescheduled timetable

of the train. Every time a train is rescheduled, all incompatible arcs due to constraints (6) and (7) are

forbidden in the space-time network for the following trains. If no feasible path is found for a train,

we just discard the train sequence. If, for both train sequences, no feasible solution can be found, the

LR-H algorithm will continue iteratively with the following steps. We observe that the computation of

the feasible solution with train sequence S1 is independent with the computation with train sequence

S2, so parallel computing technology is used in this part of Step 3 to speed up the solution process. The

procedure for computing a feasible heuristic solution is reported in Algorithm 2. In Step 3, we finally

update the best upper bound, if a better solution has been found.

Algorithm 2: A heuristic procedure to construct a feasible solution

Input:

1: Two space-time network G1 = G2 = (V,A) for train sequences S1 and S2, respectively.

2: Lagrangian costs of all involved trains obtained in Step 2 of Algorithm 1.

Output: A feasible upper bound

• Step 1: Generate the train sequences

Sequence S1: Sort the trains by increasing order of their Lagrangian costs;

Sequence S2: Randomly order the trains;

• Step 2: Generate a feasible solution by rescheduling trains sequentially

Parallel calculation for train sequences S1 and S2

For S ∈ {S1,S2} do

Initialize ℓ = 0

while ℓ <| S |
Compute the shortest path of train k = S(ℓ) on the updated space-time network by label

setting algorithm

if no feasible solution is found for train k

break;

else

Fix the path of train k, and update the space-time network by forbidding the arcs that

conflict with the path of train k, according to constraints (6) and (7)

end if

ℓ := ℓ+ 1

end while

End For

Return The better feasible solution generated with train sequences S1 and S2

In Step 4, the relative gap is computed based on the newly obtained lower and upper bounds. In

Step 5, we check whether the solution of model LRM violates any relaxed constraints (6) and (7), and

update the constraint pool accordingly. Afterwards, the Lagrangian multipliers are also updated based

on the constraint violations. Finally, Step 6 is used to determine whether at least one of the termination

conditions is satisfied and the algorithm can be stopped.

6 Computational results

We tested the performance of LR-H for several disruption scenarios based on two different railway net-

works. The first one (see Section 6.1) is a small artificial network on which the LR-H algorithm is

compared with the commercial solver GUROBI 10.0.1 applied to solve model (9). The second network

(see Section 6.2) is part of the Chinese railway network: for this large-scale instance, only the LR-H

method can be used to obtain the results in short computing times. We performed all computational

experiments on a computer with an Intel(R) Core(TM) i9-13900K@3.00GHz CPU and 128GB RAM,
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using Microsoft Windows 11(64 bit) OS. All methods were implemented in Visual C++ 2022.

6.1 Experiments on a small artificial network

We carried out a series of experiments based on the railway network shown in Figure 1. The distances

and running times between consecutive stations are reported in Figure 9: in particular, we assume that

the distance and running time between consecutive stations are, respectively, 80 km and 20 min. In

addition, we assume that station 3 and connected sections ((2,3), (3,6), (3,4)) are disrupted.

1 2 43

5 6 7

80(20) 80(20) 80(20)

80(20)
80(20)80(20)

80(20) 80(20)

Figure 9: Map of the small artificial network.

In Section 6.1.1, we analyze the impact that different values for the penalty parameter δ, weighting

the number of abandoned passengers in the objective function, have on the results. In Section 6.1.2, we

show the results of experiments with different disruption scenarios.

6.1.1 Impact of different penalty parameter δ values

We first generated a feasible train timetable, as shown in Figure 10, where a solid line represents a train

running on the current line, a dashed line represents a train running on other lines, and the grey area

represents the disruption. The figure is divided into three parts, each one corresponding to a possible

train path in the network: on top we report the time-space diagram for trains visiting stations 1-2-3-4,

in the middle for trains visiting stations 1-2-3-6-7-4, and at the bottom for trains visiting stations 1-2-

5-6-7-4. In total, we consider 27 trains running from station 1 to station 4. In this experiment, we set

the disruption start and end times to 80 and 110, respectively. In this case, five trains (shown in red

in Figure 10) are directly affected by the disruption, and their original timetable is reported in Table 5,

where “Arr.” and “Dep.” represent arrival and departure times, respectively.
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Figure 10: The original train timetable and disruption in the small artificial network.

Table 5: The original timetable of the directly-affected trains.

Train 3 Train 4 Train 5 Train 14 Train 15

Route 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 2, 3, 4 1, 2, 3, 6, 7, 4

Arr. −, 75, 98, 120 −, 89, 112, 132 −, 100, 120, 143 −, 87, 112 −, 59, 79, 102, 125, 147

Dep. 55, 78, 100,− 69, 92, 112,− 80, 100, 123,− 67, 92,− 39, 59, 82, 105, 127,−

As explained in Section 2, we assume that the routes of the not-directly-affected trains remain un-

changed, but the arrival, departure, and dwelling times of these trains can be adjusted. The minimum

departure and arrival headways are both set to 2 minutes, and the maximum capacity of station is set to

3. The number of passengers getting on and off each train at each station is randomly generated between

10 and 50. In the LR-H method, the constant Ω, used for updating the step parameter αn, is set to 20.

The termination condition for LR-H for the small artificial network is given by the following parameters:

ε∗=0.5%, N ∗ = 50 and τ∗ = 10s in the termination conditions.

We tested five different δ values. The results obtained by solving the model with GUROBI and by

LR-H are reported in Table 6. In addition, Figure 11 plots the convergence of best upper bounds and

lower bounds during the iterations for two different δ values when applying the LR-H method.
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Table 6: Comparison between GUROBI and the LR-H method for the small railway network.

δ value
GUROBI LR-H

F ∗ CPU time LB UB Iter. Cons. CPU time GAP∗ GAP

δ = 1 5024 45.78s 5000.42 5024 40 43 0.78s 0.00% 0.47%

δ = 10 6058 49.00s 6023.92 6058 50 52 0.92s 0.00% 0.56%

δ = 100 8365 47.14s 8327.11 8365 26 59 0.48s 0.00% 0.45%

δ = 1000 8365 46.89s 8327.11 8365 26 59 0.49s 0.00% 0.45%

δ = 10000 8365 47.09s 8327.11 8365 26 59 0.48s 0.00% 0.45%
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Figure 11: Best upper bounds and lower bounds during the iterations of LR-H with different δ values.

In Table 6, we report in the first column the considered δ value. Then, for the solution obtained

by GUROBI, we list the optimal objective value (F ∗) and the corresponding computing time (CPU

time). For the solution obtained by the LR-H method, we report the best lower bound value LB, the

best solution value UB, the total number “Iter.” of iterations executed by LR-H, the number “Cons.”

of constraints in the constraint pool when the algorithm stops, and the computing time (CPU time).

Finally, we show two gaps GAP∗ and GAP that represent, respectively, the relative gap between the best

upper bound (UB) and the optimal solution (F ∗), and between the best upper bound (UB) and the best

lower bound (LB). They are defined as:

GAP∗ =
UB − F ∗

UB
× 100,

GAP =
UB − LB

UB
× 100.

As can be seen from Table 6, the LR-H method can find the optimal solution for all cases in shorter

computing time than that of GUROBI. Although LR-H is not able to prove optimality of these solutions,

the optimality gap between upper and lower bounds is always below 0.6%. Besides, for penalty values

of δ larger or equal to 100, the optimal solution is always the same. As shown in Figure 11 for δ = 10

and δ = 100, in the first iterations the improvement of lower and upper bounds is more significant, while

later the curves become smoother, and converge to the best solution value.

In order to more clearly describe the rescheduling strategy determined by LR-H and by GUROBI (that

is the same optimal solution for all cases shown in Table 6), Table 7 reports the information of all the

adjusted timetables. In particular, we show the train route (that can differ from the one shown in Table 5

due to the disruption), and the arrival and departure times at all visited stations. It is worth noting that,

in the above experiments, the timetable of the not-directly-affected trains is not modified in the optimal

solution. The reason for this phenomenon is that, in this small case, the total number of trains operating

on the railway network is relatively small. Therefore, when five trains are affected by the disruption,

there is still enough capacity in the railway network to reschedule the directly-affected trains without

modifying the planned timetable of the not-directly-affected trains.
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Table 7: The rescheduled timetable of the directly-affected trains.

δ Train 3 Train 4 Train 5 Train 14 Train 15

Route 1, 2, 3, 4 1, 2, 5, 6, 7, 4 1, 2, 5, 6, 7, 4 2, 3, 4 1, 2, 3, 4

1 Arr. −, 75, 98, 134 −, 89, 112, 135, 155, 177 −, 100, 120, 140, 160, 180 −, 87, 132 −, 59, 79, 147

Dep. 55, 78, 114,− 69, 92, 115, 135, 157,− 80, 100, 120, 140, 160,− 67, 112,− 39, 59, 127,−
Route 1, 2, 3, 4 1, 2, 5, 6, 7, 4 1, 2, 3, 4 2, 3, 4 1, 2, 3, 4

10 Arr. −, 75, 98, 134 −, 89, 112, 135, 157, 177 −, 100, 132, 154 −, 87, 132 −, 59, 79, 147

Dep. 55, 78, 114,− 69, 92, 115, 137, 157,− 80, 112, 134,− 67, 112,− 39, 59, 127,−
Route 1, 2, 3, 4 1, 2, 5, 6, 7, 4 1, 2, 3, 4 2, 3, 4 1, 2, 3, 6, 7, 4

100 Arr. −, 75, 98, 134 −, 89, 112, 137, 157, 179 −, 100, 132, 154 −, 87, 132 −, 59, 79, 132, 155, 177

Dep. 55, 78, 114,− 69, 92, 117, 137, 159,− 80, 112, 134,− 67, 112,− 39, 59, 112, 135, 157,−
Route 1, 2, 3, 4 1, 2, 5, 6, 7, 4 1, 2, 3, 4 2, 3, 4 1, 2, 3, 6, 7, 4

1000 Arr. −, 75, 98, 134 −, 89, 112, 136, 159, 179 −, 100, 132, 154 −, 87, 132 −, 59, 79, 132, 155, 177

Dep. 55, 78, 114,− 69, 92, 116, 139, 159,− 80, 112, 134,− 67, 112,− 39, 59, 112, 135, 157,−
Route 1, 2, 3, 4 1, 2, 5, 6, 7, 4 1, 2, 3, 4 2, 3, 4 1, 2, 3, 6, 7, 4

10000 Arr. −, 75, 98, 134 −, 89, 112, 136, 159, 179 −, 100, 132, 154 −, 87, 132 −, 59, 79, 132, 155, 177

Dep. 55, 78, 114,− 69, 92, 116, 139, 159,− 80, 112, 134,− 67, 112,− 39, 59, 112, 135, 157,−

As shown in Table 7, the routes of trains 3 and 14 cannot be changed, and they have to wait on a track,

since they have already entered the disrupted area when the disruption starts (see Figure 10). On the

contrary, for the other trains, the route can be modified. When the penalty δ for abandoning passengers

is relatively small, trains will more likely choose other routes to reduce passenger delays. In particular,

when δ is 1 or 10, train 15 skips stations 6 and 7, so that it can run again as in the original timetable when

it arrives at station 4. When δ is very large, trains tend to follow the original routes in order to avoid

abandoning passengers. Specifically, when δ ≥ 100, the penalization caused by abandoning passengers

will be too large, so we have
∑

(i,j)∈As
d
ykij = 1 in an optimal solution, i.e., the first term of the objective

function becomes 0. Therefore, under this condition, the results correspond only to passenger delays.

For example, when δ ≥ 100, neither train 5 nor train 15 change the original stop plan. It is also worth

noting that, since train 4 has no stop planned at station 3 (see Table 5), in order to reduce passenger

dissatisfaction caused by long waiting times at station 2, route 1-2-5-6-7-4 is chosen for the train (i.e., it

skips station 3) to ensure the departure from station 2 on time.

6.1.2 Numerical experiments with different disruption scenarios

In this section, we consider δ = 100, and perform experiments under the different disruption scenarios

that are shown in Table 8, where we report, for each scenario ω, the start and end times of the disruption

and its duration. For all scenarios, we consider the original timetable of Figure 10.

Table 8: Information on the considered disruption scenarios.

Scenario ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Start time 100 100 80 80 60 60 60 50 50 50

End time 130 150 90 130 80 100 120 70 90 110

Duration 30 50 10 50 20 40 60 20 40 60

Table 9 lists the computational results obtained by GUROBI and LR-H under these ten disruption

scenarios. All columns have the same meaning as in Table 6, and we also report, in the last row, the

averages of computing times for GUROBI and LR-H, and the average percentage gaps. As can be seen

from Table 9, although the LR-H method cannot find the optimal solution for all scenarios, it achieves

an average gap of 1.01% from the optimal solution value within very short computing time (0.76 sec on

average), while GUROBI requires about 52 sec on average. In addition, the gap between the upper and

lower bounds is on average 1.89%, showing that the Lagrangian relaxation provides a lower bound of

good quality. We observe that the longer the disruption duration is, the more difficult it becomes for

LR-H to find the optimal solution: indeed, the larger gaps from the optimal solutions are obtained for

scenarios ω4, ω7, ω10, that have long disruption duration. This phenomenon is also in line with reality,
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because a longer disruption affects more trains, and, consequently, more adjustments are needed.

Table 9: Computational results with different disruption scenarios.

Scenario
GUROBI LR-H

F ∗ CPU time LB UB Iter. Cons. CPU time GAP∗ GAP

ω1 3860 38.63s 3841.29 3860 34 31 0.57s 0.00% 0.48%

ω2 11863 40.03s 11673.60 11909 50 56 0.79s 0.39% 1.98%

ω3 1451 49.07s 1451 1451 1 0 0.02s 0.00% 0.00%

ω4 17674 46.61s 17606.10 18284 50 64 0.90s 3.34% 3.71%

ω5 2017 56.88s 2007 2017 6 24 0.19s 0.00% 0.50%

ω6 11697 56.87s 11599 11753 50 49 0.94s 0.48% 1.31%

ω7 22002 56.70s 21911.70 22804 50 65 1.33s 3.52% 3.91%

ω8 5047 57.10s 4930.11 5047 50 26 0.97s 0.00% 2.32%

ω9 16241 56.35s 15876.2 16269 50 49 0.96s 0.17% 2.41%

ω10 24627 57.70s 24604.30 25180 50 59 0.96s 2.17% 2.29%

Avg. 51.59s 0.76s 1.01% 1.89%

Table 10 shows the rescheduling strategies selected in the best solution found, respectively, by GUROBI

and LR-H under the ten disruption scenarios. In the table, “DT” and “AT” represent, respectively, the

directly-affected trains and those for which the timetable is adjusted in the rescheduling process. In

addition, “Re-T” (retiming) means that the train does not change its original route, but the arrival time

and/or departure time in the original timetable are modified, while “Re-R” (rerouting) means that the

train follows an alternative route.

Table 10: Rescheduling strategies selected by GUROBI and LR-H under different disruption scenarios.

Scenario DT
GUROBI LR

AT Re-T Re-R AT Re-T Re-R

ω1 4,5, 4,5,6, 4,5, 6 4,5,6 4,5, 6

6,7,8 7,8,9 7,8,9 7,8,9 7,8,9

ω2 4,5,6,7, 4,5,6,7,8, 4,5,7, 6,9, 4,5,6,7,8, 4,5,7, 6,9,

8,9,10,16 9,10,11,16∗ 8,10,11 16(f∗
16 = 0) 9,10,11,16∗ 8,10,11 16(f∗

16 = 0)

ω3 15 15 15 − 15 15 −

ω4 3,4,5,6, 3,4,5,6, 3,5,7, 4,6 3,4,5,6, 3,5,7, 4,6

7,8,14,15 7,8,9,14,15 8,9,14,15 7,8,9,14,15 8,9,14,15

ω5 1,2, 1,2, 1,2, − 1,2, 1,2, −
3,14 3,14 3,14 3,14 3,14

ω6 1,2,3, 1,2,3, 1,2,3, − 1,2,3, 1,2,3, −
4,14,15 4,5,14,15 4,5,14,15 4,5,14,15 4,5,14,15

ω7 1,2,3,4,5, 1,2,3,4,5, 1,2,3, 4,6,14 1,2,3,4,5, 1,2,3, 4,6,14

6,7,14,15 6,7,8,14,15 5,7,8,15 6,7,8,14,15 5,7,8,15

ω8 1,2, 1,2, 1,2, − 1,2, 1,2, −
14,15 14,15 14,15 14,15 14,15

ω9 1,2, 1,2,3, 1,2, 15 1,2,3 1,2, 15

3,14,15 4,14,15 3,4,14 4,14,15 3,4,14

ω10 1,2,3, 1,2,3,4, 1,3, 2,4, 1,2,3,4, 1,3, 2,4,

4,5,14,15 5,6,14,15 5,6 14,15 5,6,14,15 5,6 14,15

From Table 10, we can see that, in the 10 scenarios, the rescheduling strategies selected in the best

solution found by the two methods are the same: compared with GUROBI, LR-H can find the correct

rescheduling strategy faster, even if, in some cases (i.e., scenarios 2, 4, 6, 7, 9 and 10), there are small

deviations in the adjustment of arrival or departure time, resulting in an objective value slightly larger

than the optimal one.

We observe that, for most trains, the retiming rescheduling strategy is selected. However, it is also

worth noting that, in scenario ω2, in which the disruption starts at time instant 100 and ends at 150, if

train 16 is scheduled according to the original timetable, it will inevitably be affected by the disruption

(see Figure 10). However, because train 16 has no stop planned at station 3, it can avoid being delayed
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by choosing the rerouting strategy (i.e., the delay f∗
16 of train 16 is 0). This also shows that, when the

railway network is subject to a large-scale disruption, it is important to introduce the rerouting strategy.

Figure 12 plots the rescheduled time-space diagrams of the two solving methods (GUROBI and LR-H)

for the line including stations 1, 2, 3 and 4 in scenario ω2.
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Figure 12: The rescheduled timetables in scenario ω2.

In this case, the total passenger delay obtained by GUROBI is 11863, given by the sum of the delays

of trains 4, 5, 6, 7, 8, 9, 10, 11 and 16, which are respectively 1092, 1421, 440, 3986, 3333, 880, 648, 63

and 0. The total passenger delay obtained by LR-H is 11909: the same trains are delayed and by the

same amount except for trains 4 and 5 whose delay is, respectively, 1040 and 1519. As can be seen in

Figure 12, the departure sequence of trains 4 and 5 obtained by LR-H is different from the one computed

by GUROBI, that coincides with the optimal plan. This results in a slightly larger total passenger delay

for LR-H. However, LR-H requires much shorter computing times, and this is crucial, especially for large-

scale instances, for which GUROBI is no longer able to solve the model within acceptable computing

times.

6.2 Large-scale experiment

6.2.1 Experiment description

In this section, we report the results obtained by the LR-H method on a real-world instance of the Chinese

railway network with five double-track lines, marked with different colors in Figure 13. The tested railway

network consists of 47 stations and 50 sections with a total length of 1935 km, of which lines 1, 2, 3, 4 and

5 are, respectively, 247 km, 606 km, 442 km, 340 km and 300 km. Figure 13 indicates the names of the

stations and the corresponding index in brackets. Besides, the number marked between two consecutive

stations is the corresponding distance (in km). For example, the distance of section ‘10 ↔ 11’ on L2 is

101, which means that the distance from station Nanchang West (10) to station Fuzhou (11) is 101 km.
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Figure 13: Map of the considered real-world railway network.

We use the actual timetable of March 21, 2020 as the original timetable. The planning time horizon

H we consider is [6:00, 24:00] (i.e., [0 min, 1080 min]). During this planning horizon, in the network 350

trains travel, of which 188 trains traverse at least two lines of the network, accounting for 53.7% of the

total. This confirms that it is important to consider the rescheduling problem in the whole network.

Based on the actual timetable, we derived the upper and lower limits for the running time along each

section, as shown in Table 11. For example, in the first row, (4, 11) means that the shortest and longest

allowed running times from Yanping to Yanping West are, respectively, 4 and 11 minutes. In Table 11,

we can see that the difference between upper and lower running time limits of many sections, such as

32 → 31 and 47 → 32, is very large. This leads to a very large number of arcs in the space-time network,

which greatly increases the scale of the problem.

In this instance, the minimum departure and arrival headways are both set to 3 minutes, the minimum

dwelling time at every station is set to 2 minutes, and the maximum station capacity is set to 6. Because

of the protection of commercial data, it was not possible for us to obtain the corresponding passenger

demand. Therefore, we randomly generated passenger demands. Specifically, the number of passengers

getting on and off each train at each station is randomly generated between 20 and 100, and the total

number of passengers is 270636. In the LR-H method, the constant Ω for updating the step parameter

αn is set to 20. Unless otherwise stated, we set ε∗ = 1.0%, N ∗ = 50 and τ∗ = 600s in the following

experiments (but we also consider shorter time limits in Section 6.2.3). We consider that the disruption

occurs at station Yongtai and connected sections, which is illustrated by the shadow in Figure 13.

In the following, we report the results obtained by LR-H with four experiments, namely, using different

values for the penalty parameter δ (Section 6.2.2), considering different disruption scenarios (Section

6.2.3), evaluating the impact of allowing or not rerouting as a rescheduling strategy (Section 6.2.4), and
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Table 11: Running times in the actual railway network.

Sec. Time Sec. Time Sec. Time Sec. Time Sec. Time

1 → 2 (4, 11) 9 → 27 (10,16) 19 → 18 (20, 26) 28 → 29 (5, 9) 38 → 39 (7, 12)

1 → 37 (13, 17) 9 → 28 (24,35) 19 → 39 (13, 20) 29 → 28 (5, 9) 39 → 19 (13, 23)

1 → 38 (11, 17) 10 → 11 (33,40) 19 → 40 (7, 17) 29 → 30 (12, 21) 39 → 38 (7, 12)

2 → 1 (4, 11) 11 → 10 (33,43) 20 → 18 (20, 30) 30 → 29 (12, 17) 40 → 19 (7, 17)

2 → 3 (10, 16) 11 → 12 (16,21) 20 → 42 (6, 10) 30 → 31 (6, 12) 40 → 41 (11, 20)

3 → 2 (11, 17) 12 → 11 (16,21) 20 → 43 (8, 12) 31 → 30 (6, 12) 41 → 40 (12, 18)

3 → 4 (9, 16) 12 → 13 (10,14) 21 → 22 (20, 28) 31 → 32 (19, 25) 41 → 42 (10, 15)

3 → 16 (16, 22) 13 → 12 (11,14) 22 → 21 (26, 28) 31 → 47 (9, 16) 42 → 20 (6, 11)

3 → 17 (14, 20) 13 → 14 (16,20) 22 → 23 (16, 17) 32 → 31 (16, 28) 42 → 41 (10, 14)

4 → 3 (8, 15) 14 → 13 (16,20) 23 → 22 (16, 18) 32 → 47 (15, 25) 43 → 20 (8, 11)

4 → 5 (14, 16) 14 → 15 (10,14) 23 → 24 (11, 15) 33 → 34 (7, 12) 43 → 44 (9, 13)

5 → 4 (13, 18) 15 → 14 (10,14) 24 → 23 (11, 16) 34 → 33 (7, 11) 44 → 43 (9, 13)

5 → 6 (13, 16) 15 → 16 (14,18) 24 → 25 (13, 16) 34 → 35 (12, 16) 44 → 45 (5, 10)

6 → 5 (12, 16) 16 → 3 (16,21) 25 → 24 (12, 16) 35 → 34 (12, 18) 45 → 44 (6, 10)

6 → 7 (13, 15) 16 → 15 (14,19) 25 → 26 (16, 19) 35 → 36 (8, 13) 45 → 46 (8, 12)

7 → 6 (12, 15) 17 → 3 (14,20) 26 → 25 (16, 18) 36 → 35 (9, 13) 46 → 45 (7, 13)

7 → 8 (8, 13) 17 → 18 (31,34) 26 → 27 (14, 18) 36 → 37 (12, 18) 46 → 47 (15, 25)

8 → 7 (8, 11) 18 → 17 (32,35) 27 → 9 (10, 16) 37 → 1 (13, 18) 47 → 31 (9, 13)

8 → 9 (11, 17) 18 → 19 (20,27) 27 → 26 (14, 18) 37 → 36 (12, 16) 47 → 32 (14, 30)

9 → 8 (10, 17) 18 → 20 (20,26) 28 → 9 (24, 29) 38 → 1 (10, 16) 47 → 46 (13, 23)

evaluating the performance of the dynamic constraint-generation technique (Section 6.2.5). Due to the

size of the real-world instance, we do not report any comparison with GUROBI.

6.2.2 Analysis of different δ values in the actual network

In this experiment, we set the disruption start and end times, respectively, as minutes 420 and 600 of

the time horizon. The duration of the disruption is thus 3 hours, and a total of 18 trains are directly

affected. Table 12 shows the computational results obtained with different δ values. The first column

shows the considered value for δ, and the second column reports the objective value F of the best solution

found by LR-H, i.e., F = δf1 + f2, where f1 represents the number of abandoned passengers, and f2
represents the total passenger delay. The third and fourth columns report f1 and f2, respectively. In

addition, in the third column, we show in brackets the value “Per.” that represents the percentage of

abandoned passengers with respect to the total number of passengers. In the fourth column, we display

in brackets the value “Avg.” that represents the average delay in minutes for all delayed passengers: it

is calculated as the ratio of the sum of terms 2 and 3 in (8) (i.e., f2 in Table 12) and the number of

all involved delayed passengers “#DP”. Here, #DP represents the total number of delayed passengers

getting on (i.e., qonk,s) and off (i.e., qoffk,s ) delayed trains. Then, in Table 12, we display the number

“#AT” of trains whose timetable was adjusted in the solution, and the numbers “#Re-T” and “#Re-R”,

representing, respectively, how many trains were only retimed and how many were rerouted. Finally, we

show the number “Cons.” of constraints in the constrain pool when LR-H terminates, the number “Iter.”

of iterations executed by LR-H, its computing time, and the percentage gap between the best solution

found and the best lower bound.

Table 12: Computational results of LR-H with different δ values in the actual network.

δ F f1(Per.) f2(#DP,Avg.) #AT #Re-T #Re-R Cons. Iter. CPU time GAP

1 196926 3244(1.20%) 193682(3909, 49.55) 31 17 14 37923 22 119s 0.77%

10 220655 2376(0.88%) 196895(5098, 38.62) 33 20 13 41146 18 97s 0.70%

100 369825 1222(0.45%) 247625(8853, 27.97) 36 25 11 47620 50 299s 2.69%

1000 682172 0(0%) 682172(11990, 56.90) 36 27 9 66781 50 454s 3.64%

10000 685895 0(0%) 685895(12833, 53.45) 32 23 9 66793 50 381s 4.16%

As can be seen from Table 12, for all cases, the obtained solutions have an optimality gap below 4.5%

and are obtained within 500 seconds. We also observe that, for δ ≤ 100, the optimality gaps are smaller,
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and the computing times are shorter; for δ ≥ 10, the percentage of abandoned passengers is less than

1%. With the increase of penalty parameter δ, fewer and fewer trains choose the rerouting strategy, and,

for large values of δ (e.g., 1000 or 10000), no passengers are abandoned: in this case, trains can still be

rerouted, but only if the passengers do not get on or off the trains at the skipped stations. We note

that, when δ ≥ 1000, the total delay increases. Indeed, to avoid abandoning passengers, trains cannot

be rerouted and have to wait longer times. In practice, the railway company can choose the appropriate

value of δ, according to the actual needs to obtain a more suitable rescheduled timetable. Based on our

results, an appropriate value for δ appears to be 100, as it is a good compromise for delay reduction while

limiting the number of abandoned passengers. For δ = 100, we further illustrate in Figure 14(a) the plots

of the best upper and lower bounds, and in Figure 14(b) the number of constraints in the constraint pool

as a function of the number of iterations.
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(b) The number of constraints during the iterations

Figure 14: Variation of the best upper and lower bounds, and the number of constraints in the constraint

pool when δ = 100.

It can be seen from Figure 14 that the change trend of the lower bound is consistent with the change

trend of the number of constraints in the constraint pool. In early iterations, more constraints have to be

dynamically added to the constraint pool, hence, the number of constraints increases faster, while later

it increases slightly because there are less constraints outside the constraint pool. Since the Lagrangian

multipliers are updated based on the changes in the constraint pool, the lower bound improvement

follows a similar trend. In addition, it must be mentioned that the number of constraints finally added

to the constraint pool accounts for only 1.7% of the total number of relaxed constraints. Specifically, the

numbers of relaxed constraints (6) and (7) are, respectively, |At| and |Aa′ |, where |At| and |Aa′ | represent,
respectively, the total number of traveling arcs and the total number of waiting arcs of the first type.

After calculation, the sum of |At| and |Aa′ | is up to 2.8 million, while there are only 47, 620 constraints

in the constraint pool. Therefore, the number of constraints added to the constraint pool is very small in
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proportion to the total number of relaxed constraints, indicating that the dynamic constraint-generation

technique is crucial for the studied problem.

Figure 15 shows the rescheduled timetable with δ = 100, represented by space-time diagram on line L2.

In the figure, trains that are scheduled as in the original timetable are shown with black lines, trains that

are rerouted are shown with blue lines, and trains for which retiming is applied are shown with red lines.

We observe that, the disruption ends at time 600, but the rescheduling of some trains are much later,

which implies that the impact of the disruption may last for a long time. This particularly occurs when

rescheduling long-distance trains that more likely affect subsequent trains. Hence, we consider all trains

as candidate trains to be rescheduled. In this way, we do not need to fix the end of the rescheduling

horizon in advance, which would also be a hard task. In addition, considering a longer rescheduling

horizon can allow for finding better solutions.

1

Figure 15: The rescheduled timetable (L2) with penalty parameter δ = 100.

To illustrate the train rescheduling strategy, we select the 8 trains in Figure 15 whose indexes are

reported. Firstly, we observe that for trains 98 and 66 there is no choice of rerouting strategy, since

the disruption has not yet occurred when they depart from station Sanming North. As for the other

trains, the choice of rerouting mainly depends on how long the train has to wait before the disruption is

over. In general, if the train has to wait for a long time, then, rerouting is an effective option, so that

it can quickly run again as in the original timetable: this is what happens for trains 77, 97, 109 and

125. On the contrary, trains 85 and 141 have to wait for a short time, so the rerouting strategy is not

chosen for them. To describe the rescheduling strategy of the 8 trains in detail, we show, in Table 13,

the comparison between their original and their rescheduled timetable. In the table, “Ori.” and “Re.”

represent, respectively, the original timetable and the rescheduled one. In addition, the first number in

the timetable represents the station index, and the two numbers in brackets represent, respectively, the

arrival and departure times. Note that only part of the timetable of the train after Sanming North is

reported.

As already mentioned, trains 66 and 98 wait until the disruption has been resolved, hence their route

is not changed. For train 97 the disruption information has been received when it arrives at station

Sanming North, so we can flexibly choose the strategy of waiting or rerouting: as a result, for train 97

the rerouting is applied, and it can travel again as in the original timetable from station 19, although the
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Table 13: Comparison of train timetables before and after rescheduling of the 8 selected trains.

Train Timetable

66 Ori. ...3(410, 414) → 17(432, 434) → 18(468, 470) → 19(495)

Re. ...3(410, 414) → 17(432, 600) → 18(631, 633) → 19(653)

77 Ori. ...3(481, 485) → 17(503, 505) → 18(536, 536) → 20(555, 555) → 43(563, 563)

→ 44(572, 572) → 45(578, 580) → 46(589, 589) → 47(606, 611) → 32(638)

Re. ...3(481, 485) → 4(494, 494) → 5(509, 509) → 6(522, 522) → 7(535, 535) → 8(543, 543) →
9(558, 558) → 28(582, 582) → 29(587, 589) → 30(601, 601) → 31(607, 607) → 47(616, 618) → 32(638)

85 Ori. ...3(563, 567) → 17(585, 587) → 18(621, 623) → 20(644, 644) → 43(653, 655) →
44(666, 666) → 45(673, 675) → 46(684, 684) → 47(700, 703) → 31(714, 714) → 30(722)

Re. ...3(563, 567) → 17(585, 603) → 18(634, 640) → 20(662, 662) → 43(670, 676) →
44(685, 685) → 45(693, 695) → 46(703, 703) → 47(721, 723) → 31(732, 732) → 30(738)

97 Ori. ...3(425, 427) → 17(446, 448) → 18(482, 482) → 19(503)

Re. ...3(425, 427) → 2(438, 438) → 1(449, 449) → 38(466, 466) → 39(478, 480) → 19(503)

98 Ori. ...3(386, 388) → 17(407, 409) → 18(443, 443) → 19(463)

Re. ...3(386, 388) → 17(407, 409) → 18(443, 605) → 19(625)

109 Ori. ...3(470, 474) → 17(488, 488) → 18(521, 521) → 20(541, 558) →
43(567, 567) → 44(577, 577) → 45(584, 586) → 46(595, 595) → 47(611)

Re. ...3(470, 474) → 2(485, 485) → 1(489, 489) → 38(500, 500) → 39(507, 507)

→ 19(520, 520) → 40(527, 527) → 41(538, 538) → 42(548, 548) → 20(554, 558)

→ 43(566, 566) → 44(575, 575) → 45(584, 586) → 46(594, 594) → 47(611)

125 Ori. ...3(445, 449) → 17(464, 464) → 18(497, 497) → 19(518)

Re. ...3(445, 449) → 2(465, 467) → 1(478, 480) → 38(497, 503) → 39(510, 510) → 19(523)

141 Ori. 3(551) → 17(569, 571) → 18(604, 606) → 19(631)

Re. 3(551) → 17(569, 609) → 18(640, 642) → 19(662)

passengers who wanted to get on and off the train at station 17 can not be served. A similar choice is

done for trains 77, 109 and 125. However, for train 141, because of the passenger demand at stations 17

and 18, and because the waiting time is short, the choice is that it waits at station 17 until the disruption

is over. A similar behavior is observed for train 85.

In addition, we can see that different routes are selected for the rerouted trains, based on the station

capacity limit and passenger demand. Since there are a large number of trains served by lines 4 and 5,

some trains are also rerouted on line 3, if the number of abandoned passengers is low (see e.g., train 77).

It should also be pointed out that the not-directly-affected trains are only slightly adjusted. Observing

Figure 15, it can be seen that there is an adjusted train (i,e., red train path) running around 800-950 min

from Yongtai (18) to Fuzhou (11). By analyzing the original timetable, we find that this train is from

Xiamen (32) to Fuzhou (11), which runs on lines L5 and L2. Because line L5 serves some additional

rerouted trains, the arrival and departure times of the train are slightly affected. This also shows that

it is important to consider a longer time horizon for the problem of large-scale disruption in a railway

network.

6.2.3 Numerical experiments with different disruption scenarios in the actual network

In this section, we fix the penalty parameter δ to 100, and perform numerical experiments for 15 differ-

ent disruption scenarios shown in Table 14. These scenarios are characterized by four different sets of

disruption start times (i.e., 60, 240, 420 and 600), which cover the morning, noon and afternoon of the

day. Based on the start times, we also set different disruption durations to better analyze the impact of

disruption start time and duration on the results.

Table 14: Information on the considered disruption scenarios in the actual network.

Scenario ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15

Start time 60 60 60 240 240 240 240 240 420 420 420 420 420 600 600

End time 240 300 360 360 420 480 540 600 540 600 660 720 780 780 840

Duration 180 240 300 120 180 240 300 360 120 180 240 300 360 180 240

Table 15 displays the computational results obtained by the LR-H algorithm for these 15 disruption
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scenarios. In the table, all columns have the same meaning as Table 12, and we also show “#DT” that

represents the number of the directly-affected trains.

Table 15: Computational results of LR-H with different disruption scenarios.

Scen. F f1(Per.) f2(Avg.) #DT #AT #Re-T #Re-R Cons. Iter. CPU time GAP

ω1 269597 1075(0.40%) 162097(21.54) 13 35 26 9 51911 14 194s 0.97%

ω2 386737 1490(0.55%) 237737(24.38) 16 44 33 11 62873 50 472s 2.75%

ω3 479233 2335(0.86%) 245733(24.81) 20 55 37 18 71246 50 520s 1.05%

ω4 267739 383(0.14%) 229439(49.93) 9 20 17 3 41312 9 67s 0.45%

ω5 420662 834(0.31%) 337262(60.70) 13 30 23 7 46365 9 67s 0.56%

ω6 629060 1246(0.46%) 504460(61.94) 19 42 32 10 53333 12 95s 0.60%

ω7 859892 2516(0.93%) 608292(67.63) 23 49 33 16 66669 50 420s 2.37%

ω8 1057778 2680(0.99%) 789778(61.07) 29 55 35 20 75200 50 466s 2.57%

ω9 223516 699(0.26%) 153616(35.32) 12 19 12 7 39625 37 189s 0.98%

ω10 369825 1222(0.45%) 247625(27.97) 18 36 25 11 47620 50 299s 2.69%

ω11 510789 1869(0.69%) 323889(40.16) 20 35 20 15 56097 50 300s 3.26%

ω12 622355 2334(0.86%) 388955(40.37) 27 46 28 18 60306 50 313s 4.81%

ω13 800913 2539(0.94%) 547013(37.06) 30 55 35 20 67898 50 325s 6.42%

ω14 569457 419(0.15%) 527557(52.81) 16 32 27 5 32622 50 178s 2.00%

ω15 855173 1844(0.68%) 670773(69.61) 22 34 21 13 44680 50 303s 2.62%

Avg. 281s 2.27%

The LR-H algorithm obtains near-optimal solutions with an average optimality gap of 2.27% within

an average computing time of about 300 seconds, and, in most cases, the optimality gap is smaller than

3.5%. As expected, the longer the disruption duration is, the longer the computing time is needed, and

the larger the number of constraints are added to the constraint pool (see, e.g., scenarios ω3, ω7, ω8,

ω12, ω13). This is because if the disruption duration becomes longer, more trains are directly affected,

and there will be more conflicts when rescheduling involved trains.

In practice, train operators require to obtain an effective rescheduling strategy as quickly as possible.

To further analyze the performance of LR-H, we carried out numerical experiments with different values

of time limit τ∗. We consider the same 15 scenarios, and set τ∗ alternatively to 1 min, 5 min and

10 min, while keeping the other two termination conditions (i.e., ε∗ = 1.0%, N ∗ = 50) unchanged.

Table 16 reports the corresponding computational results, where “−” indicates that the LR-H algorithm

had already terminated (hence, the values are the same as those obtained with the previous shorter time

limit). In the table, F1 and F5 represent the objective function value of the best solution obtained within

the corresponding time limits of 1 and 5 min, respectively; F is the objective function value of the best

solution obtained with a time limit of 10 min (as shown in Table 15). Beside the optimality gap “GAP”

in different time limit, we also report the relative gap “F -Gap” that represents the gap between F and

Fn, where n = 1, 5, i.e.,

F -Gap =
Fn − F

Fn
× 100.

In the last row, we report the average values of the gaps.

We observe that, when τ∗ = 1 min, although the average optimality gap is quite large (i.e., 8.32%), the

quality of the obtained feasible solutions is good, i.e., the average value of F -Gap is 1.05%. Moreover, for

instances ω1 - ω7 and ω11, the best obtained feasible solutions are as good as when τ∗ = 10 min, which

indicates that high quality solutions can be found in very short computing times. When τ∗ = 5 min,

the average value of F -Gap decreases to 0.08%, and meanwhile the average optimality gap significantly

reduces to 2.51%. This shows that lower and upper bounds are both effectively improved during the

subgradient optimization iterations.

6.2.4 Numerical experiments with different rescheduling strategies

To further highlight the importance of the rerouting strategy for reducing passenger delays, we compare

the solutions obtained by employing rerouting with those in which rerouting is not applied. When

rerouting is not allowed, trains have to wait at a station or track until the end of the disruption.
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Table 16: Computational results of LR-H with different time limit τ∗.

Scenario
τ∗=1 min τ∗=5 min τ∗=10 min

F1 GAP F -Gap F5 GAP F -Gap F GAP F -Gap

ω1 269597 11.05% 0.00% 269597 0.97% 0.00% − − 0.00%

ω2 386737 14.09% 0.00% 386737 3.56% 0.00% 386737 2.75% 0.00%

ω3 479233 11.04% 0.00% 479233 1.91% 0.00% 479233 1.05% 0.00%

ω4 267739 2.50% 0.00% 267739 0.45% 0.00% − − 0.00%

ω5 420662 2.17% 0.00% 420662 0.56% 0.00% − − 0.00%

ω6 629060 3.24% 0.00% 629060 0.60% 0.00% − − 0.00%

ω7 859892 8.01% 0.00% 859892 2.65% 0.00% 859892 2.37% 0.00%

ω8 1069910 9.56% 1.13% 1069910 4.03% 1.13% 1057778 2.57% 0.00%

ω9 240106 11.97% 6.91% 223516 0.98% 0.00% − − 0.00%

ω10 380960 10.55% 2.92% 369825 2.69% 0.00% − − 0.00%

ω11 510789 8.15% 0.00% 510789 3.26% 0.00% − − 0.00%

ω12 633565 10.78% 1.77% 622355 4.90% 0.00% 622355 4.81% 0.00%

ω13 811861 11.77% 1.35% 800913 6.50% 0.00% 800913 6.42% 0.00%

ω14 572644 3.71% 0.56% 569457 2.00% 0.00% − − 0.00%

ω15 864196 6.26% 1.04% 855173 2.62% 0.00% − − 0.00%

Avg. 8.32% 1.05% 2.51% 0.08% 2.27% 0.00%

In these experiments, we consider five scenarios (ω9, ω10, ω11, ω12 and ω13) having disruption start

time in the middle of the day (i.e., 420min), and compare the results obtained by LR-H for the two

strategies. The results are shown in Tables 17 and 18. In particular, Table 17 reports the results related

to the objective function terms, with the columns of the table having the same meaning as in Table 15.

Table 18 displays the number “#DT” of the directly-affected trains and “#AT” of trains whose timetable

was adjusted. In addition, it contains the specific adjustment applied (number of retimed and rerouted

trains), as well as the information on the LR-H algorithm (number of constraints in the constraint pool,

number of executed iterations, computing time and percentage optimality gap). In both tables, “Re-R”

(Yes or No) represents whether the rerouting strategy is allowed or not in train rescheduling.

Table 17: Results (objective function terms) under different rescheduling strategies (rerouting or not).

Scenario Re-R F f1 Per. f2(min) Avg.(min) #DP

ω9 Yes 223516 699 0.26% 153616 35.32 4349

No 418520 0 0% 418520 51.28 8162

ω10 Yes 369825 1222 0.45% 247625 27.97 8853

No 909267 0 0% 909267 77.36 11754

ω11 Yes 510789 1869 0.69% 323889 40.16 8064

No 1560525 0 0% 1560525 123.03 12684

ω12 Yes 622355 2334 0.86% 388955 40.37 9634

No 2441820 0 0% 2441820 137.60 17746

ω13 Yes 800913 2539 0.94% 547013 37.06 14762

No 3584816 0 0% 3584816 157.89 22704

From Table 17 we can see that, when the rerouting strategy is not allowed, although no passengers

are abandoned, the total delay increases significantly compared to the case that considers rerouting, and,

the longer the duration is, the more it increases. When rerouting is not allowed, the main reason causing

large delays is that trains wait for a long time at a station or track before the disrupted area until the

disruption is over, thus, not only affecting the passengers at the current station, but also those at all

subsequent stations. Therefore, the rerouting strategy is capable of reducing delays, keeping the number

of abandoned passengers at a very low percentage.
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Table 18: Results (LR-H performance) under different rescheduling strategies (rerouting or not).

Scenario Re-R #DT #AT #Re-T #Re-R Cons. Iter. CPU time GAP

ω9 Yes 12 19 12 7 39625 37 189s 0.98%

No 12 25 25 0 37610 14 65s 0.92%

ω10 Yes 18 36 25 11 47620 50 299s 2.69%

No 18 26 26 0 47183 48 254s 0.97%

ω11 Yes 20 35 20 15 56097 50 300s 3.26%

No 20 32 32 0 49310 50 343s 1.92%

ω12 Yes 27 46 28 18 60306 50 313s 4.81%

No 27 45 45 0 54066 50 291s 6.97%

ω13 Yes 30 55 35 20 67898 50 325s 6.42%

No 30 45 45 0 60368 50 467s 9.42%

From Table 18, we can see that the problem that allows train rerouting is more complex: indeed,

more constraints are added to the constraint pool in the same number of iterations, and more timetables

have to be adjusted. We can also observe that, for scenarios ω12 and ω13, which have longer disruption

durations, the optimality gap is smaller when rerouting can be applied, which also confirms that rerouting

is more important when a long disruption occurs.

As an example, we report, in Table 19, the three timetables of train 75 (that was planned to travel

along the disrupted area) in scenario ω10: “Ori.” represents the planned timetable, “No-Re.” indicates

that the rerouting strategy is not allowed, and “Re.” that it can be applied.

Table 19: Comparison of timetables of train 75 (original, without rerouting and with rerouting).

Train Strategy Timetable

75 Ori. ...20(448, 450) → 18(470, 470) → 17(503, 503) → 3(517,521) → 16(541, 543) →
15(560, 562) → 14(575, 577) → 13(597, 599) → 12(611, 611) → 11(628, 631) → 10(668)

75 No-Re. ...20(448, 600) → 18(620, 620) → 17(652, 652) → 3(666,668) → 16(684, 686) →
15(700, 702) → 14(712, 714) → 13(730, 732) → 12(743, 743) → 11(759, 761) → 10(794)

75 Re. ...20(448, 450) → 42(456, 456) → 41(466, 466) → 40(478, 478) → 19(485, 485)

→ 39(498, 498) → 38(505, 505) → 1(515, 515) → 2(519, 519) → 3(529,531) → 16(547, 549) →
15(563, 565) → 14(575, 577) → 13(597, 599) → 12(611, 611) → 11(628, 631) → 10(668)

From Table 19, we can see that, when rerouting is not considered, train 75 has to wait at station 20

until the disruption is over (time 600). On the contrary, having the rerouting option, train 75 can travel

along a different path. In the table, we highlighted the arrival and departure times at station 3, since

this is the first station, after the disrupted area, that is visited in both cases of rerouting or not the train.

As can be seen, when the rerouting strategy is not taken into account, the delay at station 3 is very

large and propagates to the subsequent stations. On the contrary, when train 75 is rerouted, its delay at

station 3 is rather small, and the train can successfully run as scheduled in the original timetable when

it arrives at station 14. This example also shows that it is useful to consider the rerouting strategy in

order to reduce passenger delays.

6.2.5 Numerical experiments with/without dynamic constraint-generation technique

To further highlight the importance of the dynamic constraint-generation technique for accelerating the

solution speed, we also execute the LR-H method without applying dynamic constraint-generation. In

these experiments, we consider seven scenarios (i.e., ω9 - ω15), and compare the results with and without

dynamic constraint-generation. Table 20 reports the results, in which “Time(avg.)” represents the

average computing time per iteration.

From Table 20 we can see that, without the dynamic constraint-generation technique, the LR-H method

requires much longer computing time (10 times longer) to execute one iteration. The reason is that

the number of relaxed constraints (6) and (7) is very large, and most of the relaxed constraints are

not active during every iteration. When dynamic constraint-generation technique is not applied, many

useless calculations are performed, resulting in longer computing time. For clarity, we plot the trend of
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Table 20: Comparative results with/without dynamic constraint-generation technique.

Scenario
With dynamic constraint-generation Without dynamic constraint-generation

F GAP Iter. CPU time Time(avg.) F GAP Iter. CPU time Time(avg.)

ω9 223516 0.98% 37 189s 5.11s 240106 16.25% 8 600s 75.00s

ω10 369825 2.69% 50 299s 5.98s 380960 12.67% 8 600s 75.00s

ω11 510789 3.26% 50 300s 6.00s 510789 10.03% 8 600s 75.00s

ω12 622355 4.81% 50 313s 6.26s 633565 12.39% 8 600s 75.00s

ω13 800913 6.42% 50 325s 6.50s 835207 15.26% 8 600s 75.00s

ω14 569457 2.00% 50 178s 3.56s 572644 4.73% 11 600s 54.55s

ω15 855173 2.62% 50 303s 6.06s 864196 5.82% 11 600s 54.55s

Avg. 3.25% 272s 5.64s 11.02% 600s 69.16s

changes in the best upper bounds, best lower bounds and iterations as the computing time increases, as

shown in Figure 16, in which “NDCG” and “DCG” represent not employing and employing the dynamic

constraint-generation techniques, respectively.
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Figure 16: Variation of the best upper and lower bounds, and iterations for instance ω10.

From Figure 16, it can be seen that without the dynamic constraint-generation technique, the LR-H

method can only perform less than 10 iterations within the timelimit, i.e., 600s. However, when employing

the dynamic constraint-generation technique, the LR-H method can successfully perform 50 iterations

within 300 seconds. Therefore, the latter obtains much better lower and upper bounds. This shows

that the dynamic constraint-generation technique is very effective in real-time management problems,

especially for large-scale problems.
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7 Conclusion and Future Work

In this paper, we studied a Train Rescheduling Problem in a large-scale network when a large disruption

occurs, including the option of train rerouting. We defined an Integer Linear Programming (ILP) model,

based on a space-time network with the goal of minimizing the number of abandoned passengers and the

total passenger delay. We developed an efficient heuristic algorithm LR-H that applies Lagrangian relax-

ation of a subset of constraints in the ILP model to decompose the problem into a series of independent

train-based smaller problems. We applied this decomposition and dynamic constraint-generation to solve

the problem in short computing time.

The LR-H algorithm was firstly tested on a small-size network in order to compare the obtained results

with those found by GUROBI when solving the ILP model: we found that LR-H is able to find near-

optimal solutions and very similar adopted train rescheduling for all cases with shorter computing times

than GUROBI. Then we applied the LR-H algorithm to a large-scale railway network in China with

different disruption scenarios of duration up to 360 minutes, and different computing time limits (from

1 min to 10 min). We found that high quality solutions are obtained within 60 seconds of computing

time, and improved optimality gaps (on average 2.27%) are obtained in an average computing time of

about 300 seconds. Afterwards, we showed the advantages of employing the rerouting strategy to reduce

passenger delays, that are especially evident when disruptions last for a long time. Finally, we validated

the effectiveness of applying dynamic constraint-generation to solve large-scale real-time management

problems.

The following two aspects can be studied as future research: (1) we considered static passenger demand,

i.e., passenger rerouting was not included in the proposed model and in the LR-H, while it could be a

useful extension to deal with dynamic passenger rerouting in order to further reduce the number of

abandoned passengers; (2) in practice, the duration of a disruption is often uncertain: therefore, it would

be interesting to take this uncertainty into account in the solution method.
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Zaroliagis, C.D. (Eds.), Robust and Online Large-Scale Optimization: Models and Techniques for

Transportation Systems. Springer Berlin Heidelberg , pp. 399–421.

Lamorgese, L., Mannino, C., 2015. An exact decomposition approach for the real-time train dispatching

problem. Operations Research 63, 48–64.

Lamorgese, L., Mannino, C., Pacciarelli, D., Krasemann, J.T., 2018. Train dispatching. In: Handbook

of Optimization in the Railway Industry, International Series in Operations Research & Management

Science 268, 265–283.

Lamorgese, L., Mannino, C., Piacentini, M., 2016. Optimal train dispatching by benders’-like reformula-

tion. Transportation Science 50, 910–925.

Louwerse, I., Huisman, D., 2014. Adjusting a railway timetable in case of partial or complete blockades.

European Journal of Operational Research 235, 583–593.

Mascis, A., Pacciarelli, D., 2002. Job-shop scheduling with blocking and no-wait constraints. European

Journal of Operational Research 143, 498–517.

Meng, L., Zhou, X., 2011. Robust single-track train dispatching model under a dynamic and stochastic

environment: A scenario-based rolling horizon solution approach. Transportation Research Part B:

Methodological 45, 1080–1102.

Meng, L., Zhou, X., 2014. Simultaneous train rerouting and rescheduling on an N-track network: A

model reformulation with network-based cumulative flow variables. Transportation Research Part B:

Methodological 67, 208–234. doi:https://doi.org/10.1016/j.trb.2014.05.005.

Narayanaswami, S., Rangaraj, N., 2013. Modelling disruptions and resolving conflicts optimally in a

railway schedule. Computers & Industrial Engineering 64, 469–481.

Pellegrini, P., Marlière, G., Rodriguez, J., 2014. Optimal train routing and scheduling for managing

traffic perturbations in complex junctions. Transportation Research Part B: Methodological 59, 58–80.

Pellegrini, P., Pesenti, R., Rodriguez, J., 2019. Efficient train re-routing and rescheduling: Valid inequal-

ities and reformulation of recife-milp. Transportation Research Part B: Methodological 120, 33–48.
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Schöbel, A., 2007. Integer programming approaches for solving the delay management problem. In:

Algorithmic methods for railway optimization. Springer , pp. 145–170.
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