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ABSTRACT
Countries officially record the number of COVID-19 cases based on medical tests of a subset of the
population. These case count data obviously suffer from participation bias, and for prevalence estimation,
these data are typically discarded in favor of infection surveys, or possibly also completed with auxiliary
information. One exception is the series of infection surveys recorded by the Statistics Austria Federal
Institute to study the prevalence of COVID-19 in Austria in April, May, and November 2020. In these infection
surveys, participants were additionally asked if they were simultaneously recorded as COVID-19 positive in
the case count data. In this article, we analyze the benefits of properly combining the outcomes from the
infection survey with the case count data, to analyze the prevalence of COVID-19 in Austria in 2020, from
which the case ascertainment rate can be deduced. The results show that our approach leads to a significant
efficiency gain. Indeed, considerably smaller infection survey samples suffice to obtain the same level of
estimation accuracy. Our estimation method can also handle measurement errors due to the sensitivity
and specificity of medical testing devices and to the nonrandom sample weighting scheme of the infection
survey. The proposed estimators and associated confidence intervals are implemented in the companion
open source R package pempi available on the Comprehensive R Archive Network (CRAN). Supplementary
materials for this article are available online including a standardized description of the materials available
for reproducing the work.
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1. Introduction

In the COVID-19 pandemic, governments faced a tradeoff
between reducing the wealth or the health of citizens when
choosing the degree of economic slowdown in their policy
measures. The key to assess this tradeoff is an understanding of
the number or proportion of cases in the population and their
evolution. Acquiring this understanding, in turn, depends on
reliable estimates of the number of cases (at different points in
time).

The data collected by official national institutions are case
count data with possibly some additional information such as
gender, age and geographical location. These data can also be
understood as a nonprobability sample and, as such, the number
of recorded positive cases can only be seen as a lower bound
of the actual number of cases. Hence, the direct analysis of
these count data suffers from bias, due to participation bias,
and possibly also from measurement error, due, in particular,
to medical testing devices (see also Accorsi et al. 2021; Kahn
et al. 2021; Dempsey 2023, for bias effects of case count data in
epidemiological studies). Acknowledging this problem, for the
case of COVID-19, some studies have proposed estimates for the
prevalence among asymptomatic patients (see e.g., Mizumoto
et al. 2020; Nishiura et al. 2020), or have attempted to infer the
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population prevalence from the case count data (see e.g., Manski
and Molinari 2021; Dempsey 2023).

One way of reducing the sampling bias in case count data, is
to estimate selection propensities, using representative random
samples that can provide necessary covariate information (see
e.g., Elliott and Valliant 2017, and the references therein). These
propensities are then used in an inverse-probability weight-
ing scheme to construct estimators of disease prevalence that
attempt to control for selection bias. Using a random sample
as auxiliary information for reducing the sampling bias has
also been proposed by Chen, Li, and Wu (2020) who consider
a pseudo-likelihood approach that uses the random samples
as a proxy for a term in the log-likelihood. Dempsey (2023)
extends this approach to account for measurement error. Alter-
natively, the prevalence can be estimated using infection surveys,
typically stratified with associated sampling weights. As will
be explained in Section 2 for the Austrian data, the sampling
weights are often calibrated for removing the potential sampling
bias such as participation bias. Infection samples are obviously
more costly to collect, so they cannot provide information on a
daily basis. However, if the sampling is properly done and the
sampling weights are properly calibrated, they allow to obtain
consistent estimators of different population measures, such as
the prevalence. Moreover, the resulting prevalence estimate can
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be used to estimate the ascertainment rate (see e.g., Gibbons
et al. 2014), which is inversely proportional to the proportion of
positive cases that are actually not in the case count dataset, that
we qualify as the asymptomatic cases for simplicity. This infor-
mation can then be used to monitor and correct the prevalence
estimation between two consecutive surveys, using only the case
count data.

In order to alleviate the burden of data collection with infec-
tion surveys, we here evaluate the potential statistical gain of
appropriately including the information available from the case
count data in the analysis of the infection survey data. The
statistical gain is relative efficiency, and we show that by linking
the information provided by the case count data to the infection
survey for prevalence estimation with the Austrian data, for
the same statistical accuracy, only half of the infection survey
sample size is needed, thus, substantially reducing the costs
and/or time for data acquisition. Alternatively said, from the
same infection survey, finer analysis at sub-population levels
(e.g., regions) could reasonably be done even if the number of
participants in these levels is rather small. For that, the addi-
tional information that is needed is to also record, for at least
each participant found positive in the infection survey, whether
they are currently recorded positive in the (national) case count
data. Since at the beginning of a pandemic the prevalence is
expected to be rather small, collecting this information, using
for example follow-up calls, is rather easy to implement. This
is what has been done in Austria, where the Federal Ministry
of Education, Science and Research commissioned Statistics
Austria in cooperation with the Medical University of Vienna
and the Red Cross Austria to study the prevalence of COVID-19
in Austria in April, May, and November 2020. For this purpose, a
representative stratified sample was drawn based on the Austrian
central register of residents, inviting addressed participants to
participate for each study, respectively. We discuss these data in
some detail in Section 2; for more information see Kowarik et al.
(2022). Additionally, they also collected, for each participant
found positive in the infection survey, whether they were also
recorded positive at the time in the national case count, and
we consider in this article, both the infection survey and this
additional information.

Our framework supposes that the sampling weights are prop-
erly calibrated, up to possible measurement errors (misclassi-
fication) of the (medical) testing devices used to collect the
data (see e.g., Kobokovich, West, and Gronvall 2020; Surkova,
Nikolayevskyy, and Drobniewski 2020). As is the case with the
Austrian infection surveys, this calibration is done before the
infection survey data are used to estimate the prevalence. For
this type of settings, we develop estimators that include both
sources of information, for stratified samples, accounting as well
for measurement error due to the medical testing device. The
associated measurement errors are induced by their sensitivity,
that is, the complement to the False Positive (FP) rate, and by
their specificity, that is, the complement to the False Negative
(FN) rate, and adjusting for these errors avoids biased estimates
(see e.g., Diggle 2011; Lewis and Torgerson 2012, and the refer-
ences therein). The proposed estimators are based on standard
assumptions, and the only necessary and known quantities are
the FP and FN rates of the medical test used to collect the data
in the infection survey, as well as the sampling weights. For

computing the prevalence with associated Confidence Intervals
(CI), one can use the Proportion Estimation with Marginal
Proxy Information, or pempi R package, that we developed
for that purpose. This software also allows to reproduce all
simulation results and the data analysis presented in this article
(see Section 6 for more details).

As is shown and illustrated in this article, the proposed
estimators have a considerably reduced variability compared to
the ones that ignore the information provided by the case count
data. Moreover, we also find the following additional advantages.
First, using a sensitivity analysis with the Austrian infection
survey, we find that the proposed estimators are much less
influenced by the value of the FN rate than the infection survey
(weighted) proportion, allowing, in practice, to limit the impact
of the potentially incorrect choice for the medical test specificity
when estimating the prevalence. Second, within the proposed
statistical framework, it is possible to obtain an estimate of the
proportion of asymptomatic (or mild) cases, which is of major
importance for controlling the spread of an infectious disease
lacking severe disease manifestations (see e.g., Munster et al.
2020, in the case of the COVID-19). In particular, it can be
directly used to adjust prevalence estimators computed from
case count data between two consecutive infection surveys, as
well as estimating ascertainment rates.

The article is organized as follows. We first present the col-
lection process of the data we use in this article in Section 2.
In Section 3, we present the methodological framework, while
keeping the more technical aspects in the supplementary mate-
rial. In particular, we present different estimators that include
the information obtained from the case count data, with possibly
missing information, and that are corrected for measurement
errors due to the FP and FN rates. We also study the efficiencies
of the different estimators. The COVID-19 prevalence analysis
in Austria, November 2020, is presented in Section 4, and in
Section 5 we provide the results of simulation studies to assess
the comparative properties of the prevalence estimators. Finally,
we provide some concluding remarks in Section 6.

2. Austrian Infection Surveys in April, May, and
November 2020

In this section, we present the Austrian data collection process,
for the case count data and the infection surveys. The official
description is given in Kowarik et al. (2022).

The case count data are based on participants who had symp-
toms or thought they had symptoms calling a medical hotline
number (i.e., 1450). Depending on the information provided by
the participants, depending on their assessment by the medical
staff, and depending on testing availability, participants were
visited and tested with a Polymerase Chain Reaction (PCR) test
using “the fully automatic Roche cobas® 6800 Test System using
the Roche cobas® SARS-CoV-2 Test (CE/IVD)” (Kowarik et al.
2022, p. 32). A participant was officially recorded as a positive
case of COVID-19 in the case count data, if the participant was
then tested and found to be positive by means of the PCR test.

For the infection surveys, Statistics Austria took three strat-
ified random samples from the Austrian population aged 16 or
older living in private homes in April, May, and November 2020.
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In this case study we focus on the November 2020 one, which
was the only one with a substantial number of cases. It was also
the only one in which the sample was drawn in one step from
the entire population. Indeed, in the April and May infection
surveys, the samples included a local clustering of participants to
make the data collection (the PCR testing) easier for the Austrian
Red Cross who performed this task.

The November infection survey was a stratified sample based
on the Austrian central registry of residents (i.e., ZMR). Par-
ticipants were invited by letter (almost one month before the
PCR test, October 13 or 20—in two tranches) and reminded by
postcard about six days after they received the letter. Ultimately
of the 7823 invited participants 2263 were tested for COVID-19
by means of a PCR test. Stratification was based on information
about federal state (there are nine in Austria), education, urban-
ization, and citizenship. In anticipation of higher nonresponse
rates for participants with lower education (i.e., compulsory
schooling or less), such participants were oversampled. Once the
data were collected, the infection survey weights were calibrated
by means of an iterated procedure based on information about
participants’ age, gender, degree of urbanization, household size,
federal state, risk category, nationality, education, underlying
condition, and educational attainment, and some other informa-
tion. Finally, nonresponse modeling was done based on, among
others, information about participants’ age, nationality, educa-
tion, quintile of household income, and the relative number of
infected participants in the participants’ communal area.

Regarding the sampling weights, Kowarik et al. (2022) men-
tion that their nonresponse modeling may not fully account for
whether a person considers themselves at high risk or not. This,
they argue, may generate a positive or negative bias, depending
on whether high risk individuals are more or less likely to par-
ticipate (because they are more interested to know their health
status or they are more concerned of becoming infected when
participating). Thus, the sampling weights may not fully cor-
rect for nonresponse related biases, however, we expected these
potential biases to have a relatively small effect on prevalence
estimation.

3. Methodology

In this section, we first define the required random variables,
as well as the needed assumptions, which we discuss in detail
in Appendix A. We also introduce the different forms of mea-
surement errors, with some additional explanation provided in
Appendix B. We then present the sufficient statistics as well
as their associated success probabilities, which are formally
derived in Appendix C. Based on these sufficient statistics, we
then provide several estimators for the prevalence that take
into account the information provided by the case count data,
the measurement errors, and stratified sampling. Their formal
derivations and properties are given in supplementary mate-
rial A, that also includes the cases with non-stratified sam-
pling. Finally, we present the inferential properties of the preva-
lence estimators and the estimator for the rate of asymptomatic
cases, and assess the efficiency gain when using a prevalence
estimator that includes the information provided by the case
count data.

3.1. General Framework

Recall that the aim of this article is to augment infection sur-
veys with case count data in order to increase the estimation
efficiency. We first define the following unobserved random
variable:

Xi :=
{

1 if participant (in the infection survey) i is infected,
0 otherwise.

The variable Xi is not observable because we allow the possi-
bility that the measurement can be subject to error due to the,
assumed known, FN and FP rates of the PCR testing device. The
objective is to provide an estimator for the unknown population
proportion, that is, the prevalence π := P (Xi = 1). To do so, we
consider the following two (observed) random variables:

Yi :=
{

1 if participant i is tested positive in the infection survey,
0 otherwise;

Zi :=
{

1 if participant i is declared positive in the case count data,
0 otherwise.

(1)
For the proposed general framework to hold, we need to

make the following assumptions.

Assumption 1. Conditional on Xi, the random variables Zi and
Yi are stochastically independent.

Assumption 1 means that for an infected participant i (Xi = 1),
or indeed also for an uninfected participant (Xi = 0), whether or
not they were declared positive in the case count data (Zi = 1),
is an independent event from whether or not they were found
positive with the PCR test in the infection survey (Yi = 1).
This (indirectly) implies that the occurrence of a FP test is
independent of the participants’ characteristics (other than Xi),
or, in other words, that the occurrence of a FP test is purely a
characteristic of the PCR test itself. A more detailed justification
for Assumption 1 to hold (for our case study) is provided in
Appendix A. In practical settings, this assumption appears to
be plausible and is not required, in particular, when medical
tests without measurement error are employed. Moreover, the
effect on inference of potential deviations from Assumption 1
are assessed by simulations in Section 5.2, which suggest that
this effect is negligible.

Remark 1. Assumption 1 implies that P(Zi = 1|Xi = 1, Yi =
1) = P(Zi = 1|Xi = 1), and P(Zi = 1|Xi = 0, Yi =
1) = P(Zi = 1|Xi = 0), which are used to derive the success
probabilities provided in Appendix C.

We also allow for the possibility that the outcome of (PCR)
tests can be subject to measurement error. Hence, we define
α := P(Yi = 1|Xi = 0) and β := P(Yi = 0|Xi = 1).
The probabilities α and β , are the (assumed known) FP rate
(α = 1 − specificity) and FN rate (β = 1 − sensitivity) of the
particular PCR test employed in the infection survey. Moreover,
we will make use of the case prevalence rate π0 := P(Zi = 1)

obtained from the case count data. As explained in Appendix C,
π0 is the joint probability of being selected for the case count
data and declared positive. It can be considered as the proportion
of positive rates among the whole population, obtained from
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Table 1. Definition of the most important parameters.

Symbol Definition Interpretation

π P (Xi = 1) Prevalence
α P(Yi = 1|Xi = 0) PCR false positive rate
β P(Yi = 0|Xi = 1) PCR false negative rate
� 1 − (α + β) A measure of PCR test precision
π0 P(Zi = 1) Case prevalence rate
α0 P(Zi = 1|Xi = 0) False case positive rate
β0 P(Zi = 0|Xi = 1) False case negative rate

a census with participation bias, so that we assume it is fixed.
Moreover, we expect π0 ≤ π (as justified in Remark 4).

Since the objective is to take advantage of the information
obtained from the case count data in estimating the prevalence
π , we also need to take into account the possible biases in the
case count data. Therefore, we define α0 := P(Zi = 1|Xi = 0)

and β0 := P(Zi = 0|Xi = 1). It turns out, as explained in
Remarks 2 and 3, that α0 is a negligible quantity (for our case
study) and hence can be set to 0, and that β0 can be deduced
from the other available or estimable quantities and can be seen
as the rate of asymptomatic cases (and of other cases overlooked
by the case count data). For convenience, the definition of the
most relevant parameters is provided in Table 1.

Remark 2. As explained in Appendix B, α0 is the probability that
participant i, who is uninfected (Xi = 0), has been first selected
for assessment and then tested positive and, thus, recorded in
the case count data. Obviously, α0 can be considered as almost
nil, as it is essentially the product of the probability of a person
being falsely selected for assessment and the probability of this
person being falsely declared positive through the medical test.

Remark 3. The rate β0 is the proportion of infected cases that
were either not tested and hence not reported in the case count
data or tested and nevertheless found to be negative (with the
latter probably much less likely than the former). It therefore
provides, approximately, the proportion of asymptomatic or
mild cases and other cases that could not undergo a testing for
the case count data. It is given by

β0 = 1 − π0 − α0(1 − π)

π
, (2)

as shown in Appendix B.

Remark 4. The unknown population prevalence π is bounded
from below by π := π0−α0

1−α0
. Indeed, from π0 = (1−π)α0+π(1−

β0) (with both π and β0 unknown parameters), see Appendix B,
we deduce that the lowest admissible value for π is achieved
when β0 = 0, in which case we get the lower bound π0−α0

1−α0
.

Given the assumptions and the form of π , we have 0 ≤ π ≤ π0.
In practice as discussed in Remark 2, we expect that α0 ≈ 0,
implying that π ≥ π ≈ π0.

Additionally, it is useful to make the following two mild
assumptions.

Assumption 2. α + β < 1.

Assumption 3. α0 + β0 < 1.

Assumptions 2 and 3 are very mild, since they only rule out
the cases α + β = 1 and α0 + β0 = 1 for which the PCR tests
and the case count data are completely uninformative. Indeed,
if α + β = 1, one can show that the updated probability of a
participant being COVID-19 infected would not change after we
condition on the outcome of the PCR test. If α +β > 1 then the
PCR test is so bad that a finding of a negative test result is actually
an indication of a COVID-19 infection. Not only is this not a
very likely situation for PCR tests, but one could also then just
reformulate a positive test result as a negative one and vice versa,
and the induced FP and FN rates would satisfy our assumptions.
More details on the validity of these assumptions can be found
in Appendix A.

3.2. Sufficient Statistics and Associated Probabilities

For building prevalence estimators, we make use of the following
random variables:

Ri11 := YiZi,
Ri10 := (1 − Yi)Zi,
Ri01 := Yi(1 − Zi),
Ri00 := (1 − Yi)(1 − Zi) = 1 − Ri11 − Ri10 − Ri01.

(3)

Namely, Ri11 = 1, if participant i is tested positive in the infec-
tion survey and in the case count data; Ri10 = 1, if participant i
is tested negative in the infection survey, but is declared positive
in the case count data; Ri01 = 1, if participant i is tested positive
in the infection survey, but is declared negative in the case count
data; Ri00 = 1, if participant i is tested negative in the infection
survey and is also declared negative in the case count data.

The associated probabilities are given by

τ11(π) := P(Ri11 = 1)

= π�α0 + (π0 − α0)(1 − β) + αα0,
τ10(π) := P(Ri10 = 1)

= −π�α0 + (π0 − α0)β + (1 − α)α0,
τ01(π) := P(Ri01 = 1)

= π�(1 − α0) − (π0 − α0)(1 − β) + α(1 − α0),
τ00(π) := P(Ri00 = 1)

= −π�(1 − α0) − (π0 − α0)β + (1 − α)(1 − α0),

(4)

where � := 1 − (α + β) (see Appendix C for their derivation).
Without measurement error, we would have τ11(π) = π0,
τ10(π) = 0, τ01(π) = π − π0, τ00(π) = 1 − π . Moreover,
it is easy to verify that given our assumptions, we have that all
probabilities defined in (4) are nonnegative and sum up to 1.

Even if there is no measurement error, infection surveys
can provide biased estimates of, say, the population prevalence,
especially when the level of nonresponse is rather high (see e.g.,
Bethlehem and Schouten 2017). A popular method consists in
calibrating sampling weights, as has been done for the Austrian
data (Kowarik et al. 2022). Therefore, we let γi denote the known
(fixed) sampling weight associated to participant i with i =
1, . . . , n, which is proportional to the reciprocal of the sampling
probability for participant i, and adjusted, for convenience, such
that

∑n
i=1 γi = n. The sufficient statistics for the estimators we
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propose in Section 3.3 (see also supplementary material A) are
given by

R11 :=
n∑

i=1
γiYiZi =

n∑
i=1

γiRi11,

R10 :=
n∑

i=1
γi(1 − Yi)Zi =

n∑
i=1

γiRi10,

R01 :=
n∑

i=1
γiYi(1 − Zi) =

n∑
i=1

γiRi01, (5)

R00 :=
n∑

i=1
γi(1 − Yi)(1 − Zi) =

n∑
i=1

γiRi00.

We also make use of R∗1 := ∑n
i=1 γiYi = R11+R01, the weighted

number of participants that are tested positive in the infection
survey. As previously mentioned, our framework supposes that
the sampling weights are properly calibrated, up to possible
measurement errors of the testing devices used to collect the
data.

3.3. Prevalence Estimators

In this section, we present several closed-form estimators for the
prevalence π that take into account the information provided by
the case count data. The formal derivations and properties are
provided in supplementary material A, and all estimators (and
associated CI) can be computed using the R package pempi.

First, we consider a Method of Moments Estimator (MME)
based on R01 (with expectation nτ01(π)), which is given by (see
also supplementary material A.5)

π̃ = 1
�(1 − α0)

[
R01
n

+ π0(1 − β) − α0� − α

]
. (6)

Since E
[

R01
] = nE [Ri01] = nτ01(π), it is easy to see that the

MME is unbiased. When α0 = 0 (see Remark 2), this reduces to

π̃ = 1
�

[
R01
n

+ π0(1 − β) − α

]
. (7)

When α0 = α = β = 0, this further reduces to

π̃ = π0 + R01
n

. (8)

One can also consider a Weighted M-Estimator (WME) π̂

as proposed for example by Wooldridge (2001), which is based
on the conditional log-likelihood function (see supplementary
material A.1). Generally, this estimator has no closed-form
solution but can be computed numerically (see supplementary
material A.6). However, in the case when α0 = 0, we obtain a
closed-form solution given by

π̂ = 1
�

(
π0R00 + R01

R01 + R00
− π0β − α

)
. (9)

When α0 = α = β = 0, then R10 = 0, so that (9) further
reduces to

π̂ = π0
n − R∗1

n − R11
+ R01(

n − R11
) . (10)

Remark 5. Interestingly, in the case of no measurement error
(α0 = α = β = 0), π̃ in (8) can also be seen as an approximation
to the WME in (10) for small values of π0 and π . Namely, we
can approximate (n − R∗1)/(n − R11) ≈ 1 and π0(n − R11) ≈
π0n. The MME has the advantage of being an unbiased estimator
at the cost of being (slightly) less efficient than the WME (see
Section 3.4).

In some cases, it might be that the information in R00 in (9)
(and R10) is not easily available, for example, when additional
data are collected using follow-up procedures. Although the
MME can still be used in these instances, one can alternatively
proceed with the marginalization of the conditional likelihood
function and use a WME based on the latter, to obtain a Marginal
WME (MWME). The MWME has generally no closed-form,
but can however be easily computed using a numerical opti-
mization method (see supplementary material A.7 for more
details). In our simulation studies (not presented here), we found
that the behavior of the MWME is comparable to the one of
the WME.

In Sections 3.4, 4, and 5.1, we compare, in terms of efficiency
gain, the estimators that make use of the information obtained
from the case count data, to the (weighted) infection survey
proportion, that is, a Survey Maximum Likelihood Estimator
(SMLE). It is based only on R∗1 (we recall R∗1 = R11 + R01),
the number of positive cases in the infection survey. It is given
by

π = R∗1/n − α

�
, (11)

which reduces to π = R∗1/n when α = β = 0.

Remark 6. Note that for the SMLE given in (11), an increase
in the FP rate β induces a decrease in � = 1 − (α + β), which
directly induces an increased value for π . However, the influence
of an increase in β on the MME is milder. Indeed, we have

∂ (π − π̃)

∂β
= R11/n − απ0

�2

= π(1 − α0 − β0)(1 + α0)

�
+ Op(n−1/2),

which implies, by Assumption 3, that this quantity is positive
for sufficiently large n, hence, it explains the result found in the
sensitivity analysis presented in Figure 1 of Section 4.

Finally, the MME, WME and MWME, as well as the SMLE,
can be defined in a straightforward manner in the non-stratified
sample cases, by setting γi = 1, ∀i = 1, . . . , n. However, in
these cases, the properties of the estimators are different (see
supplementary material A.1, A.3, and A.4 for the MME, WME,
and MWME). In particular, for the MME and the SMLE with
γi = 1, ∀i = 1, . . . , n, their finite sample distribution is known,
and can be used to construct (exact, and thus possibly conserva-
tive) CI using the (fiducial) approach put forward in Clopper
and Pearson (1934) (CP) (see also e.g., Fisher 1935; Brown,
Cai, and DasGupta 2001). These are provided in supplementary
material A.8.
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Figure 1. Sensitivity analysis of the SMLE and MME prevalence estimators, with the
(stratified) Austrian data (November 2020), as a function of the FN rate β . The FP
rate of the PCR test is set to α = 1%.

3.4. Efficiency and Inference for Prevalence Estimators

As shown in supplementary material A, all the estimators
presented previously are consistent and asymptotically nor-
mally distributed. Hence, the potential differences are due to
their respective variances, especially the relative efficiency gain
between estimators not ignoring the information obtained from
the case count data, with respect to the one ignoring this infor-
mation. Obviously, properly including additional information
in the analysis should increase the resulting efficiency. The
question then lies on the effective gain in efficiency, given that
the needed additional information is quite easy to obtain while
conducting the infection survey.

We can study analytically the efficiency gain of an estima-
tor that takes into account the information obtained from the
case count data, relative to the SMLE π in (11). As shown in
supplementary material A, for all considered estimators, the
(asymptotic) variances are equal to the (asymptotic) variances
of their counterpart in the non-stratified sampling case, up to
a multiplicative constant given by V := 1

n
∑n

i=1 γ 2
i . Hence,

without loss of generality, we can study the relative efficiencies
using the variances in the non-stratified sampling case. In this
case, letting Rjk = ∑n

i=1 Rijk for j, k ∈ {0, 1} and R∗1 = R11 +
R01, where the Rijk are provided in (3), we have, for example, that
the SMLE (with γi = 1, ∀i = 1, . . . , n) is given by π = R∗1/n−α

�
,

which reduces to π = R∗1/n, as expected, when α = β = 0. Its
variance is given by

var(π) = (τ11(π) + τ01(π))(1 − τ11(π) − τ01(π))

n�2

= (π� + α)(1 − π� − α)

n�2 ,

which, without measurement errors (i.e., α = β = 0), reduces
to var(π) = 1

nπ(1 − π), as expected. The variance of the MME
π̃ in (6) with γi = 1, ∀i = 1, . . . , n, is easily determined to be

var (π̃) = 1
�2(1 − α0)2 var

(
R01
n

)

= τ01(π)(1 − τ01(π))

n�2(1 − α0)2

= (π − π0)(1 − (π − π0))

n�2(1 − α0)2 , (12)

which, assuming α0 = 0 (see Remark 2), reduces to
var (π̃) = (π−π0)(1−(π−π0))

n�2 . Without measurement errors, it
further reduces to var (π̃) = 1

n (π − π0)(1 − (π − π0)).
In the case without measurement errors, the asymptotic vari-

ance of the WME with γi = 1, ∀i = 1, . . . , n (called the
Conditional Maximum Likelihood Estimator in supplementary
material A), using (S.6), is given by

var (π̂) = 1
n

(
τ01(π)

(π − π0)2 + τ00(π)

(1 − π)2

)−1

= 1
n

(1 − π)(π − π0)

(1 − π0)
,

so that the efficiency of the SMLE relative to the WME is given
by

e(π) = var (π̂)

var (π)
= π − π0

π(1 − π0)
< 1, (13)

since π0 ≤ π < 1. If considering the ratio of the variance of the
SMLE relative to the one of the MME, we obtain

var (π)

var (π̃)
= π(1 − π)

(π − π0)(1 + π0 − π)

= π(1 − π)

π(1 − π) − π0(1 + π0 − 2π)
. (14)

Therefore, when 2π > 1 + π0 we have var(π) < var(π̃), while
when 2π < 1 + π0 we have var(π) > var(π̃). A sufficient
condition for the variance of the MME to be lower than the
variance of the SMLE is, therefore, that the true population
prevalence π is below 1/2. Moreover, since the variance of the
WME (in the non-stratified sampling case) attains the Cramer-
Rao lower bound for the variance of any unbiased estimator of π ,
the MME, being unbiased, must have a higher variance. Indeed,
the relative efficiency of π̃ versus the WME (for sufficiently large
n) is e(π̃) = (1−(π−π0))(1−π0)

1−π
≤ 1, since π ≥ π0.

The efficiency loss of π relative, for example, to the MME π̃

in (14), is slightly different from (13), but can also be expressed
in terms of the increase in infection survey sample size needed
when using π rather than π̃ . Let n∗ denote the infection survey
sample size that is needed to obtain a variance for the SMLE that
is equal to the one of the MME using an infection survey sample
size of n. We obtain

n∗

n
= 1 − π0

1 − π0/π
,

which, for small π0, is approximately equal to 1
1−π0/π

. If, for
instance, π = 2π0 then n∗

n ≈ 2. The added value in using the
additional information provided in R11, therefore, is equivalent
to using the SMLE with a sample with twice the size.

In Section 5.1, we present a simulation study to assess the
efficiency gain and the coverages of the CIs for π in a wider range
of settings, in particular when introducing measurement errors.
The results and conclusions also apply to the cases of stratified
sampling.
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3.5. Inference for the Rate of Asymptomatic Cases β0

An estimator of the rate of asymptomatic cases β0 of the case
count data is given by β̂0 = 1 − (π0 − α0(1 − π̂))/π̂ , and
can be used to perform statistical inference for β0, using the
properties of the prevalence estimator. More details are provided
in supplementary material B, and the CI for β0 are implemented
in the R package pempi.

Assuming that the rate of asymptomatic cases β0 is inde-
pendent of the case prevalence rate, its estimate obtained using
infection survey data at some point in time, can be used to
monitor the case prevalence rate from the case count data, since
assuming α0 = 0, we have

π = π0
1 − β0

. (15)

It can also be used, for example, to estimate the ascertainment
rate (see e.g., Gibbons et al. 2014), that is, the ratio of detected
cases to the true number of cases given by π0/π . Namely, assum-
ing again α0 = 0, we have that

π0
π

= π(1 − β0)

π
= 1 − β0. (16)

Inference on the two quantities in (15) and (16) can be obtained
using β̂0 and its statistical properties, and for the updated case
prevalence in (15), confidence intervals can be computed using
the pempi R package.

4. COVID-19 Prevalence Estimation in Austria,
November 2020

Making use of the data collected in Austria in November 2020 as
described in Section 2 (see Kowarik et al. 2022, for more details),
we propose different estimates of the COVID-19 prevalence π ,
the MME π̃ , which takes into account the information obtained
from the case count data, and the SMLE π that is solely based on
the infection survey data. We compare the estimates in different
data settings, namely with or without measurement errors. The
estimates are given with their respective CI at the 95% confi-
dence level, to ease the comparisons and their potential effective
differences.

The November 2020 infection survey consists of n = 2290
participants who went through a testing procedure for COVID-
19 using PCR tests. Seventy-two participants (R∗1 = 72) were
tested positive, and among these ones, thirty-five (R11 = 35)
had been declared to have been tested positive in the case
count data during the same month. An important information
needed to compute the proposed estimators is the (known) case
prevalence rate π0. In November, there were 93,914 declared
cases among the official (approximately) 7,166,167 inhabitants
in Austria (above 16 years old), so that π0 ≈ 1.3105%. The
sensitivity (1 − α) and the specificity (1 − β) of the PCR test
are not known with precision, so that we present estimates of
the prevalence π without measurement errors as well as for
values for the FP and FN rates, that are plausible, given the
data and according to the sensitivity and specificity reported, for
example, in Kobokovich, West, and Gronvall (2020) or Surkova,
Nikolayevskyy, and Drobniewski (2020). Moreover, as justified
in Remark 2, we consider α0 = 0.

Table 2. Values for Rjk with j, k ∈ {0, 1} in (5), with 1
n

∑n
i=1 γ 2

i = 1.51, and Rjk
with j, k ∈ {0, 1} in (3), for the Austrian data, November 2020.

Case j = 0, k = 0 j = 0, k = 1 j = 1, k = 0 j = 1, k = 1

Rjk 2218.3698 38.2712 0 33.3589
Rjk 2218 37 0 35

Table 3. Prevalence estimation (Est.) from the Austrian data (November 2020),
based on the Rjk in Table 2, with associated 95% CI.

α = β = 0 α = 1%, β = 10%
Est. (%) 95% CI (%) Est. (%) 95% CI (%)

SMLE 3.128 (2.252–4.004) 2.391 (1.406–3.375)
MME 2.982 (2.336–3.627) 2.079 (1.354–2.804)
β̂0 56.0 (46.5–65.6) 37.0 (15.0–59.0)

NOTE: The first two columns are under the assumption of no measurement errors.
The second two columns assume α = 1% and β = 10%.

To compute the point estimates and associated CI for the
prevalence, we use the pempi R package which requires, as
input data, the infection survey sample size n, the values for α,
β and α0, π0, and the sample values for Rjk, see (5). For the
Austrian data, the latter are given in Table 2, together with the
sample values for Rjk computed using γi = 1, ∀i = 1, . . . , n
for comparison. As one can see, while 1

n
∑n

i=1 γ 2
i = 1.51,

compared to one in the non-stratified case, the differences in
the sufficient statistics are very small, and have no significant
impact on the prevalence estimation (results not shown here).
This indicates that the sensitivity of the prevalence estimator to
the sampling weights is rather mild, so that even if the calibration
for nonresponse does not totally remove the sampling bias, its
impact on the final estimates is limited.

Table 3 provides various estimates of π , the COVID-19
prevalence in Austria in November 2020, and of the rate of
asymptomatic cases β0 of the case count data, based on the Rjk
in Table 2. These are computed with or without measurement
errors, with, for the former, α = 1% (FP rate for the PCR
test in the infection survey) and β = 10% (FN rate for the
PCR test in the infection survey). We choose a small α, because
we only observe 71 positive cases out of 2287 participants. If
α were larger, say α = 5%, we would also expect a larger
number of positive cases, that is, 114 positive cases just because
of false positives. The prevalence estimates are given with their
respective CI at the 95% confidence level.

From Table 3, one can derive a series of insights. First, we
note that, without measurement errors, the estimates are larger
than with measurement errors, although the differences still
remain in the CI bounds. Second, and most importantly, by
comparing the CI lengths, one can observe that they are sub-
stantially smaller for the MME which takes into account the
information obtained from the case count data. Actually, the
(estimated) variance of the latter, with this dataset, is about half
of the one of the SMLE that ignores the information obtained
from the case count data. Third, although the point estimates are
rather close when comparing the MME and the SMLE without
measurement errors, one can observe that their difference is
larger with measurement errors.

The measurement error (the FN rate β) has more impact
on the prevalence estimator when ignoring the information
obtained from the case count data. To illustrate this point, and
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since the FP rate α has a limited range of possible values, given
the data, we present in Figure 1 a sensitivity analysis of the
prevalence estimation by the SMLE and the MME (stratified
sampling case), when the FN rate β varies from 0% to 30%. It
is clear that the SMLE is much more influenced by the value of
the FN rate β compared to the MME, which shows a far better
stability. In Remark 6, we provide an explanation for this result.

Finally, the estimated rate of asymptomatic cases β̂0, reported
in Table 3, indicates that, supposing the PCR test does not
produce any FN, 55% of the positive cases were not reported
in the case count data (at that time). If one considers some
measurement error for the PCR test, this rate is approximately
35%, which is lower, as expected. This result is in line, for
example and among others, with Li et al. (2021) who reported
a fraction of “undocumented infections” in Henan Province of
53% with CI of (50–68), during January and February 2020.

5. Simulation Studies

In this section, we present the results of two simulation studies,
one on the relative efficiencies and CI coverage for π , for the
different estimators, and one to assess the effect on the Root

Mean Squared Error (RMSE) and CI coverage for π of violations
of Assumption 1.

5.1. Simulation Study for Relative Efficiencies and
Coverage

In order to gain more insights on the properties of the different
estimators, we perform a simulation study to evaluate, in finite
samples, the efficiencies, CI coverage for π and CI lengths of
the different methods. Without loss of generality, the simulation
study is based on the estimators for the non-stratified sampling
case, since the (asymptotic) variance is proportional to the
stratified sampling case, up to a constant (see also Section 3.4).
Throughout, we choose α0 = 0 (see Remark 2). We consider
three settings. Setting I is without measurement errors, that is,
with α = β = 0. Setting II has only a FN rate, that is, α = 0,
β = 2%, and Setting III, finally, has both types of measurement
errors, that is, α = 1%, β = 2%. We consider an infection survey
sample size of n = 2000 which leads to the same conclusions
(not presented here) as a somewhat smaller infection survey
sample size (e.g., n = 1500). For the (true) prevalence π , we
consider three rather different values, that is, 5%, 20%, and 75%

Figure 2. Relative efficiencies, as measured by the relative empirical RMSE, for the MME π̃ (green) and the SMLE π (red) relative to the CMLE π̂ . First row with no
measurement error, middle row with a positive FN rate (α = 0, β = 2%), bottom row with both types of measurement errors (α = 1%, β = 2%). The infection
survey sample size is n = 2000 and the number of Monte Carlo simulations is 50,000.
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Figure 3. Empirical coverage of the CIs for π (at the 95% level) as a function of π0 for (true) prevalence π = 5%, 10%, 75%, of CI based on the CP method (CP) and
asymptotic variance (Asym) with the SMLE and the MME, and based on the asymptotic variance with the CMLE. Setting I: α = β = 0. Setting II: α = 0, β = 2%. Setting III:
α = 1%, β = 2%. The infection survey sample size is 2000 and the number of Monte Carlo simulations is 50,000.

in order to cover a wide range of possible prevalence rates. For
π0, we consider, for each value of π , 30 equally spaced values
between 0 and 0.975π , so that, conditionally on the information
brought in by Zi, one can appreciate the efficiency and accuracy
gain when including the information from the case count data.
As estimators, we consider the SMLE π , the Conditional MLE
(CMLE) (see supplementary material A.1) π̂ , which is actually
the WME when γi = 1, ∀i = 1, . . . , n, as well as the MME π̃ .

Figure 2 presents the relative efficiencies, as measured by the
relative empirical Root Mean Squared Error (RMSE), for the
MME π̃ and the SMLE π relative to the CMLE π̂ . The main
messages are the following. First, there is a substantial efficiency
loss for the SMLE π that increases drastically as π0 approaches
π , with or without measurement errors. This is in line with the
fact that the information brought in by considering Zi obtained
from the case count data, is more important as π0 is near π , and
ignoring it, lowers the efficiency of the SMLE. Second, for the
MME, the efficiency loss is negligible for π = 5% and π = 20%
when π0 is not too near to π , while the efficiency loss is rather
important for small values of π0 (relative to π), compared to the
one of the SMLE when π = 75%.

Figure 3 presents the empirical coverage of the CIs for π (at
the 95% level), computed using simulations, for different values
of π0 and π , of CI based on the CP method and asymptotic vari-
ance (asymptotic method) with the SMLE and the MME, and
based on the asymptotic variance with the CMLE. Overall, as
expected, the CP method provides slightly conservative coverage
of the CIs for π across settings, while the asymptotic method
based on the SMLE is slightly liberal, especially for π = 5%.
Moreover, for both the CP method based on the SMLE and the
asymptotic method based on the CMLE, for π = 5% and π =
20%, the coverage of the CIs for π worsens (even if they remain
quite accurate) as π0 approaches π . For the asymptotic method,
this can be explained by the fact that CIs might have bounds
falling outside the domain of π (e.g., below π0), especially when
π is near π0 and in settings such as Setting II.

Given that the coverage of the CIs for π is reasonable across
methods, it is worth comparing the CI lengths. Figure 4 presents
the relative CI (at the 95% level) lengths, computed using simu-
lations, for the CP method based on R∗1 in (3) (associated to the
SMLE π) and the CP method based on R01 in (3) (associated
to the MME π̃), relative to the CI (at the 95% level) lengths
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Figure 4. Relative empirical CI (at the 95% level) mean lengths as a function of π0 for (true) prevalence π = 5%, 10%, 75%, of CI based on the CP (CP) method and
asymptotic variance (Asym) with the SMLE and the MME, relative to the empirical CI (at the 95% level) based on the asymptotic variance with the Conditional MLE (CMLE).
Setting I: α0 = α = β = 0. Setting II: α0 = α = 0, β = 2%. Setting III: α0 = 0, α = 1%, β = 2%. The infection survey sample size is 2000 and the number of Monte
Carlo simulations is 50,000.

for the asymptotic method based on the CMLE π̂ . One can
observe, as expected, that the (mean) CI lengths can be a lot
larger when ignoring the information provided by Zi from the
case count data, especially as the information increases, that is,
as π0 approaches π . An interesting feature appears, however, for
a small population prevalence (π = 5%) when π0 approaches π ,
in that the mean CI length for the CP based on R01 (associated
to the MME) is smaller than the one of the asymptotic method
based on the CMLE. However, for a large population prevalence
(π = 75%), the mean CI length for the CP based on R∗1 are
relatively smaller than the ones based on R01, while remaining
larger than the mean CI length for the asymptotic method based
on the CMLE. This is especially the case for small values of π0
relative to π , and is in line with the study of the efficiencies
provided in Figure 2.

5.2. Simulation Study to Assess Violations of Assumption 1

In this section, we conduct a simulation study by generating
samples which violates Assumption 1, or more precisely, which

violates its direct implication, namely that P(Z = 1|X = 1, Y =
1) = P(Z = 1|X = 1) and P(Z = 1|X = 0, Y = 1) = P(Z =
1|X = 0).

Recall that P(Xi = 1) = π , P(Zi = 1|Xi = 1) = 1 − β0,
P(Zi = 1|Xi = 0) = α0 and P(Yi = 1|Xi = 0) = α. We now
suppose that, in violation of Assumption 1, P(Yi = 1|Xi = Zi =
1) = 1 − δ1 (and P(Yi = 0|Xi = Zi = 1) = δ1) and P(Yi =
1|Xi = 1, Zi = 0) = 1−δ2 (andP(Yi = 0|Xi = 1, Zi = 0) = δ2)
with δ1 possibly different from δ2. We then obtain

1 − β = P (Yi = 1|Xi = 1)

= P (Zi = 1|Xi = 1)P (Yi = 1|Xi = Zi = 1)

+P (Zi = 0|Xi = 1)P (Yi = 1|Xi = 1, Zi = 0)

= (1 − β0)(1 − δ1) + β0(1 − δ2),

and therefore, we have

δ1 = 1 − (1 − β) − β0(1 − δ2)

1 − β0
. (17)

Note that Assumption 1 is violated for values of δ1 �= β and
δ2 �= β .
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Figure 5. Sensitivity analysis of the MME prevalence estimators to violations of Assumption 1, compared to the same analysis for the SMLE which is not affected by violations
of Assumption 1. The sensitivity is measured by the RMSE (left panel) and associated coverage for π (right panel), as a function of δ2 = P(Yi = 0|Xi = 1, Zi = 0). The
model’s parameters values are the ones obtained from the analysis of the Austrian data, November 2020. The vertical line at δ2 = β = 10% corresponds to the case of no
violation of Assumption B. The probability δ2 varies in a grid of 20 evenly spaced values going from 5% to 15%, corresponding to values of δ1 = P(Yi = 0|Xi = Zi = 1)

ranging from 7.1% to 13%.

We can study the effect on the RMSE of the prevalence
estimators as well as their associated coverage for π , for different
values of, say, δ2, which imply different values for δ1. We chose
β = 10% and using (17), with β0 = 36.977% (obtained from
the Austrian data), a grid of 20 evenly spaced values going from
5% to 15% for δ2 corresponds to a range from 7.1% to 13%
for δ1, which represents a non-negligible dependence. From the
Austrian data, we also have n = 2290, π̃ = 2.079%, π0 =
1.311%, and we set α = 1% and α0 = 0%. We consider B = 105

Monte Carlo replications of simulated data using the values for
the different parameters as set above, and we compute the RMSE
of the MME and the SMLE for comparison since it is not affected
by the violation of Assumption 1, as well as their associated
coverage for the population prevalence (i.e., π = 2.079%). The
simulation results are presented in Figure 5. The conclusions are
as follows: for the considered ranges of the parameters δ1 and
δ2, the RMSE of the MME and its associated coverage for π ,
are quite stable in that the relative differences with the RMSE
and associated coverage for π , using the SMLE (which is not
affected by violations of Assumption 1) remain quite stable. It is
therefore reasonable to make use of Assumption 1, which allows
to construct estimators in a more concise manner.

6. Discussion

We propose a method to estimate the prevalence of a disease
based on information both from a survey sample and from
case count data. We show that our approach provides estimates
that are substantially more accurate than the simple sample
proportion of participants in the survey sample. As an important
consequence, our approach can provide a given level of desired
accuracy, with a substantially smaller survey sample size. For
the case of the November 2020 survey of Austrian COVID-19

cases (Kowarik et al. 2022), using our approach one could have
achieved the same level of accuracy that the sample proportion
achieves with roughly half the data. This is useful when data
collection is costly or when medical tests (or lab spaces to
evaluate tests) are in limited supply. We study this problem with
and without the possibility of measurement errors for both the
case count data and infection survey. Additionally, we also find
that estimators that use the information provided by the case
count data, are far less sensitive to the value of the FN rate of
the testing device, which limits the estimation bias of potential
incorrect choices for the latter.

While we have cast this article in the language of prevalence
estimation, the method we propose has a more general range
of applications. It can be applied whenever we are interested in
estimating the proportion of a characteristic A in a population,
when there is a characteristic B that can be seen as a possibly
fairly imprecise indicator of characteristic A, but with the advan-
tage that the proportion of characteristic B in the population is
known.

To give but one other example, consider a case in production
quality control, where a cheap test (that is not very accurate) is
routinely used to assess if a product (participant) is faulty or
not (this is characteristic B), producing the proportion π0 of
products declared faulty. To accurately estimate the proportion
π of faulty products, one can use a survey using an expensive
test on a limited number of products chosen randomly (to
measure characteristic A), possibly producing FP (with known
probability α) and FN (with known probability β). For better
accuracy of estimation of the proportion π , it is then advisable
to also measure the quality of the products in the survey with the
cheap test (i.e., characteristic B), which allows the computation
of the sufficient statistics in (3). If α0 (the FP of the cheap
test), now not necessarily close to zero, is known, one can use
our approach as it is developed here. If α0 is unknown, one
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can easily adapt our approach to estimate α0 along with the
proportion π .

Other adjustments are also necessary with binary outcomes
in logistic regression (see e.g., Ni et al. 2019; Meyer and Mittag
2017, and the references therein). Our framework could be
extended to the case of logistic regression, but this extension
is left for further research. Moreover, while the data from the
November 2020 infection survey collected by Statistics Austria
(2020) is suitable for prevalence estimation, the same approach
can be used to estimate other proportions such as the incidence
of the COVID-19 (see e.g., Woodward 2014).

Finally, all computations presented in this article were done
using the pempi R package that is directly available on
the Comprehensive R Archive Network (CRAN), and can be
installed using install.packages("pempi"). As previ-
ously mentioned, all simulation results and the data analysis,
can be reproduced using the associated functions in the pempi
package.

Appendices

Appendix A: Discussion of Assumptions 1, 2, and 3

For the case of Xi = 0, Assumption 1 assumes the stochastic indepen-
dence of FP results. This is empirically justified for two reasons: one, FP
rates for PCR tests are very low, see also Remark 2, and two, FP results
of PCR tests are mostly contamination problems that are independent
of the tested participant (see e.g., Braunstein et al. 2021).

For the case of Xi = 1, Assumption 1 assumes the stochastic
independence of FN results, the main source of which is a low viral
load (see e.g., Kanji et al. 2021). For COVID-19 infected participants
whose viral load increases during the few days between the two tests,
Assumption 1 is then valid. For COVID-19 infected participants, whose
viral load remains low throughout their infection, Assumption 1 is valid
if one associates such PCR undetectable infected participants as being
not infected. In other words, Xi should be defined as “PCR detectable”
infected participant, and in this case, the results would need to be
interpreted accordingly.

Having said that, if Assumption 1 would be invalid, it would, pre-
sumably, be so by a relatively low level of dependence. Therefore, in
Section 5.2, we present a simulation study with data generated under
violations of this assumption, and the conclusion is, for a reasonable
range of deviations from Assumption 1, that the proposed estimator
and associated CI remain very stable.

With Assumption 2, we rule out the uninteresting case α+β = 1. If
α + β = 1, Yi is completely uninformative about the random variable
of interest Xi, as P(Xi = 1|Yi = 1) = P(Xi = 1|Yi = 0) = π . Indeed,
by Bayes’ law

P(Xi = 1|Yi = 1)

= P(Xi = 1)P(Yi = 1|Xi = 1)

P(Xi = 1)P(Yi = 1|Xi = 1) + P(Xi = 0)P(Yi = 1|Xi = 0)
,

which is equal to

P(Xi = 1|Yi = 1) = π(1 − β)

π(1 − β) + (1 − π)α
.

If α + β = 1, we have 1 − β = α. We can then divide both numerator
and denominator by α and get P(Xi = 1|Yi = 1) = π

π+(1−π)
= π .

Similarly,

P(Xi = 1|Yi = 0)

= P(Xi = 1)P(Yi = 0|Xi = 1)

P(Xi = 1)P(Yi = 0|Xi = 1) + P(Xi = 0)P(Yi = 0|Xi = 0)
,

which is equal to

P(Xi = 1|Yi = 0) = πβ

πβ + (1 − π)(1 − α)
.

If α + β = 1, we have 1 − α = β . We can divide both numerator
and denominator by β and get P(Xi = 1|Yi = 1) = π

π+(1−π)
= π .

Otherwise, Assumption 2 is without loss of generality in the following
sense. If α + β > 1, we could just use Y ′

i = 1 − Yi instead of Yi, which
would have FP and FN rates of α′ = 1 − α and β ′ = 1 − β , with
α′ + β ′ < 1.

Assumption 3 is similarly without loss of generality. It also implies
that α0 ≤ π0. To see this suppose that α0 > π0 = (1−π)α0+π(1−β0).
This is equivalent to 0 > −πα0+π(1−β0), which in turn, is equivalent
to 0 > 1 − α0 − β0, a contradiction.

Appendix B: Measurement Errors in the Case Count
Data

In order to understand the role played by α0, we introduce, for each par-
ticipant i = 1, . . . , n in the infection survey, two additional unobserved
random variables of interest, namely

W1i :=
⎧⎨⎩

1 if participant i has been tested
for the case count data,

0 otherwise,
(B1)

and

W2i :=

⎧⎪⎪⎨⎪⎪⎩
1 if participant i who has been tested for the case

count data has tested positive using the PCR
test for the case count data,

0 otherwise.

Therefore, we can express the random variable Zi in (1) as

Zi :=
{

1 if W1i = 1 and W2i = 1,
0 otherwise.

Hence, the variable Zi separates the participants that were tested for the
case count data and had a positive PCR test there (Zi = 1), and the
participants that were either not tested at all for the case count data or
were tested with the PCR test there but that test was negative (Zi = 0).
Then, using the definition of W1i in (B1), we have

α0 := P(Zi = 1|Xi = 0) = P(W1i = 1, W2i = 1|Xi = 0)

= P(W2i = 1|W1i = 1, Xi = 0)P(W1i = 1|Xi = 0),

which is the product of the probabilities of participant i, that is actually
uninfected (Xi = 0), is tested positive for the case count data (W2i = 1)
and is selected for the case count data (W1i = 1). This probability, α0,
will, therefore, typically be much smaller than the probability of a FP
due to the PCR test used for the case count data.

To obtain β0, we use

π0 = P(Zi = 1)

= P(Xi = 1)P(Zi = 1|Xi = 1) + P(Xi = 0)P(Zi = 1|Xi = 0)

= π(1 − β0) + (1 − π)α0

to deduce (2).
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Appendix C: Success Probabilities

Recall that the objective is to provide an estimator for the unknown
population proportion, that is, the prevalence, given by

π := P (Xi = 1) .

We also consider the information given by π0 := P(Zi = 1), the case
prevalence rate.

The success probabilities τij(π) for Rij with i, j ∈ {0, 1}, in (3), can
be deduced from the following table:

Xi prob P(Yi = 1) P(Zi = 1)

1 π 1 − β 1 − β0
0 1 − π α α0,

with β0 given in (2). There are two fundamental cases Xi = 0 and Xi =
1, and conditionally on each of these cases, errors are independently
and identically distributed by Assumption 1. We, thus, have

τ11 = P(Xi = 1)P(Yi = 1|Xi = 1)P(Zi = 1|Xi = 1) +
P(Xi = 0)P(Yi = 1|Xi = 0)P(Zi = 1|Xi = 0)

= π(1 − β)(1 − β0) + (1 − π)αα0.

Plugging in β0 and using � := 1 − (α + β) we obtain

τ11(π) = π�α0 + (π0 − α0)(1 − β) + αα0.

The remaining probabilities τ10, τ01, and τ00 can be similarly obtained.

Supplementary Materials

The supplementary materials provides the mathematical derivation and
statistical properties of the different estimators mentioned in the main text,
that take into account the information provided in the case count data. Both
the non-stratified and stratified sampling case are presented. The statistical
properties concern consistency or unbiasedness as well as finite sample or
asymptotic distributions. Using these later results, expressions for the CIs
are provided, which, in some cases, can be exact, using the CP method. The
estimators are the Conditional Maximum Likelihood Estimator (CMLE),
its weighted version the Weighted M-Estimator (WME), the Method of
Moments Estimator (MME) and its weighted version, and the Marginal
Maximum Likelihood Estimator (MMLE) for missing information and its
weighted version the MWME. The inferential properties of the rate of
asymptomatic cases β0 are also provided.
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