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Abstract: We show that a statistical mechanics model where both the Sherringhton–Kirkpatrick and
Hopfield Hamiltonians appear, which is equivalent to a high-dimensional mismatched inference
problem, is described by a replica symmetry-breaking Parisi solution.
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1. Introduction

Beginning with Parisi’s seminal works on the Sherringhton–Kirkpatrick (SK) model [1,2],
the ideas and the tools developed in spin glass theory spread across many other research
fields such as computer science, probability theory, neural networks and others [3–7]. From
a mathematical perspective, efforts to rigorously prove Parisi’s theory have yielded power-
ful techniques, such as interpolation methods [8,9], stochastic stability [10], and synchro-
nization [11], which are currently instrumental in analyzing numerous disordered systems.

In this work, we will consider a family of mean-field spin glasses whose Hamiltonian
contains two types of random interactions: the first is the SK type, while the second
is a Hopfield model with a finite number of patterns. This class of models can also be
interpreted as a high-dimensional inference problem known as a spiked Wigner model in a
mismatched setting [12–16].

Our main result is a representation of the thermodynamic limit for the quenched
pressure per particle in terms of a variational problem of Parisi type. The proof relies on two
main ingredients: Guerra’s replica symmetry-breaking bound, which allows controlling the
SK contribution, and adaptive interpolation, which is employed to linearize the Hopfield
interaction. We start with a review of the SK model in Section 2 and then lay the ground
for the inferential interpretation of the model under study in Section 3. In Section 4, we
define and rigorously identify the exact solution of the model. Finally, we describe some
interesting challenges for future investigations.

2. The SK Model

The SK model was introduced in the 1970s by D. Sherringhton and S. Kirkpatrick [17]
and stands as an explicitly solvable mean-field spin glass. In their work, the authors
discovered that the solution obtained through the replica symmetric (RS) approximation
was not correct at low temperature. With a groundbreaking approach, Parisi identified
a new type of solutions, nowadays called replica symmetry breaking (RSB), which proved
to be correct at any temperature, thereby revealing a novel mathematical and physical
structure [18].

Entropy 2024, 26, 42. https://doi.org/10.3390/e26010042 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26010042
https://doi.org/10.3390/e26010042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3577-6189
https://orcid.org/0000-0003-0237-202X
https://doi.org/10.3390/e26010042
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26010042?type=check_update&version=2


Entropy 2024, 26, 42 2 of 15

The SK model is defined by its Hamiltonian, that is a function of N spins σ = (σi)i≤N ∈
{−1, 1}N :

HSK
N (σ) = − 1√

2N
∑

i,j≤N
zij σiσj (1)

where z = (zij)i,j≤N is a collection of i.i.d. standard Gaussian. In physical terms, the cou-
plings between pairs of spins can be ferromagnetic or antiferromagnetic with equal proba-
bility. Consider also a random variable ξ with E|ξ| < ∞ and a collection ξ = (ξi)i≤N

iid∼ ξ
representing random external fields acting on the spins. The Parisi formula is a representa-
tion for the large N limit of the pressure pSK

N defined by

pSK
N (β, h) =

1
N

log ∑
σ∈{−1,1}N

exp
(
−βHSK

N (σ) + h σ · ξ
)

(2)

In the definition (2), (β, h) ∈ R>0 ×R are fixed parameters, and the dependence on the
realization of the random collections z, ξ is kept implicit. One can prove [5] that pSK

N
converges, for almost all realizations of the disorder, to its average p̄SK

N (β, h) = EpSK
N (β, h).

Notice that E, taken after the logarithm, averages both the collections of z and ξ that are
called quenched variables. The Hamiltonian (1) can also be regarded as a centered Gaussian
process with covariance

E HSK
N (σ1) HSK

N (σ2) =
N
2

q2
N

(
σ1, σ2

)
(3)

where

qN(σ
1, σ2) =

1
N

N

∑
i=1

σ1
i σ2

i =
1
N

σ1 · σ2 . (4)

qN(σ
1, σ2) is the overlap between two spin configurations σ1 and σ2.
The Parisi variational principle for the limiting pressure per particle of this model was

proved after almost three decades of efforts, and it is mainly due to the works of Guerra [8]
and Talagrand [19]. We hereby summarize these milestones in a single theorem.

Theorem 1 (Parisi Formula [8,19]). Let M[0,1] be the space of probability measures on [0, 1],
β > 0 and y ∈ R. Consider the Parisi functional, which is defined as

χ ∈ M[0,1] 7−→ P(χ; β, y) = log 2 + Φχ(0, y, β)− β2

2

∫ 1

0
dq qχ([0, q]) . (5)

where Φχ(s, y, β) solves the PDE ∂sΦχ = − β2

2

(
∂2

yΦχ + χ([0, s])(∂yΦχ)2
)

Φχ(1, y, β) = log cosh y .
(6)

The following holds
lim

N→∞
pSK

N (β, h) = inf
χ∈M[0,1]

EξP(χ; β, hξ) a.s. (7)

The key tool for the proof is the (Gaussian) interpolation method, which is introduced
in [9] in order to prove the existence of the large N limit of p̄SK

N .
The thermodynamic equilibrium induced by the pressure p̄SK

N is called quenched equi-
librium and is defined as follows. Physical quantities (e.g., energy) are functions of
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the disorder variables z, ξ and the spin configurations σ. Given a function f (z, ξ, σ), its
equilibrium value is defined as

E⟨ f ⟩N := E ∑
σ∈{−1,1}N

GN(σ) f (z, ξ, σ) (8)

where GN is the (random) Boltzmann–Gibbs distribution

GN(σ) =
exp

(
−βHSK

N (σ) + h σ · ξ
)

ZN
(9)

The measure E⟨ ⟩N is called a quenched measure and can be viewed as a two-step measuring
process. Initially, for a given realization of the disorder variables z, ξ, one assumes that the
system equilibrates according to the canonical Boltzmann–Gibbs distribution GN defining
a (random) measure on the space of spin configurations. The expectation with respect to
GN is denoted by ⟨ ⟩N , namely

⟨ f ⟩N := ∑
σ∈{−1,1}N

GN(σ) f (z, ξ, σ) (10)

In probabilistic terms, GN defines a conditional measure given z and ξ. The remaining
degrees of freedom z, ξ are then averaged according to their apriori distribution E.

An important role is played by the concept of replicas. Replicas are i.i.d. samples from
GN at fixed disorder. Hence, the equilibrium value of a function f (z, ξ, σ1, . . . , σn) of n
replicas and the quenched variables z, ξ is defined by

E⟨ f ⟩N = E ∏
a≤n

∑
σa∈{−1,1}N

GN(σ
a) f (z, ξ, σ1, . . . , σn) . (11)

The computation of derivatives of p̄SK
N shows, using integration by parts, that the SK model

is fully characterized by the (joint) distribution of the overlap array
(

qN(σ
l , σl′)

)
l,l′≤n

≡
(ql,l′)l,l′≤n, namely the overlaps between any finite number n of replicas with respect to the
measure (11). The main feature of the Parisi theory is the characterization of the mentioned
joint measure by means of two structural properties:

(i) It is uniquely determined by a one-dimensional marginal, namely the distribution of
q1,2;

(ii) The distribution of three replicas has with a probability of one an ultrametric support

lim
N→∞

E⟨1(q1,2 ≥ min(q1,3, q2,3))⟩ = 1 . (12)

Despite having a mathematical proof of the Parisi Formula (7) for the SK model, (i) and
(ii) have been rigorously proved only in the mixed p-spin model [6,20,21], an extension
of the SK model, whose Hamiltonian contains also higher-order interactions (three-body,
four-body, etc.).

One of the crucial instruments to achieve a rigorous control of the model is the so-called
Ruelle Probability Cascades (RPCs), defined by Ruelle [22] when formalizing the properties
of the Generalized Random Energy model of Derrida [23]. See also the characterization
of RPC in terms of coalescent processes given in [24]. The first direct link between RPC
and the SK model appeared in the work of Aizenman–Sims–Starr [25], where the authors
found a representation of the thermodynamic limit of quenched pressure per particle in
terms of the cavity fields distribution. This representation strongly suggested that if the
thermodynamic limit of the overlap distribution is described by an RPC, then the Parisi
formula is correct.

The first signal that the overlap array is described by an RPC was originally found
by Aizenmann and Contucci in [10] with the identification of stochastic stability and by
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Ghirlanda and Guerra [26]. Both papers show an (infinite) set of identities for the moments
of the overlap array distribution. It turns out that these identities actually imply that the
support of the joint distribution of the overlap is ultrametric, as proved by Panchenko [27].
It should be noticed that Panchenko’s theorem requires identities for the overlap moments
of all orders. The latter do not hold for the bare SK model, but it can be shown that there
exists a perturbation of the Hamiltonian that forces the SK model to satisfy them without
affecting the limit of the quenched pressure [28].

Once the validity of the Parisi Formula (7) is established, it is natural to ask for the
properties of its solution. The uniqueness of the minimizer of (7) has been assessed by
Auffinger and Chen [29], and its properties have been investigated for example in [30,31].

A relevant question about the minimizer is the following: for which values of the
parameters (β, h) is the solution of (7) a Dirac-delta function δq for some q ∈ [0, 1]? In this
case, we say that the model is replica symmetric and the Parisi Formula (7) reads

lim
N→∞

pSK
N (β, h) = inf

q∈[0,1]

{
log 2 +Ez,ξ log cosh(βz

√
q + hξ) +

β2

4
(1 − q)2

}
. (13)

The replica symmetric region can be identified [6,32] with the region of parameters (β, h)
where the overlap is a self-averaging quantity, namely

lim
N→∞

E
〈
(q1,2 − q∗)2

〉
N
= 0 (14)

where q∗ is exactly the value that realizes the infimum in (13). The physics conjecture is
that the replica symmetric region can be identified by the so called Almeida–Thouless [33]

β2 Ez,ξ cosh−4
(

βz
√

q∗ + h ξ
)
≤ 1 . (15)

The above conjecture is proved only in the case of Gaussian external field ξi ∼
N (0, 1) [34]. An alternative characterization of the replica symmetric region has been
obtained in [6,35]. If the minimizer corresponds to a non-trivial distribution (i.e., with
non-zero variance), we say that replica symmetry breaking occurs, and the overlap is not a
self-averaging quantity.

The Parisi formula has been extended to other mean field models with centered
Gaussian interactions: vector spins [36], multispecies models [11,37,38], multiscale mod-
els [39,40]. Finally, we mention that the SK model fulfills a remarkable universality property:
as long as zij’s are independent, centered, and with unit variance, the thermodynamic limit
is still described by the Parisi solution [41].

In this work, we show that a class of non-centered Gaussian spin glasses admits an
interpretation of high-dimensional inference that extends the celebrated correspondence
between the spiked Wigner model and the SK model in the Nishimori line where replica
symmetry is always fulfilled [3]. We show that the addition of an SK Hamiltonian to
a Hopfield with a finite number of patterns can be mapped into a high-dimensional
mismatched inference problem, where the statistician ignores the correct apriori distribution
on the signal components they have to reconstruct. We shall see that even this slight
mismatch may lead to the emergence of complexity, namely to the breakdown of replica
symmetry, which is instead guaranteed under very mild hypotheses for optimal statisticians.

3. High-Dimensional Inference and Statistical Physics

High-dimensional inference aims at recovering a ground truth signal, ξ in the follow-
ing, that is usually a vector with a very large number of components from some noisy
observations of it, which is denoted by Y. The main feature of this setting is that the dimen-
sion of the signal, i.e., the number of real parameters to reconstruct, and the number of
observations at disposal are a function of one another, typically a polynomial. For instance,
for our purposes, ξ will be a vector of RN and Y will be an N × N matrix for a total of N2
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noisy observations. Hence, if the number of observations becomes large, the number of
parameters to retrieve also does. Contrary to what happens in typical low-dimensional set-
tings, where max-likelihood, or Maximum A Posteriori (MAP) approaches yield provably
satisfactory reconstruction performances, in a high-dimensional setting, this is not always
the case. In particular, one needs to devise another kind of more refined estimators that
exploit the marginal posterior probabilities for each signal component.

Both approaches described above are Bayesian, and the knowledge of a prior distribu-
tion on the signal components can play a key role especially for high-dimensional problems.
Furthermore, to compose the posterior measure for the entire signal, one needs the likelihood
of the data, which is the probability of an outcome y of the variable Y given a certain ground
truth realization ξ = x. As we shall discuss soon, under certain hypotheses, the Bayesian
approach highlights the correspondence of relevant information theoretic quantities with
thermodynamic ones. Among the others, a key quantity is the mutual information between
the signal ξ and the observations Y, which quantifies the residual amount of information left
in Y about ξ after the noise corruption. As intuition may suggest, the mutual information
gives access to the best reconstruction error that is information theoretically achievable.

Finally, we stress that the high dimensionality of the problem can induce phase
transition in some parameters of the model, like the so-called signal-to-noise ratio (SNR),
that tunes the strength of the signal with respect to that of the noise in the observations.

3.1. Bayes-Optimality and Nishimori Identities

For the sake of simplicity, we start by considering a signal ξ = (ξi)i≤N ∈ RN of
i.i.d. (independently and identically distributed) components ξi

iid∼ Pξ , where Pξ has a
finite fourth moment. The observations at the disposal of a statistician can be modeled
as a stochastic function of the ground-truth signal: Y = F(ξ; z), where z is the source of
randomness or simply the noise. Knowing the function F, from a Bayesian perspective,
translates directly into having the likelihood of the model, namely the conditional dis-
tribution dPY|ξ=x(y) = pY|ξ=x(y)dy, which we assume to have a density pY|ξ=x(y) over
the Lebesgue measure. Observe that the likelihood is strongly affected by the nature of
the noise.

According to Bayes’ rule, the posterior distribution of ξ given the data is:

dPξ|Y=y(x) =
pY|ξ=x(y)dPξ(x)

Z(y)
, Z(y) =

∫
pY|ξ=x(y)dPξ(x) , (16)

where dPξ(x) = ∏i≤N dPξ(xi), and Z(y) is the probability of a given realization of the data,
which is sometimes also called evidence. In practice, the above posterior, which would be
ideal to perform inference, is rarely available, and the statistician is not aware either of the
likelihood or of the correct prior distribution for the signal, or even both. This motivates
the following definition of a special inference setting:

Definition 1 (Bayes optimality). The statistician is said to be Bayes optimal, or in the Bayes-
optimal setting, if they are aware both of Pξ and F(·; z); namely, they have access to the posterior (16).

The above is saying that an optimal statistician knows everything about the model
except for the ground truth ξ itself. The Bayes-optimal setting is thus often used as a
theoretical framework to establish the information theoretical limits. Indeed, it is known that
the mean square error between the ground truth and an estimator ξ̂(y)

MSE(ξ̂) = E∥ξ − ξ̂(y)∥2 (17)

is minimized by an optimal statistician that can use the posterior mean as an estimator,
yielding the minimum mean square error (MMSE)

MMSE = E∥ξ −Eξ|Yξ∥2 . (18)
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In the following, we shall denote averages with respect to the posterior as ⟨·⟩Y.
Another important consequence of this setting is the so-called Nishimori identities,

which can be stated as follows. Given any continuous bounded function f of the data Y,
the ground truth ξ and n − 1 i.i.d. samples from the posterior (x(k))n

k=2, one has

E⟨ f (Y, ξ, (x(k))n
k=2)⟩Y = E⟨ f (Y, x(1), (x(k))n

k=2)⟩Y, , (19)

where x(1) ∼ Pξ|Y. An elementary proof can be found in [42]. These identities are enforcing
a symmetry between replicas drawn from the posterior and the ground truth. For instance,
a direct application of the Nishimori identities yields

MMSE = E∥ξ − ⟨x⟩Y∥2 = E⟨∥x − ⟨x⟩Y∥2⟩Y . (20)

It is important to stress that, as it can be seen from the above equation, an optimal statistician
is actually able to compute the minimum mean square error using their posterior.

At this point, the reader will have noticed a similarity with the Statistical Mechanics
formalism. In fact, it is possible to interpret Z(y) as the partition function of a model
with Hamiltonian − log pY|ξ=x(y) and unit inverse absolute temperature. The pressure per
particle of such a model would thus be

pN(y) =
1
N

logZ(y) , p̄N = EY pN(Y) = − 1
N
H(Y) , (21)

namely minus the Shannon entropy of the data per signal component, which is related to
the mutual information

1
N

IN(Y; ξ) =
1
N
H(Y)− 1

N
H(Y | ξ) . (22)

The contribution coming from the conditional entropy H(Y | ξ) can be regarded as due
only to the noise, since for fixed ξ, the only randomness in Y is due to Z.

We stress here that Bayes optimality, and the Nishimori identities, under rather mild
hypotheses [43] are enough to grant replica symmetry in the model, i.e., concentration of the
order parameters in the model. For the models we are interested in, the latter can be shown
to imply finite-dimensional variational principles for the limiting mutual information.

3.2. The Spiked Wigner Model

The spiked Wigner model (WSM) was first introduced in [44] as a model for Principal
Component Analysis (PCA), and since then, it was widely studied in recent literature.
Without pretension of being exhaustive, we refer the interested reader to [42,45–51]. For our
purposes, we restrict ourselves to the case where the signal is an N-dimensional vector of
±1s, drawn from a Rademacher distribution ξi

iid∼ Pξ = (δ−1 + δ1)/2. The function F(; z) is
a Gaussian channel, namely

Yij =

√
µ

2N
ξiξ j + zij (23)

where zij
iid∼ N (0, 1), and µ is a positive parameter called the signal-to-noise ratio. The statisti-

cian is tasked with the recovery of ξ given the observations Y. The Bayes-optimal posterior
measure for this inference problem can be written directly as a Boltzmann–Gibbs random
measure thanks to the Gaussian nature of the likelihood:

GN(σ) =
1

Z(z, ξ)
e−HN(σ;z,ξ) , −HN(σ; z, ξ) =

N

∑
i,j=1

√
µ

2N
zijσiσj +

µ

2N
σiξiσjξ j (24)
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where we have already exploited the fact that (ξi)
2 = σ2

i = 1. We are denoting the posterior
samples with σ. Since the quantity we are interested in is the quenched pressure of this
model

p̄N =
1
N
E log ∑

σ∈{−1,1}N

exp
[
− HN(σ; z, ξ)

]
(25)

that is connected to the mutual information IN(Y; ξ)/N by a simple shift with an additive
constant, we are allowed to perform a gauge transformation without altering its value:

zij 7→ zijξiξ j , σiσj 7→ σiσjξiξ j . (26)

This results in a Hamiltonian that is now independent of the original ground-truth signal

−H′
N(σ; z) =

N

∑
i,j=1

(√ µ

2N
zij +

µ

2N

)
σiσj (27)

and the coupling between spins are Gaussian random variables with a mean equal to their
variance. This condition identifies a peculiar region of the phase space of a spin-glass
model, which is called Nishimori line. In fact, the Nishimori identities were first discovered
and studied in the context of gauge spin-glasses. Despite looking simpler, the above model
retains most of the features we need for our study.

For inference models with additive Gaussian noise, like the one above, it is possible to
prove the so-called I-MMSE relation:

d
dµ

IN(Y; ξ)

N
=

1
4N2E∥ξξ⊺ − ⟨σσ⊺⟩∥2

F , (28)

where ∥ · ∥F is the Frobenius norm and ⟨·⟩ denotes the expectation with respect to the
Boltzmann–Gibbs measure induced by (27). Hence, once the mutual information is known,
the MMSE can be accessed through a derivative with respect to the signal-to-noise ratio.
A clarification is in order here: the above is the MMSE on the reconstruction of the rank-one
matrix ξξ⊺, because, due to flip symmetry, here we do not have any actual information on
the single vector ξ, but only on the spike ξξ⊺.

3.3. Sub-Optimality and Replica Symmetry Breaking

There are several ways to break Bayes optimality. Some examples are that the statisti-
cian does not know the signal-to-noise ratio µ [13,52]; the statistician adopts a likelihood
different from that of the true model [14]; the statistician adopts a wrong prior [12,53];
combinations of the previous and many others. We will focus on the mismatching priors
case, where the statistician not only adopts a wrong prior on the ground-truth elements,
but they are not aware of the rank of the spiked matrix hidden inside the noise, which is
denoted by M. The rest is assumed to be known. The channel of the inference problem is

Yij =

√
µ

2N

M

∑
k=1

ξ
(k)
i ξ

(k)
j + zij . (29)

If the statistician assumes a Rademacher prior to the signal components and a rank-one
hidden matrix, they will write a posterior in the form

/Pξ|z,ξ(σ) =
1

/Z(z, ξ)
exp

(
− HN(σ; z, ξ)

)
(30)
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where

−HN(σ; z, ξ) =
N

∑
i,j=1

(√ µ

2N
zij +

µ

2N

P

∑
k=1

ξ
(k)
i ξ

(k)
j

)
σiσj (31)

The slash on quantities emphasizes that they are not the Bayes-optimal ones. In this setting,
one can no longer rely on the Nishimori identities, and in principle, replica symmetry is no
longer guaranteed. On the contrary, as we shall argue later on, a mismatch in the prior only
is already sufficient to cause replica symmetry breaking.

4. The Model

Let M be a fixed integer and k ∈ {1, . . . , M}. Consider two independent random
collections (zij)i,j≤N

iid∼ N (0, 1) and (ξ
(k)
i )k≤M

i≤N
iid∼ Pξ where Pξ is such that E[ξ4] < ∞.

The above random collections play the role of quenched disorder in the model. Consider N
Ising spins σ = (σi)i≤N ∈ {+1,−1}N and the Hamiltonian function

HN(σ; µ, ν, λ) ≡ HN(σ) = Hint
N (σ)− h · σ

= −
N

∑
i,j=1

(√
µ

2N
zij +

ν

2N ∑
k≤M

ξ
(k)
i ξ

(k)
j

)
σiσj − ∑

k≤M
λk

N

∑
i=1

ξ
(k)
i σi

(32)

with µ, ν ≥ 0, λ = (λk)k≤M ∈ RM. Here, Hint
N is the interacting part while

h = (hi)i≤N ≡ h(λ, ξ) =

(
∑

k≤M
λkξ

(k)
i

)
i≤N

(33)

denotes the random external field acting on the spins. The Hamiltonian (32) is determined
by the choice of M, µ, ν, λ and Pξ . For µ = ν, the interaction term Hint

N coincides with the
Hamiltonian (31). Note that for some special choices of the parameters, we recover some
well-known spin glass models:

• ν = 0 gives the SK model (1) at β =
√

µ and random external field h.
• µ = 0 gives the Hopfield model [6,7,18] with a finite number of patterns (ξ(k))k≤M.
• M = 1, ν = µ, λ1 = 0 and Pξ = 1

2 (δ−1 + δ−1) gives the SK model on the Nishimori
line (27). As we have seen in Section 3, the latter can be also viewed as a spiked Wigner
model in the Bayesian-optimal setting.

Notice that the entire model can be interpreted as a Hopfield model where the traditional
Hebbian matrix ∑k≤M ξ

(k)
i ξ

(k)
j is corrupted by Gaussian noise. Furthermore, if the Hebbian

coupling is replaced by a constant matrix, the model reduces to an SK model with the
addition of a ferromagnetic interaction, and it was studied in [54].

Our main result is the computation of the thermodynamic limit of the pressure per particle

pN(µ, ν, λ) =
1
N

log ∑
σ∈{−1,1}N

e−HN(σ) (34)

whose variance can be shown to converge to 0 as an O(N−1), namely:

Lemma 1. Assume Eξ4
1 < ∞. Then, for any µ, ν ∈ R and λ ∈ RK

E
[
pN(µ, ν, λ)−EpN(µ, ν, λ)

]2 ≤ K
N

(35)

where K is a suitable positive constant.
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We thus focus on p̄N(µ, ν, λ) = EpN(µ, ν, λ). The proof of this lemma makes use of the
Efron–Stein concentration inequality to bound the variance, and it is simple but tedious. It
follows closely that of ([12], Lemma 9). We are now in a position to state our main theorem:

Theorem 2 (Variational solution). If E[ξ4] < +∞ then

lim
N→∞

p̄N(µ, ν, λ) = sup
x∈RM

φ(x; µ, ν, λ) (36)

where

φ(x; µ, ν, λ) := −ν|x|2
2

+EP(
√

µ, h(x, λ, ξ)) , x = (xk)k≤M ∈ RM (37)

and P is the Parisi functional (5) with a random external field

h(x, λ, ξ) = ∑
k≤M

(λk + νxk) ξ(k) (38)

and E denotes the expectation with respect to ξ(k)
iid∼ Pξ . The consistency equations are

xk =
∂

∂xk
EP(

√
µ, h(x, λ, ξ)), k ≤ M (39)

Moreover, there exists C > 0 such that for any k ≤ M, one has |xk| ≤ C and the supremum in (36)
can be restricted to [−C, C]M.

The proof of the theorem is based on the concentration of the Mattis magnetization,
which is the normalized scalar product between a spin-configuration (or sample from the
wrong posterior measure) and one of the ξ(k):

mN(σ|ξ(k)) =
1
N

N

∑
i=1

σi ξ
(k)
i =

1
N

σ · ξ(k) . (40)

The Hamiltonian can thus be rewritten using (40) in the following form:

HN(σ) =
√

µ HSK
N (σ)− N ∑

k≤M

[ν

2
m2

N(σ|ξ(k)) + λkmN(σ|ξ(k))
]

(41)

The Mattis magnetization, in fact, plays the role of an order parameter for this model.
The concentration we can prove is only an integral average over some suitably small
magnetic fields, which is still sufficient for our purposes:

Proposition 1 (Concentration of Mattis Magnetizations). Consider a k such that k ≤ M. Let
ϵk ∈ [sN , 2sN ] with sN = 1

2 N−α, α ∈ (0, 1/(2M)) for all k ≤ M. For any y ∈ R, we denote by
⟨·⟩N,y the Boltzmann–Gibbs measure induced by the Hamiltonian HN,y(σ) = HN(σ)− y σ · ξ(k).
Then

lim
N→∞

1
sM

N

∫ 2sN

sN
∏
ℓ≤M

dϵℓ E
〈(

mN(σ|ξ(k))−E⟨mN(σ|ξ(k))⟩N,ϵ

)2〉
N,ϵ

= 0 , (42)

for all µ, ν ≥ 0 and λ ∈ RM.

We shall omit the proof of the above result as it is completely analogous to the one
in [12]. We will need an intermediate lemma that leads to it (see Lemma 2 later) together
with a second key ingredient: the adaptive interpolation technique [48] combined with
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Guerra’s replica symmetry-breaking upper bound for the quenched pressure of the SK
model [8].

Proof of Theorem 2. Here, we outline the main steps of the proof of the variational princi-
ple for the thermodynamic limit. The proof is achieved via two bounds that match in the
N → ∞ limit. Let us start by defining the interpolating Hamiltonian

HN(t; σ) : = HN(σ; µ, (1 − t)ν, λ + Rϵ(t)) =

=
√

µHSK
N (σ)− (1 − t)

Nν

2 ∑
k≤M

m2
N(σ|ξ(k))− N ∑

k≤M
(λk + R(k)

ϵ (t))mN(σ|ξ(k))
(43)

where Rϵ = (R(k)
ϵ )k≤M and

R(k)
ϵ (t) = ϵk + ν

∫ t

0
ds r(k)ϵ (s) , ϵk ∈ [sN , 2sN ] , sN =

N−α

2
(44)

with α ∈ (0, 1/(2M)) and where the interpolating functions r(k)ϵ , that must be continuously
differentiable in [0, 1] and non negative, will be suitably chosen. With this interpolation,
one is able to prove the following sum rule:

Proposition 2. The following sum rule holds:

p̄N(µ, ν, λ) = p̄SK
N (

√
µ, λ + Rϵ(1))−

ν

2

∫ 1

0
dt ∑

k≤M
[r(k)2ϵ (t)− ∆(k)

ϵ (t)] + O(sN) (45)

where

∆(k)
ϵ (t) := E

〈(
mN(σ|ξ(k))− r(k)ϵ (t)

)2〉
N,Rϵ(t)

. (46)

The proof consists of the computation of the derivative of the interpolating pressure related
to the model (43). It follows closely that of ([12], Proposition 7), to which we refer the interested
reader. Since the remainder ∆(k)

ϵ is non-negative, the above proposition already yields a bound
for the quenched pressure of our model when we choose r(k)ϵ = xk ∈ R constant:

lim inf
N→∞

p̄N(µ, ν, λ) ≥ sup
x∈RM

φ(x; µ, ν, λ) (47)

where we used Lipschitz continuity of the SK pressure in the magnetic fields.
The upper bound requires more attention. First, we notice that p̄SK

N (
√

µ, λ + Rϵ(1)) is

convex in the magnetic fields and that R(k)
ϵ (1) =

∫ 1
0 dt(ϵk + νr(k)ϵ (t)). Hence, we can use

Jensen’s inequality and Lipschitz continuity of p̄SK to obtain:

p̄N(µ, ν, λ) ≤
∫ 1

0
dt
[

p̄SK
N (

√
µ, λ + rϵ(t))− ν ∑

k≤M

r(k)2ϵ (t)
2

]
+

ν

2 ∑
k≤M

∫ 1

0
∆(k)

ϵ (t) dt + O(sN) . (48)

Now, we use Guerra’s bound for the SK pressure, that, importantly, is uniform in N, and we
average over ϵ on both sides

p̄N(µ, ν, λ) ≤ Eϵ

∫ 1

0
φ(rϵ(t); µ, ν, λ) dt +

ν

2 ∑
k≤M

Eϵ

∫ 1

0
∆(k)

ϵ (t) dt + O(sN) ≤

≤ sup
x∈RM

φ(x; µ, ν, λ) +
ν

2 ∑
k≤M

Eϵ

∫ 1

0
∆(k)

ϵ (t) dt + O(sN) . (49)
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What remains to do is to prove that Eϵ∆(k)
ϵ (t) N→∞−−−→ 0 for a proper choice of the interpolat-

ing functions Rϵ. The choice is made through a system of coupled ODEs

Ṙ(k)
ϵ (t) ≡ νr(k)ϵ (t) = νE⟨mN(σ | ξ(k))⟩N,Rϵ(t) , R(k)

ϵ (0) = ϵk , ∀k ≤ M . (50)

One can easily check that the above system is regular enough to admit a unique solution
on the interval t ∈ [0, 1]. In this case, the remainder to push to 0 would appear as

1
sM

N

∫ 2sN

sN
∏
ℓ≤M

dϵℓ E
〈(

mN(σ|ξ(k))−E⟨mN(σ|ξ(k))⟩N,Rϵ(t)

)2〉
N,Rϵ(t)

. (51)

The goal is now to apply a concentration lemma here:

Lemma 2. Let y ∈ [y1, y2], δ ∈ (0, 1) and denote by ⟨·⟩N,y the Boltzmann–Gibbs expectation
associated to the Hamiltonian HN(σ; µ, ν, λ + yek) where k ≤ M and ek is the k-th canonical basis
vector of RM. Then

E
〈(

mN(σ|ξ(k))− ⟨mN(σ|ξ(k))⟩N,y

)2〉
N,y

=
1
N

d2

dy2 p̄N(µ, ν, λ + yek) (52)

E
[(
⟨mN(σ|ξ)⟩N,y −E⟨mN(σ|ξ)⟩N,y

)2
]
≤ 12K

δ2N
+

+ 8
√

a
d

dy
[ p̄N(µ, ν, λ + (y + δ)ek)− p̄N(µ, ν, λ + (y − δ)ek)]

(53)

with K a positive constant.

Notice that the integral in (51) is over ϵ and not over the effective magnetic field of
the model, which is instead Rϵ(t). Nevertheless, we can integrate over the magnetic fields
Rϵ(t) with a change of variables. This involves a Jacobian that is larger than 1. In fact,
thanks to Liouville’s theorem ([55], Corollary 3.1, Chapter V), one can prove that

det
∂Rϵ(t)

∂ϵ
= exp

[ ∫ t

0
ν ∑

k≤M

∂

∂R(k)
ϵ (s)

E⟨mN(σ|ξ(k))⟩N,Rϵ(s) ds
]
=

exp
[ ∫ t

0
Nν ∑

k≤M
E⟨
(
mN(σ|ξ(k))−E⟨mN(σ|ξ(k))⟩N,Rϵ(s)

)2⟩N,Rϵ(s) ds
]
≥ 1 , (54)

when ν ≥ 0.
This allows us to bound the thermal fluctuations in (51) using (52) and then Liouville’s

theorem:

∆(k)
T :=

1
sM

N

∫ 2sN

sN
∏
ℓ≤M

dϵℓ E
〈(

mN(σ|ξ(k))− ⟨mN(σ|ξ(k))⟩N,Rϵ(t)

)2〉
N,Rϵ(t)

≤

≤ 1
sM

N
∏
ℓ≤M

∫ R(ℓ)
2sN

(t)

R(ℓ)
sN (t)

dhℓ
1
N

d2

dh2
k

p̄N(µ, ν, λ + h) =

=
1

NsM
N

∏
ℓ≤M, ̸=k

∫ R(ℓ)
2sN

(t)

R(ℓ)
sN (t)

dhℓ
[
E⟨mN(σ|ξ(k))⟩N,h;hk=R(k)

2sN

−E⟨mN(σ|ξ(k))⟩N,h;hk=R(k)
sN

]
(55)

Since ξi has a bounded second moment, using Cauchy–Schwarz inequality, one can show
that |E⟨mN(σ|ξ(k))⟩N,h| is uniformly bounded by a constant C. Hence, |R(k)

ϵ (t)| ≤ ϵk +
Ctν ≤ 1 + Cν for any k ≤ M by construction (recall (44) and (50)). Therefore, ∆T =

O
(

1
NsM

N

)
.
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The fluctuations induced by the disorder can be bounded in a very similar fashion
using (53):

∆(k)
D :=

1
sM

N

∫ 2sN

sN
∏
ℓ≤M

dϵℓ E
(
⟨mN(σ|ξ(k))⟩N,Rϵ(t) −E⟨mN(σ|ξ(k))⟩N,Rϵ(t)

)2
= O

( 1
Nδ2 +

δ

sM
N

)
(56)

Hence, overall (51), that equals ∆(k)
T + ∆(k)

D is a O
(

1
NsM

N
+ 1

Nδ2 +
δ

sM
N

)
. δ can be chosen as a

function of N in order to optimize the convergence rate: δ = s2M/3
N N−1/3. Using Fubini’s

theorem in (49) to exchange the t and ϵ averages and then Dominated Convergence, one
concludes the proof.

From the the variational problem (36), we can deduce also the differentiability proper-
ties of the limiting pressure obtaining the average values of the relevant thermodynamic
quantities of the model:

Corollary 1. Let p(µ, ν, λ) = limN→∞ p̄N(µ, ν, λ), and Ωµ,ν,λ = argmaxx∈[−C,C]M φ(x; µ, ν, λ).
Then

• If Ωµ,ν,λ = {x̄} is a singleton with x̄ = (x̄k)k≤M then for any k ≤ M, one has

lim
N→∞

E⟨mN(σ|ξk)⟩N =
∂

∂λk
p(µ, ν, λ) = x̄k (57)

and

lim
N→∞

E⟨q2
12⟩N = 1 − 4

∂

∂µ
p(µ, ν, λ) =

∫
q2dχ∗(q) . (58)

where χ∗(q) denotes the unique measure solving the Parisi variational principle in Theorem 1.
• If

{
|x|2, x ∈ Ωµ,ν,λ

}
= {|x̄|2} is a singleton then

∂

∂ν
p(µ, ν, λ) =

|x̄|2
2

. (59)

More generally, let y be one of the variables
√

µ, ν, λ1, . . . , λM, then the function y 7→
p(µ, ν, λ) is convex. By Danskin theorem (see [56]), y 7→ p(µ, ν, λ) is differentiable if and only if

the set
{

∂φ(x; µ, ν, λ)

∂y
, x ∈ Ωµ,ν,λ

}
is a singleton.

5. Conclusions and Perspectives

In this paper, we offer an overview of the Parisi formula from a mathematical physics
perspective, emphasizing its potential applications, particularly in addressing the mis-
matched inference problem outlined earlier. Building upon our previous work [12], we
investigate a scenario where a statistician, tasked with reconstructing a finite-rank ma-
trix, lacks knowledge about the underlying matrix generation process, including both the
matrix elements and its rank. We consider the case in which the statistician assumes a
rank-one matrix, leading to a mismatch between the "true" Bayes posterior and the one
used for inference. Our key contribution is the proof that, contrary to what happens in
the Bayes-optimal setting, this Bayesian mismatch induces replica symmetry breaking in
the model. Consequently, we express the pressure of the corresponding spin glass as an
infinite-dimensional variational principle over the space of distributions on [0, 1].

The chosen mismatch scenario shares some similarities with those studied in [57,58]
with the fundamental difference being that here the rank of the hidden matrix is finite.
In a recent work [59], the authors consider a general case of mismatch, which includes
mismatching priors and likelihoods. The mentioned paper proves a universality property
with respect to the likelihood assumed by the statistician provided that observations remain
independent given the ground truth.
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Despite these advancements, all the proofs available so far in the literature break down
when considering a high-rank hidden matrix. To rigorously comprehend this scenario,
addressing the solution of the Hopfield model is of crucial importance. However, to the
best of our knowledge, its complete solution remains elusive [5,6].
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