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Section S1. Convolutional neural network 
In Table S.1, details about the parameters defining the network (i.e., hyper-parameters), 
together with the number of parameters to fit (i.e., “trainable” parameters) introduced by each 
layer and the shape of layer outputs, are reported.  
 
Table S1 – Details of the convolutional neural network. Each layer is provided with its name, 
main hyper-parameters, number of trainable parameters and output shape. Where not specified, 
stride (𝑆) and padding (𝑃) were set to (1,1) and (0,0), respectively. The total number of 
trainable parameters was 1502. 
 

Layer name Hyper-parameters No. of tr. 
parameters 

Output 
shape 

Input  0 (1, 68, 100) 
Conv2D  𝐾! = 4, 𝐹! = (1,49), 𝑃! = (0,24) 196 (4, 68, 100) 
BatchNorm2D  8 (4, 68, 100) 
Depthwise-Conv2D  𝐷" = 2, 𝐾" = 𝐾! ∙ 𝐷" = 8, 𝐹" = (68,1)  544 (8, 1, 100) 
BatchNorm2D  16 (8, 1, 100) 
ReLU  0 (8, 1, 100) 
AvgPool2D 𝐹# = (1,10), 𝑆# = (1,2) 0 (8, 1, 46) 
Dropout 𝑝 = 0.25 0 (8, 1, 46) 
Flatten  0 (368) 
Fully-Connected 𝑁$ = 2  738 (2) 
Softmax  0 (2) 
  1502  

 
The input layer simply replicates the input neural activity in a single feature map; thus, the 

output shape of this layer is (1,68,100). Then, the first convolutional layer performs 2-D 
convolution in the temporal domain using 𝐾! = 4 temporal kernels with size 𝐹! = (1,49) 
(thus, capturing frequency information at 4 Hz and above 1), unitary stride and zero-padding 
such that the local output shape matches the input shape, i.e., 𝑃! = (1,24). Neuron activations 
were then normalized via batch normalization 2. The second convolutional layer performs 2-D 
depthwise convolution 3 in the spatial domain, learning a set of 𝐷" = 2 spatial kernels for each 
filtered version of the input (8 in total, as 𝐾! = 4), with size 𝐹" = (𝑅, 1) = (68,1) (that is, 
learning the optimal combination across all ROIs), unitary stride and no padding. Neuron 
activations were then normalized via batch normalization, passed through a ReLU non-
linearity, and downsampled in time using an average pooling layer with pooling size 𝐹# =
(1,10) and pooling stride 𝑆# = (1,2), which is equivalent to applying a moving average in the 
time-axis within windows of 5 ms with a step of 1 ms. Then, neuron activations were dropped 
out during training using a dropout probability of 𝑝 = 0.25. The output neuron activations were 
then flattened into a 1-D array and provided as input to the fully-connected layer with 𝑁$ = 2 
neurons, providing the class scores 𝑜% , 𝑘 = 0,1 as output. Finally, class scores were converted 
into the conditional probabilities by using the softmax activation function.  

By keeping limited the number layers and of learned features (e.g., only 4 temporal kernels 
and 16 spatial kernels, overall) and by including depthwise convolutions, which are 
convolutions specifically aimed to reduce the number of trainable parameters, the adopted 
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CNN introduced only 1502 parameters (contained in 𝜃). To optimize the trainable parameters 
in 𝜃, the cross-entropy between the empirical probability distribution (defined by training 
labels) and the model probability distribution (defined by CNN outputs) was used as loss 
function and it was minimized using the Adaptive moment estimation (Adam) algorithm 4 with 
a mini-batch size of 64, learning rate of 10&' and other parameters set as in its default 
implementation 5. CNNs were trained for 500 epochs and the training was stopped when the 
validation loss did not decrease for 100 consecutive epochs (this parameter was based on the 
convergence speed of the algorithm via empirical evaluations), as also performed in 6,7. 

The main hyper-parameters (e.g., the number of temporal kernels, temporal kernel size, the 
number of spatial kernels, and the pooling size and stride) were selected via empirical 
evaluations during preliminary analyses.  

CNNs were developed in Python (version 3.8.10) and trained with PyTorch (version 1.9.0) 
5 and network decisions were explained with Captum (0.5.0) 8, using a workstation equipped 
with an AMD Threadripper 1900X, NVIDIA TITAN V and 48 GB of RAM.  
 
Section S2. Layer-wise relevance propagation 
Layer-wise relevance propagation 9 propagates the prediction of the network, represented by 
the class score 𝑜% (e.g., the predicted score associated by the network to the inverted 
orientation, 𝑜", see Eq. 2), backward in the network. To do so, propagation rules must be 
defined for each layer of the network. Let 𝑚 and 𝑛 be the indices of two neurons of two 
consecutive layers (𝑙 − 1 and 𝑙) of the network and let 𝑅(

(*) be the relevance for the neuron 𝑛	of 
the layer 𝑙 in predicting 𝑜%. The backward propagation of the relevance at a given layer back 
to a preceding layer of the network is achieved by applying the rule:  
𝑅,
(*&") = ∑ -!"

∑ -!"!
( 𝑅(

(*),  (B.1) 

where 𝑧,( weights how much the neuron m contributed to make the neuron 𝑛 relevant, and the 
denominator ∑ 𝑧,(,  forces the conservation of the relevance during the propagation. Indeed, 
the conservation is ensured locally by ∑ 𝑅,

(*&")
, = ∑ 𝑅(

(*)
( , and thus, globally throughout the 

network, as ∑ 𝑅/
(!)

/ = ⋯ = ∑ 𝑅(
(*)

( = ⋯ = 𝑜%. 
The propagation rule applied in this study is the LRP-𝜀 rule 10:  
𝑅,
(*&") = ∑ 0!1!"

23∑ 0!1!"!
( 𝑅(

(*), (B.2) 

where the term 𝑎, denotes the activation of the neuron 𝑚, 𝑤,( denotes the weight of the 
connection from unit 𝑚 to unit 𝑛, and 𝜀 is a small positive term that ensures that 𝑅,

(*&") is 
bounded for small or null values of neuron activations in the denominator ∑ 𝑎,𝑤,(, . 
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