
SUPPLEMENTARY INFORMATION

Deep learning applied to EEG source-data reveals both ventral

and dorsal visual stream involvement in holistic processing of

social stimuli

Davide Borra1§ (0000−0003−3791−8555)

Francesco Bossi2§ (0000-0003-3359-8187)

Davide Rivolta3† (0000-0002-9969-9135)

Elisa Magosso1,4†* (0000−0002−4673−2974)

1Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”

(DEI), University of Bologna, Cesena Campus, Cesena, Italy
2MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
3Department of Education, Psychology, and Communication, University of Bari Aldo Moro,

Bari, Italy

4Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of

Bologna, Bologna, Italy

§Authors with shared first authorship
†Authors with shared senior authorship

* Corresponding Author

Elisa Magosso

e-mail: elisa.magosso@unibo.it

 2

Section S1. Convolutional neural network
In Table S.1, details about the parameters defining the network (i.e., hyper-parameters),
together with the number of parameters to fit (i.e., “trainable” parameters) introduced by each
layer and the shape of layer outputs, are reported.

Table S1 – Details of the convolutional neural network. Each layer is provided with its name,
main hyper-parameters, number of trainable parameters and output shape. Where not specified,
stride (𝑆) and padding (𝑃) were set to (1,1) and (0,0), respectively. The total number of
trainable parameters was 1502.

Layer name Hyper-parameters No. of tr.
parameters

Output
shape

Input 0 (1, 68, 100)
Conv2D 𝐾! = 4, 𝐹! = (1,49), 𝑃! = (0,24) 196 (4, 68, 100)
BatchNorm2D 8 (4, 68, 100)
Depthwise-Conv2D 𝐷" = 2, 𝐾" = 𝐾! ∙ 𝐷" = 8, 𝐹" = (68,1) 544 (8, 1, 100)
BatchNorm2D 16 (8, 1, 100)
ReLU 0 (8, 1, 100)
AvgPool2D 𝐹# = (1,10), 𝑆# = (1,2) 0 (8, 1, 46)
Dropout 𝑝 = 0.25 0 (8, 1, 46)
Flatten 0 (368)
Fully-Connected 𝑁$ = 2 738 (2)
Softmax 0 (2)
 1502

The input layer simply replicates the input neural activity in a single feature map; thus, the

output shape of this layer is (1,68,100). Then, the first convolutional layer performs 2-D
convolution in the temporal domain using 𝐾! = 4 temporal kernels with size 𝐹! = (1,49)
(thus, capturing frequency information at 4 Hz and above 1), unitary stride and zero-padding
such that the local output shape matches the input shape, i.e., 𝑃! = (1,24). Neuron activations
were then normalized via batch normalization 2. The second convolutional layer performs 2-D
depthwise convolution 3 in the spatial domain, learning a set of 𝐷" = 2 spatial kernels for each
filtered version of the input (8 in total, as 𝐾! = 4), with size 𝐹" = (𝑅, 1) = (68,1) (that is,
learning the optimal combination across all ROIs), unitary stride and no padding. Neuron
activations were then normalized via batch normalization, passed through a ReLU non-
linearity, and downsampled in time using an average pooling layer with pooling size 𝐹# =
(1,10) and pooling stride 𝑆# = (1,2), which is equivalent to applying a moving average in the
time-axis within windows of 5 ms with a step of 1 ms. Then, neuron activations were dropped
out during training using a dropout probability of 𝑝 = 0.25. The output neuron activations were
then flattened into a 1-D array and provided as input to the fully-connected layer with 𝑁$ = 2
neurons, providing the class scores 𝑜% , 𝑘 = 0,1 as output. Finally, class scores were converted
into the conditional probabilities by using the softmax activation function.

By keeping limited the number layers and of learned features (e.g., only 4 temporal kernels
and 16 spatial kernels, overall) and by including depthwise convolutions, which are
convolutions specifically aimed to reduce the number of trainable parameters, the adopted

 3

CNN introduced only 1502 parameters (contained in 𝜃). To optimize the trainable parameters
in 𝜃, the cross-entropy between the empirical probability distribution (defined by training
labels) and the model probability distribution (defined by CNN outputs) was used as loss
function and it was minimized using the Adaptive moment estimation (Adam) algorithm 4 with
a mini-batch size of 64, learning rate of 10&' and other parameters set as in its default
implementation 5. CNNs were trained for 500 epochs and the training was stopped when the
validation loss did not decrease for 100 consecutive epochs (this parameter was based on the
convergence speed of the algorithm via empirical evaluations), as also performed in 6,7.

The main hyper-parameters (e.g., the number of temporal kernels, temporal kernel size, the
number of spatial kernels, and the pooling size and stride) were selected via empirical
evaluations during preliminary analyses.

CNNs were developed in Python (version 3.8.10) and trained with PyTorch (version 1.9.0)
5 and network decisions were explained with Captum (0.5.0) 8, using a workstation equipped
with an AMD Threadripper 1900X, NVIDIA TITAN V and 48 GB of RAM.

Section S2. Layer-wise relevance propagation
Layer-wise relevance propagation 9 propagates the prediction of the network, represented by
the class score 𝑜% (e.g., the predicted score associated by the network to the inverted
orientation, 𝑜", see Eq. 2), backward in the network. To do so, propagation rules must be
defined for each layer of the network. Let 𝑚 and 𝑛 be the indices of two neurons of two
consecutive layers (𝑙 − 1 and 𝑙) of the network and let 𝑅(

(*) be the relevance for the neuron 𝑛	of
the layer 𝑙 in predicting 𝑜%. The backward propagation of the relevance at a given layer back
to a preceding layer of the network is achieved by applying the rule:
𝑅,
(*&") = ∑ -!"

∑ -!"!
(𝑅(

(*), (B.1)

where 𝑧,(weights how much the neuron m contributed to make the neuron 𝑛 relevant, and the
denominator ∑ 𝑧,(, forces the conservation of the relevance during the propagation. Indeed,
the conservation is ensured locally by ∑ 𝑅,

(*&")
, = ∑ 𝑅(

(*)
(, and thus, globally throughout the

network, as ∑ 𝑅/
(!)

/ = ⋯ = ∑ 𝑅(
(*)

(= ⋯ = 𝑜%.
The propagation rule applied in this study is the LRP-𝜀 rule 10:
𝑅,
(*&") = ∑ 0!1!"

23∑ 0!1!"!
(𝑅(

(*), (B.2)

where the term 𝑎, denotes the activation of the neuron 𝑚, 𝑤,(denotes the weight of the
connection from unit 𝑚 to unit 𝑛, and 𝜀 is a small positive term that ensures that 𝑅,

(*&") is
bounded for small or null values of neuron activations in the denominator ∑ 𝑎,𝑤,(, .

 4

References
1. Lawhern, V. J. et al. EEGNet: a compact convolutional neural network for EEG-based

brain–computer interfaces. Journal of Neural Engineering 15, 056013 (2018).
2. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. in Proceedings of the 32nd International Conference
on Machine Learning (eds. Bach, F. & Blei, D.) vol. 37 448–456 (PMLR, 2015).

3. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) 1800–1807 (2016).

4. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs] (2017).

5. Paszke, A. et al. Automatic differentiation in PyTorch. in NIPS-W (2017).
6. Borra, D. & Magosso, E. Deep learning-based EEG analysis: investigating P3 ERP

components. Journal of Integrative Neuroscience 20, 791–811 (2021).
7. Borra, D., Fantozzi, S. & Magosso, E. A Lightweight Multi-Scale Convolutional Neural

Network for P300 Decoding: Analysis of Training Strategies and Uncovering of Network
Decision. Frontiers in Human Neuroscience 15, 655840 (2021).

8. Kokhlikyan, N. et al. Captum: A unified and generic model interpretability library for
PyTorch. Preprint at http://arxiv.org/abs/2009.07896 (2020).

9. Bach, S. et al. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-
Wise Relevance Propagation. PLoS ONE 10, e0130140 (2015).

10. Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. Layer-Wise
Relevance Propagation: An Overview. in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning (eds. Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K. &
Müller, K.-R.) vol. 11700 193–209 (Springer International Publishing, 2019).

