
Published as a conference paper at ICLR 2023

DEEP LEARNING ON
IMPLICIT NEURAL REPRESENTATIONS OF SHAPES

Luca De Luigi∗, Adriano Cardace∗, Riccardo Spezialetti∗
University of Bologna
{luca.deluigi4, adriano.cardace2@unibo.it, riccardo.spezialetti}@unibo.it

Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano
University of Bologna

ABSTRACT

Implicit Neural Representations (INRs) have emerged in the last few years as a
powerful tool to encode continuously a variety of different signals like images,
videos, audio and 3D shapes. When applied to 3D shapes, INRs allow to overcome
the fragmentation and shortcomings of the popular discrete representations used
so far. Yet, considering that INRs consist in neural networks, it is not clear
whether and how it may be possible to feed them into deep learning pipelines
aimed at solving a downstream task. In this paper, we put forward this research
problem and propose inr2vec, a framework that can compute a compact latent
representation for an input INR in a single inference pass. We verify that inr2vec
can embed effectively the 3D shapes represented by the input INRs and show how
the produced embeddings can be fed into deep learning pipelines to solve several
tasks by processing exclusively INRs.

1 INTRODUCTION

Since the early days of computer vision, researchers have been processing images stored as two-
dimensional grids of pixels carrying intensity or color measurements. But the world that surrounds
us is three dimensional, motivating researchers to try to process also 3D data sensed from surfaces.
Unfortunately, representation of 3D surfaces in computers does not enjoy the same uniformity as
digital images, with a variety of discrete representations, such as voxel grids, point clouds and meshes,
coexisting today. Besides, when it comes to processing by deep neural networks, all these kinds of
representations are affected by peculiar shortcomings, requiring complex ad-hoc machinery (Qi et al.,
2017b; Wang et al., 2019b; Hu et al., 2022) and/or large memory resources (Maturana & Scherer,
2015). Hence, no standard way to store and process 3D surfaces has yet emerged.

Recently, a new kind of representation has been proposed, which leverages on the possibility of
deploying a Multi-Layer Perceptron (MLP) to fit a continuous function that represents implicitly a
signal of interest (Xie et al., 2021). These representations, usually referred to as Implicit Neural
Representations (INRs), have been proven capable of encoding effectively 3D shapes by fitting
signed distance functions (sdf) (Park et al., 2019; Takikawa et al., 2021; Gropp et al., 2020), unsigned
distance functions (udf) (Chibane et al., 2020) and occupancy fields (occ) (Mescheder et al., 2019;
Peng et al., 2020). Encoding a 3D shape with a continuous function parameterized as an MLP
decouples the memory cost of the representation from the actual spatial resolution, i.e., a surface with
arbitrarily fine resolution can be reconstructed from a fixed number of parameters. Moreover, the
same neural network architecture can be used to fit different implicit functions, holding the potential
to provide a unified framework to represent 3D shapes.

Due to their effectiveness and potential advantages over traditional representations, INRs are gathering
ever-increasing attention from the scientific community, with novel and striking results published
more and more frequently (Müller et al., 2022; Martel et al., 2021; Takikawa et al., 2021; Liu et al.,
2022). This lead us to conjecture that, in the forthcoming future, INRs might emerge as a standard
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representation to store and communicate 3D shapes, with repositories hosting digital twins of 3D
objects realized only as MLPs becoming commonly available.

An intriguing research question does arise from the above scenario: beyond storage and communi-
cation, would it be possible to process directly INRs of 3D shapes with deep learning pipelines to
solve downstream tasks as it is routinely done today with discrete representations like point clouds or
meshes? In other words, would it be possible to process an INR of a 3D shape to solve a downstream
task, e.g., shape classification, without reconstructing a discrete representation of the surface?

Since INRs are neural networks, there is no straightforward way to process them. Earlier work in
the field, namely OccupancyNetworks (Mescheder et al., 2019) and DeepSDF (Park et al., 2019),
fit the whole dataset with a shared network conditioned on a different embedding for each shape.
In such formulation, the natural solution to the above mentioned research problem could be to use
such embeddings as representations of the shapes in downstream tasks. This is indeed the approach
followed by contemporary work (Dupont et al., 2022), which addresses such research problem
by using as embedding a latent modulation vector applied to a shared base network. However,
representing a whole dataset by a shared network sets forth a difficult learning task, with the network
struggling in fitting accurately the totality of the samples (as we show in Appendix A). Conversely,
several recent works, like SIREN (Sitzmann et al., 2020b) and others (Sitzmann et al., 2020a; Dupont
et al., 2021a; Strümpler et al., 2021; Zhang et al., 2021; Tancik et al., 2020) have shown that, by
fitting an individual network to each input sample, one can get high quality reconstructions even
when dealing with very complex 3D shapes or images. Moreover, constructing an individual INR for
each shape is easier to deploy in the wild, as availability of the whole dataset is not required to fit an
individual shape. Such works are gaining ever-increasing popularity and we are led to believe that
fitting an individual network is likely to become the common practice in learning INRs.

Thus, in this paper, we investigate how to perform downstream tasks with deep learning pipelines
on shapes represented as individual INRs. However, a single INR can easily count hundreds of
thousands of parameters, though it is well known that the weights of a deep model provide a vastly
redundant parametrization of the underlying function (Frankle & Carbin, 2018; Choudhary et al.,
2020). Hence, we settle on investigating whether and how an answer to the above research question
may be provided by a representation learning framework that learns to squeeze individual INRs into
compact and meaningful embeddings amenable to pursuing a variety of downstream tasks.

Our framework, dubbed inr2vec and shown in Fig. 1, has at its core an encoder designed to
produce a task-agnostic embedding representing the input INR by processing only the INR weights.
These embeddings can be seamlessly used in downstream deep learning pipelines, as we validate
experimentally for a variety of tasks, like classification, retrieval, part segmentation, unconditioned
generation, surface reconstruction and completion. Interestingly, since embeddings obtained from
INRs live in low-dimensional vector spaces regardless of the underlying implicit function, the last
two tasks can be solved by learning a simple mapping between the embeddings produced with our
framework, e.g., by transforming the INR of a udf into the INR of an sdf . Moreover, inr2vec
can learn a smooth latent space conducive to interpolating INRs representing unseen 3D objects.
Additional details and code can be found at https://cvlab-unibo.github.io/inr2vec.
Our contributions can be summarised as follows:

• we propose and investigate the novel research problem of applying deep learning directly on
individual INRs representing 3D shapes;

• to address the above problem, we introduce inr2vec, a framework that can be used to
obtain a meaningful compact representation of an input INR by processing only its weights,
without sampling the underlying implicit function;

• we show that a variety of tasks, usually addressed with representation-specific and complex
frameworks, can indeed be performed by deploying simple deep learning machinery on INRs
embedded by inr2vec, the same machinery regardless of the INRs underlying signal.

2 RELATED WORK

Deep learning on 3D shapes. Due to their regular structure, voxel grids have always been appealing
representations for 3D shapes and several works proposed to use 3D convolutions to perform both
discriminative (Maturana & Scherer, 2015; Qi et al., 2016; Song & Xiao, 2016) and generative tasks
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Figure 1: Overview of our framework. Left: INRs hold the potential to provide an unified
representation for 3D shapes. Center: Our framework, dubbed inr2vec, produces a compact
representation for an input INR by looking only at its weights. Right: inr2vec embeddings can be
used with standard deep learning machinery to solve a variety of downstream tasks.

(Choy et al., 2016; Girdhar et al., 2016; Jimenez Rezende et al., 2016; Stutz & Geiger, 2018; Wu
et al., 2016; 2015). The huge memory requirements of voxel-based representations, though, led
researchers to look for less demanding alternatives, such as point clouds. Processing point clouds,
however, is far from straightforward because of their unorganized nature. As a possible solution,
some works projected the original point clouds to intermediate regular grid structures such as voxels
(Shi et al., 2020) or images (You et al., 2018; Li et al., 2020a). Alternatively, PointNet (Qi et al.,
2017a) proposed to operate directly on raw coordinates by means of shared multi-layer perceptrons
followed by max pooling to aggregate point features. PointNet++ (Qi et al., 2017b) extended PointNet
with a hierarchical feature learning paradigm to capture the local geometric structures. Following
PointNet++, many works focused on designing new local aggregation operators (Liu et al., 2020),
resulting in a wide spectrum of specialized methods based on convolution (Hua et al., 2018; Xu
et al., 2018; Atzmon et al., 2018; Wu et al., 2019; Fan et al., 2021; Xu et al., 2021; Thomas et al.,
2019), graph (Li et al., 2019; Wang et al., 2019a;b), and attention (Guo et al., 2021; Zhao et al., 2021)
operators. Yet another completely unrelated set of deep learning methods have been developed to
process surfaces represented as meshes, which differ in the way they exploit vertices, edges and faces
as input data (Hu et al., 2022). Vertex-based approaches leverage the availability of a regular domain
to encode the knowledge about points neighborhoods through convolution or kernel functions (Masci
et al., 2015; Boscaini et al., 2016; Huang et al., 2019; Yang et al., 2020; Haim et al., 2019; Schult
et al., 2020; Monti et al., 2017; Smirnov & Solomon, 2021). Edge-based methods take advantages of
these connections to define an ordering invariant convolution (Hanocka et al., 2019), to construct
a graph on the input meshes (Milano et al., 2020) or to navigate the shape structure (Lahav & Tal,
2020). Finally, Face-based works extract information from neighboring faces (Lian et al., 2019;
Feng et al., 2019; Li et al., 2020b; Hertz et al., 2020). In this work, we explore INRs as a unified
representation for 3D shapes and propose a framework that enables the use of the same standard deep
learning machinery to process them, independently of the INRs underlying signal.

3D Implicit neural representations (INRs). Recent approaches have shown the ability of MLPs to
represent implicitly diverse kinds of data such as objects (Genova et al., 2019; 2020; Park et al., 2019;
Atzmon & Lipman, 2020; Michalkiewicz et al., 2019; Gropp et al., 2020) and scenes (Sitzmann et al.,
2019; Jiang et al., 2020; Peng et al., 2020; Chabra et al., 2020). The works focused on representing
3D data by MLPs rely on fitting implicit functions such as unsigned distance (for point clouds), signed
distance (for meshes) (Atzmon & Lipman, 2020; Park et al., 2019; Gropp et al., 2020; Sitzmann
et al., 2019; Jiang et al., 2020; Peng et al., 2020) or occupancy (for voxel grids) (Mescheder et al.,
2019; Chen & Zhang, 2019). In addition to representing shapes, some of these models have been
extended to encode also object appearance (Saito et al., 2019; Mildenhall et al., 2020; Sitzmann et al.,
2019; Oechsle et al., 2019; Niemeyer et al., 2020), or to include temporal information (Niemeyer
et al., 2019). Among these approaches, sinusoidal representation networks (SIREN) (Sitzmann et al.,
2020b) use periodical activation functions to capture the high frequency details of the input data. In
our work, we focus on implicit neural representations of 3D data represented as voxel grids, meshes
and point clouds and we use SIREN as our main architecture.

Deep learning on neural networks. Few works attempted to process neural networks by means of
other neural networks. For instance, (Unterthiner et al., 2020) takes as input the weights of a network
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Figure 2: inr2vec encoder architecture.

and predicts its classification accuracy. (Schürholt et al., 2021) learns a network representation with
a self-supervised learning strategy applied on the N -dimensional weight array, and then uses the
learned representations to predict various characteristics of the input classifier. (Knyazev et al., 2021;
Jaeckle & Kumar, 2021; Lu & Kumar, 2020) represent neural networks as computational graphs,
which are processed by a GNN to predict optimal parameters, adversarial examples, or branching
strategies for neural network verification. All these works see neural networks as algorithms and
focus on predicting properties such as their accuracy. On the contrary, we process networks that
represent implicitly 3D shapes to perform a variety of tasks directly from their weights, i.e., we treat
neural networks as input/output data. To the best of our knowledge, processing 3D shapes represented
as INRs has been attempted only in contemporary work (Dupont et al., 2022). However, they rely
on a shared network conditioned on shape-specific embeddings while we process the weights of
individual INRs, that better capture the underlying signal and are easier to deploy in the wild.

3 LEARNING TO REPRESENT INRS

The research question we address in this paper is whether and how can we process directly INRs
to perform downstream tasks. For instance, can we classify a 3D shape that is implicitly encoded
in an INR? And how? As anticipated in Section 1, we propose to rely on a representation learning
framework to squeeze the redundant information contained in the weights of INRs into compact
latent codes that could be conveniently processed with standard deep learning pipelines.

Our framework, dubbed inr2vec, is composed of an encoder and a decoder. The encoder, detailed
in Fig. 2, is designed to take as input the weights of an INR and produce a compact embedding
that encodes all the relevant information of the input INR. A first challenge in designing an encoder
for INRs consists in defining how the encoder should ingest the weights as input, since processing
naively all the weights would require a huge amount of memory (see Appendix E). Following
standard practice (Sitzmann et al., 2020b;a; Dupont et al., 2021a; Strümpler et al., 2021; Zhang
et al., 2021), we consider INRs composed of several hidden layers, each one with H nodes, i.e.,
the linear transformation between two consecutive layers is parameterized by a matrix of weights
Wi ∈ RH×H and a vector of biases bi ∈ RH×1. Thus, stacking Wi and bi

T , the mapping between
two consecutive layers can be represented by a single matrix Pi ∈ R(H+1)×H . For an INR composed
of L+ 1 hidden layers, we consider the L linear transformations between them. Hence, stacking all
the L matrices Pi ∈ R(H+1)×H , i = 1, . . . , L, between the hidden layers we obtain a single matrix
P ∈ RL(H+1)×H , that we use to represent the INR in input to inr2vec encoder. We discard the
input and output layers in our formulation as they feature different dimensionality and their use does
not change inr2vec performance, as shown in Appendix I.

The inr2vec encoder is designed with a simple architecture, consisting of a series of linear layers
with batch norm and ReLU non-linearity followed by final max pooling. At each stage, the input
matrix is transformed by one linear layer, that applies the same weights to each row of the matrix.
The final max pooling compresses all the rows into a single one, obtaining the desired embedding. It
is worth observing that the randomness involved in fitting an individual INR (weights initialization,
data shuffling, etc.) causes the weights in the same position in the INR architecture not to share
the same role across INRs. Thus, inr2vec encoder would have to deal with input vectors whose
elements capture different information across the different data samples, making it impossible to train
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Figure 3: Training and inference of our framework. Left: We consider shapes represented as INRs.
As an example, we show an INR fitting the udf of a surface. Center: inr2vec encoder is trained
together with an implicit decoder to replicate the underlying 3D signal of the input INR. Right: At
inference time, the learned encoder can be used to obtain a compact embedding from unseen INRs.
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Figure 4: Properties of inr2vec latent space.

the framework. However, the use of a shared, pre-computed initialization has been advocated as a
good practice when fitting INRs, e.g., to reduce training time by means of meta-learned initialization
vectors, as done in MetaSDF (Sitzmann et al., 2020a) and in the contemporary work exploring
processing of INRs (Dupont et al., 2022), or to obtain desirable geometric properties (Gropp et al.,
2020). We empirically found that following such a practice, i.e., initializing all INRs with the same
random vector, favours alignment of weights across INRs and enables convergence of our framework.

In order to guide the inr2vec encoder to produce meaningful embeddings, we first note that we
are not interested in encoding the values of the input weights in the embeddings produced by our
framework, but, rather, in storing information about the 3D shape represented by the input INR. For
this reason, we supervise the decoder to replicate the function approximated by the input INR instead
of directly reproducing its weights, as it would be the case in a standard auto-encoder formulation.
In particular, during training, we adopt an implicit decoder inspired by (Park et al., 2019), which
takes in input the embeddings produced by the encoder and decodes the input INRs from them
(see Fig. 3 center). More specifically, when the inr2vec encoder processes a given INR, we use
the underlying signal to create a set of 3D queries pi, paired with the values f(pi) of the function
approximated by the input INR at those locations (the type of function depends on the underlying
signal modality, it can be udf in case of point clouds, sdf in case of triangle meshes or occ in case of
voxel grids). The decoder takes in input the embedding produced by the encoder concatenated with
the 3D coordinates of a query pi and the whole encoder-decoder is supervised to regress the value
f(pi). After the overall framework has been trained end to end, the frozen encoder can be used to
compute embeddings of unseen INRs with a single forward pass (see Fig. 3 right) while the implicit
decoder can be used, if needed, to reconstruct the discrete representation given an embedding.

In Fig. 4a we compare 3D shapes reconstructed from INRs unseen during training with those
reconstructed by the inr2vec decoder starting from the latent codes yielded by the encoder. We
visualize point clouds with 8192 points, meshes reconstructed by marching cubes (Lorensen & Cline,
1987) from a grid with resolution 1283 and voxels with resolution 643. We note that, though our
embedding is dramatically more compact than the original INR, the reconstructed shape resembles
the ground-truth with a good level of detail. Moreover, in Fig. 4b we linearly interpolate between the
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ModelNet40 ShapeNet10 ScanNet10
Method mAP@1 mAP@5 mAP@10 mAP@1 mAP@5 mAP@10 mAP@1 mAP@5 mAP@10

PointNet (Qi et al., 2017a) 80.1 91.7 94.4 90.6 96.6 98.1 65.7 86.2 92.6
PointNet++ (Qi et al., 2017b) 85.1 93.9 96.0 92.2 97.5 98.6 71.6 89.3 93.7
DGCNN (Wang et al., 2019b) 83.2 92.7 95.1 91.0 96.7 98.2 66.1 88.0 93.1

inr2vec 81.7 92.6 95.1 90.6 96.7 98.1 65.2 87.5 94.0

Table 1: Point cloud retrieval quantitative results.
Point Cloud Mesh Voxels

Method ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10
PointNet (Qi et al., 2017a) 88.8 94.3 72.7 – –

PointNet++ (Qi et al., 2017b) 89.7 94.6 76.4 – –
DGCNN (Wang et al., 2019b) 89.9 94.3 76.2 – –

MeshWalker (Lahav & Tal, 2020) – – – 90.0 –
Conv3DNet (Maturana & Scherer, 2015) – – – – 92.1

inr2vec 87.0 93.3 72.1 86.3 93.0

Table 2: Results on shape classification across representations.

embeddings produced by inr2vec from two input shapes and show the shapes reconstructed from
the interpolated embeddings. Results highlight that the latent space learned by inr2vec enables
smooth interpolations between shapes represented as INRs. Additional details on inr2vec training
and the procedure to reconstruct the discrete representations from the decoder are in the Appendices.

4 DEEP LEARNING ON INRS

In this section, we first present the set-up of our experiments. Then, we show how several tasks
dealing with 3D shapes can be tackled by working only with inr2vec embeddings as input and/or
output. Additional details on the architectures and on the experimental settings are in Appendix F.

General settings. In all the experiments reported in this section, we convert 3D discrete representa-
tions into INRs featuring 4 hidden layers with 512 nodes each, using the SIREN activation function
(Sitzmann et al., 2020b). We train inr2vec using an encoder composed of four linear layers with
respectively 512, 512, 1024 and 1024 features, embeddings with 1024 values and an implicit decoder
with 5 hidden layers with 512 features. In all the experiments, the baselines are trained using standard
data augmentation (random scaling and point-wise jittering), while we train both inr2vec and the
downstream task-specific networks on datasets augmented offline with the same transformations.

Point cloud retrieval. We first evaluate the feasibility of using inr2vec embeddings of INRs to
solve tasks usually tackled by representation learning, and we select 3D retrieval as a benchmark.
We follow the procedure introduced in (Chang et al., 2015), using the euclidean distance to measure
the similarity between embeddings of unseen point clouds from the test sets of ModelNet40 (Wu
et al., 2015) and ShapeNet10 (a subset of 10 classes of the popular ShapeNet dataset (Chang et al.,
2015)). For each embedded shape, we select its k-nearest-neighbours and compute a Precision Score
comparing the classes of the query and the retrieved shapes, reporting the mean Average Precision
for different k (mAP@k). Beside inr2vec, we consider three baselines to embed point clouds,
which are obtained by training the PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b) and
DGCNN (Wang et al., 2019b) encoders in combination with a fully connected decoder similar to
that proposed in (Fan et al., 2017) to reconstruct the input cloud. Quantitative results, reported in
Table 1, show that, while there is an average gap of 1.8 mAP with PointNet++, inr2vec is able
to match, and in some cases even surpass, the performance of the other baselines. Moreover, it is
possible to appreciate in Fig. 5 that the retrieved shapes not only belong to the same class as the query
but present also the same coarse structure. This finding highlights how the pretext task used to learn
inr2vec embeddings can summarise relevant shape information effectively.

Shape classification. We then address the problem of classifying point clouds, meshes and voxel
grids. For point clouds we use three datasets: ShapeNet10, ModelNet40 and ScanNet10 (Dai et al.,
2017). When dealing with meshes, we conduct our experiments on the Manifold40 dataset (Hu et al.,
2022). Finally, for voxel grids, we use again ShapeNet10, quantizing clouds to grids with resolution
643. Despite the different nature of the discrete representations taken into account, inr2vec allows
us to perform shape classification on INRs embeddings, augmented online with E-Stitchup (Wolfe &
Lundgaard, 2019), by the very same downstream network architecture, i.e., a simple fully connected
classifier consisting of three layers with 1024, 512 and 128 features. We consider as baselines
well-known architectures that are optimized to work on the specific input representations of each
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Figure 5: Point cloud retrieval qualitative
results. Given the inr2vec embedding of a
query shape, we show the shapes reconstructed
from the closest embeddings (L2 distance).
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PointNet (Qi et al., 2017a) 83.1 78.96 81.3 76.9 79.6 71.4 89.4 67.0 91.2 80.5 80.0 95.1 66.3 91.3 80.6 57.8 73.6 81.5
PointNet++ (Qi et al., 2017b) 84.9 82.73 82.2 88.8 84.0 76.0 90.4 80.6 91.8 84.9 84.4 94.9 72.2 94.7 81.3 61.1 74.1 82.3
DGCNN (Wang et al., 2019b) 83.6 80.86 80.7 84.3 82.8 74.8 89.0 81.2 90.1 86.4 84.0 95.4 59.3 92.8 77.8 62.5 71.6 81.1

inr2vec 81.3 76.91 80.2 76.2 70.3 70.1 88.0 65.0 90.6 82.1 77.4 94.4 61.4 92.7 79.0 56.2 68.6 78.5

Table 3: Part segmentation quantitative results. We report the IoU for each class, the mean IoU
over all the classes (class mIoU) and the mean IoU over all the instances (instance mIoU).

dataset. For point clouds, we consider PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b)
and DGCNN (Wang et al., 2019b). For meshes, we consider a recent and competitive baseline that
processes directly triangle meshes (Lahav & Tal, 2020). As for voxel grids, we train a 3D CNN
classifier that we implemented following (Maturana & Scherer, 2015) (Conv3DNet from now on).
Since only the train and test splits are released for all the datasets, we created validation splits from the
training sets in order to follow a proper train/val protocol for both the baselines and inr2vec. As for
the test shapes, we evaluated all the baselines on the discrete representations reconstructed from the
INRs fitted on the original test sets, as these would be the only data available at test time in a scenario
where INRs are used to store and communicate 3D data. We report the results of the baselines tested
on the original discrete representations available in the original datasets in Appendix H: they are
in line with those provided here. The results in Table 2 show that inr2vec embeddings deliver
classification accuracy close to the specialized baselines across all the considered datasets, regardless
of the original discrete representation of the shapes in each dataset. Remarkably, our framework
allows us to apply the same simple classification architecture on all the considered input modalities,
in stark contrast with all the baselines that are highly specialized for each modality, exploit inductive
biases specific to each such modality and cannot be deployed on representations different from those
they were designed for. Furthermore, while presenting a gap of some accuracy points w.r.t. the most
recent architectures, like DGCNN and MeshWalker, the simple fully connected classifier that we
applied on inr2vec embeddings obtains scores comparable to standard baselines like PointNet and
Conv3DNet. We also highlight that, should 3D shapes be stored as INRs, classifying them with the
considered specialized baselines would require recovering the original discrete representations by the
lengthy procedures described in Appendix C. Thus, in Fig. 6, we report the inference time of standard
point cloud classification networks while including also the time needed to reconstruct the discrete
point cloud from the input INR of the underlying udf at different resolutions. Even at the coarsest
resolution (2048 points), all the baselines yield an inference time which is one order of magnitude
higher than that required to classify directly the inr2vec embeddings. Increasing the resolution of
the reconstructed clouds makes the inference time of the baselines prohibitive, while inr2vec, not
requiring the explicit clouds, delivers a constant inference time of 0.001 seconds.

Point cloud part segmentation. While the tasks of classification and retrieval concern the possibility
of using inr2vec embeddings as a compact proxy for the global information of the input shapes,
with the task of point cloud part segmentation we aim at investigating whether inr2vec embeddings
can be used also to assess upon local properties of shapes. The part segmentation task consists in
predicting a semantic (i.e., part) label for each point of a given cloud. We tackle this problem by
training a decoder similar to that used to train our framework (see Fig. 7a). Such decoder is fed with
the inr2vec embedding of the INR representing the input cloud, concatenated with the coordinate
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Figure 7: Point cloud part segmentation.
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Figure 8: Learning to generate shapes from inr2vec latent space.

of a 3D query, and it is trained to predict the label of the query point. We train it, as well as PointNet,
PointNet++ and DGCNN, on the ShapeNet Part Segmentation dataset (Yi et al., 2016) with point
clouds of 2048 points, with the same train/val/test of the classification task. Quantitative results
reported in Table 3 show the possibility of performing also a local discriminative task as challenging
as part segmentation based on the task-agnostic embeddings produced by inr2vec and, in so doing,
to reach performance not far from that of specialized architectures. Additionally, in Fig. 7b we show
point clouds reconstructed at 100K points from the input INRs and segmented with high precision
thanks to our formulation based on a semantic decoder conditioned by the inr2vec embedding.

Shape generation. With the experiments reported above we validated that, thanks to inr2vec
embeddings, INRs can be used as input in standard deep learning machinery. In this section, we
address instead the task of shape generation in an adversarial setting to investigate whether the
compact representations produced by our framework can be adopted also as medium for the output of
deep learning pipelines. For this purpose, as depicted in Fig. 8a, we train a Latent-GAN (Achlioptas
et al., 2018) to generate embeddings indistinguishable from those produced by inr2vec starting
from random noise. The generated embeddings can then be decoded into discrete representations
with the implicit decoder exploited during inr2vec training. Since our framework is agnostic
w.r.t. the original discrete representation of shapes used to fit INRs, we can train Latent-GANs
with embeddings representing point clouds or meshes based on the same identical protocol and
architecture (two simple fully connected networks as generator and discriminator). For point clouds,
we train one Latent-GAN on each class of ShapeNet10, while we use models of cars provided by
(Mescheder et al., 2019) when dealing with meshes. In Fig. 8b, we show some samples generated
with the described procedure, comparing them with SP-GAN (Li et al., 2021) on the chair class for
what concerns point clouds and Occupancy Networks (Mescheder et al., 2019) (VAE formulation) for
meshes. Generated examples of other classes for point clouds are shown in Appendix J. The shapes
generated with our Latent-GAN trained only on inr2vec embeddings seem comparable to those
produced by the considered baselines, in terms of both diversity and richness of details. Additionally,
by generating embeddings that represent implicit functions, our method enables sampling point
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(b) Point cloud completion.
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(c) Surface reconstruction.

Figure 9: Learning a mapping between inr2vec latent spaces.

clouds at any arbitrary resolution (e.g., 8192 points in Fig. 8b) whilst SP-GAN would require a new
training for each desired resolution since the number of generated points must be set at training time.

Learning a mapping between inr2vec embedding spaces. We have shown that inr2vec
embeddings can be used as a proxy to feed INRs in input to deep learning pipelines, and that they
can also be obtained as output of generative frameworks. In this section we move a step further,
considering the possibility of learning a mapping between two distinct latent spaces produced by our
framework for two separate datasets of INRs, based on a transfer function designed to operate on
inr2vec embeddings as both input and output data. Such transfer function can be realized by a
simple fully connected network that maps the input embedding into the output one and is trained by a
standard MSE loss (see Fig. 9a). As inr2vec generates compact embeddings of the same dimension
regardless of the input INR modality, the transfer function described here can be applied seamlessly
to a great variety of tasks, usually tackled with ad-hoc frameworks tailored to specific input/output
modalities. Here, we apply this idea to two tasks. Firstly, we address point cloud completion on the
dataset presented in (Pan et al., 2021) by learning a mapping from inr2vec embeddings of INRs
that represent incomplete clouds to embeddings associated with complete clouds. Then, we tackle
the task of surface reconstruction on ShapeNet cars, training the transfer function to map inr2vec
embeddings representing point clouds into embeddings that can be decoded into meshes. As we
can appreciate from the samples in Fig. 9b and Fig. 9c, the transfer function can learn an effective
mapping between inr2vec latent spaces. Indeed, by processing exclusively INRs embedding,
we can obtain output shapes that are highly compatible with the input ones whilst preserving the
distinctive details, like the pointy wing of the airplane in Fig. 9b or the flap of the first car in Fig. 9c.

5 CONCLUDING REMARKS

We have shown that it is possible to apply deep learning directly on individual INRs representing
3D shapes. Our formulation of this novel research problem leverages on a task-agnostic encoder
which embeds INRs into compact and meaningful latent codes without accessing the underlying
implicit function. Our framework ingests INRs obtained from different 3D discrete representations
and performs various tasks through standard machinery. However, we point out two main limitations:
i) Although INRs capture continuous geometric cues, inr2vec embeddings achieve results inferior
to state-of-the-art solutions ii) There is no obvious way to perform online data augmentation on
shapes represented as INRs by directly altering their weights. In the future, we plan to investigate
these shortcomings as well as applying inr2vec to other input modalities like images, audio or
radiance fields. We will also investigate weight-space symmetries (Entezari et al., 2021) as a different
path to favour alignment of weights across INRs despite the randomness of training. We reckon that
our work may foster the adoption of INRs as a unified and standardized 3D representation, thereby
overcoming the current fragmentation of discrete 3D data and associated processing architectures.
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A INDIVIDUAL INRS VS. SHARED NETWORK FRAMEWORKS

In this section we aim at comparing the representation power of individual INRs (i.e., one network
for each data point) with the one of frameworks adopting a single shared network for the whole
dataset, like DeepSDF (Park et al., 2019), OccupancyNetworks (Mescheder et al., 2019) or (Dupont
et al., 2022). The important difference between such approaches and our method relies in the
fact that in shared network frameworks, the shared network and the set of latent codes are the
implicit representation, whose reconstruction quality is negatively affected by using a single network
to represent the whole dataset, as shown below. In our framework, instead, we decouple the
representations (INRs) from the embeddings used to process them in downstream tasks (yielded by
inr2vec). The quality of the representation is then entrusted to the individual INRs and inr2vec does
not influence it.

To compare the representation quality of individual INRs with the one of share network frameworks,
we fitted the SDF of the meshes in the Manifold40 dataset with OccupancyNetworks (Mescheder
et al., 2019), DeepSDF (Park et al., 2019) and LatentModulatedSiren (i.e., the architecture used
by the contemporary work that addresses deep learning on INRs (Dupont et al., 2022)). Then, we
reconstructed the training discrete meshes from the three frameworks and we compared them with
the ground-truth ones, performing the same comparison using the discrete shapes reconstructed from
individual INRs. To perform the comparison, we first reconstructed meshes and then we sampled
dense point clouds (16,384 points) from the reconstructed surfaces, doing the same for the ground-
truth meshes. We report the quantitative comparisons in Table 4, using two metrics: the Chamfer
Distance as defined in (Fan et al., 2017) and the F-Score as defined in (Tatarchenko et al., 2019).

Method train set
CD (mm) ↓ F-Score ↑

OccupancyNetworks 0.8 0.44
DeepSDF 11.1 0.14

LatentModulatedSiren 0.7 0.37
Individual INRs 0.3 0.50

(a) Train set.

Method test set
CD (mm) ↓ F-Score ↑

OccupancyNetworks 1.3 0.39
DeepSDF 6.6 0.25

LatentModulatedSiren 1.9 0.28
Individual INRs 0.3 0.49

(b) Test set.

Table 4: Individual INRs vs. shared network frameworks. Comparison between discrete meshes
reconstructed from individual INRs and from shared network frameworks on Manifold40.

The comparison reported in the Table 4a shows that both OccupancyNetworks and LatentModulated-
Siren cannot represent the shapes of the training set with a good fidelity, most likely because of the
single shared network that struggles to fit a big number of shapes with high variability (∼10K shapes,
40 classes). At the same time, DeepSDF obtains really poor scores, highlighting the difficulty of
training an auto-decoder framework on a large and varied dataset. Individual INRs, instead, produce
reconstructions with good quality, even if we adopted a fitting procedure with only 500 steps for each
shape.

Moreover, the approaches based on a conditioned shared network tend to fail in representing unseen
samples that are out of the training distribution. Hence, in the foreseen scenario where INRs become
a standard representation for 3D data hosted in public repositories, leveraging on a single shared
network may imply the need to frequently retrain the model upon uploading new samples which, in
turn, would change the embeddings of all the previously stored data. On the contrary, uploading the
repository with a new shape would not cause any sort of issue with individual INRs, where one learns
a network for each data point.

To better support our statements, in Table 4b we report the comparison between shape reconstructed
from OccupancyNetworks, DeepSDF, LatentModulatedSiren and individual INRs, using shapes
from the test set of Manifold40, i.e., shapes unseen at training time. The numbers show that both
OccupancyNetworks and LatentModulatedSiren present a drop in the quality of the reconstructions,
indicating that both frameworks struggle to represent new shapes not available at training time.
Surprisingly, DeepSDF produces better scores on the test set w.r.t. the results on the train set, but still
presenting a quite poor performance in comparison with the other methods. Conversely, the problem
of representing unseen shapes is inherently inexistent when adopting individual INRs, as shown by
the numbers in the last row of Table 4b, which are almost identical to the ones presented in Table 4a.
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GT Individual INRS OccNet DeepSDFLMS

Figure 10: Individual INRs vs. shared network frameworks (train shapes). Qualitative com-
parison of meshes from Manifold40 reconstructed from individual INRs or from shared network
frameworks, when dealing with training shapes. OccNet stands for OccupancyNetworks, LMS stands
for LatentModulatedSiren.

GT Individual INRS OccNet LMS DeepSDF

Figure 11: Individual INRs vs. shared network frameworks (test shapes). Qualitative comparison
of meshes from Manifold40 reconstructed from individual INRs or from shared network frameworks,
when dealing with shapes unseed during training. OccNet stands for OccupancyNetworks, LMS
stands for LatentModulatedSiren.
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We report in Fig. 10 and Fig. 11 the comparison described above from a qualitative perspective. It is
possible to observe that the visualizations confirm the results posted in Table 4, with shared network
frameworks struggling to represent properly the ground-truth shapes, while individual INRs enable
high fidelity reconstructions.

We believe that these results highlight that frameworks based on a single shared network cannot be
used as medium to represent shapes as INRs, because of their limited representation power when
dealing with large and varied datasets and because of their difficulty in representing new shapes not
available at training time.

B OBTAINING INRS FROM 3D DISCRETE REPRESENTATIONS

In this section, we detail the procedure used when fitting INRs to create the datasets used in this
work. Given a dataset of 3D shapes we train a set of the same number of MLPs, fitting each one on a
single 3D shape. Every MLP is thus trained to approximate a continuous function that describes the
represented shape, the nature of the function being chosen according to the discrete representation in
which the shape is provided. We adopt MLPs with multiple hidden layers of the same dimension as
done in (Sitzmann et al., 2020b;a; Dupont et al., 2021a; Strümpler et al., 2021; Zhang et al., 2021),
interleaved by the sine activation function, as proposed in (Sitzmann et al., 2020b), to enhance the
capability of the MLPs to fit the high frequency details of the input signal.

In its general formulation, an INR can be used to fit a continuous function f : Rin → Rout. To
do so, a training set composed of N points xi ∈ Rin with i = 1, 2, ..., N , paired with values
yi = f(xi) ∈ Rout, is exploited to find the optimal parameters θ∗ for the MLP that implements the
INR, by solving the optimization problem:

θ∗ = argmin
θ

1

N

N∑
i=1

ℓ(yi, fθ(xi)), (1)

where fθ represents the function f approximated by the MLP with parameters θ and ℓ is a loss
function that computes the error between predicted and ground-truth values.

The output value fθ(xi) is computed as a series of linear transformations, each one followed by a non-
linear activation function (i.e., the sine function in our case), except the last one. Considering a MLP
m, the mapping between its layers L−1 and L consists in a linear transformation that maps the values
hL−1
m ∈ RDL−1 from the layer L− 1 into the values hL

m = ϕ(WL
mhL−1

m + bL
m) ∈ RDL of the layer

L, with WL
m being the matrix of weights ∈ RDL×DL−1 , bL

m being the biases vector ∈ RDL , and ϕ(·)
the non-linearity (Sitzmann et al., 2020b). If we now consider M MLPs used to fit M different INRs
and the mapping between the layers L−1 and L, we can easily compute such mapping simultaneously
for all the MLPs on modern GPUs thanks to tensor programming frameworks. The mapping consists
indeed in a straightforward tensor contraction operation, where the values hL−1 ∈ RM×DL−1 of
the layer L − 1 are mapped to the values hL = WLhL−1 + bL ∈ RM×DL of the layer L, with
WL ∈ RM×DL×DL−1 and bL ∈ RM×DL . Extending this formulation to all the layers of the chosen
MLP architecture allows to fit multiple INRs in parallel.

In the following, we describe how we train MLPs to obtain INRs starting from point clouds, triangle
meshes and voxel grids.

Point clouds. The INR for a 3D shape represented by a point cloud P encodes the unsigned
distance function (udf ) of the point cloud P . Given a point p ∈ R3, the value udf(p) is defined
as minq∈P ∥p− q∥2, i.e., the euclidean distance from p to the closest point q of the point cloud.
After preparing a training set of N points xi ∈ R3 with i = 1, 2, ..., N , coupled with their udf values
yi ∈ R, the INR of the underlying 3D shape is obtained by training a MLP to regress correctly the
udf values, with the learning objective:

Lmse =
1

N

N∑
i=1

(yi − fθ(xi))
2, (2)

that consists in the mean squared error between ground-truth values yi and the predictions by the
MLP fθ(xi). An alternative objective is converting the udf values yi into values ybcei continuously
spanned in the range [0, 1], with 0 and 1 representing respectively the predefined maximum distance
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from the surface and the surface level set (i.e., distance equal to zero). Then, the MLP optimizes the
binary cross entropy between such labels and the predicted values, defined as:

Lbce = − 1

N

N∑
i=1

ybcei log(ŷi) + (1− ybcei )log(1− ŷi), (3)

where ŷi = σ(fθ(xi)), with σ representing the sigmoid function. In our experiments, we found
empirically that this second learning objective leads to faster convergence and more accurate INRs,
and we decided to adopt this formulation when producing INRs from point clouds.

Triangle meshes. Triangle meshes are usually adopted to represent closed surfaces. This provides
an additional information compared to the point clouds case, since the 3D space can be divided into
the portion contained inside and outside the closed surface. Thus, the INR of a closed 3D surface
represented by a triangle mesh can be obtained by fitting the signed distance function (sdf ) to the
surface defined by the mesh. Given a point p ∈ R3, the value sdf(p) is defined as the euclidean
distance from p to the closest point of the surface, with positive sign if p is outside the shape and
negative sign otherwise. Similarly to the point clouds case, an INR for a 3D shape represented by a
triangle mesh can be obtained by pursuing the learning objective presented in Eq. (2), using a training
set composed of 3D points paired with their sdf values. However, it possible to adopt a learning
objective based on the binary cross entropy loss reported in Eq. (3) also for triangle meshes, and we
empirically observed the same benefits. Hence, we adopt it also when fitting INRs on meshes. In this
case, the sdf values yi are converted into values ybcei ∈ [0, 1], with 0 and 1 representing respectively
the predefined maximum distance inside and outside the shape, i.e., 0.5 represents the surface level
set.

Voxel grids. A voxel grid is a 3D grid of V 3 cubes marked with label 1, if the cube is occupied, and
label 0 otherwise. In order to fit an INR on voxels, it is possible to learn to regress the occupancy
function (occ) of the grid itself. The training set, in this case, contains V 3 3D points that corresponds
to the centroids of the cubes that compose the voxel grid. Being each of such points xi associated
to a 0-1 label yi, it is straightforward to use a binary classification objective to train the MLP that
implement the desired INR. More specifically, we adopt the learning objective defined as:

Lfocal = − 1

N

N∑
i=1

α(1− ŷi)
γyilog(ŷi) + (1− α)ŷγi (1− yi)log(1− ŷi), (4)

where ŷi = σ(fθ(xi)), while α and γ are respectively the balancing parameter and the focusing
parameter of the focal loss proposed in (Lin et al., 2017). We deploy a focal loss to alleviate the
imbalance between the number of occupied and empty voxels.

C RECONSTRUCTING DISCRETE REPRESENTATIONS FROM INRS

In this section we discuss how it is possible to sample 3D discrete representations from INRs, which
could be necessary to process the underlying shapes with algorithms that need an explicit surface
(e.g., Computational Fluid Dynamics (Baque et al., 2018; Toal & Keane, 2011; Umetani & Bickel,
2018)) or simply for visualization purposes.

Point clouds from udf . To sample a dense point cloud from an INR fitted on its udf , we use a
slightly modified version of the algorithm proposed in (Chibane et al., 2020). The basic idea is to
query the udf with points scattered all over the considered portion of the 3D space, projecting such
points onto the isosurface according to the predicted udf values. In order to do that, let us define fθ
as the udf approximated by the INR with parameters θ. Given a point p ∈ R3, it can be projected
onto the isosurface by computing its updated position ps as:

ps = p− fθ(p) ·
∇pfθ(p)

∥∇pfθ(p)∥
. (5)

This can be intuitively understood by considering that the negative gradient of the udf indicates
the direction of maximum decrease of the distance from the surface, pointing towards the closest
point on it. Eq. (5), thus, can be interpreted as moving p along the direction of maximum decrease
of the udf of a quantity defined by the value of the udf itself in p, reaching the point ps on the
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surface. One must consider, though, that fθ is only an approximation of the real udf , which leads
to two considerations. On a first note, the gradient of fθ must be normalized (as done in Eq. (5)),
while the gradient of the real udf has norm equal to 1 everywhere except on the surface. Secondly,
the predicted udf value can be imprecise, implying that p can still be distant from the surface after
moving it according Eq. (5). To address the second issue, the 3D position of ps is refined repeating
the update described in Eq. (5) several times. Indeed, after each update, the point gets closer and
closer to the surface, where the values approximated by fθ are more accurate, implying that the last
updates should successfully place the point on the isosurface. Given an INR fitted on the udf of a
point cloud, the overall algorithm to sample a dense point cloud from it is composed of the following
steps. Firstly, we prepare a set of points scattered uniformly in the considered portion of the 3D space
and we predict their udf value with the given INR. Then we filter out points whose predicted udf is
greater than a fixed threshold (0.05 in our experiments). For the remaining points, we update their
coordinates iteratively with Eq. (5) (we found 5 updates to be enough). Finally, we repeat the whole
procedure until the reconstructed point cloud counts the desired number of points.

Triangle meshes from sdf . An INR fitted on the sdf computed from a triangle mesh allows to
reconstruct the mesh by means of the Marching Cubes algorithm (Lorensen & Cline, 1987). We refer
the reader to the original paper for a detailed description of the method, but we report here a short
presentation of the main steps, for the sake of completeness. Marching Cubes explores the considered
3D space by querying the sdf with 8 locations at a time, that are the vertices of an arbitrarily small
imaginary cube. The whole procedure involves marching from one cube to the other, until the whole
desired portion of the 3D space has been covered. For each cube, the algorithm determines the
triangles needed to model the portion of the isosurface that passes through it. Then, the triangles
defined for all the cubes are fused together to obtain the reconstructed surface. In order to determine
how many triangles are needed for a single cube and how to place them, for each pair of neighbouring
vertices of the cube, their sdf values are computed and one triangle vertex is placed between them if
such values have opposite sign. Considering that the number of possible combinations of the sdf
signs at the cube vertices is limited, it is possible to build a look-up table to retrieve the triangles
configuration for the cube starting from the sdf signs at its eight vertices, combined in a 8-bit integer
and used as key for the look-up table. After the triangles configuration for a cube has been retrieved,
the vertices of the triangles are placed on the edges connecting the cube vertices, computing their
exact position by linearly interpolating the two sdf values that are connected by each edge.

Voxel grids from occ. In order to reconstruct voxel grids from INRs, we adopt a straightforward
procedure. Each INR has been trained to predict the probability of a certain voxel to be occupied,
when queried with the 3D coordinates of the voxel centroid. Thus, a first step to reconstruct the fitted
voxels consists in creating a grid of the desired resolution V . Then, the INR is queried with the V 3

centroids of the grid and predicts an occupancy probability for each of them. Finally, we consider
as occupied only voxels whose predicted probability is greater than a fixed threshold, which we set
to 0.4, as we found empirically that it allows for a good trade-off between scattered and over-filled
reconstructions.

D inr2vec ENCODER AND DECODER ARCHITECTURES

In this section, we describe the architecture of inr2vec encoder, along with the one of the implicit
decoder used to train it (see Section 3).

Encoder. inr2vec encoder, detailed in Fig. 12, consists in a series of linear transformations, that
maps the input INR weights into features with higher dimensionality, before applying max pooling
to obtain a compact embedding. More specifically, the input weights are rearranged in a matrix
with shape L(H + 1)×H , where H is the number of nodes in the hidden layers of the MLP that
implements the input INR and L is the number of linear transformations between such hidden layers
(i.e., the MLP has L+ 1 hidden layers). The matrix is obtained by stacking L matrices (one for each
linear transformation), each one with shape (H + 1)×H , being composed of a matrix of weights
with shape H ×H and a row of H biases. In our setting, each MLP has 4 hidden layers with 512
nodes: the final matrix in input to inr2vec encoder has shape 3 · (512+1)×512 = 1539×512. In
the current implementation, the four linear mappings of the encoder transform each row of the input
matrix into features with size 512, 512, 1024 and 1024, obtaining, at each step, features matrices
with shape 1539 × 512, 1539 × 512, 1539 × 1024 and 1539 × 1024. Finally, the encoder applies
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Figure 12: inr2vec encoder. With a series of linear transformations and a final column-wise max
pooling, the encoder maps the input weights matrix into a compact embedding. LIN/BN/ReLU stands
for a linear transformation, followed by batch normalization and ReLU activation function.

Figure 13: inr2vec decoder. Our framework is trained with an implicit decoder, that maps an
INR embedding concatenated with a 3D query into the value of the implicit function at the query
coordinates.

column-wise max pooling to compress the final matrix into a single compact embedding composed
of 1024 values. Between the linear mappings of the encoder, we adopt 1D batch normalization and
ReLU activation functions.

Decoder. The implicit decoder that we adopt to train inr2vec is presented in Fig. 13. We designed
it taking inspiration from (Park et al., 2019), since we need a decoder capable of reproducing the
implicit function of input INR when conditioned on the embedding obtained by the encoder. Thus,
the decoder takes in input the concatenation of the INR embedding with the coordinates of a given
3D query. We adopt the positional encoding proposed in (Mildenhall et al., 2020) to embed the input
3D coordinates into a higher dimensional space to enhance the capability of the decoder to capture
the high frequency variations of the input data. The query 3D coordinates are mapped into 63 values
that, concatenated with the 1024 values that compose the INR embedding, result in a vector with
1087 values as input for inr2vec decoder. Internally, the implicit decoder is composed of 4 hidden
layers with 512 nodes and of a skip connection that projects the input 1087 values into a vector of
512 elements, that are summed to the features of the second hidden layer before being fed to the
transformation that bridges the second and the third hidden layers. Finally, the features of the last
hidden layer are mapped to a single output, which is compared to the ground-truth associated with
the input 3D query to compute the loss. Each linear transformation of the decoder, except the output
one, is paired with the ReLU activation function.

E MOTIVATION BEHIND inr2vec ENCODER DESIGN

We designed inr2vec encoder with the goal of obtaining a good scalability in terms of memory
occupation. Indeed, a naive solution to process the weights of an input INR would consist in an
MLP encoder mapping the flattened vector of weights to the embedding of the desired dimension.
However, such approach would require a huge amount of memory resources, since an input INR of 4
layers of 512 neurons would have approximately 800K parameters. Thus, an MLP encoder going
from 800K parameters to an embedding space of size 1024 would already have a totality of ∼800M
parameters. We report in Table 5 a detailed analysis of the parameters of our encoder w.r.t. the ones
of an MLP encoder by varying the input INR dimension. As we can notice the MLP encoder does
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INR hidden dim. INR #layers INR #params #params inr2vec encoder #params MLP encoder
512 4 ∼800K ∼3M ∼800M
512 8 ∼2M ∼3M ∼2B
512 12 ∼3M ∼3M ∼3B
512 16 ∼4M ∼3M ∼4B

1024 4 ∼3M ∼3.5M ∼3B
1024 8 ∼7M ∼3.5M ∼7.5B
1024 12 ∼11M ∼3.5M ∼12B
1024 16 ∼15M ∼3.5M ∼16B

Table 5: Number of parameters of inr2vec encoder. Comparison between the number of
parameters of inr2vec encoder and the number of parameters of a generic MLP encoder.

not scale well, making this kind of approach very expensive in practice, while inr2vec encoder
scales gracefully to bigger input INRs.

F EXPERIMENTAL SETTINGS

We report here a detailed description of the settings adopted in our experiments.

INRs fitting. In every experiment reported in the paper, we fit INRs on 3D discrete representations
using MLPs having 4 hidden layers with 512 nodes each. We implement MLPs using sine as a
periodic activation function, as proposed in (Sitzmann et al., 2020b). The procedure adopted to fit a
single MLP consists in querying it with 3D points sampled properly in the space surrounding the
underlying shape. The MLP predicts a value for each query and it’s trained by computing a loss
function between the predicted value and the ground-truth value of the fitted implicit function (i.e.,
udf for point clouds, sdf for meshes and occ for voxels). The set of training queries is prepared
according to different strategies, depending on the nature of the discrete representation being fitted.
For voxel grids, the set of possible queries consists of the 3D coordinates of all the centroids of
the grid. For point clouds and meshes, instead, queries are sampled with different densities in the
volume containing the fitted shape: indeed, for each shape, we prepare 500K queries by taking 250K
points close to the surface, 200K points at a medium-far distance for the surface, 25K far from the
surface and other 25K scattered uniformly in the volume. The queries coordinates are computed by
adding gaussian noise to the points of the fitted point cloud or to points sampled uniformly from
the fitted mesh surface. More precisely, close queries are computed with noise sampled from the
normal distribution N (0, 0.001), medium-far queries with noise from N (0, 0.01), far queries with
noise from N (0, 0.1). The uniformly scattered queries are just computed by sampling each of their
coordinates from the uniform distribution U(−1, 1), being the considered shapes normalized in such
volume. As for the ground-truth values, for voxels they consist simply in the occupied/empty label
of the voxel associated to the query. For point clouds, for each query we compute its udf value by
building a KDTree on the fitted point cloud and looking for the closest point to the considered query
(we used the PyTorch3D (Ravi et al., 2020) implementation of the KDTree algorithm). For meshes,
finally, we compute the sdf of queries with the functions provided in the Open3D library (Zhou et al.,
2018)1. For each of the considered modalities, at each step of the fitting procedure, we randomly
sample 10K pairs of queries/ground-truth values from the precomputed ones, performing a total of
500 steps for each shape. Thanks to the procedure detailed in Appendix B, we are able to fit up to
16 multiple MLPs in parallel, using Adam optimizer (Kingma & Ba, 2014) with learning rate set to
1e-4. On a final note, we fixed the weights initialization of the MLPs to be always the same, as we
observed empirically this to be key to convergence of inr2vec. This choice poses no limitation to
the practical use of our framework and has also been adopted in recent works (Gropp et al., 2020;
Sitzmann et al., 2020a).

inr2vec training. According to what is described in Section 3, during training our framework
takes in input the weights of a given INR and is asked to reproduce the implicit function fitted by the
INR on a set of predefined 3D queries. Such queries are prepared with the same strategies described
in the previous paragraph and, similarly to what is done while fitting INRs, at each step the training
loss for inr2vec is computed on 10K queries randomly sampled from a set of precomputed ones. In
every experiment, we train inr2vec with AdamW optimizer (Loshchilov & Hutter, 2017), learning
rate 1e-4 and weight decay 1e-2 for 300 epochs, one epoch corresponding to processing all the INRs

1http://www.open3d.org/docs/latest/tutorial/geometry/distance_queries.
html
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Figure 14: Part segmentation decoder. We train a decoder to predict the part segmentation label of
a given 3D query when conditioned on the embedding of the input INR and on the one-hot encoding
of the INR class.

that compose the considered dataset, processing at each training step a mini-batch of 16 INRs. During
training, we select the best model by evaluating its reconstruction capability on a validation set of
INRs. When training on INRs obtained from point clouds, we compare the ground-truth set of points
with the ones reconstructed by inr2vec decoder. For voxels, we compare the input and the output
grid by comparing the point clouds composed by the centroids corresponding to occupied voxels. As
for what concerns meshes, we compare the clouds containing input and output vertices. In all cases,
the reconstruction quality is evaluated by computing the Chamfer Distance between ground-truth and
output point clouds, as defined in (Fan et al., 2017). See Appendix C of this document for details
on how to sample discrete 3D representations from the implicit functions fitted by INRs and that
inr2vec is trained to reproduce.

Shape classification. The classifier that we deploy on inr2vec embeddings is composed of three
linear transformations, mapping sequentially the input embedding with 1024 features to vectors of
size 512, 256 and, finally, to a vector with a number of values corresponding to the number of classes
of the considered dataset. The final vector is then transformed to a probability distribution with the
softmax function. We use 1D batch normalization and the ReLU activation function between the
classifier linear transformations. In all experiments, the classifier is trained for 150 epochs, with
AdamW optimizer (Loshchilov & Hutter, 2017) and weight decay 1e-2. The learning rate is scheduled
according to the OneCycle strategy (Smith & Topin, 2019), with maximum learning rate set to 1e-4.
At each training step, the classifier processes a mini-batch counting 256 embeddings. During training,
we select the best model by computing the classification accuracy on a validation set of embeddings.
The best model is used after training to compute the classification accuracy on the test set, obtaining
the numbers reported in the tables of the paper.

Point cloud part segmentation. In order to tackle point cloud part segmentation starting from
inr2vec embeddings, we adopt a decoder similar to the one that we use for reconstruction during
inr2vec training. The part segmentation decoder, depicted in Fig. 14, is fed with the positional
encoding of a 3D query together with the embedding of an input INR and predicts a K-dimensional
vector of segmentation logits for the given query, with K representing the total number of parts of
all the C available categories. Moreover, as done in previous work (Qi et al., 2017a;b; Wang et al.,
2019b), we concatenate an additional C-dimensional vector to the input of the part segmentation
decoder, conditioning the output of our decoder with the one-hot encoding of the input INR class. We
conduct our experiments on the ShapeNet Part Segmentation dataset (Yi et al., 2016), that presents
16 categories labeled with two to five parts, for a total of 50 parts (i.e., C=16 and K=50). According
to a standard protocol (Qi et al., 2017a;b; Wang et al., 2019b), during training we compute the
cross-entropy loss function on all the K logits predicted by our decoder, while, at test time, the final
prediction is obtained considering only the subset of parts belonging to the specific class of the input
INR. The part segmentation decoder is trained with the original point clouds available in the ShapeNet

24



Published as a conference paper at ICLR 2023

Part Segmentation dataset, where part labels are provided for each point of each cloud. At test time,
though, we test both our decoder and the considered competitors on the point clouds reconstructed
from the input INRs, since we want to simulate the scenario of 3D shapes being available exclusively
in the form of INRs. Thus, the protocol to obtain a segmented point cloud starting from an input INR
consists in reconstructing the cloud first (see Appendix C) and then in assigning a part label to each
point of the reconstructed shape with our part segmentation decoder. When ground-truth labels are
required to compute quantitative results, we obtain them by comparing the reconstructed cloud with
the original one and assigning to each point of the reconstructed shape the part label of the closest
point in the original cloud. Our part segmentation decoder is trained for 250 epochs with AdamW
optimizer, OneCycle learning rate scheduling with maximum value set to 1e-4, weight decay equal
to 1e-2 and mini-batches composed of 256 embeddings, each one paired with 3D queries from the
original point clouds during training and from the ones reconstructed from the input INRs at test time.
During training, we compute the class mIoU on the validation split and save the best model in order
to compute the final metrics on the test set.

Shape generation. We perform unconditional shape generation by training Latent-GAN (Achlioptas
et al., 2018) to generate embeddings indistinguishable from the ones produced by inr2vec on
a given dataset. This approach allows us to train a shape generation framework with the very
same architecture to generate embeddings representing INRs with different underlying implicit
functions, such as udf for the point clouds of ShapeNet10 and sdf for the models of cars provided by
(Mescheder et al., 2019). We conducted our experiments using the official implementation2, setting all
the hyperparameters to default. The generator network is implemented as a fully connected network
with two layers and ReLU non linearity, that map an input noise vector with 128 values sampled
from the normal distribution N (0, 0.2) to an intermediate hidden vector of the same dimension and
then to the predicted embedding with 1024 values (we removed the final ReLU present in the original
implementation). The discriminator is also a fully connected network, with three layers and ReLU
non linearity. The first layer maps the embedding produced by the generator to a hidden vector with
256 values, which are then transformed by the second layer into a hidden vector with 512 values,
that are finally used by the third layer, together with the sigmoid function, to predict the final score.
According to the original implementation, we trained one separate Latent-GAN for each class of the
considered datasets, using the Wasserstein objective with gradient penalty proposed in (Gulrajani
et al., 2017) and training each model for 2000 epochs.

Learning a mapping between inr2vec embedding spaces. The transfer function between
inr2vec embedding spaces is implemented as a simple fully connected network, with 8 linear
layers interleaved by 1D batch norm and ReLU activation functions. All the hidden features produced
by the linear transformations present the same dimension of the input embedding, i.e., 1024 values.
The final linear layer predicts the output embedding, which is compared with the target one with
a standard L2 loss. We train the transfer network with AdamW optimizer, constant learning rate
and weight decay both set to 1e-4, stopping the training upon convergence, which we measure by
comparing the shapes reconstructed by the predicted embeddings with the ground-truth ones on a
predetermined validation split. Such validation metrics are used also to save the best model during
training, which is finally evaluated on the test set.

G IMPLEMENTATION, HARDWARE AND TIMINGS

We implemented our framework with the PyTorch library, performing all the experiments on a single
NVIDIA 3090 RTX GPU. We created an augmented version of each considered dataset, in order
to obtain roughly ∼100K INRs, whose fitting requires around 4 days in the current implementa-
tion. Training inr2vec requires another 48 hours, while all the networks adopted to perform the
downstream tasks on inr2vec embeddings can be trained in few hours.

H TESTING ON ORIGINAL DISCRETE 3D REPRESENTATIONS

In the experiments “Shape classification” and “Point cloud part segmentation” presented in the
paper, we evaluated the competitors on the 3D discrete representations reconstructed from the INRs
fitted on the test sets of the considered datasets, since these would be the only data available at test

2https://github.com/optas/latent_3d_points
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Point Cloud Mesh Voxels
Method ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

PointNet (Qi et al., 2017a) 88.8 94.7 72.8 – –
PointNet++ (Qi et al., 2017b) 91.0 95.2 76.3 – –
DGCNN (Wang et al., 2019b) 91.6 94.0 75.1 – –

MeshWalker (Lahav & Tal, 2020) – – – 90.6 –
Conv3DNet (Maturana & Scherer, 2015) – – – – 92.5

inr2vec 87.0 93.3 72.1 86.3 93.0

Table 6: Shape classification results. We report here shape classification results when testing on the
original discrete representations of the test sets instead of reconstructing them from the input INRs.
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PointNet (Qi et al., 2017a) 83.0 78.8 80.5 77.9 78.3 74.4 89.0 68.3 90.1 82.2 80.7 94.7 63.1 91.7 79.3 58.2 72.7 81.0
PointNet++ (Qi et al., 2017b) 84.4 82.8 81.7 86.5 85.2 78.6 90.2 77.9 91.2 84.4 83.2 95.4 72.0 94.6 83.3 64.2 75.6 80.9
DGCNN (Wang et al., 2019b) 84.3 81.4 81.6 82.2 80.9 75.7 90.7 80.9 90.2 86.9 82.6 94.8 64.8 92.8 81.0 60.6 74.7 81.8

inr2vec 80.5 71.1 79.5 72.9 72.3 70.7 87.4 64.1 89.4 81.6 76.5 94.5 59.3 92.4 78.4 53.5 67.5 77.3

Table 7: Part segmentation results. In this table we present part segmentation results when testing
on the original discrete representations of the test sets instead of reconstructing them from the input
INRs. We report the IoU for each class, the mean IoU over all the classes (class mIoU) and the mean
IoU over all the instances (instance mIoU).

time in a scenario where INRs are used to store and communicate 3D data. For completeness, we
report here the scores achieved by the baselines when tested on the original discrete representations,
without reconstructing them from the input INRs. Such results are presented in Table 6 for shape
classification and in Table 7 for part segmentation. We report in the tables also the results obtained
with our framework: they are the same reported in Table 2 for what concerns shape classification,
since our classifier processes exclusively inr2vec embeddings, while they are different for part
segmentation, as we use as query points for our segmentation decoder those from the discrete point
clouds reconstructed from input INRs in Table 3 while we use those from the original point clouds in
the experiment reported here, as done for the competitors. The results reported in the tables show
limited differences, either positive or negative, with the ones presented in Section 4, mostly within the
range of variations due to the inherent stochasticity of training. There are few larger differences, like
DGCNN on ModelNet40 (+1.7 when tested on the original discrete representations) or on ScanNet
(-1.1 when tested on the original discrete representations), whose difference in sign however suggests
neither of the two settings is clearly superior to the other.

I ALTERNATIVE ARCHITECTURE FOR inr2vec

As reported in Section 3, inr2vec encoder takes in input the weights of an INR reshaped in a
suitable way, discarding the parameters of the first and of the last layers. In this section we consider
the possibility of processing all the weights of the input INR, including the input/output ones. To this
end, one must properly arrange the input/output parameters since they feature different dimensionality
from the ones of the hidden layers and cannot be seamlessly stacked together with them. More
specifically, the first layer of an INR consists in a matrix of weights Win ∈ RH×D and in a vector
of biases bin ∈ RH×1, with H being the dimension of the hidden features of the INR and D being
the dimension of the inputs (i.e., 3 in our case of 3D coordinates). The output layer, instead, is
responsible of transforming the final vector of hidden features to the predicted output, which is
always a single value in the cases considered in our experiments (i.e., udf , sdf and occ). Thus, the
last layer presents a matrix of weights Wout ∈ R1×H and single bias bout. In order to include the
input/output parameters in the matrix P presented in input to inr2vec encoder (see Section 3),

Architecture F-Score ↑ CD (mm) ↓
hidden layers 57.41 3.1

all layers 56.76 3.1

Table 8: Quantitative comparison between alternative inr2vec architectures. We compare
the reconstruction capability of inr2vec when processing only the weights of the hidden layers
(“hidden layers”) or all the weights (“all layers”) of the input INRs.
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Figure 15: Qualitative comparison between alternative inr2vec architectures. We compare
the reconstruction capability of inr2vec when processing only the weights of the hidden layers
(“hidden layers”) or all the weights (“all layers”) of the input INRs.

Win needs to be transposed, obtaining a matrix with shape 3×H , bin is transposed as done also
for the biases of all the other layers, Wout doesn’t need any manipulation and we decided to repeat
the single-valued bout H times. In this section, we compare the formulation presented in Section 3
(reported as “hidden layers”) with the one proposed here (reported as “all layers”), looking at the
reconstruction capabilities of the two variants of our framework when trained on ModelNet40. In
Table 8, we report both the F-score (Tatarchenko et al., 2019) and the Chamfer Distance (CD) (Fan
et al., 2017) between the clouds used to obtain the INRs presented in input to inr2vec and the
ones reconstructed from inr2vec embeddings, while in Fig. 15 we show the same comparison
from a qualitative perspective. Results show that processing all the INR weights doesn’t produce
any significant difference w.r.t. ingesting only the weights of the hidden layers. However, the latter
variant provides a slight advantage in terms of F-score, simplicity and processing time, motivating
our choice to adopt it as formulation for inr2vec.

J ADDITIONAL QUALITITATIVE RESULTS

We report here additional qualitative results. In Fig. 16, Fig. 17 and Fig. 18 we show some com-
parisons between the discrete shapes reconstructed from input INRs and the ones reconstructed
from inr2vec embeddings. Fig. 19, Fig. 20 and Fig. 21 present smooth interpolations between
inr2vec embeddings. In Fig. 22 and Fig. 23 we propose additional qualitative results for the point
cloud retrieval experiments. Fig. 24 shows qualitative results for point cloud part segmentation for all
the classes of the ShapeNet Part Segmentation dataset. Fig. 25, Fig. 26 and Fig. 27 report shapes
generated with Latent-GANs (Achlioptas et al., 2018) trained on inr2vec embeddings. Finally,
Fig. 28 and Fig. 29 present additional qualitative results for the experiments of point cloud completion
and surface reconstruction, tackled by learning a mapping between inr2vec latent spaces.
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Figure 16: inr2vec reconstructions when dealing with INRs fitted on point clouds. Comparison
between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT INR”)
and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).
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Figure 17: inr2vec reconstructions when dealing with INRs fitted on meshes. Comparison
between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT INR”)
and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).
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Figure 18: inr2vec reconstructions when dealing with INRs fitted on voxel grids. Comparison
between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT INR”)
and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

0 1interpolation factor

Figure 19: inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
INRs fitted on point clouds, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.
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0 1interpolation factor

Figure 20: inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
INRs fitted on meshes, it is possible to linearly interpolate between them, producing new embeddings
that represent unseen INRs of plausible shapes.

0 1interpolation factor

Figure 21: inr2vec latent space interpolation. Given two inr2vec embeddings obtained
from INRs fitted on voxel grids, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

30



Published as a conference paper at ICLR 2023

1-NNQUERY 2-NN 3-NN 4-NN

Figure 22: Point cloud retrieval (ModelNet40). Qualitative results of the point cloud retrieval
experiment conducted on inr2vec latent space. We show the discrete shape reconstructed from the
query INR on the left and the discrete clouds reconstructed from the closest inr2vec embeddings
in the columns 2-5.

1-NNQUERY 2-NN 3-NN 4-NN

Figure 23: Point cloud retrieval (ShapeNet10). Qualitative results of the point cloud retrieval
experiment conducted on inr2vec latent space. We show the discrete shape reconstructed from the
query INR on the left and the discrete clouds reconstructed from the closest inr2vec embeddings
in the columns 2-5.
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Figure 24: Point cloud part segmentation. Qualitative results of the part segmentation experiment
conducted with our segmentation decoder conditioned on inr2vec embeddings.
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Figure 25: Shape generation (point clouds). We show point clouds reconstructed from embeddings
generated by a Latent-GAN trained on inr2vec embeddings (one model for each class).
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Figure 26: Shape generation (point clouds). We show point clouds reconstructed from embeddings
generated by a Latent-GAN trained on inr2vec embeddings (one model for each class).

Figure 27: Shape generation (meshes). We show meshes reconstructed from embeddings generated
by a Latent-GAN trained on inr2vec embeddings.
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Figure 28: Point cloud completion. Qualitative results of the point cloud completion experiment
conducted with a transfer network that learns a mapping between inr2vec latent spaces.

Figure 29: Surface reconstruction. Qualitative results of the surface reconstruction experiment
conducted with a transfer network that learns a mapping between inr2vec latent spaces.

K EFFECTIVENESS OF USING THE SAME INITIALIZATION FOR INRS

The need to align the multitude of INRs that can approximate a given shape is a challenging research
problem that has to be dealt with when using INRs as input data. We empirically found that fixing
the weights initialization to a shared random vector across INRs is a viable and simple solution to
this problem.

We report here an experiment to assess if order of data, or other sources of randomness arising while
fitting INRs, do affect the repeatability of the embeddings computed by inr2vec. We fitted 10
INRs on the same discrete shape for 4 different chairs, i.e., 40 INRs in total. Then, we embed all
of them with the pretrained inr2vec encoder and compute the L2 distance between all pairs of
embeddings. The block structure of the resulting distance matrix (see Fig. 30) highlights how, under
the assumption of shared initialization and hyperparameters, inr2vec is repeatable across multiple
fittings.

Seeking for a proof with a stronger theoretical foundation, we turn our attention to the recent work
git re-basin (Ainsworth et al., 2022), where authors show that the loss landscape of neural networks
contain (nearly) a single basin after accounting for all possible permutation symmetries of hidden
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Figure 30: L2 distances between inr2vec embeddings. For each shape, we fit 10 INRs starting
from the same weights initialization (40 INRs in total). Then we plot the L2 distances between the
embeddings obtained by inr2vec for such INRs.
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Figure 31: Linear mode connectivity study. Each plot shows variation of the loss function over the
same batch of points when interpolating between two INRs representing the same shape. The red line
describes the interpolation between INRs initialized differently, while the blue line shows the same
interpolation between INRs initialized from the same random vector. The yellow stars represent the
loss value of the boundary INRs.

units. The intuition behind this finding is that, given two neural networks that were trained with
equivalent architectures but different random initializations, data orders, and potentially different
hyperparameters or datasets, it is possible to find a permutation of the networks weights such that
when linearly interpolating between their weights, all intermediate models enjoy performance similar
to them – a phenomenon denoted as linear mode connectivity.

Intrigued by this finding, we conducted a study to assess whether initializing INRs with the same
random vector, which we found to be key to inr2vec convergence, also leads to linear mode
connectivity. Thus, given one shape, we fitted it with two different INRs and then we interpolated
linearly their weights, observing at each interpolation step the loss value obtained by the interpolated
INR on the same batch of points. For each shape, we repeated the experiment twice, once initializing
the INRs with different random vectors and once initializing them with the same random vector.

The results of this experiment are reported for four different shapes in Fig. 31. It is possible to note
that, as shown by the blue curves, when interpolating between INRs obtained from the same weights
initialization, the loss value at each interpolation step is nearly identical to those of the boundary
INRs. On the contrary, the red curves highlight how there is no linear mode connectivity at all
between INRs obtained from different weights initializations.

(Ainsworth et al., 2022) propose also different algorithms to estimate the permutation needed to obtain
linear mode connectivity between two networks. We applied the algorithm proposed in their paper in
Section 3.2 (Matching Weights) to our INRs and observed the resulting permutations. Remarkably,
when applied to INRs obtained from the same weights initialization, the retrieved permutations are
identity matrices, both when the target INRs represent the same shape and when they represent
different ones. The permutations obtained for INRs obtained from different initializations, instead,
are far from being identity matrices.

All these results favor the hypothesis that our technique of initializing INRs with the same random
vector leads to linear mode connectivity between different INRs. We believe that the possibility of
performing meaningful linear interpolation between the weights occupying the same positions across
different INRs can be interpreted by considering corresponding weights as carrying out the same role
in terms of feature detection units, explaining why the inr2vec encoder succeeds in processing the
weights of our INRs.

This intuition can be also combined with the finding of another recent work (Yüce et al., 2022), that
shows how the expressive power of SIRENs is restricted to functions that can be expressed as a
linear combination of certain harmonics of the first layer, which thus serves as basis for the range of
learnable functions.

As stated above, the evidence of linear mode connectivity between INRs obtained from the same
initialization leads us to believe that the weights of the first layer extract the same features across
different INRs. Thus, we can think of using the same random initialization as a way to obtain the
same basis of harmonics for all our INRs. We argue that this explains why it is possible to remove the
first layer of the INRs presented in input to inr2vec (as empirically proved in Appendix I): if the
basis is always the same, it is sufficient to process the layers from the second onwards, that represent
the coefficients of the basis harmonics combination, as described in (Yüce et al., 2022).
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(a) ModelNet40 (point clouds) (b) Manifold40 (meshes) (c) ShapeNet10 (voxels)

Figure 32: t-SNE visualizations of inr2vec latent spaces. We plot the t-SNE components of the
embeddings produced by inr2vec on the test sets of three datasets, ModelNet40 (left), Manifold40
(center) and Shapenet10 (right). Colors represent the different classes of the datasets.

L T-SNE VISUALIZATION OF inr2vec LATENT SPACE

We provide in Fig. 32 the t-SNE visualization of the embeddings produced by inr2vec when
presented with the test set INRs of three different datasets. Fig. 32a shows this visualization for
INRs representing the point clouds from ModelNet40, Fig. 32b for INRs representing meshes from
Manifold 40, and Fig. 32c for INRs obtained from the voxelized shapes in ShapeNet10.

The supervision signal adopted during the training of our framework does not entail any kind of
constraints w.r.t. the organization of the learned latent space. Indeed, this was not necessary for
our ultimate goal – i.e., performing downstream tasks on the produced embeddings. However,
it is interesting to observe from the t-SNE plots that inr2vec favors spontaneously a semantic
arrangement of the embeddings in the learned latent space, with INRs representing objects of the
same category being mapped into close positions – as shown by the colors representing the different
classes of the considered datasets.

M ABLATION ON INRS SIZE

Fig. 33 reports a study that we conducted to determine the size of the INRs adopted throughout our
experiments. More specifically, we considered three alternatives of SIREN, all featuring 4 hidden
layers but different number of hidden features, namely 128, 256 and 512 respectively.

In the figure we show how the three SIREN variants perform in terms of being able of representing
properly the underlying signal, which in this example is the orange plane on the left. Since we
needed to create datasets comprising a huge number of INRs, we considered both the quality of the
representation as well as the number of steps of the fitting procedure, with the goal of finding the best
trade-off between quality and fitting time.

The results presented in the figure highlight how a SIREN with 512 hidden features can learn to
represent properly the input shape in just 600 steps, while the other variants either take longer (as
in the case of 256 hidden features) or not obtain at all the same quality (when using 128 hidden
features).

This experiment enabled us to draw the conclusion that a SIREN with 4 hidden layers and 512 hidden
features is the proper tool to obtain a good quality INR in short time.

N SHAPE RETRIEVAL AND CLASSIFICATION ON DEEPSDF LATENT CODES

In Appendix A we show that frameworks that adopt a shared network to produce INRs struggle to
obtain a good representation quality, while individual INRs do not suffer of this problem by design.
In this section we goes one step further and consider the possibility of peforming downstream tasks
on the latent codes produced by DeepSDF (Park et al., 2019).
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Figure 33: Comparison between different hidden sizes for INRs. We report the fitting steps needed
to obtain a good representation for INRs featuring different number of hidden features.

ModelNet40
Method mAP@1 mAP@5 mAP@10

PointNet (Qi et al., 2017a) 80.1 91.7 94.4
PointNet++ (Qi et al., 2017b) 85.1 93.9 96.0
DGCNN (Wang et al., 2019b) 83.2 92.7 95.1

inr2vec 81.7 92.6 95.1
DeepSDF 69.8 85.4 89.8

ModelNet40
Method Accuracy

PointNet (Qi et al., 2017a) 88.8
PointNet++ (Qi et al., 2017b) 89.7
DGCNN (Wang et al., 2019b) 89.9

inr2vec 87.0
DeepSDF 64.9

Table 9: Comparison between inr2vec and DeepSDF. We report results in shape retrieval (left)
and shape classification (right) when using standard baselines, inr2vec embeddings or DeepSDF
latent codes.

In particular, we trained DeepSDF to fit the UDFs of our augmented version of ModelNet40,
composed of ∼100K point clouds. For a fair comparison, we set the dimension of DeepSDF latent
codes to 1024 – i.e., the same used for inr2vec embeddings. Then we performed the experiments
of shape retrieval and classification using DeepSDF latent codes, with the same settings presented in
Section 4 for our framework.

The results reported in Table 9 highlight that the poor representation quality obtained with DeepSDF
– and shown to be an intrinsic problem with shared network frameworks in Appendix A – has a
detrimental effect on the quantitative results, proving once again that INR frameworks based on a
shared network cannot be deployed as tool to obtain and process INRs effectively.

O SHAPE GENERATION: ADDITIONAL COMPARISON

In Fig. 8b we show a qualitative comparison between shapes generated with our framework (Section 4
- Learning a mapping between inr2vec embedding spaces.) and with competing methods, i.e.,
SP-GAN (Li et al., 2021) for point clouds and OccupancyNetworks (Mescheder et al., 2019) for
meshes.

In Fig. 34 we extend this comparison, by presenting samples obtained with our formulation applied
to the voxelized chairs of ShapeNet10 and comparing them with samples produced by two additional
methods that learn a manifold of individual INRs, namely GEM (Du et al., 2021) and GASP (Dupont
et al., 2021b), for which we used the original source code released by the authors. To generate the
figure, despite the sampled shapes being voxel grids, we adopt the same procedure used by GEM and
GASP and reconstruct meshes by applying Marching Cubes to extract the 0.5 isosurface.

Fig. 34 show that all the considered methods can generate samples with a good variety in terms
of geometry. However, it is possible to observe how the qualitative comparison favors the shape
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Figure 34: Shape generation: qualitative comparison. We show samples generated with GEM (Du
et al., 2021), GASP (Dupont et al., 2021b) and with our method.

generated with inr2vec, that appear smoother than the ones generated by GASP and less noisy
that the samples produced by GEM.

P INR CLASSIFICATION TIME: EXTENDED ANALYSIS

We report here the extended analysis of the inference times reported in Fig. 6, where we present
the classification inference time needed to process udf INRs by standard point cloud baselines –
PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b) and DGCNN (Wang et al., 2019b) – and by
inr2vec encoder paired with the fully-connected network that we adopt to classify the embeddings
(see Section 4).

The scenario that we had in mind while designing inr2vec is the one where INRs are the only
medium to represent 3D shapes, with discrete point clouds not being available. Thus, in Fig. 6
for PointNet, PointNet++ and DGCNN we report the inference time including the time spent to
reconstruct the discrete cloud from the input INR. In Fig. 35 and Table 10, for the sake of completeness,
we report also the baselines inference times assuming the availability of discrete point clouds, stressing
however that this is unlikely if INRs become a standalone format to represent 3D shapes.

The numbers plotted in Fig. 35 and reported in Table 10 show clearly that our framework presents a
big advantage w.r.t. the competitors. Indeed, by processing directly INRs – where the resolution of
the underlying signal is theoretically infinite – inr2vec can classify INRs representing point clouds
with different number of points with a constant inference time of 0.001 seconds.

The considered baselines, instead, are negatively affected by the increasing resolution of the input
point clouds. While the inference time of PointNet and PointNet++ is still affordable even when
processing 64K points, DGCNN gets drastically slow already at 16K points. Furthermore, if point
clouds need to be reconstructed from the input INRs, the resulting inference time become prohibitive
for all the three baselines.
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Figure 35: Time required to classify INRs encoding udf . We plot the inference time of standard
baselines and of our method, both considering the case in which discrete point clouds are available
(left) and the one where point clouds must be reconstructed from the input INRs (right).

Inference Time (seconds)
Method 2048 pts 16K pts 32K pts 64K pts
PointNet 0.001 0.002 0.003 0.007

PointNet* 0.171 1.315 2.609 5.230
PointNet++ 0.013 0.026 0.034 0.036
PointNet++* 0.185 1.293 2.672 5.287

DGCNN 0.158 1.285 4.788 19.26
DGCNN* 0.325 2.612 7.426 24.436
inr2vec 0.001 0.001 0.001 0.001

Table 10: Time required to classify INRs encoding udf . All the times are computed on a gpu
NVidia RTX 2080 Ti. * indicates that the time to reconstruct the discrete point cloud from the INR is
included.
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