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Abstract. Neural decoding is crucial to translate the neural activity for Brain-
Computer Interfaces (BCIs) and provides information on how external variables 
(e.g., movement) are represented and encoded in the neural system. Convolu-
tional neural networks (CNNs) are emerging as neural decoders for their high 
predictive power and are largely applied with electroencephalographic signals; 
these algorithms, by automatically learning the more relevant class-discrimina-
tive features, improve decoding performance over classic decoders based on 
handcrafted features. However, applications of CNNs for single-neuron decoding 
are still scarce and require further validation. In this study, a CNN architecture 
was designed via Bayesian optimization and was applied to decode different grip 
types from the activity of single neurons of the posterior parietal cortex of ma-
caque (area V6A). The Bayesian-optimized CNN significantly outperformed a 
naïve Bayes classifier, commonly used for neural decoding, and proved to be 
robust to a reduction of the number of cells and of training trials. Adopting a 
sliding window decoding approach with a high time resolution (5 ms), the CNN 
was able to capture grip-discriminant features early after cuing the animal, i.e., 
when the animal was only attending the object to grasp, further supporting that 
grip-related neural signatures are strongly encoded in V6A already during move-
ment preparation. The proposed approach may have practical implications in in-
vasive BCIs to realize accurate and robust decoders, and may be used together 
with explanation techniques to design a general tool for neural decoding and anal-
ysis, boosting our comprehension of neural encoding.  

Keywords: Neural decoding, Convolutional neural networks, Dorsomedial vis-
ual stream, V6A, Bayesian optimization. 

1 Introduction 

Neural decoding (i.e., prediction of observable output variables, such as movements or 
stimuli, from neural time series) is a central aim in neuroscience and in neural 
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engineering, for its practical and theoretical implications. Indeed, neural decoding is at 
the core of brain-computer interfaces (BCIs) where neural activity is translated into 
output commands for assistive and therapeutic purposes [1]. Moreover, neural decoding 
may advance our understanding of how information is represented and encoded in the 
neural system, as the accuracy of neural decoding reveals the amount of information 
the neural signals contain about an external variable (e.g., movement or sensation) and 
this can be evaluated across different brain regions and/or across different time intervals 
over the course of the sensory or sensorimotor task [2–8].  

Currently, recent advances in machine learning, such as deep learning algorithms, 
are receiving growing attention for their predictive power in neural decoding applica-
tions [9]. Among deep learning architectures, Convolutional Neural Networks (CNNs) 
are preferentially adopted over other architectures (such as recurrent neural networks 
or fully-connected neural networks) for the classification of electroencephalographic 
signals (EEG) [10]. CNNs are feed-forward neural networks that learn convolutional 
filters to identify the features in the input signal that better discriminate among the pre-
dicted conditions. Attractive characteristics of these networks are a lower number of 
trainable parameters (e.g., vs. recurrent architectures), without hampering decoding 
performance, and an easier interpretability of the learned features in specific domains 
(e.g., temporal, spatial, and frequency domains) by using explanation techniques [6, 8]. 
CNNs have been successfully applied to EEG in a large spectrum of classification prob-
lems, such as emotion classification [11], event related potential detection and analysis 
[7, 8, 12, 13], motor execution/imagery classification [6, 14]. While CNN-based de-
coding of non-invasive neural recordings (EEG) have been widely investigated, CNNs 
are scarcely applied to single-neuron recordings acquired invasively in non-human 
mammals (in particular, non-human primates) and human patients. To overcome this 
limitation and to explore the potentialities of single-neuron decoding via CNNs, a re-
cent study by Filippini et al. [2] designed and applied a CNN to decode the activity of 
neurons recorded from the posterior parietal cortex (PPC) of macaque (areas V6A, PEc, 
PE) while the animal performed a delayed reaching task towards 9 positions in the 3D 
space. PPC host areas integrating sensorimotor stimuli to dynamically guide the inter-
action with the surrounding environment and neurons in these areas are known to en-
code information regarding reaching endpoints, goals and trajectories [15–17]. In that 
study, Filippini et al. [2], employed a CNN whose configuration was optimized in its 
hyper-parameters (i.e., the parameters defining the functional form of the learning sys-
tem, e.g., the number of convolutional kernels) via Bayesian optimization (BO), an ef-
ficient automatic hyper-parameter search algorithm. Results proved that the CNN was 
able to accurately decode the position of the reached points over the entire time course 
of the task, from target presentation to the end of reaching movement, with modulation 
across task phases and recording areas. Furthermore, the CNN outperformed a linear 
Naïve Bayes (NB) classifier suggesting that the CNN may represent a better framework 
to analyze how sensorimotor information are temporally encoded in neural representa-
tions. However, despite these promising results, the design and application of CNNs to 
motor decoding require a further validation on different motor tasks.  

In this study, we aim to further validate the design and the application of CNNs to 
single-cell recordings, using a similar decoding workflow to the one adopted in [2] 
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(CNN architecture and BO for hyper-parameter search), while addressing a different 
motor decoding problem. Specifically, a CNN was used here to decode different grip 
types from the activity of V6A neurons, recorded while monkeys performed a delayed 
reach-to-grasp task towards objects of different shapes. V6A is a visuomotor area in-
volved in the transformation of sensory information to guide prehension movements 
[18]. Its neurons are not only modulated by reaching targets located in different spatial 
positions but also by grasping information (e.g., grip type) and here we derived a Bayes-
ian-optimized CNN configuration to decode such information and tested its decoding 
accuracy over the entire time course of the task, with a high time resolution (5 ms). 
Furthermore, we also evaluated the CNN performance while progressively using a re-
duced number of cells or a reduced number of training trials inside the recorded dataset, 
to test the robustness of the decoder by simulating practical scenarios where smaller 
datasets are available. 

2 Methods 

2.1 Dataset and pre-processing 

This study reanalyzes the data obtained in [3], where single-cell activity was recorded 
from V6A area in two male Macaca fascicularis monkeys, using invasive electrode 
penetrations. The activity of 93 and 75 cells was recorded from the two monkeys (more 
details about the recording procedure can be found in [3]). Action potentials (spikes) 
were isolated and sampled at 100 KHz. Monkey sat on a primate chair with its head 
fixed in front of a rotating panel containing 5 different objects. The objects were chosen 
to evoke reach-to-grasp with different hand configurations and are illustrated in Fig. 1. 
These were: a ball (𝑙!: whole-hand prehension), ring (𝑙": hook), plate (𝑙#: primitive 
precision grip), stick-in-groove (𝑙$: advanced precision grip), handle (𝑙%: finger prehen-
sion). Objects were presented to the monkey one at a time, in a randomized order. For 
each object, 10 trials were recorded, overall resulting in 50 trials per monkey. Each trial 
consisted of different phases, hereafter referred as ‘epochs’. The trial started when the 
monkey pressed a ‘home button’ in complete darkness and then, the animal waited for 
instructions in darkness for 1 s (free epoch, epoch 0). 

 

 
Fig. 1. Schematic representations of grip types and objects. 
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Subsequently, the fixation LED turned green, and the monkey had to wait for the LED 
to change its color to red, without performing any movement. After a fixation period of 
0.5-1.0 s, LEDs surrounding the object to grasp turned on, illuminating the object. The 
monkey maintained the fixation on the LED without releasing the home button for a 
period of 1.5-2.0 s. The first 0.5 s portion of this period (corresponding to a first object 
visualization interval [3]) was excluded from the analysis. The remaining 1.0-1.5 s por-
tion of this period formed the delay epoch, subdivided into the early delay (epoch 1) 
and late delay (epoch 2), by extracting 1 s epoch after the start of the delay epoch and 
before the end of the delay epoch, respectively. Then, the LED turned red, representing 
the go-signal for the reach-to-grasp movement (reaction time epoch and reach-to-grasp 
epoch, epochs 3,4, respectively). Once performed the movement, the monkey had to 
keep holding (hold epoch, epoch 5) the grasped object until the LED switched off (0.8-
1.2 s). The LED switch-off cued the monkey to release the object and press the home 
button again, starting a new trial with a different object to reach and grasp.  

For each neuron and each trial, spikes were binned at 5 ms. As trials and epochs 
may have a different duration across different neurons and trials, to obtain the same 
number of bins across neurons and trials, the average number of bins for each epoch 
was computed, then, the activity of each neuron and trial was re-binned using that num-
ber of average bins per epoch (thus, slightly changing respect to the original 5 ms bin-
ning). Then, firing rates were computed; thus, in this study the multi-variate neural 
activity was described by means of neuron firing rate. Firing rates recorded during the 
early delay, late delay, reaction time, reach-to-grasp, and hold epochs were collected 
and used in this study. Ten-fold stratified cross-validation was applied to partition the 
dataset of each monkey. Therefore, within each fold, 5 trials (one for each grip) were 
used as test set; then, 5 (one for each grip) and 40 of the remaining trials were used as 
validation and training sets, respectively.  

 
2.2 Sliding window neural decoding  

To analyze the temporal dynamics of reach-to-grasp encoding inV6A, a sliding window 
decoding approach was applied, as performed in previous studies [2–5] that analyzed 
the neural activity (neuron firing rates or EEG) by using the prediction of a machine 
learning algorithm as measure of neural encoding of motor- or cognitive-related brain 
states. This approach consists in decoding small portions of neurons’ signals (hereafter 
referred as ‘chunks’) within each single recorded trial, enabling the study of the time 
course of neural encoding across all the phases of the task. To this aim, the neurons’ 
firing rates were processed as follows, for each monkey (see upper panel of Fig. 2).  

Let 𝑋& be the t-th trial of shape (𝑁, 𝑇), representing the multi-variate neural activity, 
where 𝑁 is the number of recorded neurons (different across animals, here 𝑁 = 93 and 
𝑁 = 75) and 𝑇 is the number of time samples in the trial (𝑇 = 812 and 𝑇 = 816 for 
the two monkeys, having 5 ms resolution). Overlapped chunks 𝑋&,( 	of shape (𝑁, 𝑇)) 
were extracted with a stride of 𝑇*, where 𝑇) is the number of time samples of each 
chunk. Each sampled chunk (𝑋&,() was fed as input to the neural decoder. 

 𝑋&,( = 𝑋&[: , 𝑖𝑇*: 𝑖𝑇* + 𝑇) − 1], 0 ≤ 𝑖 ≤ 𝑀 − 1,  (1) 
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where 𝑖 is the chunk index and 𝑀 is the total number of chunks that can be extracted 
using 𝑇) and 𝑇* as chunk size and stride, respectively, i.e., 𝑀 = (𝑇 − 𝑇))/𝑇* + 1. 𝑇) 
and 𝑇* are hyper-parameters of the decoding approach and were set to 𝑇) = 60 (=300 
ms) and 𝑇* = 10 (=50 ms) during the training phase of the decoder (as in [2]), while 
𝑇* = 1 (=5 ms) during the testing phase. That is, during training a higher stride was 
used to speed up the computation, while during testing chunks were extracted with the 
maximum overlap, producing an inference with a high time resolution of 5 ms-step. 

The addressed decoding problem was the classification of 5 different grip types 
from neuron firing rates (5-way classification). Each trial 𝑋& was associated to a single 
label corresponding to the specific shape of the object the monkey had to grasp in that 
trial, i.e., 𝑦& ∈ 𝐿 = {𝑙+}, 0 ≤ 𝑘 ≤ 4 (see Section 2.1 for the association label ID-grip 
type). Therefore, while performing sliding window decoding, the label associated to 
each sampled chunk (𝑦&,() was the one associated to the trial the chunk was extracted 
from. 

 𝑦&,( = 𝑦& , 0 ≤ 𝑖 ≤ 𝑀 − 1. (2) 

The CNN can be described by a probabilistic model 𝑓(𝑋&,(; 𝜗, ℎ):ℝ,×.! → 𝐿 para-
metrized in the trainable parameters and hyper-parameters contained in the arrays 𝜗, ℎ, 
respectively. In this study, monkey-specific decoders were designed, by using monkey-
specific datasets to tune trainable parameters and hyper-parameters of CNNs. Hyper-
parameters must be set before the model training starts; these parameters are optimized 
on the validation set via the hyper-parameter search procedure. Trainable parameters 
are the collection of weights and biases that model connections across the artificial 
neurons included in the network; these are learned on the training set during the network 
training.  

 
2.3 Architecture and parameter tuning of the CNN 

Architecture. The adopted CNN topology is inspired from the architecture recently 
proposed for the decoding of reaching targets from V6A neuron activity [2]. The CNN 
is composed by two modules and a schematization is reported in Fig. 2 (lower panel).  

The first module (convolutional module) includes only trainable sparse connections 
across artificial neurons. This is composed by 𝑁/ blocks; each block in turn is com-
posed by the sequence of 𝑁0 2-D convolutional layers. The very first convolutional 
layer of the architecture performed convolutions in both space and time domains (mixed 
spatio-temporal convolutions) using kernels of size (𝑁, 𝐹), while all other convolu-
tional layer performed convolutions in the time domain using kernels of size (1, 𝐹). 
Each layer learned 𝐾 kernels using unitary stride and a padding of (0, 𝐹//2), where // 
is the floor division operator. After each layer, batch normalization [19] is optionally 
included and, then, Exponential Linear Unit (ELU) non-linearity [20], i.e.,	 𝑓(𝑥) =
𝑥, 𝑥 > 0 and 𝑓(𝑥) = exp(𝑥) − 1, 𝑥 ≤ 0, is applied. Between each block, average pool-
ing with a pool size of (0, 2) is performed, halving the temporal dimension, and then 
dropout [21] with dropout rate 𝑝1234 is included. Over the network, batch normalization 
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and dropout act as regularizers to improve model generalization. The main hyper-pa-
rameters of this module were searched via BO and are detailed in Table 1.  

The second module (fully-connected module) includes only trainable dense connec-
tions across neurons. In particular, feature maps provided by the convolutional module 
are flattened and given as input to a fully-connected layer with 5 neurons, correspond-
ing to the output layer. This layer is activated with a softmax activation function to 
convert neuron outputs into the conditional probabilities 𝑝Q𝑙+|𝑋&,(S, 0 ≤ 𝑘 ≤ 4, and 
then, the predicted class is the one with the highest probability. 

Table 1. Hyper-parameters of the convolutional module searched with Bayesian optimization: 
distributions and admitted values.  

Hyper-parameter Distribution Values 
No. of blocks (𝑁/) uniform [1,2] 
No. of conv. layers (𝑁0) uniform [1,2,3] 
No. of kernels (𝐾) uniform [4,8,16,32] 
Kernel size (𝐹) uniform [(N,11), (N,21), (N,31), (N,41)] 
Dropout rate (𝑝1234) uniform [0, 0.25, 0.5] 
Use batch norm. uniform [False, True] 
Learning rate (lr) log-uniform [1e-4, 5·1e-4, 1e-3, 5·1e-3, 1e-2] 
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Fig. 2. Sliding window decoding approach and CNN architecture. In the CNN structure, only the 
main layers are displayed (i.e., only convolutional, pooling and fully-connected layers) with their 
output feature maps. Convolutional kernels are displayed with light-blue boxes, while pooling 
kernels are displayed with red boxes. Convolutional blocks are displayed as grey boxes; note that 
for brevity, only the first convolutional block (block 0) is detailed in its layers, while in the last 
block (block 𝑁! − 1) only the first and last feature maps are displayed.  

Hyper-parameter optimization. Hyper-parameter optimization is devoted to find the 
optimal hyper-parameters of a learning system on a validation set (different from the 
training and test sets). Denoting with ℎ the array containing the hyper-parameters to 
search, hyper-parameter optimization finds the ℎ∗ that minimizes an objective function 
𝑘(ℎ) on the validation set, i.e., ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛6𝑘(ℎ). In this study, we used 𝑘(ℎ) = 1 −
𝑎𝑐𝑐(ℎ) as objective function, where 𝑎𝑐𝑐(ℎ) is the accuracy (averaged across all time 
samples and across epochs) obtained with a specific hyper-parameter configuration; for 
each configuration, a new training (as specified in Section Trainable parameter optimi-
zation) and evaluation stages must be performed, increasing the computational cost.  

Hyper-parameter search algorithms (e.g., grid search and random search) generally 
search ℎ∗ without exploiting results from past iterations to select the array ℎ to be eval-
uated in the next iteration (uninformed algorithms), often wasting time on unpromising 
ℎ values. BO [22] overcomes this limitation, by suggesting, in an informed way, the 
next hyper-parameters ℎ to be evaluated using a selection criterion, and thus investigat-
ing only hyper-parameters that seem promising based on past evaluations. In particular, 
a Bayesian statistical model 𝑝(𝑘|ℎ) of the objective function (surrogate model) is used 
and it is updated after each iteration by keeping track of past evaluation results (i.e., 
each pair ℎ, 𝑘(ℎ)). Crucially, this surrogate model is easier to optimize than the objec-
tive function 𝑘(ℎ) [22].Thus, the next set of hyper-parameters to be evaluated on the 
actual objective function is chosen by selecting the hyperparameters that perform best 
on the current surrogate model. The criterion used to optimize the surrogate is called 
‘selection function’. BO was performed for 100 iterations by using tree-structured Par-
zen estimator as surrogate model and expected improvement as selection function. A 
more complete description of BO used to tune hyper-parameters of a CNN for neural 
decoding can be found in [2]. BO was performed for each cross-validation fold (10 in 
total) and each monkey (2 in total), leading to 20 optimal hyper-parameter configura-
tions.  

Trainable parameter optimization. The cross-entropy between the predicted proba-
bility distribution (provided by the probabilistic learning system) and the empirical dis-
tribution (provided by the labelled dataset) was used as loss function (𝑗(𝜗)) while learn-
ing the trainable parameters. Adam [23] was used as optimizer, searching for 𝜗∗ =
𝑎𝑟𝑔𝑚𝑖𝑛7𝑗(𝜗). The learning rate was selected via BO (see Table 1) together with the 
other searched hyper-parameters. Furthermore, the mini-batch size was set to 64 and 
the maximum number of training epochs to 250. The optimization stopped when the 
validation accuracy did not decrease after 50 consecutive epochs (early stopping).  
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2.4 Analysis of decoding performance 

For each hyper-parameter, the most frequent value across the configurations selected 
via BO was derived; thus, we identified a single hyper-parameter configuration where 
each hyper-parameter was set to the value occurring more frequently during hyper-pa-
rameter search. This hyper-parameter configuration was adopted for the CNN; then, for 
each monkey and each fold, the so designed CNN was trained in 3 different conditions 
and the corresponding decoding accuracy was analyzed. Besides analyzing the perfor-
mance when the entire dataset was used for training, we analyzed the performance of 
reduced datasets obtained in two different ways, by dropping cells or by dropping train-
ing trials. This was accomplished to understand whether the CNN abilities of reach-to-
grasp decoding from V6A still persist when the dataset is artificially reduced, simulat-
ing scenarios where less cells or training trials are available. Thus, these analyses may 
serve to further validate the proposed CNN-based framework as a decoding and analy-
sis tool of single-neuron time series, by artificially generating variable-sized datasets. 
For each monkey and each fold, the training was performed in the following conditions: 

a) No dropping. The CNN was trained using all the recorded cells and training 
trials. Thus, only one CNN training was performed for each fold and monkey. 

b) Cell dropping. The CNN was trained using a subset of 𝑁8 ∈
{10, 20, 30, 40, 50, 60, 70} cells randomly sampled (10 times) from the entire 
population. That is, instead of using an input feature map consisting of (𝑁, 𝑇)) 
spatio-temporal samples, a reduced input feature map of shape (𝑁8 < 𝑁, 𝑇)) 
was used. Thus, a total of 10·7 CNN trainings was performed for each fold 
and each monkey (10 trainings for each of the seven values of 𝑁8).  

c) Training example dropping. The CNN was trained using a subset of training 
examples corresponding to the 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5% 
randomly sampled (10 times) from the entire training set. Thus, in this case 
too, a total of 10·7 CNN trainings was performed for each fold and each mon-
key (10 trainings for each of the seven percentages).  

For each CNN training in the previous conditions, the trained CNN was tested within 
each fold and monkey, computing the accuracy chunk by chunk. Note that in this way, 
for each fold, we obtained a temporal pattern of decoding accuracy thanks to the sliding 
window decoding approach, that enabled to highlight the dynamics of the reach-to-
grasp task encoded in V6A with a high time resolution (5 ms). Furthermore, in condi-
tion b) and c), the accuracy was averaged, chunk by chunk, across the 10 random ex-
tractions for each dropping value. Therefore, one temporal pattern of accuracy per fold 
and monkey was obtained in the condition a), while 7 averaged temporal patterns of 
accuracy were obtained per fold and monkey in conditions b) and c), each pattern cor-
responding to a different dropping value. 

In each condition, the performance of the proposed approach was compared with the 
one obtained with a NB classifier (the same used in [2–4]). This decoder takes as input 
the multi-variate neural activity and it linearly combines inputs assuming independ-
ences between time samples. Permutation cluster tests (1000 iterations) with threshold-
free cluster enhancement (TFCE) [24] were performed to test for differences between 
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the accuracy temporal dynamics obtained with the CNN and with NB for each analyzed 
condition (conditions a-c).  

3 Results 

Fig. 3 reports the hyper-parameter distributions resulting from BO. The most frequent 
configuration was a shallow CNN with one convolutional layer (𝑁/ = 1, 𝑁0 = 1), 
learning the maximum number of allowed feature maps, i.e., kernels (𝐾 = 32) thus 
resulting in a shallow but wide network, with a kernel size of (𝑁, 21), corresponding 
to learning temporal features within approximately 100 ms of the input multi-variate 
neural activity. Furthermore, BO selected more frequently dropout (𝑝1234 = 0.5) as 
regularizer, instead of batch normalization.  

 

 
Fig. 3. Hyper-parameter probability distributions. Each bar plot shows the frequency of occur-
rence of a specific hyper-parameter value among the admitted ones (see Table 1) across the 20 
BO configurations (one per fold and monkey).  

Fig. 4 reports the dynamic of the prediction (panel A) and of the accuracy (panel B) 
over the trial course of the proposed Bayesian-optimized CNN, when no dropping was 
applied (see Section 2.4). Specifically, Fig. 4A displays the output probabilities for the 
correct class, separately for each object to be reached and grasped, while Fig. 4B reports 
the decoding accuracy compared with the NB algorithm inspired from [2–4]. The CNN 
significantly outperformed (𝑝 < 0.05) the NB algorithm, across the entire time course, 
already from the last portion of the early delay epoch (epoch 1) up to the hold epoch 
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(epoch 5). Notably, in Fig. 4B the accuracy is reported also in the free interval (epoch 
0), in which the animal was not engaged in the motor task. As expected, here both 
algorithms performed at the chance level (20%), thus, algorithms proved to be able also 
to detect the absence of motor-related signatures from the neural activity. 
 

 
Fig. 4. Panel A - Output probabilities associated to the correct labels for the Bayesian-optimized 
CNN, separately for the 5 object to reach and grasp (associated to 5 different grip types). Proba-
bilities were averaged across monkeys and cross-validation folds. Panel B - Decoding perfor-
mance of the proposed Bayesian-optimized CNN (red) and of the NB algorithm (black). Decod-
ing accuracies are reported in their mean value (thick lines) and standard error of the mean (over-
layed area) across monkeys and cross-validation folds. The epochs outlining the time sequence 
of the task are color-coded as: purple-free; blue-early delay; red: late delay; magenta: reaction 
time; green: reach-to-grasp; black: hold. The vertical dashed lines denote the separation between 
the epochs. Grey vertical strips reported on the bottom denote time intervals where the two de-
coding algorithms are significantly (𝑝 < 0.05) different, as resulting from the performed permu-
tation cluster test.  

Finally, Fig. 5 reports the time course of the decoding accuracy scored with NB and 
the Bayesian-optimized CNN when reduced-size datasets were simulated by sampling 
a variable number of cells (Fig. 5A) and training examples (Fig. 5B) from the entire 
dataset (see Section 2.4). Some considerations can be drawn. First, the proposed CNN 
significantly outperformed the NB baseline (even up to 50% of accuracy) across the 
entire ranges of cell and training example dropped out, especially in the second part of 
the delay (epoch 2 and last portion of epoch 1), during the reaction time and the first 
part of reach-to-grasp and hold epochs. Second, the CNN accuracy was more suscepti-
ble to deterioration when few cells were available, in particular below 40 cells, while a 
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reduction in the number of training examples affected less the CNN performance, as 
only the lowest percentage of training examples produced an evident performance de-
crease. 

 
Fig. 5. Time course of the decoding accuracy scored by NB and Bayesian-optimized CNN while 
randomly dropping out cells (Fig. 5A) and training trials (Fig. 5B) from the dataset. In both Fig. 
5A and 5B, the decoding accuracy of each algorithm (NB, CNN) was averaged across folds and 
monkeys for each dropping value and displayed as an heatmap (upper panels). In addition, the 
difference between the average accuracy scored with the Bayesian-optimized CNN and with NB 
is reported in the bottom panel (CNN-NB), where the significant (𝑝 < 0.05) differences resulting 
from the performed permutation cluster test were colored (leaving in grey the unsignificant ones). 
The epochs outlining the time sequence of the task are color-coded as: blue-early delay; red: late 
delay; magenta: reaction time; green: reach-to-grasp; black: hold. 

4 Discussion and conclusions 

In this study, a Bayesian-optimized CNN was designed and applied to decode reach-
to-grasp from the activity of neurons in V6A, a pivotal parietal area of the dorsomedial 
visual stream of macaque brain. The decoding capabilities of the learning system were 
analyzed under different conditions, i.e., while using the entire datasets available and 
while using reduced datasets, both in terms of number of cells and of training trials.  
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By using a similar methodology as the one adopted in [2] (similar CNN structure 
coupled with BO), the present study serves to further validate a CNN-based decoding 
workflow for general motor decoding, instead of proposing novel CNN workflows, of-
ten tailored to one specific application. Notably, the optimal CNN configuration for 
decoding different grip types obtained here had a similar topology as the optimal CNN 
configuration obtained in Filippini et al. [2] for decoding the location of reaching targets 
from PPC neurons. This suggests that a model based on a single-layer CNN performing 
mixed spatio-temporal convolutions may have enough capacity for general upper-limb 
motor decoding, decoding both reaching endpoints in space (as obtained in [2]) and 
grip types (as obtained here).  

Despite the adopted sliding approach with short 300 ms windows, CNN predictions 
resulted consistent through the trial course, especially from the late delay epoch, as 
shown in Fig. 4A. The CNN significantly outperformed NB, thus, was able to capture 
more relevant features to discriminate between different grip types compared to NB, 
over the entire task course and across the different analyses conducted (Fig. 4B and Fig. 
5). It is important and fair to note that a previous study [3], using a NB classifier with 
a sliding window decoding approach on the same dataset used here, scored accuracies 
up to and above 80% over time. While that study was of great importance to evidence 
the possibility of decoding grasping information from V6A neurons, the procedure 
adopted in [3] involves profound differences compared to the one adopted here, where 
NB exhibited lower performance. Indeed, in the previous study [3], only a subset of 
cells of the entire dataset (79 cells across the two monkeys), previously identified as 
being grip-modulated via ANOVA, were used for decoding. In addition, NB was sep-
arately trained and tested for each step of the sliding window approach (i.e., ∀𝑖, see Eq. 
1 and Eq. 2), thus generating different decoders over time, i.e., a different decoder for 
each analyzed 300 ms-window (overall, 𝑀 decoders for each cross-validation fold, see 
Section 2.1). Lastly, in [3] the sliding window decoding was designed with a step of 20 
ms and the dataset was binned at 20 ms. Here, all the cells of the dataset were used, 
without any a priori selection, thus, leaving the learning system the ability to explore 
all the available information for decoding and to learn to discard task-unrelated infor-
mation. Furthermore, in this study, the decoder was trained and tested considering all 
chunks at once, a procedure more parsimonious in terms of number of trained decoders 
(one decoder per fold, instead of 𝑀 decoders per fold), but more challenging, as being 
time-aspecific. In addition, here, signals were binned within a shorter window (5 ms vs 
20 ms), enabling to take advantage also of high frequency components (e.g., high 
gamma band) for decoding, which may play a key role during movement [25]. Further-
more, the decoding and analysis of reach-to-grasp was performed with a finer time res-
olution of 5 ms. All these points represent more challenging conditions for the neural 
decoder and the CNN proved to outperform NB with these settings.  

Besides the performance difference between the CNN and NB decoders, they 
showed different time patterns of decoding accuracy (Fig. 4B). NB exhibited only a 
small increase in performance from early to late delay epoch, increasing rapidly only 
during the reach-to-grasp epoch, and peaking at the end of movement. Conversely, the 
CNN showed a strong increase in performance already from the last portion of early 
delay, then slowly increased over time and peaked between the reach-to-grasp and hold 



13 

epochs as NB. That is, the CNN was able to capture grip-discriminant features already 
while the animal was attending the object to grasp and waiting for the go-signal, further 
supporting that grip-related neural signatures are progressively encoded in V6A during 
movement preparation, as known in the literature [3], reflecting a visuomotor pro-
cessing of the information. These differences between the CNN and NB may be asso-
ciated to the ability of the CNN to better capture temporal dynamics and non-linearities 
encoded in neural activity [2], better extracting relevant features from the input signal 
and discarding task-unrelated information. Lastly, as expected, accuracies gradually 
deteriorated as the number of cells and training example was artificially reduced. How-
ever, the CNN exhibited good robustness, as its accuracy markedly deteriorated only in 
an extreme low-data regime, suggesting its usefulness also when less cells are recorded 
or few training examples are available. This result support the potentialities of CNNs 
as decoders in BCIs, as while transposing decoders from the monkeys to humans, per-
forming a BCI calibration as short as possible and designing a decoder robust to signal 
degradation over time (thus, reducing the number of recorded cells) are desired aspects.  

In conclusion, this study further validates the design and application of CNNs for 
motor decoding from neurons’ recordings. A single-layer wide CNN resulted the opti-
mal design for reach-to-grasp decoding, matching the findings of [2] where a similar 
structure resulted optimal for reach decoding, and was able to accurately decode grip 
type early from the start of the task, i.e., from the beginning of movement preparation. 
However, the present study is affected by the following limitations that will be ad-
dressed in the future. First, a more complete performance comparison with also other 
deep neural networks is needed. Second, selecting a model design by taking the most 
frequent optimal value for each hyper-parameter may have neglected potential correla-
tions between hyper-parameters. Lastly, the comparison with traditional decoders (e.g., 
NB) should be further validated as a function of the selection of modulated neurons 
performed before decoding (as adopted in [3]). Despite the previous limitations, the 
results obtained in this study, together with the ones obtained in [2], may have some 
relevant perspectives. Indeed, CNNs compared to other deep learning approaches are 
more easily interpretable in their learned features. Thus, future studies, by using expla-
nation techniques (e.g., saliency maps [26]) to interpret the features, can exploit CNNs 
to analyze neural signatures in spatial, temporal and frequency domains [6, 8], identi-
fying differences in neural motor encoding not only across time samples but also, for 
example, across subpopulations of neurons (at different spatial locations) within area 
V6A. Finally, the proposed CNN resulted an accurate and light non-linear decoder that, 
in prospective, may find applicability in BCIs.  
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