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Supplementary Section 1: Continuous trajectory decoding from the EEG 

To perform continuous decoding of 2-D positions and velocities, the CNN input was a buffer 

of EEG data (‘EEG chunk’), consisting of 𝑇! time samples of the multi-variate input time series 

recorded during each trial, extracted with a stride of 𝑇" samples. This procedure is reported in 

the Supplementary Fig. 1 and described in Sections 2.1 and 2.2 of the manuscript. 

 

 
Supplementary Figure 1 – Schematic of the extraction of EEG chunks and trajectory values 
from EEG trials. Each red shaded area (top) denotes the buffer of EEG data forming the EEG 
chunk, and its four associated red dots (bottom) denote the kinematic values.  
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Supplementary Section 2: Hyper-parameter search and hyper-parameter sensitivity 

analysis 

To select the optimal hyper-parameters defining the architecture and to train the architecture, 

Bayesian optimization [1] was performed while training within-subject models. The searched 

hyper-parameters were 𝐹#$%%, 𝐾#$%%, 𝐷&$%%, the number of parallel branches each learning 

features at a different time scale (𝑁"), 𝐾&'%(, use of batch normalization [2], 𝑝, and the learning 

rate. The meaning of these symbols is described in the Sections 2.2 and 2.3 of the manuscript. 

Batch normalization [2] normalizes the network intermediate outputs, speeding up training, 

reducing the influence of a specific parameter initialization scheme, and introducing a 

regularizer effect. CNNs widely exploit this normalization for motor classification problems 

(e.g., [3–6]) from the EEG. To evaluate whether this technique could be useful also for 

trajectory decoding, batch normalization was applied to the output of each convolutional layer 

before the activation function, as suggested in [2]. The following procedure was performed to 

select the kernel sizes of the multi-scale temporal feature extractor. At first, the kernel size of 

the largest scale was set the same as the searched value of 𝐹#$%%, denoting the temporal kernel 

size of the first layer. Then, depending on the number of scales selected, the kernel size of the 

i-th parallel branch (1 ≤ 𝑖 ≤ 𝑁") is defined automatically as (1, 𝐹#$%%[1]/𝑖), 1 ≤ 𝑖 ≤ 𝑁", 

taking the nearest odd number, e.g., when 𝐹#$%% = (1,51), then kernel sizes of the multiple 

scales are set to (1,51) and (1,25) if 𝑁" = 2, or (1,51), (1,25), (1,17) if 𝑁" = 3. Bayesian 

optimization was performed for 100 iterations using the validation loss as metric to minimize, 

tree-structured Parzen estimator as surrogate function and expected improvement as selection 

function. The optimal configuration of the ICNN was selected as the most frequent one across 

the subject-specific Bayesian-optimized models and corresponds to the one described in Table 

1 of the manuscript. Details on the source space are reported in Supplementary Table 1. 
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Supplementary Table 1 – Searched hyper-parameters of MS-Sinc-ShallowNet: distributions 
and admitted values sampled during Bayesian optimization. Curly brackets denote discrete 
admitted values, while square brackets denote interval of admitted values.  

Hyper-parameter Distribution Values 
𝐹!"## uniform {(1,25), (1,51)} 
𝐾!"##  uniform {8,16,32,64} 
𝐷$"##  uniform {1,2,4} 
𝑁%  uniform {1,2,3} 
𝐾$&#'  uniform {𝐾!"## ∙ 𝐷$"##, 1, 2, 4} 
Use of batch norm. uniform {False, True} 
𝑝  uniform {0, 0.25, 0.5} 
Learning rate log-uniform [1e-5, 1e-2] 

 

Then, the main hyper-parameters of the proposed ICNN were investigated by changing one 

hyper-parameter at a time and evaluating the change in the performance, i.e., performing a 

sensitivity analysis on the hyper-parameters, as performed to study hyper-parameters in [3,5,7]. 

Hereafter, the ICNN with the baseline hyperparameters defined in Table 1 of the manuscript, 

will be referred as ‘baseline’ architecture. Then, we changed the value of one hyper-parameter 

at a time of the baseline architecture, realizing a ‘variant’ architecture. Both architectural (i.e., 

parameters affecting the overall architecture design) and training hyper-parameters were 

investigated (i.e., parameters influencing the training). These were: 

i. The number of trainable band-pass filters in Block 1 (𝐾#$%%). In the baseline 

architecture, 16 band-pass filters were learned. To investigate designs using less or 

more filters, two variant architectures were developed, by setting 𝐾#$%% = 8 or 

𝐾#$%% = 32. Of course, using less or more filters is associated to a reduced or 

increased model size, respectively. 

ii. The number of spatial filters tied to each band-pass filter in Block 1 (𝐷&$%%). In the 

baseline architecture, 2 spatial filters were learned for each band-pass filter. To 

investigate designs using less or more spatial filters, two variant architectures were 

developed, by setting 𝐷&$%% = 1 or 𝐷&$%% = 4. Of course, using less or more filters 

is associated to a reduced or increased model size, respectively. 

iii. The inclusion of batch normalization [2]. In the baseline architecture, batch 
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normalization was not adopted. To evaluate whether this technique could be useful 

also for trajectory decoding, batch normalization was included in the architecture, 

as specified at the beginning of Supplementary Section 2. 

Performance metrics were computed for these variant conditions as described in Section 2.6 

of the manuscript. The performance difference between each of the previously described 

variants and the baseline architecture was computed. Then, for brevity the performance 

difference was averaged across x- and y-axis components, and the effect of each hyper-

parameter was studied for position and velocity, separately. The performance of the baseline 

MS-Sinc-ShallowNet was compared with the performance obtained with each variant MS-

Sinc-ShallowNet design with pairwise comparisons (10 total tests). Pairwise comparisons were 

performed using Wilcoxon signed-rank tests and false discovery rate correction at 𝛼 = 0.05 

(Benjamini–Hochberg [8]) to correct for multiple tests. 

Correlation and RMSE differences between variant ICNNs and the baseline ICNN are 

reported in Supplementary Fig. 2, together with the results of the statistical analysis.  
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Supplementary Figure 2 – Sensitivity analysis on the main ICNN hyper-parameters. 
Difference of the Pearson’s correlation coefficients (∆𝑟) and of the RMSE (∆𝑅𝑀𝑆𝐸) between 
each MS-Sinc-ShallowNet variant and the baseline MS-Sinc-ShallowNet, both trained in 
within-subject (WS) strategy. Smaller dots represent the performance difference for each 
subject, while bigger dots represent the median of each distribution and whiskers represent the 
25th and 75th percentile. Significant corrected (Benjamini–Hochberg [8]) p-values are reported 
(*p<0.05, **p<0.01, ***p<0.001). 
 

In addition to significant higher RMSE (𝑝 < 0.05), significantly lower correlations were 

obtained when using a lower number of band-pass filters in Block 1 (𝑝 < 0.05), and when 

including batch normalization (𝑝 < 0.01), for both position and velocity. Lower correlations 

(𝑝 < 0.05) were also found when using less spatial filters in Block 1, but with a significant 

worsening in performance only for velocity component. Using more filters in Block 1 (both 



 6 

band-pass and spatial filters) only slightly increased the performance, with a small but 

significant (𝑝 < 0.05) improvement for position correlations.  

  



 7 

Supplementary Section 3: Spectral relevance comparison across directions 

In this study, the spectral relevance was computed for each decoded trajectory, i.e., 

𝑝) , 𝑝* , 𝑣) , 𝑣*, see Eq. B.4, and is reported in Supplementary Fig. 3 for each coordinate. A 

permutation cluster test with 5000 permutations and by using threshold-free cluster 

enhancement [9] was performed between the relevance values in the x- and y-axes, separately 

for position and velocity. This was done to test whether there are significant differences 

between the two different directions. No significant differences were obtained, highlighting 

that the spectral relevance between the two directions was comparable.  

 

 
Supplementary Figure 3 – Spectral relevance for position and velocity. The spectral relevance 
is reported in its mean value (tick line) and standard error of the mean (shaded area) across 
subjects. 
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