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A pulsar in a binary with a compact object in the mass
gap between neutron stars and black holes
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Among the compact objects observed in gravitational wave merger events a

few have masses in the gap between the most massive neutron stars (NSs) and

least massive black holes (BHs) known. Their nature and the formation of

their merging binaries are not well understood. We report on pulsar timing ob-

servations using the Karoo Array Telescope (MeerKAT) of PSR J0514−4002E,

an eccentric binary millisecond pulsar in the globular cluster NGC 1851 with

a total binary mass of 3.887 ± 0.004 solar masses (M⊙). The companion to

the pulsar is a compact object and its mass (between 2.09 and 2.71M⊙, 95%

confidence interval) is in the mass gap, so it either is a very massive NS or a

low-mass BH. We propose the companion was formed by a merger between

two earlier NSs.

Globular clusters (GCs) are dense, gravitationally bound, stellar clusters. They have been

observed to host a large number of low-mass X-ray binaries (LMXBs) consisting of a compact

object accreting material from a donor star. LMXBs are ∼ 103 times more abundant per unit of

stellar mass in GCs than in the disk of the Milky Way galaxy (Galactic plane) (1). This is due

to the high stellar densities at the centre of GCs, which increase the rate of exchange encounters

in which neutron stars (NSs) acquire low-mass main sequence (MS) companions. The MS stars

evolve until they start transferring mass to the NS, at which point an LMXB is formed.

These X-ray binaries are expected to produce millisecond pulsars (MSPs, radio-emitting

neutron stars with spin periods P < 10 ms) in almost circular orbits around low-mass compan-

ions(2, 3). There are a total of 305 pulsars known in 40 GCs(4), the vast majority of which are

MSPs. Most of the systems in GCs are similar to the MSP population found in the Galactic

plane, although their orbital eccentricities are often higher, which is thought to be a result of

close encounters with other stars(5).

In GCs with the densest cores, any particular star - or MSP - is likely to experience multiple
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exchange encounters over its lifetime(6). A possible outcome is the exchange of a low-mass

companion of an MSP for either a massive white dwarf (WD) or another NS, resulting in a

massive, eccentric MSP binary (7–10). Observing such systems allows their component masses

to be measured and can test theories of gravity(11). The same process could also produce a

MSP–black hole (BH) system (12).

The millisecond pulsar binary PSR J0514−4002E

A survey searching for MSPs in GCs (10) has been carried out using the MeerKAT radio

telescope array in South Africa (13, 14). The results of the survey (15) included 13 MSPs

in NGC 1851, a GC located in the Southern constellation of Columba(16). These include

three massive, eccentric MSP binaries: PSR J0514−4002A (8, 17), PSR J0514−4002D and

PSR J0514−4002E(16).

The latter has a spin period (P ) of 5.6 ms, an orbital period (Pb) of 7.44 days and an orbital

eccentricity (e) of 0.71 (16). The projected semi-major axis of the pulsar’s orbit (x ≡ ap sin i/c,

where ap is the semi-major axis of the pulsar orbit, i the orbital inclination and c is the speed of

light in vacuum) is 27.8 seconds (16). The mass function (f ) is thus:

f(mp,mc) ≡
(mc sin i)

3

(mp +mc)2
= 4π2 c

3

G

x3

Pb
2 = 0.41672± 0.00022 M⊙, (1)

where mc is the mass of the companion, mp is the mass of the pulsar and G is the gravitational

constant. The unit M⊙ is the mass of the Sun; we use the nominal solar mass adopted by

the International Astronomical Union (18). All uncertainties are a confidence interval (C. I.)

corresponding to a 68.3% confidence level, unless otherwise stated. Assuming mp ≥ 1.17M⊙

(corresponding to the lowest NS mass measured (19) and a theoretical lower limit (20)) and an

edge-on orbit (i = 90◦), the mass function alone indicates mc ≥ 1.40 M⊙.
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Radio timing observations

To determine the spin, astrometric and orbital parameters for all the pulsars in NGC 1851,

we conducted 24 observations of this globular cluster using MeerKAT. The observations used

either the L-band (856 to 1712 MHz) or Ultra High Frequency (UHF, 544 to 1088 MHz) re-

ceivers(10) and were performed between January 2021 and August 2022. Data acquisition and

initial reduction were performed using the Pulsar Timing User Supplied Equipment (PTUSE)

instrument(21). We analysed the resulting times of arrival (ToAs) of the pulsed signal to de-

termine an initial phase-coherent timing model for PSR J0514−4002E(22). Using this model,

we recovered the previously undetected signals from this pulsar in six archival observations of

NGC 1851 made with the 800 MHz (795 to 845 MHz) and S-band (1.73 to 2.60 GHz) receivers

on the Robert C. Byrd Green Bank Telescope (GBT) (23) between December 2005 and August

2006. We combined the MeerKAT and GBT ToAs (22) and re-fitted the timing parameters to

determine a refined timing model. The results are listed in Table 1 and the fitting residuals

between this model and the observed ToAs are shown in Figure 1.

The timing model includes a precise measurement of the binary’s rate of periastron advance,

ω̇ = 0.03468 ± 0.00003◦ yr−1. We obtain a consistent value (but slightly higher uncertainty)

if we consider the MeerKAT data alone (Figure S2). As discussed in detail below, this effect

is relativistic (with additional contributions being small relative to the measurement uncertainty

(see Supplementary Text)) and its magnitude implies a high total system mass. We therefore

performed an additional dense observing campaign (22) to search for Shapiro delay, a relativis-

tic light propagation delay in the system (24). The longer time span provided by the GBT data

also enabled us to search for the Einstein delay, an effect caused by the varying time dilation

experienced by the pulsar at different orbital phases. We do not detect either the Shapiro delay

or Einstein delay in our timing data, setting 95% confidence upper limits of h3 < 1.48 µs and
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Figure 1: Timing model fitting residuals for PSR J0514−4002E. Shown are the residuals
between the observed ToAs and the timing model presented in Table 1 as a function of observing
epoch (A), in units of Modified Julian Date (MJD), and orbital phase (B). An orbital phase of 0
corresponds to periastron, and superior conjunction occurs at an orbital phase of 0.008 (shown
with the brown dashed line). The vertical error bars indicate the 1-σ uncertainties. The green
points indicate data taken with the 800 MHz receiver on the GBT. Orange and blue points
indicate data taken with the L-Band and UHF receivers of MeerKAT, respectively.

γE < 25 ms, where h3 is the orthometric amplitude of the Shapiro delay (25) and γE is the Ein-

stein delay parameter. These non-detections further constrain the companion mass, as discussed

below.
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Table 1: Timing model for PSR J0514−4002E. The model was derived from the MeerKAT
and GBT data with the single GBT observation at S-band excluded during fitting (22). Because
the proper motion and parallax cannot be measured from the timing data, we adopt the bulk
proper motion and parallax for NGC 1851 derived from HST and Gaia observations(26). Values
are reported in the Dynamic Barycentric Time timescale and uncertainties are 68.3% C. I.

Dataset and model fit quality

Observation span . . . . . . . . . . . . . . . . . . . . . . . MJD 53731 to 59793
Number of ToAs . . . . . . . . . . . . . . . . . . . . . . . . 476
Weighted root mean square residual . . . . . . 28.41 µs
Reduced χ2 value . . . . . . . . . . . . . . . . . . . . . . . 1.019
Degrees of freedom . . . . . . . . . . . . . . . . . . . . . 458

Fixed quantities

Reference epoch . . . . . . . . . . . . . . . . . . . . . . . . MJD 59400
Proper motion in right ascension, µα . . . . . . 2.128 mas yr−1

Proper motion in declination, µδ . . . . . . . . . . −0.646 mas yr−1

Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0858 mas

Measured quantities

Right ascension, α (J2000 equinox) . . . . . . . 05h14m06s.73709 ± 0.00017
Declination, δ (J2000 equinox) . . . . . . . . . . . −40◦02′48′′.0556 ± 0.0014
Pulse frequency, ν . . . . . . . . . . . . . . . . . . . . . . 178.70074989725 ± 0.000000000085 Hz
First derivative of pulse frequency, ν̇ . . . . . . (-6.1727 ± 0.0042) × 10−15 Hz s−1

Second derivative of pulse frequency, ν̈ . . . (7.3 ± 2.2) × 10−26 Hz s−2

Dispersion measure, DM . . . . . . . . . . . . . . . . 51.93061 ± 0.00057 pc cm−3

Orbital period, Pb . . . . . . . . . . . . . . . . . . . . . . . 7.4478966582 ± 0.0000000072 days
Projected semi-major axis of orbit, x . . . . . . 27.8192 ± 0.0050 s
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . 0.70793232 ± 0.00000085
Epoch of periastron, T0 . . . . . . . . . . . . . . . . . MJD 59361.29117138 ± 0.00000037
Longitude of periastron, ω0 . . . . . . . . . . . . . . 65.317 ± 0.022◦

Rate of advance of periastron, ω̇ . . . . . . . . . . 0.034676 ± 0.000031◦ yr−1

Rate of variation of the orbital period, Ṗb . . (18.1 ± 5.6) × 10−12 s s−1

Einstein delay, γE . . . . . . . . . . . . . . . . . . . . . . . 0.0111 ± 0.0084 s
Orthometric amplitude of Shapiro delay, h3 0.02 ± 0.91 µs

Derived quantities

Total mass∗, M . . . . . . . . . . . . . . . . . . . . . . . . 3.8870 ± 0.0045 M⊙
Pulse period, P . . . . . . . . . . . . . . . . . . . . . . . . . 0.005595947418100 ± 0.000000000000027 s
First derivative of pulse period, Ṗ . . . . . . . . (1.9330 ± 0.0013) × 10−19 s s−1

∗Assuming the observed ω̇ is due to relativistic effects (see Supplementary Text)
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Near-ultraviolet and optical observations

If the ≥ 1.40M⊙ companion of PSR J0514−4002E were a main-sequence star, it should be

detectable at optical wavelengths. We searched for an optical source using archival Hubble

Space Telescope (HST) observations with the Wide Field Camera 3 (WFC3) in the F275W and

F336W filters. This filter combination is particularly sensitive to blue stars such as blue strag-

gler stars (BSSs) and WDs (27, 28). Bright BSSs are common in GCs, formed through stellar

collisions or mass-transfer in a binary system; they can in principle have masses compatible

with those predicted for the companion of PSR J0514−4002E.

No optical source is detected at the position of PSR J0514−4002E (Figures 2A and 2B). The

closest stellar source to the pulsar position is a star with a color-magnitude position consistent

with those of BSSs (Figure 2C) and is offset by 90 milliarcseconds (mas), which is more than 6

times the astrometric precision (14 mas). It excludes a physical association, because the orbital

separation between the pulsar and companion calculated from our timing model and located at

the cluster distance of 11.66 kpc (26) is< 10−3 mas. Assuming the optical source is a hydrogen-

burning star, we estimate its mass as ∼ 1.2M⊙ (22), which is lower than the lower limit on mc

from the mass function. Another star, located 100 mas from the pulsar position, is a red-giant.

Red-giant branch stars in old GCs such as NGC 1851 have masses of about 0.7–0.8M⊙ (29),

also lower than the minimum companion mass. We therefore conclude that the companion of

PSR J0514−4002E is not detectable in the HST images.

System mass

The non-detection of the companion of PSR J0514−4002E in the HST images implies that

it must be a compact object. There is no measurable excess pulse dispersion near superior

conjunction, which can be produced by ionized gas emanating from either a main sequence or a
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Figure 2: Stars near the position of PSR J0514−4002E. (A) HST image in the F275W filter
of the 4′′×4′′ region surrounding the radio timing position of PSR J0514−4002E (green cross).
The blue and red circles indicate two stars discussed in the text; the circle sizes are twice the
astrometric uncertainty. (B) A 0.3′′ × 0.3′′ zoom of the green box of panel A. The radio timing
position is indicated with a green ellipse with size and orientation equal to the 95% C. I. on the
pulsar’s position relative to the ICRS. (C)mF275W,mF275W−mF336W color-magnitude diagram
of NGC 1851 derived from the HST images. The black dots represent all the cluster stars
within the sampled field of view. The blue and red circles indicate the stars marked in panels
A-B, which we interpret as a BSS and red giant, respectively. The photometric uncertainty for
both the magnitude and color of the two marked stars is smaller than the symbol size (22).

giant star companion(22). We therefore interpret the measured rate of advance of periastron (ω̇)

as being purely of relativistic origin, with negligible contribution from the spins of the binary

components (see Supplementary Text). Assuming general relativity (GR), the total mass of the

system is then(30, 31):

M ≡ mp +mc =
c3

G

[
ω̇

3
(1− e2)

]3/2(
Pb

2π

)5/2

= 3.887 ± 0.004 M⊙. (2)

This value is 1.0M⊙ larger than the mass of the most massive double neutron star (DNS) known

in the Milky Way, PSR J1913+1102, which is 2.8887±0.0006M⊙ (32). It is also larger than the

total mass of the heaviest DNS merger detected in gravitational waves, GW190425, at > 99.5%
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probability [(33), their figure 5].

Nature of the companion

Combining the measurement of the total mass with the mass function, we obtain, for an edge-on

orbit (i = 90◦), mp ≤ 2.04 M⊙ and mc ≥ 1.84 M⊙ (Figure 3). This companion mass is far

too high for a WD, as the upper mass limit for a rigidly rotating WD is about 1.47M⊙ (34).

Smaller inclination angles (i < 90◦) would imply a smaller mp and larger mc. Adopting the

minimum neutron star mass discussed above, mp ≥ 1.17 M⊙, we set limits of i ≥ 42.9◦ and

mc ≤ 2.71M⊙.

We do not detect additional relativistic effects that could allow the individual masses to be

determined. However, our upper limits on the Shapiro delay and the Einstein delay provide

additional constraints on the masses and orbital inclination. To quantify these, we have made a

Bayesian estimate of the component masses based on the quality of fit to the observational data

(χ2) over a grid of total mass and orbital inclination values (22). The variation of the orbital

period is contaminated by the acceleration of the system in the cluster. We assume that all other

relativistic effects are as predicted by GR and that mp ≥ 1.17 M⊙ as above (22). We find

Bayesian posteriors of M = 3.887 ± 0.004 M⊙, mp = 1.53+0.18
−0.20M⊙, mc = 2.35+0.20

−0.18M⊙ and

i = 52+6 ◦
−5 (median values with 68.3% confidence limits (22)). The 95% probability limits are

i < 62◦, mp < 1.79M⊙ and therefore mc > 2.09M⊙.

The companion mass is therefore likely to be in the mass gap for compact objects (37),

being higher than the largest precisely measured pulsar masses, mp = 2.08 ± 0.07 M⊙ for

PSR J0740+6620 (38) and mp = 2.01 ± 0.04 M⊙ for PSR J0348+0432 (39), while simulta-

neously below the observed minimum mass of about 5 M⊙ for BHs in Galactic X-ray binaries

(40, 41).

If the companion were a massive NS, it might also be a radio pulsar. We searched for radio
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Figure 3: Companion mass of PSR J0514−4002E. (A) Companion mass as a function of
orbital inclination for the PSR J0514−4002E system. The solid red curve shows solutions
within the 95% C. I. (see text); the dotted part indicates lower and higher masses disregarded
by our Bayesian model and assuming mp ≥ 1.17 M⊙, respectively. The grey-shaded region
is ruled out because of the mass function and the total mass (Eqs. 1 and 2). Depending on the
(unknown) NS equation-of-state (35,36), the light-blue shaded mass band corresponds to either
massive NSs or light BHs. (B) Inferred companion mass of PSR J0514−4002E (red) compared
to the largest observed masses of radio pulsars (blue), low-mass components of gravitational-
wave mergers (black), and the total post-merger remnant mass of GW170817 (grey, assuming
no energy and mass loss after the inspiral, i.e. an absolute upper limit). Source names followed
by (C) or (M) refer to the mass of the companion star and the remnant mass of the merger
product, respectively; see Table S2 for references, masses and error bars.

pulsations from the companion, assuming the full allowed range of mass ratios, but did not

detect any (22). We therefore cannot determine whether the companion is a massive NS or a
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low-mass BH.

Formation of the system

The combination of the location in a dense GC (where stellar exchange encounters often occur,

see above) the highly eccentric orbit, the fast spin of the pulsar and the large companion mass

indicates that the PSR J0514−4002E system is the product of a secondary exchange encounter.

We propose that an earlier low-mass companion transferred mass to this pulsar, increasing the

spin rate, before being replaced by the present high-mass companion in an exchange encounter.

However, a more complicated evolution with multiple exchange encounters is also possible. We

therefore cannot infer the nature of the companion from binary evolution models.

If the mass of the primary in PSR J0514−4002E is in the range 1.25 to 1.55 M⊙ of the

four measurements of pulsar masses in GCs (9, 11, 17, 42), then the corresponding value of

mc (between 2.34 and 2.63M⊙) overlaps with the range of masses of remnants from mergers

of DNSs, such as the merger product of GW170817 (Figure 3). We suggest that, prior to be-

coming part of the current PSR J0514−4002E system, the companion could potentially have

formed in such a merger event, regardless of whether it is a NS or BH. Although the prob-

ability of DNS mergers is generally low in GCs that have not undergone core collapse(43),

NGC 1851 has a dense core (see Supplementary Text) which makes a DNS merger in the pro-

genitor of the PSR J0514−4002E system more probable. A DNS has been observed in a GC

(PSR B2127+11C, in M15) with a calculated merger time of 217 Myr (11), implying that

merger remnants are likely to be present in GCs.

Our derived companion mass overlaps with the mass estimates for the lighter components

of the BH+BH or BH+NS merger candidates GW190814 (44), GW190917 and GW200210

(45). The lighter component of GW190814 has previously been interpreted as the product of an

earlier merger (46) that later acquired a more massive BH companion via exchange encounters
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in GCs (and then merged in the GW190814 event).

If the companion of PSR J0514−4002E is a light BH formed in such a merger, it would

acquire a spin parameter χc ∈ [0.6, 0.875] during the merger (47), where χc is the dimension-

less BH spin angular momentum. A NS rotating at the maximum theoretical rate would have

a similar χc immediately after merger (48), though we expect this would decrease rapidly after

formation due to electromagnetic torque. Assuming a magnetic field of 109G, the spin param-

eter would become ≲ 0.3 (corresponding to the fastest known MSPs) after ∼ 30Myr, so we

regard a fast-spinning NS companion as unlikely.

A BH companion with χc ∈ [0.6, 0.875] would induce relativistic spin-orbit coupling, caus-

ing the orbital plane to precess around the total angular momentum vector, an effect known

as Lense-Thirring precession. We calculate the resulting variation of the projected semi-major

axis of the pulsar’s orbit (ẋ) would be ≲ 1.7× 10−13. This is slightly beyond the effect size that

would be detectable in our data; the 1-σ uncertainty on the measurement of ẋ is 2.0×10−13 (see

Supplementary Text). We therefore cannot differentiate between a NS and a BH companion.
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Materials and Methods

Radio timing observations and data analyses
MeerKAT observations

PSR J0514−4002E was detected with the MeerKAT radio telescope on 24 occasions between

2021 and 2022, and all observations were conducted using the standard configuration for glob-

ular cluster observations (10,51). The initial three MeerKAT observations were conducted with

the L-band receivers, covering the band 856 to 1712 MHz, and the following 21 observations

using the UHF receivers covering the band 544 to 1088 MHz. Data acquisition used the search

mode of the Pulsar Timing User Supplied Equipment (PTUSE) instrument (21). This mode

recorded time and frequency resolved data that was coherently dedispersed (52) to the nominal

dispersion measure of the cluster, 52.14 pc cm−3 (the DM of the only pulsar previously known

in the cluster, (17)). Depending on the array configuration, MeerKAT data have time resolutions

between 7 and 15 µs. Observations varied in duration between 2 and 4 hours.

To maximise sensitivity to Shapiro delay, six of the UHF observations were scheduled to

coincide with the orbital phases of the expected extrema of the unabsorbed Shapiro delay sig-

nal (the part of the Shapiro delay that is not easily absorbed by varying the Keplerian orbital

parameters [(25), especially their eq. 31] within a single orbit). These phases were determined

by synthesising low-noise ToAs using the timing model in Table 1 with the inclusion of a de-

tectable Shapiro delay signal. The ToAs were then fit for the Keplerian orbital parameters with

a timing model which assumed no Shapiro delay. The extrema of the unabsorbed Shapiro delay

signal are then taken as the extrema of the model residuals from the fit. Synthesising the ToAs

using Shapiro delay signals from a range of possible geometries showed negligible variation in

the orbital phases corresponding to the extrema. These observations are highlighted in Table S1.
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GBT observations

Using a preliminary timing model for PSR J0514−4002E derived from only MeerKAT obser-

vations (see below), we could recover the signal of the pulsar with the GBT on 6 occasions

between 2005 and 2006. Of these detections, 5 were made in observations conducted with the

800 MHz receiver covering the band 795 to 845 MHz and one in an observation conducted with

the S-band receiver covering the band 1649.6 to 2249.6 MHz. For both receivers the Pulsar

Spigot instrument was used for data acquisition (53). Data were recorded with a time resolution

of 82 µs. Observations varied between 80 minutes and 4 hours in duration. Table S1 summarizes

all the GBT and MeerKAT observations used in this work.

Data reduction

The coherently dedispersed MeerKAT search-mode data were folded with 256 bins across the

pulse profile using the DSPSR software (52,54) with the timing ephemeris of PSR J0514−4002E

from (16). These folded archives were then downsampled to 256 frequency channels and man-

ually cleaned for any residual radio frequency interference (RFI) using the routines psrzap

and pazi, part of the PSRCHIVE software package (55, 56). For both the L-band and UHF

observations, a standard profile template was generated by summing the pulse profiles from

the corresponding observations to generate a low-noise profile. An analytic profile was then

generated from this high signal-to-noise ratio (S/N) profile for each observing band by fitting

the low-noise profile with two components, modelled by von Mises functions, using the paas

program from PSRCHIVE. The integrated pulse profile and analytic profile for the L-Band and

UHF are shown in Figures S1A and S1B, respectively. Although we use separate templates for

UHF and L-band, no profile difference is observed between the bands.

The pulse profiles for the individual observations were then cross-correlated with the cor-

responding analytic profiles for each band, and ToAs were extracted using the pat command
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in PSRCHIVE. The ToAs were derived with 4 sub-bands and integrations of 10 to 60 minutes,

depending on the length of the observation and S/N of the detection.

Data acquired with the GBT were incoherently dedispersed and phase folded with 64 bins

across the profile using the prepfold routine of the PRESTO software package (57, 58) using

the ephemeris of PSR J0514−4002E derived from the MeerKAT observations. ToA estimation

used a previously described method (23). For ToA estimation, a standard profile template was

generated from the highest S/N GBT observation with the 800 MHz receiver (Figure S1C). Due

to the unknown profile evolution between 820 MHz and 1950 MHz, only data from the 800

MHz receiver were used in the timing analyses.

Phase coherent solution

We used the TEMPO(59) timing software for the analysis of the ToAs. Initially, we extended the

previous orbital solution (16) to all available MeerKAT ToAs. At this stage, we fitted arbitrary

time offsets between each group of ToAs from each observation, because the rotation count

between observations was not known due to insufficient precision in the previously-determined

timing parameters.

In a second stage, we removed these arbitrary offsets using the DRACULA algorithm (60).

This allowed us to determine the rotation counts between observing epochs and, hence, a phase-

coherent timing solution for all the MeerKAT data.

Using this preliminary solution, we re-folded the archival data from the GBT observations

(23). We detect the pulsar in six GBT observations taken with the 800 MHz and S-band re-

ceivers (Table S1). These detections are faint, so we only determine two ToAs from each detec-

tion. In the subsequent analysis, we have used only the ToAs from the five observations taken

with the 800-MHz receiver.

Given the > 15-year gap between the last GBT and first MeerKAT detections of the pulsar,
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we investigate the validity of the MeerKAT-determined rotational model for the GBT observing

epochs. To test this, we used DRACULA to determine the combination of missing rotations

between the GBT observations that minimises the χ2 of the ToA residuals. The algorithm

returned 32 possible solutions with reduced χ2 < 2. Of these, the most favoured model is

that of no missing rotations over the GBT epochs, which has reduced χ2 = 1.019. The next

best solution consists of a single phase jump with reduced χ2 = 1.255. For the 458 degrees

of freedom in the model, these correspond to χ2 = 466.70 and χ2 = 561.05, respectively.

Using equation S5 below, we find that the next best solution has 3.2× 10−21 times the Bayesian

likelihood of the solution in which the GBT observations are phase connected.

For all the datasets, we used pulse profile templates that have, as much as possible, consis-

tent phase definitions. The profiles used for the GBT and the MeerKAT data were aligned by

eye to a phase precision of 0.01 to ensure that no large arbitrary time offsets are introduced by

TEMPO due to different physical longitudes on the neutron star to which the ToAs refer. TEMPO

assumes that all ToAs refer to a consistent longitude; if there are differences in the arrival times

caused by different phase definitions, the software assumes that there is a time delay between

the systems, something that can bias other parameters, like T0 (61).

This consistent phase definition allows us to determine the offset between the GBT and

the MeerKAT ToAs, which is 0.6 ± 1.3ms. This is consistent with zero and smaller than

the spin period, consistent with phase connection between the two data sets. The parameters

in Table 1 are derived by fitting for this time offset parameter. This results in slightly larger

uncertainties than in the case where we do not fit for this offset parameter, therefore a more

conservative estimate of parameter precision. This small offset suggests that, within our mea-

surement precision, both observing systems share functionally identical clocks. If we assume

that the offset is zero, then the number of rotations between the last 2006 ToA and the first 2021

ToA is 82,461,896,322; this provides a χ2 of 473, subtracting or adding 1 rotation we obtain
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χ2 = 484. Using equation S5 below, we obtain for each of the two latter solutions 0.0041 times

the Bayesian likelihood of the former solution; this implies the former has an overall proba-

bility of 99.19%. Additional solutions have negligible probabilities. This number of rotations

corresponds to 461,453,260.433689 s, or 14.62 years. The estimated timing parameters under

this assumption are consistent within 1-σ with the parameters in Table 1. However, since we

cannot rule out time offsets smaller than about 1.3 ms, we regard the parameters in Table 1 as

more reliable, since they already take the uncertainty of this small offset into account.

We also investigated including a systematic time offset between MeerKAT L-band and UHF

observations. The best-fitting value of 18 ± 9 µs is consistent with an offset arising from the

mis-alignment of the profile templates between the two bands. The instrumental offset between

the two bands is expected to be less than 5 ns (21).

Timing parameters

We used TEMPO to analyze the ToAs, which were first converted to the Bureau International

des Poids et Mésures (BIPM) 2019 terrestrial time standard (BIPM2019). Then, we use the

Jet Propulsion Laboratory’s DE440 Solar System ephemeris (62) to compensate for the motion

of the radio telescopes relative to the Solar System barycentre (SSB). The results are reported

in the Dynamic Barycentric Time (TDB) timescale. To describe the effects of the orbital mo-

tion and light propagation, we use a modification of the theory-independent DD orbital model

(63, 64) that includes the orthometric parametrization of the Shapiro delay (25) (hereon the

DDH model). Like the DD model, the DDH model can describe the timing of binary pulsars

for a wide range of alternative theories of gravity (64). Table 1 lists the resulting timing pa-

rameters. The ToA residuals from the best fitting model as a function of observing epoch and

orbital phase are shown in Figure 1. No trends are apparent, and the residuals are consistent

with the ToA uncertainties. The overall best fitting model has a reduced χ2 of 1.019, which was
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obtained after adjusting the uncertainties of individual data sets such that the reduced χ2 for

each data set is 1.0. The adjustment factors for each dataset were: GBT 800 MHz data: 1.227

(indicating that the original uncertainties are slightly under-estimated), MeerKAT L-band data:

0.989, MeerKAT UHF data: 1.012. These adjustments result in more conservative estimates

of parameter precision. They are close to unity, implying the ToA uncertainties were well esti-

mated by the routines used to derive the ToAs. The overall reduced χ2 is close to 1, indicating

that the timing solution provides a statistically justified description of the observed ToAs.

We cannot measure the proper motion of PSR J0514−4002E because the MeerKAT data

only span a period of 1.5 years. We therefore assume that the pulsar’s proper motion matches

that of NGC 1851 determined from an analysis of HST and Gaia astrometric data (26): µα =

2.128 ± 0.031mas yr−1, µδ = −0.646 ± 0.032mas yr−1. We expect that the proper motion of

PSR J0514−4002E might differ slightly from this value, but that difference should be small,

given the fact that the GC has a central escape velocity of only 42.9 km s−1 (65), corresponding

to a proper motion of 0.78 mas yr−1. We also assume a parallax of 0.0858 ± 0.0018mas, which

corresponds to the astrometric distance estimate of 11.66± 0.25 kpc for NGC 1851 (26).

The timing model includes a 3-σ detection of the second derivative of the pulsar’s spin

frequency, ν̈ = (7.3 ± 2.2) × 10−26 Hz s−2. This is likely to be caused by the variation of

the acceleration of the system, caused by its change of position relative to the gravitational

potential of the GC, or relative to nearby stars (5). Such changes have been seen for other GC

pulsars with long-term timing, and are consistent with theoretical expectations (60,66,67). Our

measurement of ν̈ is of a similar magnitude to the values observed for pulsars in other GCs

(66,67). Introducing this parameter results in slightly increased uncertainties of all other timing

parameters, especially those that improve more with the use of the early GBT data: ν̇, Ṗb and

γE .

In the orbital model we adopted, relativistic effects detectable in the timing are quantified by
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post-Keplerian (PK) parameters. We measure ω̇ with> 1000-σ significance even if we use only

the MeerKAT data, and obtain an upper limit for the orthometric amplitude of the Shapiro delay,

h3. We fit the DDH model including both Shapiro delay parameters h3 and ς (the orthometric

ratio of the Shapiro delay), but find the model does not converge because the Shapiro delay is

not detected. We therefore fixed one of the parameters, ς , to a value of 0.456, which corresponds

to an inclination of 49◦ from our ephemeris (see below). The assumed value of ς has little effect

on the detection of h3 because the two parameters are designed to be only weakly correlated

(25). Using this fixed ς , we obtain h3 = −0.02 ± 0.91 µs, which is a non-detection with a 2-σ

upper limit of 1.80 µs.

Including the earlier GBT data provides a 3-σ detection of the variation of the orbital period,

Ṗb = (18.1 ± 5.6) ×10−12 s s−1 and a 2-σ upper limit for the Einstein delay, γE < 28ms. The

latter parameter quantifies the variation of a combination of the special relativistic time dilation

and gravitational redshift with orbital phase.

The ω̇ parameter quantifies a relativistic effect which can be used to estimate the total system

mass, M , if we assume GR is the correct theory of gravity. However, this is not the case for Ṗb.

For some binary pulsars, including PSR B1913+16 and PSR J0737−3039A, the observed Ṗb is

dominated by gravitational wave damping (68, 69). However, for wider binaries, this effect be-

comes insignificant; in the case of PSR J0514−4002E the GR prediction for Ṗb corresponding

to the most likely masses is Ṗb,GR = −0.05 × 10−12 s s−1, hundreds of times smaller than the

observed Ṗb. The variation of Pb is instead likely to be dominated by the secular variation of the

Doppler shift: this does not include the orbital variation of the Doppler shift, which is already

subtracted by the timing model. This secular variation of the Doppler shift is itself dominated,

in this case, by the line-of-sight component of the acceleration of the system in the gravitational

field of the GC, A. Assuming this is the case,

A ≃ Ṗb

Pb

c = (8.4± 2.6)× 10−9ms−2. (S1)
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This acceleration also affects the variation of the spin period derivative Ṗ . Our measured value

(Table 1) implies a characteristic age of 0.46 Gyr, which is within the range of previously studied

MSPs (3) but unusually low. If, instead, Ṗ is dominated by A, then

A ≃ Ṗ

P
c = 10.3× 10−9ms−2, (S2)

which is consistent with the estimate of A above. We subtract the estimate of A from equa-

tion S1 from the observed spin-down to estimate the intrinsic spin-down of the pulsar (Ṗint),

independently from the secular variation of the Doppler shift:

Ṗint = Ṗ − Ṗb

Pb

P = (3.6± 4.8)× 10−20 s s−1, (S3)

which is a non-detection with 2-σ upper limit of 13.2 × 10−20 s s−1. Thus, the intrinsic spin-

down of PSR J0514−4002E is too small to be measured from our data.

Robustness of the timing parameters

We investigate the robustness of our measurement of the rate of advance of periastron of the

pulsar by performing a self-consistent check of the observed values as a function of the number

of observations. The results are shown in Figure S2; we find no substantial change in ω̇ as

more observations are added and the fluctuations are consistent with the uncertainties obtained

at each stage. This stability indicates that the value of ω̇ is robust.

As an additional check, we investigated the orbital coverage of all the observations (Fig-

ure S3). We find a broad distribution of the observations in orbital phase and time of the year,

which improves the determination of ω̇ and the position and reduces the correlations between

orbital and astrometric quantities.

The correlation matrix for the timing parameters produced by TEMPO (Figure S4) indicates

only small correlations between orbital and astrometric parameters. The largest correlations are

between the three orbital parameters, x, γE and ω0; this explains their lower numerical precision
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than the other parameters in the timing model [(17), their equations 23 and 24]. There is also a

relatively large correlation between e and h3 (this is expected, see (25), their table 4). There are

no additional large (> 0.9) correlations between other parameters.

Masses from χ2

The observed Ṗb is not caused by gravitational wave damping, and we have only marginal limits

for the other PK parameters, so the only parameter that directly constrains M is ω̇. However,

the upper limits on γE and h3 provide additional information on the masses. These limits have

opposite effects: the upper limit on γE excludes very large values of mc, while the upper limit

on h3 excludes high orbital inclinations and small values of mc.

To take all these effects into account, we used the DDGR timing model, a modification of the

DD model which directly fits the two masses (M and mc), assuming that all relativistic effects

in the timing of the system are as predicted by GR (63). From the pulsar timing observations

we only obtain the product Gmj (j = c, p). The masses in units of nominal solar masses (M⊙)

are given by the ratio (Gmj)/(GM)N⊙, where (GM)N⊙ ≡ 1.3271244 × 1026 cm3 s−2 denotes

the nominal solar mass parameter (18). Because the model returns this ratio, the measurement

uncertainty in G cancels. In cases where absolute masses are needed in physical units we use

the value G = 6.6743× 10−8 cm3 g−1 s−2 for conversion (18).

As discussed above, the variation of the orbital period (Ṗb) in Table 1 is not caused by

gravitational wave damping but instead by the system’s acceleration in the gravitational field of

NGC 1851. This is taken into account in the model by the inclusion of an extra free parameter

∆Ṗb, which quantifies non-relativistic contributions to Ṗb.

We obtain M = 3.887± 0.004M⊙ and mc = 2.44± 0.46M⊙; this implies mp = 1.44±

0.46M⊙. The uncertainties are not Gaussian distributed; the 2-σ upper limit for mp is above

the physical upper limit for mp derived from M and the mass function (Figure S5). By forcing
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TEMPO to iterate several times, we find that there is no stable numerical convergence on a

particular value of mc, because the relativistic effects used to estimate mc are not detected.

To estimate uncertainties and take additional relativistic effects into account in a self-consistent

way, we have used a Bayesian technique described in detail elsewhere (70), with some adjust-

ments.

For each point in a two-dimensional (2-D) grid of values of M and cos i, we calculate mc

using equation 1, then use M and mc as fixed parameters in a DDGR timing model. We use

TEMPO to fit this model to the timing data set (a set of ToAs, {tj}); this is done by minimizing

the weighted sum of the squares of the residuals by varying all parameters in the model apart

from M and mc (astrometric and spin parameters, Keplerian orbital parameters and the extra

Ṗb caused by the acceleration of the system relative to that of the Solar System projected along

the line of sight). For each point in the grid, TEMPO returns a χ2 value corresponding to the

goodness of fit to {tj}, which we denote χ2(M, cos i).

If χ2
min is the global minimum of χ2(M, cos i), then each value of

∆χ2(M, cos i) = χ2(M, cos i)− χ2
min (S4)

has a χ2 distribution with two degrees of freedom (70). We map this to a Bayesian likelihood

function p({tj}|M, cos i):

p({tj}|M, cos i) =
1

2
e−

∆χ2

2 . (S5)

The 2-D joint posterior probability density function (pdf) for M and cos i, p(M, cos i|{tj}), is

given by Bayes’ theorem:

p(M, cos i|{tj}) =
p({tj}|M, cos i)

p({tj})
p(M, cos i), (S6)

where p({tj}) is the Bayesian evidence, which is calculated from the integral of p(M, cos i|{tj})

over areas of the parameter space where mp ≡M −mc > 1.17M⊙ (19, 20).
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The quantity p(M, cos i) is the Bayesian prior; for these we chose a uniform distribution

in cos i because that corresponds to assuming that there is no favoured prior orientation to the

orbital angular momentum. However, there is no need to sample the full cos i space: for the

median value of M the constraint on mp implies that 0 < cos i < 0.732, thus 90◦ > i > 42.9◦,

so we considered a uniform distribution of cos i only within this interval. We do not sample

the region −1 < cos i < 0 because it cannot be distinguished from the regions between 0 and

1 given the available timing precision. We also assume a uniform prior distribution of M , due

to our prior ignorance about the total mass of the system. We work with M (not the individual

masses) because the measurement of ω̇ is directly related toM , assuming GR. A different choice

of prior (such as a uniform distribution of mc) would require sampling much larger regions of

parameter space, much of which would have low probability densities, greatly increasing the

computational effort without substantially changing the results.

We marginalize 2-D joint posterior pdfs for M , cos i, mc and mp. Because mc and mp

are known for each point of the M -cos i grid, we update their marginalized posterior pdfs af-

ter calculating p(M, cos i|{tj}), as we do for M and cos i. At the end of the process, these

marginalized posterior pdfs are normalized.

The medians of the marginalized posterior pdfs and equivalent 1-σ confidence intervals are

presented in the “Nature of the companion” section of the main text. The upper and lower limits

of the confidence intervals are calculated in such a way that they include 34.13% of the total

probability above and below the medians of each pdf. For a 2-σ equivalent confidence level

(95.45 %) around the medians, we obtain the following confidence intervals: M = 3.887 ±

0.009 M⊙, mp = 1.53+0.30
−0.33M⊙, mc = 2.35+0.33

−0.30M⊙ and i = 52+12 ◦
−8 . The mass of mc in this

estimate is lower than the value estimated in the DDGR model, it is more conservative because

the prior (a flat distribution in cos i) makes higher orbital inclinations more likely, resulting in

lower values of mc (equation 1). The choice of sampling region is also conservative: if we
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included pulsar masses below 1.17M⊙, then we would be sampling regions with very large

values of mc, which would increase the median for the latter quantity.

Search for plasma from the companion

If the pulsar’s binary companion is a main-sequence star, it is likely that plasma expelled from

the companion fills a large fraction of the intra-binary medium. For a 2.3 M⊙ main-sequence

companion and a 1.6 M⊙ pulsar, we calculate the Roche-lobe radius [using (71), their equa-

tion (2)] at periastron is 3.027 R⊙, using the nominal solar radius adopted by the International

Astronomical Union (18). The corresponding Roche-lobe filling factor is 0.536. The filling

of the intra-binary medium due to the plasma from the companion leads to two potentially ob-

servable effects: firstly, there could be eclipses of the pulses from the pulsar if the intervening

plasma is clumpy. We do not find any evidence for any eclipses. Secondly, any intervening

plasma would contain free electrons which the radio signal must pass through; this would cause

changes in pulse dispersion at different points in the orbit. We investigate this in two ways:

firstly, we average the timing residuals from observations recorded at similar angular orbital

positions with respect to the ascending node (ψ), independently for the top and bottom half of

the MeerKAT UHF band, to measure if there are any residual frequency-dependent trends in

the ToAs. We do not find any evidence for this. Secondly, we use multi-frequency ToAs for

each observation, and independently measure the DM per epoch. Figure S6 shows the averaged

timing residuals and DM offset measurements (δDM; after subtracting the nominal DM of the

pulsar, 51.93 pc cm−3) as a function of the orbital position ψ measured from the longitude of

the ascending node. The position in the orbit when the companion is located between the ob-

server and the pulsar along the line of sight is defined as superior conjunction, which is at an

angular orbital position of 90 degrees with respect to the ascending node. We do not see any

statistically significant (> 3σ) deviations in the variation of DM along the orbit.
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The second potential indication of intra-binary plasma is variable Faraday rotation, caused

by a magnetic field along the line of sight, along the orbit. This would produce an orbital

phase dependent change of the rotation measure of the pulsar. Only 17 of the 24 MeerKAT

observations include full polarisation information; of these only 3 detect the RM with > 3σ

significance, due to the low signal-to-noise and low polarisation fraction (16) of the pulsar.

The RMs of these observations are 13.5 ± 2.5, 10.7 ± 2.0 and 12.3 ± 5.7 radm−2. These are

consistent with each other, and have an weighted average of 12.2 ± 2.2 radm−2. We find no

evidence for variable RM.

Search for radio pulsations from the companion

If the companion star is a NS, it could potentially produce observable pulsed radio emission

under the conditions that it is a radio pulsar, its beam sweeps across the Earth, and its average

pulsed flux density is above the detection limit of our data. No companion pulsar was detected

in the earlier GC pulsar survey (16). We performed an additional search specifically targeted

on PSR J0514−4002E by de-dispersing each of the 24 MeerKAT observations of NGC 1851 at

the DM of PSR J0514−4002E (51.93 pc cm−3), using PRESTO’s prepdata routine. We ran

the latter in combination with radio frequency interference (RFI) masks, to filter out artificial

signals from the data.

For observations that covered an orbital phase interval far from periastron, we performed

an acceleration search using the accelsearch routine, with a “zmax” parameter of 50. At

these orbital phases, we assume the line-of-sight acceleration undergone by the companion

(and the pulsar) is constant across the 2 to 4 hours of each observation, hence we expect the

acceleration search to recover the Fourier power of any pulsed signal from the companion.

This assumption does not hold for the five observations that were taken around the periastron

passage, for which we expect the line-of-sight acceleration to change substantially during the
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2 to 3 hours of the observations. The expected change is so rapid that even a search for jerk

(rate of change of acceleration) would not be effective. To recover the Fourier power associated

with potential companion pulsations from the five observations taken around periastron, we

used the PYSOLATOR(72) software, which removes the orbital modulation affecting the signal

of the pulsar and companion, using the orbital parameters of the latter. In the case of the

PSR J0514−4002E system, we do not know the size of the projected semi-major axis of the

companion orbit, xc, because this depends on the (known) projected semi-major axis of the

pulsar orbit, xp, and the unknown mass ratio q = mp/mc, via the relation xc = q xp. Therefore,

we demodulated the companion orbit assuming trial q values in the range between 0.519 to

0.784 (which reflects the 1-σ uncertainties on mp and mc) with a step size of 0.03. As the

trial q value approaches the underlying true mass ratio of PSR J0514−4002E, the effect of

the orbital motion on the companion’s signal is minimised, allowing searches over a range

of constant accelerations to become effective. For each periastron passage observation, we

performed an acceleration search with a “zmax” parameter of 20, on all the demodulated time

series. All candidate pulsar signals produced from the 24 observations were folded modulo

the detected spin frequency with PRESTO’s prepfold and the resulting diagnostic plots were

inspected visually. We recovered several of the 15 pulsars known in NGC 1851 with DMs

close to that of PSR J0514−4002E(16). The known pulsars in the cluster are all ruled out

as the companion, as they are not spatially coincident with and do not share the same orbital

parameters as PSR J0514−4002E. We found no pulsar-like signal that could be ascribed to the

companion.
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Near-ultraviolet and optical observations and data analyses
Hubble Space Telescope observations

We utilised archival observations of NGC 1851 with Wide Field Camera 3 (WFC3) on the

Hubble Space Telescope (HST) taken in 2010 as part of the observing programme with proposal

ID 12311 (Principal Investigator: Piotto) and in 2014 through proposal ID 13297 (Principal

Investigator: Piotto). We downloaded from the MAST archive observations in the F275W and

F336W filters, which are sensitive to hot stars such as blue stragglers and WDs. The data-set

is composed of 14 images acquired with the F275W filter with exposure time of 1280 s, and 4

images acquired with the F336W filter with exposure time of 453 s.

Photometric analysis

The photometric analysis was performed using DAOPHOT (73) following methods described

elsewhere (74, 75). First, we selected a few hundred bright stars to model the point spread

function (PSF) of each image. These PSF models were applied to all the sources detected at

more than 5σ above the local background level. Then, we produced a reference list of stars

including all the sources detected in at least half the F275W images. At the corresponding posi-

tions of these stars, PSF fitting was forced in all the other frames using the allframe routine

in DAOPHOT (76). For each star we homogenized and averaged the magnitudes estimated

in different images using the daomaster routine in DAOPHOT, to obtain the instrumental

stellar magnitudes and uncertainties.

The observed magnitudes were calibrated to the Vega photometric system by cross-correlation

with a previous catalogue derived from the same observations of NGC 1851 (77).

The instrumental positions were corrected for geometric distortion following previously

described methods (78) and converted to the ICRS using the stars in common with the Gaia

Data Release 3 (DR3) catalog (79). We used the cross-correlation software CATAXCORR(80)
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adopting a six parameter linear transformation to convert the instrumental pixel positions to

the (α, δ) absolute coordinate system using Gaia DR3 stars as reference. The residuals of this

transformation showed a combined root mean square of 14 mas (9 mas in each coordinate),

which we adopt as the 1σ astrometric uncertainty.

Stars near the position of PSR J0514−4002E

Two stars are observed within 100 mas of the position of PSR J0514−4002E. As discussed

in the main text, we identify one as a blue straggler (mF275W = 18.575 ± 0.009, mF336W =

18.15±0.02) and the other as a red giant (mF275W = 19.047±0.007, mF336W = 17.60±0.02);

both of which have estimated masses below the lower limit on the mass for the companion of

PSR J0514−4002E (1.4M⊙) obtained without assuming that ω̇ is relativistic. Assuming that

the blue straggler star (BSS) is a H-core burning star, we estimate its mass through a theoreti-

cal mass-luminosity relation (81) assuming the cluster metallicity, distance and reddening (82)

(2010 edition). We estimate that the blue straggler’s magnitude is compatible with a ∼ 1.2M⊙

star, too low to be the companion of PSR J0514−4002E. Direct estimation of the mass of the

BSS is not possible with the available observations. Main sequence mass-luminosity relation-

ships can be used to estimate BSS masses (83,84), though with a higher uncertainty on the BSS

mass of 0.5M⊙.

We found no evidence of photometric variability in either of the two stars near the position

of PSR J0514−4002E. If in a binary, variability could arise from heating or eclipsing of the

companion star. Although the observations sample only ∼ 25% of the binary orbital period, the

lack of variability is consistent with our interpretation that neither of the two stars is associated

with the pulsar.
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Supplementary Text

Formation of massive compact binaries in NGC 1851

Although NGC 1851 is not a core-collapsed GC, it does have a high central density relative to

most other GCs [(65), their table 2]. This and its small core radius of 0.09′, which was deter-

mined using the stellar density profile (85), imply that it has a high rate of stellar interactions

per binary (γ) [(6), their figure 1]. The high theoretical γ-value of NGC 1851 is supported by

observations of three highly eccentric MSPs in binaries in this GC with degenerate compan-

ions that are much more massive than the companions associated with similar systems in the

Galactic disk: PSR J0514−4002A (8,17,23), PSR J0514−4002D and PSR J0514−4002E(16).

The encounter rate per binary affects the size and composition of the binary population: a

GC with a large overall stellar interaction rate (like for instance, 47 Tuc) will form large numbers

of LMXBs and subsequently radio MSPs, but if the γ-value is low, these binaries will likely

evolve without disturbance. Most binary MSP systems found in low-γ GCs have low-mass

companions (WDs) in near-circular orbits (66, 86) — i.e. they resemble the MSP population in

the Galaxy (3). Such GCs are expected to form tight DNS systems at rates that are much smaller

than the observed rate of DNS mergers detected by gravitational waves, which is supported by

simulations (43). On the other hand, in GCs with a high γ-value, several subsequent exchange

encounters involve the same MSP, after the exchange that formed its parent LMXB, which

could in principle form many DNS systems. This is the case for NGC 1851 (43). If the merger

products of such DNSs stay in the cluster (i.e. if the merger kick is not larger than the escape

velocity of the cluster), they will be available for subsequent exchange interactions.

We compare the expected merger kick imparted on a DNS merger product to the escape

velocity of NGC 1851. Following previous calculations [(87), their equation 10], we find a

1.2 + 1.4 M⊙ DNS merger has an estimated merger kick of wmk = 43.8 km s−1, which is
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close to the central escape velocity of NGC 1851 of 42.9 km s−1 (65). However, the closer the

unknown mass ratio, q, of the two merging NSs is to unity, the smaller is the imparted merger

kick (wmk → 0 as q → 1), and the higher the probability is for the merger remnant to remain

within the GC. Hence, we conclude that it is no problem to keep a DNS merger remnant within

NGC 1851 from a kinematic point of view.

Dense GCs experience mass segregation, in which more massive stellar populations concen-

trate closer to the centre, especially in the positions of pulsars and X-ray sources (88). There-

fore, the most massive compact objects (NSs, black holes and merger remnants) should, when

in equilibrium with the remaining stars in the cluster (when all types of objects have the same

average kinetic energy), occupy a small volume near the centre of the GC. Therefore, in the

centres of GCs, massive stellar remnants are expected to constitute most of the mass (65). The

measured position of PSR J0514−4002E (Table 1) is offset from the optical centre of the clus-

ter (89) by 0.064′, which, given estimates of the cluster core radius of 0.09′ and 0.044′ (65, 85),

places this pulsar either in or close to the core. This is also true of the other massive binary

pulsar known in this GC, PSR J0514−4002A. The abundance and close proximity of mas-

sive degenerate objects in this region implies a higher probability of formation of systems like

PSR J0514−4002E.

Contributions to the observed post-Keplerian parameters
Contributions to ω̇obs

The observed rate of advance of periastron for a binary pulsar can be produced by the combi-

nation of classical contributions and relativistic effects. The observed change in the longitude

of periastron (ω̇obs) is (90)

ω̇obs = ω̇M + ω̇PM + ω̇3rd−body + ω̇SO, (S7)
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where ω̇M is the leading-order relativistic periastron advance, ω̇PM and ω̇3rd−body are the impact

of the proper motion of the system and the possible presence of a nearby third body respectively,

and ω̇SO includes the contributions from relativistic and classical spin-orbit coupling. Below,

we consider each of these effects in turn.

The relativistic periastron advance can be expressed as a function of the total mass of the

system and the measured Keplerian parameters, to the lowest post-Newtonian order and for

negligible spin contributions, by re-arranging equation 2:

ω̇M =
3

c2(1− e2)

(
Pb

2π

)−5/3

(GM)2/3 . (S8)

A proper motion of the binary would change the longitude of periastron due to the variations

in the orientation of the orbital plane with respect to our line of sight. This effect can be

quantified as (91, 92)

ω̇PM = 2.78× 10−7 µT

sin i
cos [Θµ − Ω] deg yr−1, (S9)

where µT is the magnitude of the total proper motion in mas yr−1, Θµ its position angle, and

Ω is the longitude of the ascending node of the pulsar’s orbit. The maximal contribution from

ω̇PM is

ω̇PM,max = 2.78× 10−7 µT

sin i
deg yr−1. (S10)

As discussed above, we cannot measure the proper motion of the pulsar, so have assumed

the cluster’s proper motion value for our timing solution. However, to estimate the maximum

contribution from ω̇PM, we use a sum of the proper motion of the cluster (µGC) and the proper

motion corresponding to the cluster’s central escape velocity (µesc). The value of sin i used in

this calculation corresponds to the angle of inclination predicted by the timing model.

The dynamics of the cluster (26) indicate µesc = 0.78mas yr−1; adding this to the proper

motion of the GC (µGC = 2.22mas yr−1), we derive an upper limit to the proper motion of
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PSR J0514−4002E as µT ≤ 3.00mas yr−1. Using this value in equation S10, the maximum

contribution to the change in the longitude of periastron from the proper motion of the system

can be estimated:

ω̇PM,max = 1.104× 10−6 deg yr−1. (S11)

The corresponding contribution to the observed rate of advance of periastron,

ω̇PM,max = 3.184× 10−5 ω̇obs, (S12)

is negligibly small.

The presence of an additional third body near the system (either bound to it, or more likely

in a close flyby) could also contribute to the observed change in the longitude of periastron.

However, we expect a third body that contributes to the ω̇obs to cause additional secular changes

in other binary parameters (especially orbital inclination and eccentricity), and produce spin-

frequency derivatives (ν̇, ν̈, . . . ) that are orders of magnitude larger than we observe. We

assume the geometry illustrated in Figure S7. Neglecting angular dependencies and corrections

due to eccentricity, |ω̇3rd−body| ∼ (3π/Pb)(m3/M)(apc/r3)
3 [(93), their equation (33)], where

m3 is the mass of the third body and apc denotes the semi-major axis of the relative motion

of the (inner) binary system (about 0.12 astronomical units (au), derived using Kepler’s third

law). The minimum distance r3 for an external mass m3 to produce a ω̇3rd−body that has a non-

negligible contribution to the ω̇obs (more than two times its measurement uncertainty), and the

gravitational acceleration consequently caused by this third body, can be determined using this

equation. Using the values in Table 1 and equation (3) in (93) we find∣∣∣∣ ν̇3rd−body

ν̇

∣∣∣∣ ≳ 180

(
m3

M⊙

)1/3

| cosΘr| . (S13)

Consequently, even a small mass m3 has to be close to the plane of the sky (Θr = π/2) to

produce the observed ν̇. m3 cannot be very small, otherwise the third body would have to be
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very close to the (inner) system, which would produce higher order derivatives in ν (93). We

use an equivalent analysis to obtain an expression for ν̈ [(93), their equation (3)]. We assume a

(bound) circular orbit for the third body and leading order in m3/M , leading to∣∣∣∣ ν̈3rd−body

ν̈

∣∣∣∣ ≳ 14000

(
m3

M⊙

)−1/6

| cosΘv| . (S14)

Consequently, the motion of the third body again has to be (very) closely aligned with the

plane of the sky (Θv ≃ π/2) to explain the measurement. In our example, the combination

of equations S13 and S14 requires a nearly perfect alignment of the orbital plane of the puta-

tive third body with the plane of the sky. This is a highly unlikely orientation (probability of

≲ 10−5, before accounting for the probability of having a third body in sufficient proximity

(≲ (57 au)(m3/M⊙)
1/3)). We expect such a third body would produce related changes in the

eccentricity and projected semi-major axis of the pulsar orbit [(93), their equations 34 and 35].

We may make this result more rigorous by removing the assumption of circular motion for

the third body (outer orbit) and accounting for the high eccentricity of the inner orbit. We have

obtained the corresponding expressions for the tidally induced ω̇, ė and ẋ by (semi-analytically)

integrating the equations of osculating orbital elements, using as a perturbing force the dif-

ferential acceleration in the binary system caused by the external mass m3 [see (94), their

equations 3.69 and 3.77] (note, the fully analytical equations for the tidally induced ω̇, ẋ and

ė given in (93) assume a small eccentricity for the inner orbit which is not the case in the

PSR J0514−4002E system, where we measure e ≈ 0.71). These calculations use the geometry

of Figure S7, and allow the calculation of the tidally induced ω̇, ẋ and ė for any given distance

r3 = |r⃗3| and given directional angles Φr and Θr. Like for the circular outer orbit above, we

need the first and second frequency derivative, while this time however we allow the velocity of

the third body to have any magnitude and direction (see Figure S7). Like before, we used the

standard equations for the externally induced time derivatives of the pulse frequency, ν̇3rd−body
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and ν̈3rd−body [(93), their equation (3)].

In order to estimate an upper limit on the probability for the presence of a third body, we

Monte-Carlo (MC) sample the four dimensional parameter space of Φr, Φv, (cosΘr), and

(cosΘv), which all have a uniform probability distribution over their corresponding range

([0, 2π) for the first two and [−1,+1] for the last two). When sampling the (Φr, cosΘr, Φv,

cosΘv) parameter space, we keep the distance r3 as a free parameter, to maximise the tidal

contribution to ω̇obs (i.e. find max |ω̇3rd−body|) within the constraints given by the observed

frequency derivatives (we use |ν̇3rd−body| < 3|ν̇obs| and |ν̈3rd−body| < 3|ν̈obs|) and orbital pa-

rameters (within the 3-σ range of ẋ and ė). We therefore regard our results as conservative

upper limits because they are obtained without considering the low probability of having a third

body in the proximity to PSR J0514−4002E. To obtain a high accuracy in our MC sampling

of the (Φr, cosΘr, Φv, cosΘv) parameter space, we conducted 1010 MC realisations for each

individual combination of mass m3 and velocity v3, always counting those configurations that

have a max |ω̇3rd−body| that is larger than two times the measurement uncertainty of ω̇obs, while

at the same time pass the spin-frequency (ν̇, ν̈) and orbital (ẋ, ė) constraints. Our procedure

corresponds to calculating a (normalized) volume in the four-dimensional parameter space of

(Φr, cosΘr, Φv, cosΘv), defined by the given boundary conditions. This integral is solved nu-

merically using Monte Carlo integration, a standard technique for higher-dimensional integrals.

The results of our MC runs are shown in Figure S8. Based on these results, we conclude that the

probability for a non-negligible (more than two times the measurement uncertainty) tidal con-

tribution to ω̇obs is ∼ 10−6, so only highly fine-tuned (directional) configurations could produce

such an effect. The maximum ω̇3rd−body from our MC runs that does not violate our observed

values for ẋ ((4 ± 2)× 10−13) and ė ((−0.06± 1.11)× 10−14 s−1) is ∼ 1% of ω̇obs. This is too

low to influence the conclusions of this paper.

We note that 10 km s−1 as the relative velocity between the third body and the inner binary
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corresponds to the escape velocity (lower limit for flyby) at about 100 au.

A secular change in the longitude of periastron could arise from the contribution of the spins

of the pulsar and its binary companion due to Lense-Thirring precession (ω̇LT). A change could

also be caused by the spin-induced quadrupole moment of the rotating companion (ω̇Q). The

ω̇SO term from equation S7 can be decomposed as

ω̇SO = ω̇LT + ω̇Q. (S15)

We discuss them separately and calculate the maximum contributions for different possible

binary companions of PSR J0514−4002E.

The dimensionless measure of the spin angular momentum (Sc) of a body of mass mc is

(94, 95)

χc =
c

G

Sc

m2
c

. (S16)

For a NS with a mass larger than ∼ 1M⊙, the maximum value of the spin parameter is

χmax ∼ 0.7 (48). This is valid for most proposed equation of states (EoSs) and is indepen-

dent of the mass of the NS. A rotating Kerr BH in general relativity can have spin parameter

values going up to 1, mathematically (95) (astrophysical BHs are generally expected to have

spin values below the Thorne limit, 0.998 (96); however, the maximum possible spin could also

reach values closer to 1 depending on the details of the accretion process (97)). For a group of

objects including any NS or BH, χc < 1.

According to (98), for a NS mass of 1.4M⊙, the typical moment of inertia of is ∼ 1.5× 1045 g cm2;

using this, the spin angular momentum of PSR J0514−4002E is then ≈ 1.7× 1048 g cm2 s−1

and the spin parameter is χ ≈ 0.1. This is about an order of magnitude smaller than expected

for an extremely fast rotating NS or BH companion. We therefore neglect it hereafter.

The contribution to ω̇obs from the Lense-Thirring precession of the compact companion is (99)

ω̇LT =
nbBc

sin2 i

[
(1− 3 sin2 i)(k̂ · ŝc)− cos i(K̂0 · ŝc)

]
= nbBcfc, (S17)
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where nb is the orbital frequency, the unit vector k̂ is normal to the orbital plane defined by

the orbital angular momentum, ŝc is the unit vector along the spin of the companion, and K̂0 is

the unit vector along the line of sight. The explicit expressions for Bc and fc are given below.

Using equation S16, Bc is [(99), their equation 5.17a]

Bc =
4 + 3mp/mc

2c2M(1− e2)3/2
nbSc =

Gmc(3M +mc)

2c3M(1− e2)3/2
nbχc. (S18)

To estimate the maximum ω̇LT contribution from a NS or BH companion, we calculated the

values for Bc over a range of pulsar and companion masses using χc = χmax = 1. The factor

fc can be expressed as

fc =
(1− 3 sin2 i)(k̂ · ŝc)− cos i(K̂0 · ŝc)

sin2 i
= −2 cosϑ+ sinϑ cot i cosϕSO, (S19)

where ϑ (0 ≤ ϑ ≤ π) is the angle between the spin of the companion (Sc = Scŝc) and the

orbital angular momentum and ϕSO(0 ≤ ϕSO < 2π) is the angle swept by the projection of Sc

during its precession around k̂ measured in the orbital plane as shown in Figure S9 (64).

For our calculations, we used a uniformly distributed array of masses given by mp ∈

[1.1M⊙, 4.0M⊙] and mc ∈ [1.4M⊙, 60.0M⊙], where the upper limit for the mass of the com-

panion is set as the maximum mass allowed by an offset in the reduced-χ2 value within a 3-σ

deviation from the solution. A companion with a mass exceeding 60M⊙ would produce a large

Shapiro delay, independent of the inclination, inconsistent with our measured limit for the sys-

tem [(100), their equation 2.20]. For each pair of pulsar and companion mass (mp,mc) within

this range, we evaluate the values ofBc and fc to obtain the maximum ω̇LT. The largest absolute

value of fc, for any such given pair, can be expressed as |fc|max =
√
4 + cot2 i. The ratio (ρLT,1)

of the maximum value of ω̇LT with respect to ω̇M for every pair of mass,

ρLT,1 ≡
|ω̇LT|max(mp,mc, χc = 1)

ω̇M(mp,mc)
, (S20)
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is shown as a function of mass in Figure S10. The maximum value of this ratio occurs for the

largest companion mass and the smallest pulsar mass, reaching

max(ρLT,1) = 0.0072. (S21)

Consequently, for the whole range of masses, i.e. mp ∈ [1.1M⊙, 3.0M⊙] and mc ∈ [1.4M⊙,

60.0M⊙], the Lense-Thirring precession has negligible contribution to the total advance of peri-

astron. The contribution to ω̇SO in equation S15 from a rotationally-induced quadrupole moment

ω̇Q for a NS companion (101) or a BH counterpart (102) is

ω̇Q ∼ 10−3 ω̇LT. (S22)

This contribution is also negligibly small.

In the alternative case of a massive WD, contributions to the ω̇SO value from the Lense-

Thirring precession and the quadrupole moment are of similar magnitude to each other (103).

The upper mass limit for a rigidly rotating WD is about 1.47M⊙ (34), so we consider an uni-

formly rotating 1.4M⊙ WD for the companion of PSR J0514−4002E. The typical spin value

for such a massive WD with extreme rotation is Sc ∼ 0.6× 1050 g cm2 s−1 (104) and assuming

the minimum pulsar mass of 1.1M⊙ (see above), we used equations S17, S18, and S19 above

to calculate the maximum contribution from the Lense-Thirring precession:

|ω̇LT|max/ω̇M(mp = 1.1M⊙,mc = 1.4M⊙) = 0.0016. (S23)

Using Q = 0.6× 1049 g cm2 for a rotating WD (105), we calculate

ω̇Q/ω̇M(mp = 1.1M⊙,mc = 1.4M⊙) = 0.0039. (S24)

This is too low for the observed advance of periastron to be explained by a (uniformly rotating)

WD, even if it is rotating at the mass-shedding limit. We conclude that ω̇obs is dominated by
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the leading order GR contribution (equation S8), and thus the inferred mass of the companion

(mc > 2.09M⊙) is too large for it to be a massive WD.

To summarize, there is negligible contribution to the rate of advance of periastron from the

proper motion of the binary or the presence of a possible third body near the system. Over

the whole range of companion masses investigated, the maximum possible change in the lon-

gitude of periastron due to Lense-Thirring precession, ω̇LT (Figure S10), is more than a factor

of 100 smaller than the observed rate of advance of periastron (Table 1). Combining this with

equation S7, we conclude that the observed change in the longitude of periastron of the pul-

sar is relativistic, and the total mass of the system can be approximated by the leading-order

periastron advance term using equation 2.

Figure S10 shows the constraint on the total mass of the system given by ω̇obs = ω̇M . For any

combination of pulsar and companion mass (mp,mc), the maximum possible contribution from

Lense-Thirring precession is always less than 1% of the observed rate of advance of periastron,

and is therefore negligible.

Contributions to Ṗb,obs

The observed variation in the orbital period of a binary pulsar (Ṗb,obs) can be expressed as (90):

Ṗb,obs = Ṗb,int + Ṗb,GC + Ṗb,Shk + Ṗb,Gal, (S25)

where Ṗb,int is the intrinsic orbital period derivative and Ṗb,GC is the contribution from the line-

of-sight acceleration of the system in the gravitational field of the cluster (A). The third and

the fourth terms in this equation are the change in the orbital period of the binary due to the

Shklovskii effect (106) and the difference between the Galactic accelerations of the binary and

the Solar System.

The observed orbital period derivative (Table 1) is Ṗb = (18.1 ± 5.6) × 10−12 s s−1. The

change in the orbital period from the Shklovskii effect, associated with the proper motion of the
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system, is given by:

Ṗb,Shk =
µ2d

c
Pb = 9.02× 10−14 s s−1, (S26)

where d is the distance between the Earth and the pulsar. Here we use the cluster distance es-

timate of (26), 11.66 kpc. With the available timing baseline, we cannot measure the proper

motion of the binary so have used the proper motion of the cluster (see above). If the binary is

gravitationally bound to the GC, the proper motion of the pulsar cannot differ much from the

proper motion of the cluster; the same applies for Ṗb,Shk.

We calculate the contributions to Ṗb,obs from the Galactic acceleration using a Milky Way po-

tential (107), finding:

Ṗb,Gal = −2.52× 10−14 s s−1. (S27)

The sum of Ṗb,Shk and Ṗb,Gal is almost 300 times smaller than Ṗb,obs, which implies that the

latter is dominated by the effect of A:

Ṗb,obs ≃ Ṗb,GC =
A

c
Pb. (S28)

We conclude that Ṗb,obs depends only on A.

Contributions to ẋobs from Lense-Thirring precession

The observed change in the projected semi-major axis of the binary pulsar (ẋobs) could be

caused by a physical change in the orbit of the pulsar, a temporal change in the angle of in-

clination of the system, or a combination of both. While the semi-major axis of the pulsar is

unaffected by the Lense-Thirring effect, precession of the binary orbit could potentially be ob-

servable as a slow change in the angle of inclination of the system, caused by the spins of the

binary components. As discussed above, the spin angular momentum of the pulsar is about an

order of magnitude smaller than the maximum possible value of the spin angular momentum of

the companion so we neglect it in further analysis; however, the spin of the companion could

lead to a secular change in the projected semi-major axis depending on its alignment.
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The change in the inclination angle as an effect of the Lense-Thirring precession of the

compact companion is, to the leading order (64, 99):(
di

dt

)
LT

=
4 + 3mp/mc

2c2M(1− e2)3/2
n2
b(Sc · î) =

Gmc(3M +mc)

2c3M(1− e2)3/2
n2
b χcsinϑ sinϕSO . (S29)

Secular evolution in the angle of the inclination would occur if the spin of the companion has

a non-negligible component along the direction of the ascending node. This, in turn, would

change the observed projected semi-major axis:

ẋLT = x cot i

(
di

dt

)
LT

. (S30)

To estimate the maximal contribution to ẋLT, we consider a pulsar of 1.2M⊙ and a light BH

companion with a mass of 2.7M⊙. For this mass pair, the maximum observable value of the

variation in the projected semi-major axis of the pulsar is ẋ = (1.7× 10−13)χc. For a Kerr BH

χc ≤ 1. If this BH is the result of a NS binary merger (irrespective of the collapse time), the

maximum value of the dimensionless spin of the companion is theoretically expected to lie in

the range χc ∈ [0.6, 0.875] (47).

We left ẋ as a free parameter in our radio timing analysis to determine the maximum ex-

pected value. We calculated this using the DDGR model, due to the large expected correlation

between γE and ẋ (17); this method has been used in previous measurements of ẋ (103). As-

suming a range of companion masses (2.3M⊙ ≤ mc ≤ 2.7M⊙) we obtain ẋ ∼ (4 ± 2)×10−13.

This is not significant, and the 1-σ uncertainty is larger than our estimated upper limit for ẋLT.

In addition to the precession of the orbit due to spin-orbit coupling, there are several other

geometric and physical effects that could influence the observed change in the projected semi-

major axis: these include the proper motion of the binary, the emission of gravitational waves

or mass loss from the system, a change in the aberration or Doppler shift, and the presence of a

hypothetical third body around the binary. However, the contributions from any of these terms
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are at least an order of magnitude smaller than the contribution from the Lense-Thirring effect,

and are hence neglected in our analysis.
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Figure S1: Multi-frequency pulse profiles for PSR J0514−4002E . The summed profiles are
shown in grey, and the red dashed lines show the corresponding analytic profiles. (A) Pulse
profile for MeerKAT L-Band (856 to 1712 MHz) generated by summing the profiles for all
observations. (B) Same as (A), but for MeerKAT UHF (544 to 1088 MHz). (C) Pulse profile of
the highest S/N observation for GBT 800 MHz (795 to 845 MHz).
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Figure S2: Observed rate of advance of periastron (ω̇obs) for PSR J0514−4002E. In both
panels, the vertical errorbars indicate 1-σ uncertainties. (A) ω̇obs as a function of the cumulative
addition of observations from the MeerKAT dataset. (B) Same as panel (A), but only for the
last 7 observations from the MeerKAT dataset. The last point indicates the value of ω̇ derived
with the addition of the GBT data set to the full MeerKAT dataset, and the horizontal line
corresponds to this value as reported in Table 1.
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Figure S3: Orbital and monthly coverage of PSR J0514−4002E observations. Each point
shows a single ToA estimation as a function of the time of year it was obtained and the mean
anomaly of PSR J0514−4002E’s orbit to which it corresponds. A mean anomaly of 0 denotes
periastron passage. Green points indicate ToAs estimated from the archival GBT dataset, while
the orange and blue points indicate ToAs estimated from the MeerKAT L-Band and the UHF
datasets, respectively.
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Figure S4: Correlations between the timing parameters of PSR J0514−4002E. Here we
show the Pearson product-moment correlation coefficient (colour scale) between the timing
parameters presented in Table 1, as reported by TEMPO. We also include J0, the time offset
between MeerKAT L-band and MeerKAT UHF data, and J1, the time offset between GBT data
and MeerKAT UHF data.
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Figure S5: Mass and orbital inclination (i) constraints for the PSR J0514−4002E system.
In panel (A), we display the constraints on cos i and the companion mass mc; the gray shaded
area is excluded by mp > 0. In panel (B), we display the same constraints on mp and mc,
the gray area is excluded by the mass function and sin i ≤ 1. The solid blue lines indicate
the nominal and ±1-σ constraints on the total mass of the binary (M ) obtained from the mea-
surement of the rate of advance of periastron (ω̇). At the scale of the figure, these three lines
appear practically superposed. The solid red and dashed magenta lines indicate upper 1, 2 and
3-σ limits on h3 and γE respectively. The thick black lines are contours that include 95.4% of
the total probability density. Panels (C), (D) and (E) present the probability density functions
(pdfs) for cos i, mp and mc respectively, these are normalized to the point of maximum prob-
ability density. The black lines indicating the median (solid) and the limits of the confidence
intervals with equivalent ± 1, 2 and 3-σ confidence levels (dashed). These pdfs are truncated
below mp = 1.17M⊙, the smallest known NS mass.
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Figure S6: Timing residuals and dispersion measure offset as a function of angular orbital
position. (A) Averaged residuals between the ToAs in the MeerKAT UHF band the and timing
model of PSR J0514−4002E split into two frequency bands as a function of angular orbital
position ψ with respect to the ascending node of the pulsar. (B) Same as panel A, but for DM
offsets (with respect to the pulsar’s DM (Table 1)). An orbital position of ψ = 90◦ corresponds
to superior conjunction and f denotes frequency.
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Figure S7: Geometry for third-body calculations. (X, Y, Z) denotes the right-handed Carte-
sian coordinate system, where the X-axis is aligned with the ascending node of the pulsar orbit
and the Z-axis is normal to the plane of the sky. i is the angle of inclination between the pulsar
orbit and the plane of the sky, and ω is the longitude of periaston. The putative third body (or-
ange) is at distance r⃗3 and moves with velocity v⃗3. We assume uniform probability distributions
for Φr, cosΘr, Φv, and cosΘv. The angles ϕr and θr are defined with respect to the orbit (L⃗:
orbital angular momentum of the pulsar binary) [(93), their ϕ2 and θ2 respectively].
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Figure S8: Upper limits on the probability of non-negligible tidal contributions to ω̇obs.
The figure shows the upper limit on the probability that ω̇obs has a tidal contribution (caused
by a nearby third body) that exceeds twice the measurement uncertainty. Results are shown for
different masses (m3) and velocities (v3) of the third body (see text). Masses significantly below
0.1M⊙ are excluded, since they have to be very close to the binary system in order to meet the
ω̇obs condition above. As a consequence, they would lead to higher order time derivatives in the
spin frequency ( ...

ν , ....
ν , . . . ), which are not observed.
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Figure S9: Definition of the orbital orientation and geometric parameters of the system.
The conventions of (64) are followed. The plane of the sky is denoted by the vectors Î and Ĵ,
and the vectors Î ≡ î and ĵ are a part of the orbital plane. The direction of the orbital angular
momentum k̂ is perpendicular to the orbital plane and is inclined at an angle i with respect to
the line-of-sight vector K̂0. The spin angular momentum of the binary companion is defined by
Sc, and its direction with respect to the line-of-sight is given by the angle λ. The misalignment
angle between the spin and the orbital angular momentum is denoted by ϑ, where 0 ≤ ϑ ≤ π.
Sc forms a precession cone around k̂, and the angle swept by the projection of the former in the
orbital plane measured from −ĵ is given by ϕSO.
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Figure S10: Maximum contribution to the rate of advance of periastron from Lense-
Thirring precession. Companion masses are on a logarithmic scale; the upper limit of 60
M⊙ is set from radio timing analysis (see text). The pulsar masses, on a linear scale, span 1.1
M⊙ to 3.0 M⊙ (see text). The grey shaded region is excluded by the constraint sin i ≤ 1 and the
boundary of this region corresponds to i = 90◦. The red curve shows the nominal measurement
of ω̇ for PSR J0514−4002E, which equals the relativistic rate of advance of periastron given by
equation S8.
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Table S1: Radio timing observations of PSR J0514−4002E. Shapiro delay campaign observa-
tions (indicated by an asterisk) covered orbital phase ranges of 0.21–0.23, 0.61–0.63, 0.88–0.90
and 0.98–0.034.
Start time Start time Telescope Backend Duration Centre frequency, Bandwidth,
(UTC) (MJD) (s) fctr (MHz) ∆f (MHz)
27 Dec. 2005 53731.127 GBT SPIGOT 14160 820.024 50
17 Feb. 2006 53783.992 GBT SPIGOT 9135 820.024 50
18 Apr. 2006 53843.809 GBT SPIGOT 5098 820.024 50
19 Apr. 2006 53844.820 GBT SPIGOT 11037 820.024 50

2 Jun. 2006 53888.728 GBT SPIGOT 7197 820.024 50
11 Aug. 2006 53958.489 GBT SPIGOT 7559 1949.609 600
15 Jan. 2021 59229.626 MeerKAT PTUSE 14400 1283.896 856
8 May. 2021 59342.278 MeerKAT PTUSE 7200 1283.896 856
8 May. 2021 59342.586 MeerKAT PTUSE 7200 1283.896 856

21 May. 2021 59355.253 MeerKAT PTUSE 7200 815.934 544
21 May. 2021 59355.628 MeerKAT PTUSE 7200 815.934 544
24 May. 2021 59358.242 MeerKAT PTUSE 7200 815.934 544
26 May. 2021 59360.607 MeerKAT PTUSE 7200 815.734 544

3 Jul. 2021 59398.485 MeerKAT PTUSE 7200 815.734 544
17 Aug. 2021 59443.233 MeerKAT PTUSE 7200 815.734 544

1 Sep. 2021 59458.067 MeerKAT PTUSE 7200 815.734 544
30 Sep. 2021 59487.942 MeerKAT PTUSE 7200 815.734 544
7 Nov. 2021 59525.075 MeerKAT PTUSE 10800 815.734 544
9 Nov. 2021 59527.919 MeerKAT PTUSE 7200 815.734 544
6 Feb. 2022 59616.544 MeerKAT PTUSE 7200 815.734 544

12 Apr. 2022 59681.483 MeerKAT PTUSE 7200 815.734 544
27 May. 2022 59726.630 MeerKAT PTUSE 7200 815.734 544
29 May. 2022 59728.322 MeerKAT PTUSE 7200 815.734 544

2 Jun. 2022 59732.609 MeerKAT PTUSE 7200 815.734 544
27 Jul. 2022∗ 59787.380 MeerKAT PTUSE 10800 815.934 544
30 Jul. 2022∗ 59790.380 MeerKAT PTUSE 10800 815.934 544
1 Aug. 2022∗ 59792.401 MeerKAT PTUSE 10800 815.934 544
2 Aug. 2022∗ 59793.161 MeerKAT PTUSE 9900 815.934 544
2 Aug. 2022∗ 59793.285 MeerKAT PTUSE 9900 815.934 544
2 Aug. 2022∗ 59793.409 MeerKAT PTUSE 9900 815.934 544
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Table S2: Masses and references of BH/NS components within or near the lower mass
gap. For GW sources, the error bars are 90% symmetric credible intervals. For GW170817,
we followed (35, 108) and estimated the upper mass limit assuming a remnant mass of 90% of
sum of two merging NS components minus 0.04 M⊙ of baryonic ejecta mass. For the radio
pulsars, see the individual references in the table for a description of how error bars on masses
are calculated in more detail.

Gravitational-wave mergers:

GW190917 2.1+1.1
−0.4 M⊙ (45)

GW190814 2.59+0.08
−0.09 M⊙ (44)

GW200210 2.83+0.47
−0.42 M⊙ (45)

Remnant mass of double NS merger:

GW170817 2.46+0.23
−0.14 M⊙ (35, 108)

Radio pulsars:

PSR J0514−4002E∗ 2.31+0.41
−0.22 M⊙ This work

PSR J0348+0432 2.01± 0.04M⊙ (39)
PSR J0740+6620 2.08± 0.07M⊙ (38)
∗Mass of the companion star.
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