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a b s t r a c t 

In the present work, a combined theoretical and spectroscopic characterization of the different iso- 

topologues of mono-deuterated chloromethane, CH 2 DCl, has been carried out in order to provide reliable 

spectroscopic data to support and guide future studies. State-of-the-art ab initio calculations were per- 

formed to derive accurate predictions of equilibrium structure, rotational constants, and centrifugal dis- 

tortion terms. The rotational spectra of the 13 C species have been recorded for the first time in the 250–

300 GHz frequency range and, for the two isotopologues 12 CH 2 D 

35 Cl and 12 CH 2 D 

37 Cl, the knowledge has 

been extended up to 520 GHz. The observed transitions have been analyzed with a Watson-type Hamil- 

tonian and allowed the determination of several spectroscopic parameters, all in excellent agreement 

with our computed values. These new experimental and computed data, combined with the ones previ- 

ously available in the literature, led to the determination of an accurate and complete semi-experimental 

(SE) equilibrium structure for chloromethane. The medium resolution (up to 0.1 cm 

−1 ) gas-phase infrared 

spectra of CH 2 DCl were investigated in the region 60 0–90 0 0 cm 

−1 . All the most important spectral fea- 

tures were assigned in terms of fundamental, overtone and combination bands, thus obtaining an accu- 

rate description of the vibrational structure. Several polyads involving different vibrational levels were 

identified and disentangled with the aid of our computed high-level hybrid force field. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Chlorinated volatile organic compounds (Cl-VOCs) play a signif- 

cant role in the Earth’s atmosphere, since they can act as green- 

ouse gasses and sources of reactive chlorine in the troposphere 

hus leading to stratospheric ozone destruction [1] , and also as en- 

ironmentally hazardous trace gasses (see for example Refs. [2–4] , 

nd references therein). Their sources are either natural or due to 

ifferent anthropogenic processes. Highly accurate real-time detec- 

ion and monitoring of trace gas pollutants are made possible by 

ecent improvements in high-resolution spectroscopies [5–7] , but 

hese techniques rely on the availability of the corresponding spec- 

roscopic data [8] . These data are generally obtained by accurate 

ine-shape and ro-vibrational analyses of infrared spectra, often re- 

uiring a proper treatment of resonances. The corresponding cou- 

ling parameters as well as other relevant spectroscopic parame- 

ers (band positions, intensities, rotational constants, and so on) 
∗ Corresponding author. 
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an be nowadays accurately predicted by state-of-the art quantum- 

echanical computations [9–12] thus greatly supporting the ex- 

erimental analysis in disentangling the complex vibrational and 

ovibrational features of chlorinated trace gas compounds [13–17] . 

The first detection of chloromethane (methyl chloride, CH 3 Cl) 

n the Earth’s atmosphere has been achieved by the analysis of 

he strong ν1 band around 3.4 μm [18] , and its global distribution 

in both the upper troposphere and lower stratosphere) has been 

hen successfully measured by the ACE-FTS experiment [ 19 , 20 ]. 

mong the several Cl-VOCs, chloromethane, with local atmo- 

pheric concentration values that can be well above 10 0 0 pptv 

ver some regions [21] and an averaged concentration estimated 

n the 553 −559 pptv range (see the latest assessment on Strato- 

pheric Ozone [1] ), is considered a very relevant one, accounting 

or almost 17% of the total reactive chlorine in the troposphere. 

esides the oceans, its natural sources comprise plants [22] , soils 

 23 , 24 ] and wildfires [25] . The anthropogenic processes involved 

n the emissions of CH 3 Cl are mainly chemical activities [26] and 

iomass burning [25] ; it is worthwhile to note that recently CH 3 Cl 

as been detected also in the human breath [27] . These close 

orrelations between its presence in the atmosphere and the 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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iological/anthropogenic activities make CH 3 Cl a promising 

iomarker to be used for the search of potentially hospitable 

xoplanets [28] . For all these reasons, chloromethane has been the 

ubject of several high-resolution infrared spectroscopic studies 

ocused on line-positions and line-shape parameters (see, for 

xample, Refs. [29–38] , and references therein) as well as theoret- 

cal investigations (see for example Refs. [39–42] , and references 

herein), while the analysis of its microwave spectra provided 

ccurate values for the ground state constants [ 43 , 44 ]. 

In comparison to the diversity and richness of chlorinated com- 

ounds present in the Earth’s atmosphere, until few years ago it 

as generally assumed that in the interstellar medium chlorinated 

olecules could be present only in the form of simple chlorinated 

ydrides [45] . The recent finding of chloromethane, with the un- 

mbiguously assignment of signals coming from both the two chlo- 

ine isotopologues, in the protostar IRAS 16,293–2422 and in the 

oma of comet 67P/Churyumov-Gerasimenko by the Rosetta mis- 

ion [46] was groundbreaking since it provided evidence of an in- 

erplay between halogens and organic interstellar chemistry. This 

iscovery thus highlighted that also the chemistry of organohalides 

eeds to be properly considered in the planet-forming regions, and 

herefore stimulated recent investigations of other possible candi- 

ates [ 47 , 48 ], and of their formation [49] . The fact that in the same

rotostar many deuterated and bi-deuterated species have been 

etected (HDO/D 2 O [50] , NHD/ND 2 [ 51 , 52 ], and CH 2 DCN/ CHD 2 CN

53] ) points out that also CH 2 DCl (the monodeuterated form of 

hloromethane) might be present. Anyway, accurate spectroscopic 

ata are needed for its detection and for the determination of the 

H 2 D 

35 Cl/CH 2 D 

37 Cl ratio [54] . Until recently, only some bands of

H 2 D 

35 Cl were investigated by high-resolution spectroscopy [55–

7] . Therefore, we decided to assist and drive the search of mono- 

euterated chloromethane (both the CH 2 D 

35 Cl and CH 2 D 

37 Cl iso- 

opologues) in the interstellar medium by providing the necessary 

aboratory data and theoretical predictions. As a first step, we de- 

ermined precise rest frequencies at mm-wavelengths and accurate 

round state constants for both the chlorine isotopologues [58] . 

hen, for CH 2 D 

37 Cl we performed the ro-vibrational analysis of the 

ands falling in the 15.4–9.3 μm region, i.e. the ν5 , ν6 and ν9 fun- 

amentals [59] . 

In the present work, we carried out a complete experi- 

ental analysis of the vibrational spectrum of mono-deuterated 

hloromethane in the region 60 0–90 0 0 cm 

−1 in combination with 

n accurate quantum-chemical characterization. The employed ap- 

roach provided accurate predictions of the spectroscopic param- 

ters for vibrational ground and excited states and assisted the 

ssignments of the absorption features in terms of fundamentals, 

vertone and combination bands up to three quanta. In addition, 

rom the analysis of the millimeter-wave spectra, we derived an 

ccurate set of spectroscopic parameters for both 

13 CH 2 D 

35 Cl and 

3 CH 2 D 

37 Cl species. We also extended the measurements of the 

otational spectrum of the two main species at submillimeter- 

avelengths (up to 520 GHz) with the aim of expanding the analy- 

is to higher-order centrifugal terms. Finally, using these new data 

n combination with computed vibration-rotation interaction con- 

tants we were able to determine a complete semi-experimental 

SE) equilibrium molecular structure for chloromethane, whose pa- 

ameters are in excellent agreement with those obtained from ab 

nitio calculations. The results reported here, combined with the 

revious ones, constitute a solid base of reliable spectroscopic data 

n mono-deuterated chloromethane species to assist and guide 

heir search in remote environments as well as to support future 

igh-resolution studies in the infrared region. The spectroscopic 

arameters and the Coriolis terms here reported will greatly help 

he ro-vibrational analysis of the most relevant absorptions and the 

reatment of the interactions between different excited vibrational 

evels. 
2 
. Experimental details 

The CH 2 DCl sample, with natural isotopic composition, was pre- 

ared by reacting monodeuterated methanol (CDN Isotopes, 99.2% 

-enriched) with NaCl in a solution of diluted sulphuric acid, fol- 

owing the method previously described [55] . 

The gas-phase room temperature infrared spectra at medium 

esolution (from 1.0 up to 0.2 cm 

−1 ) were measured at Ca’ Foscari 

niversity of Venice (Italy), using a Bruker Vertex 70 FTIR instru- 

ent [ 14 , 15 ], and using a combination of different cells, sources 

nd beam-splitters according to the spectral region investigated. 

n the region 60 0–650 0 cm 

−1 , a KBr beam-splitter in conjunction 

ith a cell having a path length of 0.16 m and a Globar source 

ere employed, while the sample pressures were in the 1.5–60 kPa 

ange. In addition, in the region between 50 0 0 and 90 0 0 cm 

−1 ,

ome spectra were recorded also using a quartz beam-splitter to- 

ether with a tungsten lamp and a multi-pass cell (with a total op- 

ical path length of 37.5 m). During these measurements the sam- 

le pressure was kept at 2.1 kPa. 

Additional gas-phase infrared spectra were recorded at 0.1 and 

.5 cm 

−1 resolution at the Department of Industrial Chemistry 

Toso Montanari” of University of Bologna (Italy), using a Bomem 

A3.002 FTIR spectrometer [ 60 , 61 ] equipped with a Globar source, 

 KBr beam-splitter, a mercury cadmium telluride (MCT) and an 

nSb detectors. The spectra were recorded at different pressures, 

anging from 13.3 to 13,330 Pa, and two different pathlengths, 0.16 

nd 8 m. The total spectral range spanned was 450–5500 cm 

−1 . 

everal hundred scans were co-added in order to improve the 

ignal-to-noise ratio. 

The rotational spectra of CH 2 D 

35 Cl and CH 2 D 

37 Cl, as well as

heir 13 C-counterparts, have been recorded with the frequency- 

odulation millimeter-/submillimeter-wave spectrometer at the 

epartment of Chemistry “Giacomo Ciamician” of the University 

f Bologna (Italy) [ 62 , 63 ]. For the present measurements, a Gunn 

iode operating in the 80–115 GHz range coupled to passive fre- 

uency multipliers (tripler, quadrupler, and sextupler) has been 

sed as radiation source. The frequency of the Gunn’s radiation is 

tabilized in a phase-lock loop and sine-wave modulated at a fre- 

uency of f = 48 kHz. All the electronics employed in the phase- 

ock loop are referenced to a rubidium atomic clock that ensures 

he frequency accuracy of the spectra recorded. The radiation is 

ed into a 3 m long glass absorption cell containing vapors of pure 

H 2 DCl at a pressure between 0.27 and 2.7 Pa (depending on the 

ntensity of the transitions to be observed). The output signal is 

nally detected by a zero-bias Schottky diode before being ampli- 

ed, filtered, and demodulated at twice the modulation frequency 

y a lock-in amplifier. 

. Computational details 

Accurate prediction of the equilibrium structure parameters 

as obtained by exploiting the CCSD(T)/CBS + CV + fT + fQ composite 

cheme. The definition of this model starts from CCSD(T)/CBS + CV 

hereafter CBS + CV), which is obtained by exploiting the so- 

alled "gradient" scheme approach [ 64 , 65 ]. CCSD(T) [66] stands for 

oupled-cluster (CC) singles and doubles augmented by a pertur- 

ative treatment of triple excitation. The CFOUR suite of programs 

 67 , 68 ] was used for these computations. In the extrapolation pro- 

edure, we employed different correlation consistent Dunning basis 

ets [69–71] : for the H and C atoms we used the cc-pV n Z ( n = T , Q,

) basis sets, while for Cl atom their augmented counterparts were 

mployed with an extra hard d function (i.e., aug-cc-pV( n + d )Z) to 

ake into account inner-shell polarization effects; to com pute the 

ore-valence (CV) correlation term, we used the cc-pCVQZ basis set 

72] . The CBS + CV structure has been obtained by minimizing the 
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Table 1 

Comparison between theoretical (THEO) and semi-experimental (SE) equilibrium structural parameters of CH 3 Cl. 

THEO SE 

CBS + CV a CBS best 
a Ref. 43 b Ref. 89 c This work d Ref. 97 d 

r (C –H) 1 .0832 1 .0833 1 .0834 1 .0838 1 .083450(8) 1 .0842(2) 

r (C –Cl) 1 .7768 1 .7777 1 .7777 1 .7772 1 .777725(5) 1 .7768(2) 

β (H 

–C-Cl) 108 .40 108 .39 108 .38 108 .45 108 .3740(9) 108 .72 

β (H 

–C-H) 110 .53 110 .53 110 .54 110 .48 110 .5458(9) 110 .21(3) 

a This work. CBS + CV are the parameters obtained at the CCSD(T) level of theory by extrapolating to the CBS limit 

and including CV corrections; CBS best refers to the best-estimated equilibrium structure derived by including fT and fQ 

corrections. 
b Minimum structure of the potential energy surface obtained at the CCSD(T)/CBS + CV + HO (up to 

CCSDTQ(P)) + SR + DBOC level. Readers are referred to Ref. 43 for details. 
c fc-CCSD(T)/cc-pV(Q,5)Z structure including CV correction (computed at the MP2/cc-pwCVQZ level). 
d In parentheses the uncertainty as derived from the fit or as reported in the article. 
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ollowing gradient: 

dE C BS+ C V 
dx 

= 

dE ∞ ( HF − SCF ) 

dx 
+ 

dE ∞ ( C C SD ( T ) ) 

dx 
+ 

d�E ( CV ) 

dx 
(1) 

here the first two terms account for the extrapolation to the 

omplete basis set (CBS) limit which is performed separately for 

F-SCF and CCSD(T) correlation energies. The extrapolation scheme 

f Feller [73] and the n 

−3 expression [74] were used for the HF- 

CF and CCSD(T) parts, respectively. Since the extrapolation to the 

BS limit is carried out within the frozen-core (fc) approximation, 

he contribution due to CV correlation energy needs to be incor- 

orated. This was estimated by taking the difference between all- 

lectron (ae) and frozen-core (fc) CCSD(T) calculations in the same 

asis set. The correction terms due to the inclusion of full treat- 

ent of triple and quadruple excitations, thereby exploiting the 

CSDT [ 75 , 76 ] and CCSDTQ [77–79] methods, were computed using 

he MRCC software package [ 80 , 81 ] and in conjunction with the

c-pVTZ (for the fT correction, as CCSDT-CCSD(T) difference) and 

c-pVDZ (for the fQ correction, as CCSDTQ-CCSDT difference) ba- 

is sets, within the fc approximation. Their incorporation into the 

BS + CV results leads to the best-estimated equilibrium geometry 

BS + CV + fT + fQ, which is hereafter denoted as CBS best . 

The harmonic frequencies were computed with the fc-CCSD(T) 

ethod combined with the cc-pV5Z basis set for the H and C 

toms, and the aug-cc-pV(5 + d )Z for Cl, hereafter shortly labeled 

s V5Z-aV(5 + d )Z, and exploiting the CFOUR implementation of an- 

lytic second derivatives [82] . Nuclear quadrupole coupling con- 

tants were obtained at the ae-CCSD(T)/cc-pwCV5Z level of theory 

nd were augmented by vibrational corrections at the fc-MP2/aug- 

c-pVTZ level of theory computed using the Gaussian 16 suite of 

rograms [83] . Cubic and semi-diagonal quartic force constants 

ere computed at the fc-CCSD(T) level of theory in conjunction 

ith the cc-pVQZ basis set for the H and C atoms, and the cc- 

V( Q + d )Z for Cl; this basis set is hereafter shortly labeled as VQZ-

( Q + d )Z. These computations were employed in a VPT2 treatment 

VPT2 standing for vibrational perturbation theory to second or- 

er) to derive the vibrational corrections to the equilibrium rota- 

ional constants and to incorporate anharmonicity to the harmonic 

orce field. Concerning the latter point, we employed a hybrid force 

eld approach in a normal-coordinate representation (for further 

etails about the methodology followed here see for example Refs 

13–17] ) within the framework of VPT2; all these calculations were 

erformed by using an appropriate suite of programs [84] imple- 

enting the formulas given in the literature [85–87] . 

. Results and discussion 

The molecule of mono-deuterated chloromethane (CH 2 DCl, 

ymmetry point group C s ) is a nearly-prolate asymmetric-top ro- 

or ( κ = −0.99). The a- and b- principal axes of inertia define the 
3 
ymmetry plane, being the c- axis perpendicular to it. Its nine vi- 

rational normal modes, in terms of their symmetry species, can 

e grouped as 6 A’ � 3 A" ; the six A’ vibrations ( ν1 – ν6 ) will pro-

uce a -/ b -hybrid absorptions, while those having A" symmetry ( ν7 

ν9 ) will yield c- type bands. 

.1. Ab initio equilibrium structure data, rotational analysis, 

emi-experimental equilibrium geometry, and ro-vibrational 

arameters 

The equilibrium structure of CH 3 Cl has been the object of many 

heoretical investigations (see for example Refs. [ 42 , 88 ] and refer- 

nces therein). The comparison between our CBS best computed val- 

es and the most recent ones available in the literature is reported 

n Table 1 . Looking at the data obtained in the present work we 

ote that, moving from CBS + CV to CBS best , the inclusion of the 

T and fQ corrections leads to a very small change of the C 

–Cl

ond length (becoming longer by about 0.9 m ̊A), while both the 

 

–H bond and the β (HCCl) angle remain nearly unchanged. Owens 

t al. [42] recently reported equilibrium structural parameters of 

H 3 Cl, obtained from a potential energy surface computed by ex- 

licitly correlated coupled cluster calculations with extrapolation 

o the CBS limit and taking also into account the contributions due 

o the CV correlation, higher-order (HO) electron correlation terms 

up to the contributions due to the perturbative pentuples), the di- 

gonal Born-Oppenheimer corrections (DBOC) and scalar relativis- 

ic (SR) effects. The comparison between the equilibrium geometry 

btained in Ref. [42] and our CBS best values reveals an excellent 

greement, even if the latter are derived without the inclusion of 

BOC and SR effects and accounting for HO electron correlation 

erms up to the fQ corrections, thus pointing out that in our deter- 

ination all the relevant contributions have been incorporated. For 

he sake of completeness, we note that at the CBS best level the HCH 

ngle is 110.53 °, a value very similar to that reported in Ref. 43 

110.54 °). Despite the lower level of theory employed, the values 

eported in Ref. [88] are very similar to our results, the difference 

eing not greater than 0.5 m ̊A for the bond lengths, and about 

.06 ° for the bond angle. Discrepancies so small are very likely to 

e ascribed to a compensation of errors: the CV term evaluated at 

he MP2 level is probably overestimated and thus recovering the 

issing extrapolation to the CBS limit. 

Given the excellent agreement between the CBS best equilibrium 

arameters obtained in the present work and those reported by 

wens et al. [42] , we decided to use the former to compute 

he equilibrium rotational constants for the different isotopologues 

f CH 2 DCl investigated in this work, namely CH 2 D 

35 Cl, CH 2 D 

37 Cl,
3 CH 2 D 

35 Cl and 

13 CH 2 D 

37 Cl; the corresponding data are listed in 

able 2 . Then, incorporation of the vibrational corrections (as ex- 

lained in the Computational section) led to the prediction of the 

round state rotational constants. These data, together with the 
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Table 2 

Equilibrium rotational constants of different isotopologues of CH 2 DCl a . 

12 CH 2 D 
35 Cl 12 CH 2 D 

37 Cl 13 CH 2 D 
35 Cl 13 CH 2 D 

37 Cl 

A e 121,262 .76 121,261 .07 121,116 .83 121,115 .13 

B e 12,574 .18 12,371 .00 12,152 .89 11,947 .92 

C e 12,277 .13 12,083 .35 11,873 .79 11,678 .04 

a Values (in MHz) derived from the CBS best geometry reported in Table 1 . 
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. 
omputed quartic centrifugal distortion constants derived from the 

armonic force at the fc-CCSD(T)/V5Z-AV(5 + d )Z level of theory, 

ere employed to predict the rotational spectra of 13 CH 2 D 

35 Cl and 

3 CH 2 D 

37 Cl, previously unknown. Our predictions were then used 

o search for the most intense a-type R branch transitions in the 

50–290 GHz frequency interval and to guide the assignment with 

reat confidence. In fact, thanks to the high accuracy of our theo- 

etical estimates, all the experimental transitions were found less 

han 10 MHz apart from the predicted position. The measurements 

nclude the J = 11 ← 10 and J = 12 ← 11 transitions for both iso-

opologues and probed energy levels with K a values up to 9 for 
3 CH 2 D 

35 Cl and up to 11 for 13 CH 2 D 

37 Cl. The spectral resolution

as high enough to observe the chlorine hyperfine structure re- 

olved in most cases. Moreover, we extended the measurements 

f the rotational spectra of CH 2 D 

35 Cl and CH 2 D 

37 Cl at higher fre-

uencies by recording and analyzing several transitions in the 360–

00 GHz and 480–500 GHz ranges, with the aim of improving 

nd expanding the centrifugal analysis of these two species. In 

his case, the highest values of the J and K a quantum number ob- 

erved are 41 and 19, respectively. The spectroscopic constants, 

etermined from fitting the new and previous measurements by 

eans of the SPFIT subprogram of the CALPGM suite [89] , are re- 

orted in Table 3 . The list of all the observed transitions for the

sotopologues investigated in the present work is deposited as sup- 

lementary material. 

The data listed in Table 3 show an overall excellent agreement 

etween the experimental and the computed values of the rota- 

ional constants. The largest deviations are observed for the A ro- 

ational constants (around 0.04%) while both B and C predictions 

re nearly coincident with their experimental counterparts (the de- 

iations being well within 0.5 MHz). The mean absolute percent- 

ge errors (MAEs) are not greater than 0.02% for all the different 

sotopologues investigated. Moving to the quartic centrifugal dis- 

ortion terms, we observe that for both CH 2 D 

35 Cl and CH 2 D 

37 Cl,

ll predicted values are in very good agreement with their exper- 

mental counterparts, the maximum absolute error being smaller 

han 5% (MAE less than 3%); a good agreement is also found for 

he sextic centrifugal distortion constants, as expected from previ- 

us benchmark studies [ 90 , 91 ]. 

We determined a complete semi-experimental equilibrium 

tructure for chloromethane by combining our rotational data with 

he ones already available in the literature. A total of 28 experi- 

ental ground-state rotational constants of different isotopologues 

ave been collected and corrected for the vibrational corrections 

omputed in this work to obtain a set of semi-experimental equi- 

ibrium rotational constants. In detail, the experimental rotational 

onstants were taken from both infrared and microwave stud- 

es of 12 isotopologues, namely those investigated in the present 

ork (CH 2 D 

35 Cl, CH 2 D 

37 Cl, 13 CH 2 D 

35 Cl and 

13 CH 2 D 

37 Cl) together

ith CH 3 
35 Cl [44] , CH 3 

37 Cl [44] , 13 CH 3 
35 Cl [92] , 13 CH 3 

37 Cl [93] ,

HD 2 
35 Cl (our unpublished measurements combined with Ref. 

94] ), CHD 2 
37 Cl (our unpublished measurements combined with 

ef. 95), CD 3 
35 Cl [95] and CD 3 

37 Cl [95] . The structural parameters 

f chloromethane, namely the H 

–C-Cl angle and the C 

–H and C 

–Cl

ond lengths, have been fitted against the 28 moments of inertia 

ssociated to our dataset in a least squares procedure. All these 

arameters, listed in Table 1 , have been determined with an excel- 
4 
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Table 4 

Computed rotational constants (cm 

−1 ) for the first vibrational excited states of different isotopologues of CH 2 DCl. 

Vibrational state Rotational constant 12 CH 2 D 
35 Cl 12 CH 2 D 

37 Cl 13 CH 2 D 
35 Cl 13 CH 2 D 

37 Cl 

Theor. a Exp. b Theor. a Exp. b Theor. a Theor. a 

v 1 = 1 A 3.9703785 − 3.9703225 − 3.96682308 3.96676654 

B 0.4162402 − 0.4095322 − 0.40239706 0.39562805 

C 0.4063568 − 0.3999604 − 0.39309895 0.38663593 

v 2 = 1 A 3.9649338 − 3.9648713 − 3.96115879 3.96109579 

B 0.4161570 − 0.4094475 − 0.40231823 0.39554788 

C 0.4058141 − 0.3994306 − 0.39259976 0.38614919 

v 3 = 1 A 4.0013297 3.9977994 c 4.0012834 − 3.99585712 3.99580985 

B 0.4165952 0.4166366 c 0.4098669 − 0.40266469 0.39587715 

C 0.4082836 0.4083607 c 0.4018182 − 0.39483141 0.38830235 

v 4 = 1 A 4.0100635 4.014906 d 4.0100050 − 4.00542213 4.00536428 

B 0.4157590 0.41595714 d 0.4090460 − 0.40188771 0.39511487 

C 0.4031652 0.40301241 d 0.3968496 − 0.39006791 0.38368443 

v 5 = 1 A 4.0033186 4.0006281 c 4.0035979 4.0008953 e 3.99968356 3.99988847 

B 0.4144954 0.41450372 c 0.4078483 0.40785304 e 0.40081793 0.39409722 

C 0.4043328 0.40452555 c 0.3979930 0.39817122 e 0.39123215 0.38481731 

v 6 = 1 A 3.9959530 3.9938571 c 3.9957289 3.9937307 e 3.99056434 3.99041208 

B 0.4134214 0.41328964 c 0.4067546 0.40663171 e 0.39954179 0.39282663 

C 0.4034752 0.40316713 c 0.3971254 0.39683473 e 0.39021922 0.38381173 

v 7 = 1 A 3.9804190 − 3.9803623 − 3.97601267 3.97595538 

B 0.4164889 − 0.4097754 − 0.40263238 0.39585812 

C 0.4063637 − 0.3999695 − 0.39312093 0.38665969 

v 8 = 1 A 3.9465752 3.936636 d 3.9464836 − 3.94302599 3.94293326 

B 0.4157450 0.41554850 d 0.4090426 − 0.40183789 0.39507611 

C 0.4065508 0.40657266 d 0.4001374 − 0.39318640 0.38670854 

v 9 = 1 A 4.0252833 4.0233803 c 4.0250754 4.0232222 e 4.02058055 4.02037306 

B 0.4151617 0.41517453 c 0.4084594 0.40847734 e 0.40133535 0.39457365 

C 0.4047519 0.40473506 c 0.3983869 0.39836778 e 0.39157145 0.38513924 

a Theoretical computed values (in cm 

−1 ); see text for details. 
b Experimental values (in cm 

−1 ). 
c Data taken from Ref. 57. 
d Data taken from Ref. 58. 
e Data taken from Ref. 60. 
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ent accuracy, the uncertainty being below 1 × 10 −5 Å for the bond 

engths and about 1 × 10 −3 degrees for the H 

–C-Cl angle. More- 

ver, our semi-experimental equilibrium structure is in remark- 

bly good agreement with our best estimate equilibrium struc- 

ure, thus definitely confirming the quality of our ab initio calcu- 

ations. Compared to our semi-experimental equilibrium structure, 

he data obtained by Demaison et al. [96] are characterized by a 

arger H 

–C-Cl angle, while the structure reported by Jensen et al. 

97] , often used as reference, is biased by a value of the C 

–H length

1.0854 Å) which is too long (by more than 2 m ̊A) with respect to

ur data, thus confirming the observations reported by other au- 

hors [ 42 , 98 ]. 

Concerning the excited vibrational states, in Table 4 we report 

he computed rotational constants for the single excited vibrational 

tates of all isotopologues, together with the corresponding ex- 

erimental data (when available). The predicted values listed in 

his Table take into account the same kinds of Coriolis interactions 

mong fundamentals that were investigated by the previous high- 

esolution studies [ 55–57 , 59 ]; their comparison with the literature 

ata points out an overall good agreement, the MAE being smaller 

han 0.1%. Finally, in order to support further ro-vibrational spec- 

roscopic high-resolution works, the absolute values of the Coriolis 

oupling constants are reported as supplementary materials in Ta- 

les S1–S4. 

.2. Vibrational analysis 

The hybrid force field approach was used to obtain accurate 

heoretical predictions taking into account both mechanical and 

lectrical anharmonicity effects; the harmonic frequencies (at the 
5 
c-CCSD(T)/V5Z-AV(5 + d )Z level of theory) employed in the hybrid 

orce fields for the different isotopologues of CH 2 DCl are reported 

n Table 5 with an approximate description of each normal mode. 

or completeness, Table 6 reports the computed anharmonic data 

frequencies and intensities) of the fundamentals for all the iso- 

opologues. From the analysis of the medium-resolution (up to 0.1 

m 

−1 ) infrared spectra, the experimental values for all the funda- 

entals of CH 2 D 

35 Cl (and for some of CH 2 D 

37 Cl) were determined

nd are listed in Table 7 together with the corresponding com- 

uted fundamental frequencies. As it can be seen from the survey 

pectrum reported in Fig. 1 , the 50 0–50 0 0 cm 

−1 region is charac-

erized by the absorptions due to the fundamentals; only increas- 

ng the pressure of the sample the features due to some overtone 

nd two-quanta combination bands became clearly visible. Mov- 

ng to higher wavenumbers, the survey spectrum in Fig. 2 shows 

ow the spectral region above 50 0 0 cm 

−1 mainly contains combi- 

ations and/or overtones involving the ν1 , ν2 and ν7 fundamen- 

als. The overall assignment of the vibrational states carried out 

n the present work is listed in Table 7 together with the corre- 

ponding predicted values. Concerning the fundamentals, by using 

he threshold criteria proposed by Martin et al. [99] two different 

ermi resonances (FR) were identified: one FR of type-1 (1–2) 

nvolving the ν1 fundamental (related to the CH 2 symmetric 

tretching) and 2 ν3 (the first overtone of ν3 , related to the CH 2 

cissoring mode), while the other is a type-2 (1–11) FR coupling 

he ν2 band (due to the C-D stretching) and the ν8 + ν9 combi- 

ation. At higher wavenumbers (above 30 0 0 cm 

−1 ), we identified 

ther instances of anharmonic resonances involving combination 

ands in which one quantum of the CH 2 symmetric stretching 

 v 1 = 1) is coupled to two quanta of the CH 2 scissoring ( v 3 = 2),
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Table 5 

Harmonic vibrational frequencies of different isotopologues of CH 2 DCl a . 

Harmonic Symmetry Description b 12 CH 2 D 
35 Cl 12 CH 2 D 

37 Cl 13 CH 2 D 
35 Cl 13 CH 2 D 

37 Cl 

ω 1 A’ CH 2 sym . stretch 3118 .9 3118 .9 3112 .5 3112 .5 

ω 2 A’ C-D stretch 2306 .2 2306 .2 2294 .1 2294 .1 

ω 3 A’ CH 2 scissoring 1474 .1 1474 .1 1470 .9 1470 .9 

ω 4 A’ CH 2 wag 1296 .9 1296 .8 1290 .3 1290 .2 

ω 5 A’ C-D i.p. bend 840 .8 839 .9 832 .2 831 .4 

ω 6 A’ C –Cl stretch 727 .9 722 .1 714 .0 708 .0 

ω 7 A" CH 2 asym . stretch 3183 .8 3183 .8 3171 .6 3171 .6 

ω 8 A" C-D/CH 2 o.o.p. bend 1299 .1 1299 .0 1297 .4 1297 .4 

ω 9 A" C-D/CH 2 o.o.p. bend 1003 .8 1003 .5 996 .2 995 .8 

a Harmonic frequencies in cm 

−1 ; values obtained at the fc –CCSD(T)/V5Z-aV(5 + d )Z level of theory (see text). 
b Sym. and asym . stand for symmetric and asymmetric, respectively; i.p. and o.o.p. stand for in plane and out of plane, 

respectively. 

Table 6 

Computed anharmonic data (wavenumbers and intensities) of the fundamentals of different isotopologues of CH 2 DCl. 

Mode 12 CH 2 D 
35 Cl 12 CH 2 D 

37 Cl 13 CH 2 D 
35 Cl 13 CH 2 D 

37 Cl 

Wvn a I b Wvn a I b Wvn a I b Wvn a I b 

ν1 2992 .6 15 .37 2992 .4 14 .85 2986 .2 15 .69 2986 .2 15 .69 

ν2 2221 .0 5 .92 2220 .8 5 .47 2210 .6 5 .92 2210 .5 5 .89 

ν3 1435 .4 4 .12 1434 .8 6 .68 1431 .3 6 .57 1431 .1 6 .61 

ν4 1269 .3 9 .21 1269 .2 9 .71 1263 .3 8 .45 1263 .1 8 .50 

ν5 826 .7 6 .26 825 .9 6 .39 818 .6 4 .87 817 .9 4 .67 

ν6 714 .0 18 .52 708 .3 18 .05 700 .3 19 .05 694 .4 18 .84 

ν7 3032 .4 4 .94 3032 .4 3 .60 3021 .7 4 .87 3021 .7 4 .87 

ν8 1267 .3 1 .99 1267 .2 2 .00 1265 .9 1 .97 1265 .8 1 .97 

ν9 986 .6 2 .17 986 .3 2 .45 979 .2 2 .31 978 .8 2 .32 

a Wavenumbers in cm 

−1 . 
b Intensities in km mol −1 . 

Table 7 

Assigned vibrational states of CH 2 DCl: comparison between experimental and theoretical wavenumbers (cm 

−1 ). 

Mode Experimental a Theoretical b Mode Experimental a Theoretical b 

ν6 714.1(1)/708.4(1) c 714.0/708.3 c ν2 + ν4 3493.5(3) 3495.7 

ν5 827.0(1)/826.3(1) c 826.7/825.9 c 2 ν3 + ν9 3816(1) 3820.8 

ν9 986.7(1)/986.3(1) c 986.6/986.3 c ν1 + ν9 3969.33(4) d 3971.1 

ν8 1267.7(1) 1267.3 ν7 + ν9 4014.67(6) d 4012.7 

ν4 1268.3(1) 1269.3 2 ν3 + ν8 4115(1) 4112.8 

2 ν6 1421.0(1) 1419.4 ν1 + ν8 4244.51(4) d 4249.5 

ν3 1433.8(1) 1434.1 ν3 + ν7 4438.77(3) d 4443.9 

2 ν9 1971.0(1) 1970.2 ν7 + 2 ν9 4990.9(3) 4989.9 

ν4 + ν6 1979.7(3) 1979.2 ν1 + ν2 5205.0(3) 5201.8 

ν4 + ν5 2091.2(3) 2090.3 ν2 + ν7 5264.0(3) 5261.9 

ν2 2224.34(7) d 2221.0 ν1 + ν7 5910.79(2) d 5921.5 

ν8 + ν9 2258.3(3) 2259.6 2 ν7 6040.39(3) d 6031.6 

ν3 + ν9 2412.235(8) d 2411.6 ν1 + ν5 + ν7 6718.8(5) 6712.8 

2 ν8 2534.3(3) 2535.3 ν1 + ν7 + ν9 6878.9(5) 6861.4 

ν3 + ν8 2699.74(3) d 2700.3 ν1 + ν7 + ν8 7139(1) 7131.6 

ν3 + ν4 2700.95(5) d 2702.5 2 ν1 + 2 ν6 7310(1) 7320.8 

2 ν3 2846.3(3) 2849.0 2 ν7 + 2 ν6 7438(1) 7428.9 

ν3 + 2 ν6 2857.74(2) d 2850.3 ν1 + 2 ν7 8643.35(8) d 8632.0 

ν1 2990.282(7) d 2992.3 3 ν7 8896.68(6) d 8896.7 

ν7 3035.53(2) d 3032.4 

a Numbers in parentheses are one standard deviation and apply to the last significant digits. 
b Theoretical values obtained by hybrid force field computations (see text). 
c 35/37 Cl isotopologues splitting. 
d Derived from the analysis of the partially resolved rotational structure (see text). 
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hus showing an interaction pattern among polyads analogous to 

hat was observed for other halomethanes (see for example Refs. 

100–102] , and references therein). For example, a binary combi- 

ation having one quantum of excitation in the v 1 vibrational state 

as ν1 + ν8 ) interacts with a three quanta combination band hav- 

ng two quanta of excitation for the v 3 state (as 2 ν3 + ν8 ). Finally,

round 60 0 0 cm 

−1 we identified the 2 ν3 + ν1 / 2 ν1 / 2 ν7 interact-

ng polyad, involving also a 2–2 Darling-Dennison (DD) resonance 

 103 , 104 ] between the 2 ν1 and 2 ν7 bands. All these anharmonic

ouplings were treated following the procedure described in Ref. 

4 and references therein. 
t

6

.2.1. The 50 0–150 0 cm 

−1 spectral region 

The spectral region below 10 0 0 cm 

−1 is characterized by the 

bsorptions due to ν6 , ν5 and ν9 . All these three bands show the 
5/37 Cl isotopologue splitting features, more discernible in the case 

f the lowest fundamental ν6 (centered at 714.1/708.4 cm 

−1 ). Re- 

arding their intensities, ν5 (centered at 827.0/826.3 cm 

−1 ) and 

9 (centered at 986.7/986.3 cm 

−1 ) appear weaker than ν6 , in line 

ith the corresponding predicted values listed in Table 6 . For these 

hree bands, Table 7 points out an excellent agreement between 

he experimental and computed data, with deviations not greater 

han 0.4 cm 

−1 . Above 10 0 0 cm 

−1 , the stronger features correspond 
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Fig. 1. Gas-phase survey spectra of CH 2 DCl in the spectral region 50 0–50 0 0 cm 

−1 . (a) Resolution = 0.2 cm 

−1 , room temperature, optical path length = 6 m, P = 1.7 kPa; 

(b) resolution = 0.5 cm 

−1 , room temperature, optical path length = 0.16 m, P = 12.5 kPa. Both traces were vertically shifted for clarity. Only some relevant absorptions are 

labeled. 

Fig. 2. Gas-phase survey spectrum of CH 2 DCl in the spectral region 50 0 0–90 0 0 cm 

−1 . Resolution = 0.5 cm 

−1 , room temperature, optical path length = 37.5 m, P = 2.1 kPa. 

Only some relevant absorptions are labeled. 

t
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a

t
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f

3

a

o ν4 (1268.3 cm 

−1 ) and ν3 (1433.8 cm 

−1 ), with computed inten- 

ities of about 4 and 9 km mol −1 , respectively, while the ν8 fun- 

amental (at 1267.1 cm 

−1 ) is weaker (with a predicted intensity of 

bout 2 km mol −1 , see Table 6 ). Besides these strong features, we

ssigned the first overtone of ν6 at 1421.0 cm 

−1 . It is worthwhile 

o note that also for these bands the predicted data show a re- 

arkable agreement with the experimental values, the maximum 
d

7 
eviation being smaller than 2 cm 

−1 . Considering all the signals 

alling in this spectral region, the overall MAE is only 0.7 cm 

−1 . 

.2.2. The 150 0–320 0 cm 

−1 spectral region 

In the 150 0–320 0 cm 

−1 range, the dominant features are the ν2 

nd ν1 bands. By increasing the sample pressure, many absorptions 

ue to the ν fundamental, to two- and three-quanta combination 
7 
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Fig. 3. Gas-phase spectrum of CH 2 DCl in the spectral region 2900–3250 cm 

−1 . Res- 

olution = 0.1 cm 

−1 , room temperature, optical path length = 0.16 m, P = 1.3 kPa. 

The assignments of P , R Q K clusters of both ν1 and ν7 fundamentals are reported. 
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Fig. 4. Gas-phase spectrum of CH 2 DCl in the spectral region 5750–6150 cm 

−1 . Res- 

olution = 0.2 cm 

−1 , room temperature, optical path length = 0.16 m, P = 58.5 kPa. 

The assignments of P , R Q K clusters of ν1 + ν7 and 2 ν7 bands are shown. 
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ands and to the overtones of ν8 and ν3 become discernible. It 

s worthwhile to note that many bands show a partially resolved 

otational structure when analyzed at the highest resolutions em- 

loyed in the present work (0.1 and 0.2 cm 

−1 ); an example is re-

orted in Fig. 3 , where the P , R Q K clusters belonging to the ν1 and 

7 fundamentals are labeled. The rotational features of b - and c - 

ype bands were analyzed by a least-square fit and employing the 

ollowing equation: 

P,R = ν0 + 

(
A 

′ − B̄ 

′ ) ∓ 2 

(
A 

′ − B̄ 

′ )K + 

[(
A 

′ − B̄ 

′ ) −
(
A 

′ − B̄ 

′ )]K 

2 

±4 D 

′ 
K K 

3 (2) 

ith the upper and lower signs referring to the P - and R -branches,

espectively, and B̄ = ( B + C ) / 2 . The data reported in Table 7 point

ut that the theoretical predictions in this spectral region compare 

ery well with the corresponding experimental data, the overall 

AE being about 2 cm 

−1 . 

.2.3. The 320 0–50 0 0 cm 

−1 spectral region 

The range 320 0–50 0 0 cm 

−1 comprises features coming mainly 

rom binary combinations involving the ν1 and/or ν7 fundamen- 

als. In this spectral region, many bands show a partially resolved 

otational structure, whose clusters were fitted using Eq. (2) . We 

bserve that the theoretical predictions are in good agreement 

ith the corresponding experimental data; the maximum devia- 

ion is less than 5 cm 

−1 , and the overall MAE is around 3 cm 

−1 .

s previously noted, in this spectral region we identified the dyads 

 ν3 + ν8 / ν1 + ν8 and 2 ν3 + ν9 / ν1 + ν9 ; after proper treatment of the

oupling terms [14] , the predicted values for the combination 

ands involved show deviations of a few wavenumbers with re- 

pect to the corresponding experimental data. 

.2.4. The 50 0 0–90 0 0 cm 

−1 spectral region 

The last spectral region investigated, 50 0 0–90 0 0 cm 

−1 , is char-

cterized by absorptions mainly due to two- and three-quanta 

ombination bands involving, as in the region discussed previously, 

 1 and/or v 7 vibrational levels; besides, we identified other sig- 

als that were tentatively assigned on the basis of the theoretical 

redictions. As previously done, the bands showing a partially re- 

olved rotational structure were fitted using Eq. 2; an example is 

hown in Fig. 4 reporting the absorptions due to ν1 + ν7 and 2 ν7 . 

he MAE in this range is less than 8 cm 

−1 . We identified three rel-

vant polyads in this spectral region: two centered at about 60 0 0 
8

m 

−1 , and the last one centered at about 8600 cm 

−1 . The first

olyad comprises 2 ν3 + ν1 /2 ν1 /2 ν7 . Without any resonances, we 

redict 2 ν7 and ν1 + ν7 at 5998 cm 

−1 and 5888 cm 

−1 , respectively, 

hus being very far from the corresponding experimental values 

6040.39 and 5910.79 cm 

−1 , respectively). If we consider only the 

arling-Dennison coupling between 2 ν7 and 2 ν1 (our calculations 

redict the latter weaker than both 2 ν7 and ν1 + ν7 , and so in the 

resent analysis we considered 2 ν1 as “dark state”), the 2 ν7 band 

s shifted up to 6028.2 cm 

−1 , closer to the measured band center. 

f we assume that 2 ν3 + ν1 is coupled to 2 ν1 (that is, in turn, cou-

led to 2 ν7 ), the treatment of this triad led to a predicted value of

031.6 cm 

−1 for 2 ν7 , thus further improving the agreement with 

he observed value. The other dyad involves 2 ν3 + ν7 and ν1 + ν7 ; 

ithout any coupling, as said before our calculations yielded a 

alue of 5888 cm 

−1 for ν1 + ν7 ; assuming a resonance with the 

 ν3 + ν7 dark state, the ν1 + ν7 band is shifted up to 5921.5 cm 

−1 ,

hus leading to a better agreement with the measured band center 

5910.79 cm 

−1 ). 

The last dyad we considered involves 2 ν7 + ν1 (measured band 

enter at 8643.35 cm 

−1 ). Without taking into account any reso- 

ances our calculations predict this combination at 8734 cm 

−1 , 

uch higher than the measured value, while 3 ν1 (too weak to 

e identified in the spectra) is computed at 8752 cm 

−1 . If we 

ssume an anharmonic resonance between them, the interaction 

oves 2 ν7 + ν1 down to 8632 cm 

−1 , thus significantly improving 

he agreement with the experimental data. 

Table 7 summarizes all the assignments performed in the 

resent vibrational analysis (together with their estimated uncer- 

ainties), and the corresponding predicted values; looking at the 

verall comparison, the agreement can be considered as very good, 

ith a MAE smaller than 4.0 cm 

−1 for all the assigned absorptions, 

ncluding also three- quanta combinations and/or overtones, falling 

n the 60 0–90 0 0 cm 

−1 spectral range, thus confirming the accu- 

acy of the hybrid force field data here employed. 

. Conclusions 

The recent discovery of CH 3 Cl in the interstellar medium sug- 

ests that also its deuterated species might be present. Here the 

esults of a comprehensive quantum-chemical and experimental 

nvestigation focused on the spectroscopic properties of CH 2 DCl 

re presented. Accurate predictions of its equilibrium structure 
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ere obtained by a computational strategy involving calculations 

t the coupled cluster level of theory, using a complete basis 

et extrapolation scheme also including the contributions coming 

rom the full treatment of triple and quadruple excitations as well 

s core-correlation effects. High-level anharmonic data were then 

sed to compute the rotational constants for the ground and vibra- 

ional excited states and centrifugal distortion constants for all the 

our isotopologues investigated. 

From the experimental side, we improved the knowledge of 

he rotational spectrum of CH 2 DCl by extending the measurements 

f CH 2 D 

35 Cl and CH 2 D 

37 Cl up to 520 GHz as well as by record-

ng the spectra of 13 CH 2 D 

35 Cl and 

13 CH 2 D 

37 Cl for the first time.

he newly determined set of spectroscopic parameters, namely ro- 

ational, centrifugal distortion, and nuclear quadrupole coupling 

onstants, are found in excellent agreement with the correspond- 

ng computed values. Finally, by using the ground state constants 

f 12 isotopologues, we derived a complete and accurate semi- 

xperimental equilibrium structure for chloromethane. Analysing 

he infrared spectrum at medium resolution, the vibrational fea- 

ures up to 90 0 0 cm 

−1 were identified and assigned, and several 

olyads involving anharmonic resonances were disentangled. The 

horough investigation carried out in this work thus provides ac- 

urate spectroscopic data useful for guiding and facilitating the po- 

ential detection of the different isotopologues of CH 2 DCl by rota- 

ional spectroscopy as well as for assisting future high-resolution 

tudies in the infrared region. 
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