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A B S T R A C T

Distributed collective systems are systems formed by homogeneous dynamic collections of devices acting in a
shared environment to pursue a joint task or goal. Typical applications emerge in the context of wireless sensor
networks, robot swarms, groups of wearable-augmented people, and computing infrastructures. Programming
such systems is notoriously hard, due to requirements of scalability, concurrency, faults, and difficulty in
making desired collective behaviour ultimately emerge: ad-hoc languages and mechanisms have been proposed
threads like spatial computing, macro-programming, and field-based coordination.

In this paper we present the eXchange Calculus (𝖷𝖢), formalising a tiny set of key mechanisms, usable
across many different languages and platforms, allowing to express the overall interactive behaviour of
distributed collective systems in a declarative way. In this approach, computation (executed in asynchronous
rounds), communication (which is neighbour-based), and state over time, are all expressed by a single
declarative construct, called exchange. We provide a formalisation of 𝖷𝖢 in terms of syntax, device-level and
network-level semantics, prove a number of properties of the calculus, and discuss applicability considering
a smart city scenario. 𝖷𝖢 is implemented as a DSL in Scala and in C++, with different trade-offs in terms of
productivity and platform targetting.
1. Introduction

Research trends like the Internet of Things (Atzori et al., 2010)
promote a vision of large-scale deployments of devices capable of
computation, communication, and physical interaction with the en-
vironment. A particular kind of system is what we call a distributed
collective system, namely one consisting of a roughly homogeneous collec-
tion of devices cooperating with neighbours to pursue common goals.
Notable examples include wireless sensor networks (WSNs) (Mottola
and Picco, 2011), swarms of robots (Brambilla et al., 2013), groups
of wearable-augmented people (Abowd, 2016), and computing ecosys-
tems (Pianini et al., 2021b). Despite possible differences in capabilities,
these groups of individuals are reasonably similar, and hence form
a collective rather than a composite (Masolo et al., 2020). Building
applications that fully exploit the potential of such distributed systems
is a matter of supporting intelligent behaviour not just at the individual
level, but also at the system or collective level (Tumer and Wolpert, 2004;
Nicola et al., 2020). The goal may be addressed by automated ap-
proaches like multi-agent reinforcement learning (Zhang et al., 2019),
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or by language-based, programming approaches sometimes referred
to as macro-programming (Casadei, 2023; Newton and Welsh, 2004;
Sene Júnior et al., 2022), that notably include spatial computing (De-
Hon et al., 2007), field-based computing (Viroli et al., 2019; Lluch-
Lafuente et al., 2017; Mamei and Zambonelli, 2004), ensemble-based
programming (De Nicola et al., 2014; Abd Alrahman et al., 2020).

Inspired by such research, in this work we describe a novel program-
ming language design, called 𝖷𝖢, aimed to support the development
of collective adaptive behaviour while abstracting the management of
low-level aspects like concurrency, asynchronous execution, communi-
cation, and failure. In our approach, the programmer develops a single,
integrated program that represents the overall collective task, by in-
cluding the control logic of each individual or sub-group thereof. Then,
the intended collective behaviour emerges in a self-organising way by
the repeated local execution of sense–compute–interact rounds by all
the devices. The language design, generalising over field calculi (Viroli
et al., 2019), is derived from the typed lambda calculus and based on
vailable online 20 January 2024
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a single communication built-in, called exchange, capturing both state
and communication management, and also allowing differentiated mes-
sages to be sent to neighbours, for increased practical expressiveness.
Thanks to a mechanism that we call alignment, programs are written in
a way that retain composability, hence making it possible to devise and
ompose functional blocks of collective adaptive behaviour.

To summarise, this paper provides the following contributions:

1. We describe the design of 𝖷𝖢, a programming language for
distributed collective systems that abstracts over concurrency,
network communication, message loss, and device failures. Cru-
cially, 𝖷𝖢 retains compositionality even with asynchronous com-
munication, thanks to alignment.

2. We show that 𝖷𝖢 can effectively capture a number of applica-
tions in distributed systems, including distributed protocols such
as gossiping, finding an optimised communication channel, and
common applications in self-organising systems (Mills, 2007).

3. We provide a formalisation of a core calculus for 𝖷𝖢, including
syntax and operational semantics and type system. We prove
the type soundness and round determinism property, leveraging
the co-inductive approach proposed in Ancona et al. (2017b),
and discuss the automatic importing in 𝖷𝖢, via subsumption
of the field calculus (Viroli et al., 2018), of robustness and
expressiveness results.

4. We implement 𝖷𝖢 as publicly available Scala and C++ internal
domain-specific languages (DSLs), together targeting a number
of different execution platforms.

5. In addition to the applications above, we evaluate our approach
on a case study demonstrating 𝖷𝖢’s applicability to real-world
scenarios and its compositionality, and answering two research
questions: (RQ1) whether the decentralised execution of the 𝖷𝖢
program on each device induces the desired collective behaviour;
and (RQ2) to what extent such behaviour can be expressed by
composition of simpler functions.

This manuscript is an extended version of the conference paper (Au-
drito et al., 2022a), where the additional contributions, mainly re-
lated to the formalisation, include the parts on typing (Section 4.2),
network semantics (Section 4.3), and formal proofs regarding types
(Section 5.1), expressiveness (Section 5.2), and self-stabilisation (Sec-
tion 5.3).

The paper is structured as follows. Section 2 introduces 𝖷𝖢 design.
Section 3 demonstrates 𝖷𝖢 through examples. Section 4 presents a
formalisation of 𝖷𝖢. Section 5 provides formal properties of 𝖷𝖢. Sec-
tion 6 discusses the implementation. Section 7 evaluates 𝖷𝖢. Section 8
compares 𝖷𝖢 to various threads of related work. Section 9 concludes
and outlines future research directions.

2. 𝗫𝗖 language design

In this section, we describe the design of 𝖷𝖢 by a high-level per-
spective. In particular, we present the key elements of the programming
model: the basic system model and its assumptions (Section 2.1), the
data structure of neighbouring values (Section 2.2), the only commu-
nication primitive, exchange (Section 2.3), compositionality as the
major benefit of the programming model (Section 2.4), conditionals for
disjoint sub-computations (Section 2.5), and a preview of the benefits
in terms of inherent fault tolerance (Section 2.6).

2.1. System model

Asynchronous, round-based execution and communication. Our target
systems are modelled as a collection of devices, generally equipped with
sensors and actuators, that repeatedly compute the same program and
communicate asynchronously with neighbours by exchanging messages.
The neighbour set of any device is dynamic: it can change dynami-
cally, e.g., as a result of mobility, failure, and network delay. Device
2

e

Fig. 1. 𝖷𝖢 system model.

behaviour is modelled through a notion of (execution) round, whereby
device independently ‘‘fires’’, gathers local context (sensor data and
essages from neighbours), ‘‘atomically executes’’ a 𝖷𝖢 program, and

hen acts on the local context as prescribed by the program. Executing
program results in the production of an output (the program’s return

alue), which may be used to describe actuations, as well as, implicitly,
he messages that have to be sent to neighbours for coordination
urposes, before waiting to execute the round again—sometimes we
ay a device ‘‘wakes up’’, executes the round, and then ‘‘goes back to
leep’’. As mentioned, the behaviour of each device in the network
s developed as a single program.1 Such rounds of execution may be
cheduled at comparable periodic intervals on all devices but there is no
uch assumption in general (every device may have its own scheduling
f rounds). Indeed, a device may run out of battery and never wake
p again, or it can restart after a long time if the battery gets charged.
herefore, rounds – and hence the communication among devices – are
ntirely asynchronous.

ast-message buffering and dropping. The messages received by a sleep-
ng device are collected in a buffer where only the most recent message

per neighbour is kept and where messages whose exceed a certain
configurable lifetime are dropped (expiration). When the device wakes
up, it executes a 𝖷𝖢 program that processes such messages, producing
new messages to send out. Such messages are eventually processed by
the neighbours when they wake up for their next round. For example,
in the system execution in Fig. 1, there are four devices 𝛿1 to 𝛿4.
In the considered time span, device 𝛿2 wakes up twice and performs
two computation rounds, 𝜖1 and 𝜖2. Grey arrows denote messages
that get lost and are never received. The computation 𝜖2 processes
three messages, received from 𝛿4, 𝛿3, and 𝛿1 while 𝛿2 was asleep.
After the computation, 𝛿2 sends out a message to 𝛿3 and to 𝛿1. The
order of messages from a same sender is preserved but, other than
that, there are very few assumptions on messages. If a device 𝛿1 runs
multiple rounds before a device 𝛿2 even runs a single round, 𝛿2 sees
only the message received from the last round of 𝛿1, i.e., newly received
messages from a same sender overwrite older ones. Also, messages are
not removed from the buffer after reading them, unless they expire
(i.e., are deemed too old according to any pre-established criterion)
or unless they are replaced by a new message from the same device,
allowing messages to (possibly) persist across rounds. The 𝖷𝖢 design
abstracts over the specific expiration criteria: common choices include
removing messages after each read, or after a validity time elapses. This
time interval is highly application-specific and stems from a trade-off

1 This approach is often referred to as macroprogramming (Casadei, 2023;
ewton and Welsh, 2004) or multi-tier programming (Weisenburger et al., 2020,
018). Notice that it does not limit possible behaviours as devices can still
xhibit different executions of the same program.



The Journal of Systems & Software 210 (2024) 111976G. Audrito et al.

d
m
C
a
a
a

m
i
a
e
r
n
t
a
e
m

d

d

O
b
(

o
u

S
t
c
s
t
b
I
e
h
o

E
f
𝚗

s
𝚗

)

𝚞

s

s
𝓁

t
b
c
i

C
o
a
u
i

between (i) tolerance to communication delays and failures, and (ii)
recovery speed after truthful changes on data and neighbourhoods.

When a device 𝛿 wakes up, it usually does not find messages from
every other device in the system: (i) another device may be too far
to send a message to 𝛿; (ii) messages may get lost; (iii) devices may
isappear or fail; (iv) a device may reboot, losing its queue of received
essages; (v) 𝛿 may deem messages from some devices to be expired.
rucially, 𝖷𝖢 does not require distinguishing among those cases. When
device wakes up, it finds some messages from (the most recent

vailable execution round of) some other devices. The devices for which
message is available in a certain round are the neighbours for that

round.
This system model and the terminology associated to it (e.g., ‘send

message to a neighbour’) is adopted throughout the paper. These design
choices make 𝖷𝖢 agnostic to the actual communication channel, topol-
ogy creation and discovery mechanism: e.g., push or pull, broadcast
or point-to-point. For example, the same programming model would
apply even if a device, after waking up, contacts the neighbours to
fetch their current value in a pull fashion. Instead, in a network of
micro-controller devices, Bluetooth 5.0 extended advertisements could
be used to share data with neighbour devices in physical proximity,
without an explicit discovery mechanism, as the topology is induced
by the messages that are actually received. Such an implementation
would also grant causal consistency (Ahamad et al., 1995). On the other
hand, a network of higher-end devices may communicate point-to-point
over IP, with discovery mechanisms based on broadcasted messages or
rendezvous servers.

2.2. 𝖷𝖢’s key data type: Neighbouring values

Datatypes in 𝖷𝖢. 𝖷𝖢 features two kinds of values. Local values 𝓁
include traditional types 𝐴 like float, string or list. Neighbouring values
(nvalues) are a map 𝚠 from device identifiers 𝛿𝑖 to corresponding local
values 𝓁𝑖, with a default 𝓁, written 𝓁[𝛿1 ↦ 𝓁1, ... , 𝛿𝑛 ↦ 𝓁𝑛]. A nvalue
is used to describe the (set of) values received from and sent to neigh-
bours. In highly decoupled distributed systems only a few neighbours

ay occasionally produce a value. The devices with an associated entry
n the nvalue are hence usually a subset of all devices, e.g., because

device is too far to provide a value or the last provided value has
xpired. The default is used when a value is not available for some
eason as will be discussed later (e.g., if a device just appeared and has
ot yet produced a value). For this reason, it is convenient to adopt
he notation above and read it ‘‘the nvalue 𝚠 is 𝓁 everywhere (i.e., for
ll neighbours) except for devices 𝛿1, ... , 𝛿𝑛 with values 𝓁1, ... ,𝓁𝑛’’. To
xemplify nvalues, in Fig. 1, upon waking up for computation 𝜖2, 𝛿2
ay process a nvalue 𝚠 = 0[𝛿4 ↦ 1, 𝛿3 ↦ 2, 𝛿1 ↦ 3], corresponding

to the messages carrying the scalar values 1, 2, and 3 received when
asleep from 𝛿4, 𝛿3, and 𝛿1. The entries for all other devices default to
0. After the computation, 𝛿2 may send out the messages represented
by the nvalue 𝚠′ = 0[𝛿3 ↦ 5, 𝛿1 ↦ 6]; so that 5 is sent to 𝛿3, 6 is sent
to 𝛿1, and 0 is sent to every other device (such as a newly-connected
device with no dedicated value yet). We also use the notation 𝚠(𝛿′)
for the local value 𝓁′ if 𝛿′ ↦ 𝓁′ is in 𝚠, or the default local value 𝓁
of 𝚠 otherwise, reflecting the interpretation of nvalues as maps with a
efault. For instance, 𝚠′(𝛿1) = 6 and 𝚠′(𝛿2) = 0. To help the reader, in

code snippets, we underline the variables holding neighbouring values,
and, similarly, we underline a primitive type 𝐴 to indicate the type of
an nvalue 𝚠 = 𝓁[𝛿1 ↦ 𝓁1, ... , 𝛿𝑛 ↦ 𝓁𝑛] where 𝓁,𝓁1, ...𝓁𝑛 have type 𝐴.

Nvalues generalise local values. A local value 𝓁 can be automatically
converted to a nvalue 𝓁[] with a default value for every device. In
fact, the distinction between local values and nvalues is only for clarity:
local values can be considered equivalent to nvalues where all devices
are mapped to a default value. In the formalisation (Section 4) local
values and nvalues are treated uniformly. Functions on local values
are implicitly lifted to nvalues, by applying them on the maps’ content
3

𝚎

pointwise. For example, given 𝚠1 = 0[𝛿4 ↦ 1, 𝛿3 ↦ 2] and 𝚠2 = 1[𝛿4 ↦

2], we have 𝚠3 = 𝚠1 + 𝚠2 = 1[𝛿4 ↦ 3, 𝛿3 ↦ 3]. Note that 𝛿3 ↦ 3 in 𝚠3 is
ue to the fact that 𝛿3 ↦ 2 in 𝚠1 and 𝛿3 has default value 1 in 𝚠2. Using

also the automatic promotion of local values to nvalues, we have that
𝚠1 + 1 = 0[𝛿4 ↦ 1, 𝛿3 ↦ 2] + 1 = 1[𝛿4 ↦ 2, 𝛿3 ↦ 3].

perations on nvalues. Besides pointwise manipulation, nvalues can
e folded over, similar to a list, through built-in function 𝚗𝚏𝚘𝚕𝚍(𝑓 ∶
𝐴,𝐵) → 𝐴, 𝚠 ∶ 𝐵,𝓁 ∶ 𝐴) ∶ 𝐴, where the function 𝑓 is repeatedly applied

to neighbours’ values in a field 𝚠 (thus excluding the value for the self
device), starting from a base local value 𝓁. For instance, assume that
𝛿2 is performing a 𝚗𝚏𝚘𝚕𝚍 operation, with the current set of neighbours
{

𝛿1, 𝛿3
}

. Then 𝚗𝚏𝚘𝚕𝚍(+, 𝚠1, 10) = 10 + 𝚠1(𝛿1) + 𝚠1(𝛿3) = 10 + 0 + 2, where
𝚠1 = 0[𝛿4 ↦ 1, 𝛿3 ↦ 2] is as above. As nvalues should be agnostic to the
rdering of the elements (i.e., the ordering of the identifiers 𝛿′), we
sually assume that 𝑓 is associative and commutative.

ensors and actuators. Since 𝖷𝖢 programs may express the collec-
ive behaviour of homogeneous systems situated in some (physical or
omputational) environment, the devices are typically equipped with
ensors and actuators. Sensors, in particular, are meant to provide access
o contextual and environmental information. These can be accessed
y the program through built-in functions as shown in next sections.
n a round, similarly to how messages are considered, the program is
xecuted against the most recent sample of sensor values. On the other
and, actuators can be run at the end of the round against the program
utput (which may collect all the desired actuation commands).

xample 1 (Distance Estimation). A node can estimate its distance
rom another node in the network by leveraging an existing estimate

provided by its neighbours. To this end, one selects the minimum
(using nfold with starting value Infinity) of neighbours’ estimates
𝚗 increased by the relative distance estimates 𝚜𝚎𝚗𝚜𝚎𝙳𝚒𝚜𝚝 (provided by
a sensor in the device).

1 def distanceEstimate(𝚗) { // type: (𝚗𝚞𝚖) → 𝚗𝚞𝚖

2 nfold(min, 𝚗 + 𝚜𝚎𝚗𝚜𝚎𝙳𝚒𝚜𝚝, Infinity)
3 }

Notice that 𝚗 and 𝚜𝚎𝚗𝚜𝚎𝙳𝚒𝚜𝚝 sum up neighbour-wise; if neighbour 𝛿
hares estimate 𝚗(𝛿), the node’s best estimate from that neighbour is
(𝛿)+𝚜𝚎𝚗𝚜𝚎𝙳𝚒𝚜𝚝(𝛿). The minimum among all estimates (and Infinity
is selected.

Additional built-in operations on nvalues are 𝚜𝚎𝚕𝚏(𝚠 ∶ 𝐴) ∶ 𝐴,
which returns the local value 𝚠(𝛿) in 𝚠 for the self device 𝛿, and
𝚙𝚍𝚊𝚝𝚎𝚂𝚎𝚕𝚏(𝚠 ∶ 𝐴,𝓁 ∶ 𝐴) ∶ 𝐴 which returns a nvalue equal to 𝚠

except for the self device 𝛿 – updated to 𝓁. The substitution notation
tand for defaulted map updates, so that 𝚞𝚙𝚍𝚊𝚝𝚎𝚂𝚎𝚕𝚏(𝚠,𝓁) = 𝚠[𝛿 ↦ 𝓁].

Indeed, the notation 𝓁[𝛿1 ↦ 𝓁1, ...] for nvalues can be understood as a
ubstitution updating 𝓁 (the map equal to 𝓁 everywhere) by associating
𝑛 to 𝛿𝑛.
𝖷𝖢 operators on nvalues behave uniformly on neighbours to encour-

age uniform behaviour on each element of a nvalue. This approach is
idiomatic in 𝖷𝖢 and results in a more resilient behaviour – inherently
olerate changes of neighbourhoods between rounds. Yet, non-uniform
ehaviour can be encoded via built-in function 𝚞𝚒𝚍 (combined with
ommunication primitives, Section 2.3), which provides the unique
dentifier 𝛿 of the current device.

Fig. 2 shows a summary of every built-in function used in this paper.
onstructors and point-wise operators are standard; the multiplexer
perator 𝚖𝚞𝚡(𝓁1,𝓁2,𝓁3) returns 𝓁2 if 𝓁1 is 𝚃𝚛𝚞𝚎, 𝓁3 otherwise. We
lso omit 𝚙𝚊𝚒𝚛 and use the shortcut (𝚟1, 𝚟2) for pair construction, and
se infix notation for binary operators whenever convenient. Built-
ns for neighbouring values has just been discussed. We introduce the
𝚡𝚌𝚑𝚊𝚗𝚐𝚎 operator in the next section.
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2.3. Communication in 𝖷𝖢: Exchange

𝖷𝖢 features a single communication primitive
𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎𝑖, (𝚗)=> 𝚛𝚎𝚝𝚞𝚛𝚗 𝚎𝑟 𝚜𝚎𝚗𝚍 𝚎𝑠) which de-sugars to
𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎𝑖, (𝚗)=> (𝚎𝑟, 𝚎𝑠)) and is evaluated as follows. (i) the device
omputes the local value 𝓁𝑖 of 𝚎𝑖 (the initial value). (ii) it substitutes
ariable 𝚗 with the nvalue 𝚠 of messages received from the neighbours

for this exchange, using 𝓁𝑖 as default. The exchange returns the (neigh-
bouring or local) value 𝚟𝑟 from the evaluation of 𝚎𝑟. (iii) 𝚎𝑠 evaluates
o a nvalue 𝚠𝑠 consisting of local values to be sent to neighbour devices
𝛿′, that will use their corresponding 𝚠𝑠(𝛿

′) as soon as they wake up and
perform their next execution round.

Often, expressions 𝚎𝑟 and 𝚎𝑠 coincide, hence we provide
𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎𝑖, (𝚗)=> 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 𝚎) as a shorthand for
𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎𝑖, (𝚗)=> (𝚎, 𝚎)). Another common pattern is to access neigh-
ours’ values, which we support via 𝚗𝚋𝚛(𝚎𝑖, 𝚎𝑠) =

𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎𝑖, (𝚗)=> 𝚛𝚎𝚝𝚞𝚛𝚗 𝚗 𝚜𝚎𝚗𝚍 𝚎𝑠). In 𝚗𝚋𝚛(𝚎𝑖, 𝚎𝑠), the value of
expression 𝚎𝑠 is sent to neighbours, and the values received from them
(gathered in 𝚗 together with the default from 𝚎𝑖) are returned as a
nvalue, thus providing a view on neighbours’ values of 𝚎𝑠.

It is crucial for the expressiveness of 𝖷𝖢 that exchange (hence
nbr) can send a different value to each neighbour, to allow custom
interaction, as exemplified below. Next, we show the self-organising
distance algorithm which showcases the interplay of exchange and nfold.

xample 2 (Ping-pong Counter). The following function produces a
eighbouring value of ‘‘connection counters’’, associating every neigh-
our to the number of times a mutual connection has been established
ith it.

1 def ping-pong() { // type: () → 𝚗𝚞𝚖

2 exchange( 0, (𝚗) => retsend 𝚗 + 1 )
3 }

Every time a device evaluates ping-pong, it first gathers a neigh-
bouring value 𝚠 associating neighbours to their respective connection
counter – 0 is for newly connected devices. Expression 𝚗+1 is computed
substituting 𝚠 for 𝚗, incrementing each such counter (including for
ewly connected devices, which now map to 1). The resulting value

𝚠 + 1 is both returned by the expression and shared with neighbours.
s long as a connection between two devices is maintained, each
eceives a connection counter from the other and increments it before
ending it back – overall counting the messages bouncing back-and-
orth. Once a connection breaks and the corresponding messages expire,
he connection counter resets to 0, then starts increasing again in case

connection is re-established. Crucially, the program sends different
alues to neighbours to keep a distinct connection counter with each.
4

Example 3 (Self-organising Distance). Computing the minimum distance
from any device to a set of source devices results in a gradient (Au-
rito et al., 2017a). Gradients are a key self-organisation pattern with
everal applications like estimating long-range distances and providing
irections to move data along minimal paths. Function distanceTo

offers a simple implementation, consisting of a distributed version of
the Bellman-Ford algorithm (Dasgupta and Beal, 2016).

1 def distanceTo(src) { // type: (𝚋𝚘𝚘𝚕) → 𝚗𝚞𝚖

2 exchange( Infinity, (𝚗) => retsend mux(src, 0,
distanceEstimate(𝚗)) )

3 }

Its repeated application in a network of devices stabilises to the ex-
pected distances from devices where src is true. The exchange ex-
pression in the body updates a local estimate of the distance by (i) using
Infinity as default distance; (ii) returning distance zero on source
devices; (iii) in other devices, selecting the minimum of neighbours’
estimates increased by the relative distance estimates (Example 1). If
such estimated distance is 𝑑, then 𝑑 is both shared with neighbours
(as a constant map with the same estimate 𝑑 for every neighbour) and
returned by the function. Operator mux (i.e., a strict version of if that
omputes both its branches, and then selects the output of one of them
s result based on the condition) is needed, as sources, though returning
, must also evaluate function call distanceEstimate (thus sharing
heir value 𝚗). Any change in the network (e.g., due to failure, mobility,

dynamic joining) directly affects the domain of 𝚗, hence the local
computation and eventually the whole network—resulting in inherent
adaptiveness.

2.4. Compositionality through alignment

If a program executes multiple exchange-expressions, 𝖷𝖢 ensures
y alignment that messages are dispatched to corresponding exchange-
xpressions across rounds.

xample 4 (Neighbour Average). The following function average
computes the weighted average of a value across the immediate
eighbours of the current device:

1 def average(weight, value) { // type: (𝚗𝚞𝚖) → 𝚗𝚞𝚖

2 val totW = nfold(+, nbr(0, weight), weight);
3 val totVl = nfold(+, nbr(0, weight*value),

weight*value);
4 totV / totW
5 }
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First, the total weight of neighbours is computed in Line 2, by first
producing a nvalue of neighbours’ weights through nbr(0, weight
), and then reducing it to its total by nfold, using weight as base
value to ensure that the weight of the current device is also considered.
A similar operation is performed in Line 3, where the products weight
*value of neighbours (including the current device) are added. The
weighted average is then obtained and returned by the function as
totV/totW.

This function contains two calls to nbr, in turn calling the
exchange built-in, both with messages of type 𝚗𝚞𝚖. 𝖷𝖢 ensures that
the messages from the different communicating routines are correctly
dispatched to neighbours, each used only in the corresponding call to
exchange in the neighbours, thus not mixing values and weights.

𝖷𝖢 ensures that the values produced by an exchange are processed
by the corresponding exchange in the next round, i.e., the exchange in
the same position in the AST and in the same stack frame. Considering
both the AST and the stack frame ensures that exchange operations are
correctly aligned also in case of branches, function calls and recursion.
Fig. 3 demonstrates alignment. Top-left is a tree representation of the
𝖷𝖢 program in Example 4, accounting for stack frames and children
in the AST. The larger box with multiple compartments denotes the
AST of a function, considering only exchange, nfold, and functions
using them. Top-right is a system execution. Dotted arrows connect a
round (circle) to the next on the same device, and curly arrows denote
messages. Within each round we show a tree corresponding to the one
top-left. Note that all rounds execute the same tree. Bottom-left zooms
into two rounds of different devices evaluating average with fully
aligned program executions: corresponding expressions at the same tree
locations interact and consider each other among neighbouring values.
Red dashed arrows connecting exchange expressions that belong to
different rounds show this interaction. We will discuss partial alignment
in the next section, after introducing conditionals. Alignment is a cru-
cial feature in 𝖷𝖢 because it enables functional composition of distributed
behaviour, ensuring that messages are transparently dispatched in the
correct way, as exemplified in the following.

Example 5 (Fire Detection). Function closestFire returns the dis-
ance from the closest likely fire (if any), by relying on the simpler func-
ions average and distanceTo, based on arguments
temperature and smoke which we can assume to be provided by
available sensors.

1 def closestFire(temperature, smoke) {//type:
(𝚗𝚞𝚖, 𝚗𝚞𝚖) → 𝚗𝚞𝚖

2 val trust = nfold(+, 1, 1);
3 val hot = average(trust, temperature) > 60;
5

4 val cloudy = average(trust, smoke) > 10;
5 distanceTo(hot and cloudy)
6 }

In Line 2 the function establishes a trust level for the node, which is
proportional to the number of neighbours of that node (thus consider-
ing central nodes as more relevant), computed as nfold(+, 1, 1).
Line 3 checks whether the average temperature, weighted by trust, is
above 60 degrees Celsius. Similarly, Line 4 checks whether the average
concentration of smoke, also weighted by trust, is above 10%. Finally,
Line 5 computes distances to places where both conditions are met
(high temperature and smoke) through function distanceTo. Several
xchange calls are evaluated by both the average and distanceTo
functions: thanks to alignment, the messages processed by each of
hem are those generated by the same ones in previous rounds of
eighbouring devices.

.5. Conditionals

𝖷𝖢 supports if (cond) {e1} else {e2} conditional expres-
sions. Crucially, their semantics interplays with the communication
semantics of 𝖷𝖢. Since only the exchange operations in the same
position within the AST and stack frame align, with a conditional, an
exchange aligns only across the devices that take the same branch.
Thus, while evaluating an 𝖷𝖢 sub-expression, we consider only aligned
neighbours, that are round neighbours which evaluated the same sub-
expression (as AST and stack frame). Non-aligned neighbours are never
considered in the evaluation of the sub-expression, e.g., for the con-
struction of the 𝚠 of received messages in an exchange, or for de-
termining which values of an nvalue should be folded over by a
nfold. As a result, a conditional expression splits the network into two
non-communicating sub-networks, each evaluating a different branch
without cross-communication.

Example 6 (Domain-isolated Computations). Consider a connected net-
work of service requesters and providers. Suppose these nodes are
dynamically split into two domains: those involved in local compu-
tations (local) and those offloading computations (not local) to
gateways, special service providers which provide cloud access. We
may want to compute the distance to gateways without considering
the devices involved in local computations.

1 // type: (𝚋𝚘𝚘𝚕, 𝚋𝚘𝚘𝚕) → 𝚗𝚞𝚖

2 def distanceToGateways(local, gateway) {
3 if (local) { Infinity } else { distanceTo(

gateway) }
4 }
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Fig. 4. 𝖷𝖢 alignment mechanism with conditionals for Example 6.
uring a round, the program evaluates to Infinity on devices where
ocal is true. Such devices are considered ‘‘obstacles’’ to avoid. On
evices where local is false, the program evaluates distanceTo(
ateway), which consist of an exchange-expression (c.f. Example 3).
evices in the local group do not compute such exchange expression,
nd do not contribute to the assessment of distances: distanceTo is
xecuted in isolation on non-locals.

Now suppose we would like the local subgroup to compute dis-
ances from local requesters, and the other subgroup to still com-
ute distances from gateways, always excluding the devices of the
omplementary group.

1 // type: (𝚋𝚘𝚘𝚕, 𝚋𝚘𝚘𝚕, 𝚋𝚘𝚘𝚕) → 𝚋𝚘𝚘𝚕

2 def distanceInServiceProvisioning(local,requester,
gateway){

3 if (local) { distanceTo(requester) }
4 else { distanceTo(gateway) }
5 }

In this case, in any round, only a single exchange expression is com-
puted, always in the same position in the AST (corresponding to a call
of function distanceTo). However, messages exchanged by devices
in the local group must not be matched with those exchanged by de-
vice outside the group, otherwise every device would just compute their
distance from the closest local requester or non-local gateway,
which is not the intended behaviour. 𝖷𝖢 grants that this does not
happen, as exchange expressions arising from different branches have
different stack frames, hence happen in separate interaction domains.

Fig. 4 shows partial alignment for Example 6. At the top, we
show the program tree for distanceInServiceProvisioning.
Note that conditionals are not visible here. Bottom-right, we show
a system execution: in each round, only one of the distanceTo
branches is executed – the branch that has not been evaluated is
ashed. Bottom-left, we zoom into two rounds of devices that align
nly partially: they evaluate some common expression which is fully
ligned (red dashed arrow), then follow a different branch where there
s no alignment. Notice that alignment occurs on the execution of
unction distanceInServiceProvisioning but no actual data
s exchanged (since no evaluated exchange or nfold expression is
6

aligned).
2.6. 𝖷𝖢 Design: Discussion

The model and abstractions presented in this section encourage
developers to build collective behaviours (as 𝖷𝖢 programs) as compo-
sitions of functional blocks that are resilient to failures. In other words,
by its very design, 𝖷𝖢 enjoys the following features.

Automatic failure absorption. In the case a node fails or a message gets
lost in inter-node communication, the 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 handles the failure
transparently from programmers: the node simply does not show up
among the neighbours of a given node in the next alignment. With
𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎, developers specify the logic to collectively operate over the
neighbours’ messages, and make no assumptions on their number or
identity, while being encouraged to express the behaviour homoge-
neously through point-wise operations and nfold. As a result, in
𝖷𝖢 it is idiomatic to write programs with inherent fault tolerance
and resilience with respect to devices that dynamically join and leave
the set of neighbours (e.g., because they physically change location),
transparently from programmers. However, it is important to note that
𝖷𝖢 does not provide guarantees on fault tolerance by itself. Being
a Turing-complete language, non-resilient behaviour can inevitably
be programmed, although mostly non-idiomatically: guarantees on id-
iomatic subsets of the language may be provided, as briefly discussed
in Section 4.

Compositionality and collective stance. Programming resilient collective
behaviour is supported by functional abstraction and composition: sim-
pler resilient blocks of collective behaviour (cf. gradients in Example 3)
can be defined (def) as reusable functions and composed together to
build more complex applications, while retaining properties like fault
tolerance and self-stabilisation (cf. Section 5). More examples of this
feature are provided in Section 3 and in the case study of Section 7. This
feature is also due to the fact that each behaviour can be described as a
function that encapsulates both the processing and the communication
required to come up with a coordinated result, while the round-based
execution model supports progress and incorporation of local changes
(ultimately propagating from neighbourhoods to neighbourhoods up to

the global system).
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3. 𝗫𝗖 at Work

We now show 𝖷𝖢 in action by means of example applications
in areas like WSNs, Internet of Things (IoT), and large-scale cyber–
physical systems (CPSs). The examples are chosen to (i) highlight
how composition in 𝖷𝖢, enabled by alignment, allows programmers
to divide and incrementally deal with the complexity of expressing
distributed adaptive behaviour; and (ii) show that the expressiveness
of 𝖷𝖢 enables the encoding of advanced algorithms (e.g., with self-
organisation properties); and (iv) present reusable components used
later in our evaluation (Section 7).

Example 7 (Gossip). The function gossipEver spreads the informa-
tion associated to an event (e.g., pressing a button) through a network.
It consists of a single exchange expression executed on every device.

1 def gossipEver(event) { // type: (𝚋𝚘𝚘𝚕) → 𝚋𝚘𝚘𝚕

2 exchange(False, (𝚗) => retsend
3 nfold(or, 𝚗, self(𝚗) or event))
4 }

The first argument of the exchange (Line 3) sets the initial value to
False for 𝚗 (and thus for newly-connected devices, including for the
urrent device in its first round). The second argument is a lambda,
hose parameter 𝚗 is the nvalue representing the gossips of neighbour-

ng devices (including the current device itself, for which 𝚗 includes
he gossip value in its previous round). Function nfold collapses the
eighbours’ gossips through binary operation or (checking whether
here is any true gossip), with the starting value self(𝚗) or event

which holds if either the current device had a true gossip in its previous
round (i.e., self(𝚗) is true) or a true value is fed right now (event).
The resulting value, the new gossip for the device, is both returned by
the function and sent to each neighbour.

Notice that the gossip function is agnostic to the network structure
and it avoids explicit message management. Its repeated application by
a network of devices realises the expected behaviour, returning true in
every device after a button has been pressed anywhere in the network
as soon as possible, that is, as soon as the fastest chain of messages from
the originating event is able to reach the device.

This function is fully decentralised and every device executes the
same logic. Yet, gossipEver only spreads a Boolean event, and once
the gossip becomes true, there is no way to flip it to false again.
Arbitrary data types and reversibility, require one to break symmetry:
some devices (leaders) act as sources of truth, and the others will
receive their most recent data through a broadcast routine, such as the
following.

Example 8 (Broadcast). Function broadcast below implements the
propagation of the value at nodes of minimal dist outwards, along

inimal paths ascending dist. We assume that dist is produced by
function such as distanceTo (Example 3).

1 def broadcast(dist, value, null) { // type:
(𝚗𝚞𝚖, 𝐴, 𝐴) → 𝐴

2 val selfRank = (dist, uid);
3 val 𝚗𝚋𝚛𝚁𝚊𝚗𝚔 = nbr(selfRank, selfRank);
4 val bestRank = nfold(min, 𝚗𝚋𝚛𝚁𝚊𝚗𝚔, selfRank);
5 val 𝚙𝚊𝚛𝚎𝚗𝚝 = 𝚗𝚋𝚛𝚁𝚊𝚗𝚔 == bestRank;
6 exchange( value, (𝚗) =>
7 val selfKey = (value==null, selfRank);
8 val 𝚗𝚋𝚛𝙺𝚎𝚢 = (𝚗==null, 𝚗𝚋𝚛𝚁𝚊𝚗𝚔);
9 val res = snd(nfold(min, (𝚗𝚋𝚛𝙺𝚎𝚢,𝚗), (selfKey,

value)));
0 return res
1 send mux(nbr(False, 𝚙𝚊𝚛𝚎𝚗𝚝), res, null)
2 )
3 }
7

First each device identifies a single parent device, as the neighbour
having the minimal rank, computed in bestRank (Line 4). Such rank
is a pair of dist and uid (Line 2), ordered lexicographically, ensuring
that the parent is the neighbour of minimal distance to the knowledge
source (using uid to break ties). The chosen parent is encoded as the
only neighbour for which a true value is present in nvalue 𝚙𝚊𝚛𝚎𝚗𝚝 (Line
5).

Then, an exchange expression sorts out the broadcast received
from parent devices, propagating the result to children. The value of
the device for the current round is computed in res (Line 9), and
is taken from the neighbour with the minimum key, i.e., minimum
ank for a non-null value (we assume that False < True). For the
urrent device, we use the argument value (Line 7). For neighbours,
e use the value received from them in 𝚗 (Line 8). The resulting value

res is returned by exchange and by the whole function, (Line 10).
This (possibly band-consuming) value is sent only to neighbours which
selected the current device as parent, that is, so that nbr(False
𝚙𝚊𝚛𝚎𝚗𝚝) is true. Every other neighbour receives null (possibly

lighter to transmit): the selection over values and nulls is performed
per-neighbour by built-in operator mux (Line 11).

The function broadcast above uses differentiated messages to
neighbours to reduce the network load. This result is achieved by
sending values only to the neighbours that actually need them, using
placeholder null values for the others. In case the message propaga-
tion does not need to reach every device of the network, but only some
targets, this load can be further reduced by restricting the broadcast
into a channel, as we explain next.

Example 9 (Broadcast Into a Channel). The function
channelBroadcast selects a region channel of a given width
connecting a source device with a destination device dest, and

performing a broadcast within the region.

1 // type: (𝚋𝚘𝚘𝚕, 𝚋𝚘𝚘𝚕, 𝚗𝚞𝚖, 𝐴, 𝐴) → 𝐴
2 def channelBroadcast(source, dest, width, value,

null) {
3 val ds = distanceTo(source);
4 val dd = distanceTo(dest);
5 val sd = broadcast(ds, dd, Infinity);
6 val channel = ds + dd <= sd + width;
7 if (channel) { broadcast(ds, value, null) } else

{ null }
8 }

The channel region is computed through the geometrical definition of
ellipse (Line 6): the sum of the distances ds towards source and dd
towards destination (computed by distanceTo, Lines 3–4) should

surpass the distance between source and destination by at most width
for devices in the channel. The distance between source and destination
is obtained through broadcast(ds, dd, Infinity): the parame-
ter ds of the broadcast defines that values should be propagated from
the source outwards; and the value propagated is the parameter dd,
as it is evaluated in the source (and thus the distance between source
and destination). Then, a conditional is used to selectively broadcast
the value in the source outwards only in the channel region – null
elsewhere (Line 7).

The example illustrates functional composition:
channelBroadcast composes multiple instances of distanceTo
(Example 3) and broadcast (Example 8) to realise a more complex
behaviour. The composition preserves the self-organising properties
of its constituent parts, being able to automatically adapt to failures,
mobility and changes in source, dest, width.

So far, we presented functions building a communication structure
to disseminate information over the network. Yet, we have not ad-
dressed the problem of collecting such information, especially in the

non-trivial case where it is obtained by inspecting the whole network.
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Example 10 (Information Collection). The collect algorithm (in-
spired by Audrito et al., 2021a) aggregates the value currently present
in the network, via an arithmetic or an idempotent accumulator, pro-
gressively in a network towards a source node—identified as the zero-
value of a gradient dist (cf. Example 3). The result is updated when
values change, unlike Example 7 where a true cannot revert to
false.

1 def weight(dist, radius) { // type: (𝚗𝚞𝚖, 𝚗𝚞𝚖)→𝚗𝚞𝚖

2 max(dist-nbr(0,dist), 0) * (radius-𝚜𝚎𝚗𝚜𝚎𝙳𝚒𝚜𝚝)
3 }
4 def normalise(𝚠) { // type: (𝚗𝚞𝚖) → 𝚗𝚞𝚖

5 𝚠 / nfold(+, 𝚠, 0)
6 }
7 // type: (𝚗𝚞𝚖, 𝚗𝚞𝚖, 𝐴, (𝐴,𝐴) → 𝐴, (𝐴, 𝚗𝚞𝚖) → 𝐴) → 𝐴
8 def collect(dist, radius, value, accumulate,

extract) {
9 exchange( value, (𝚗) =>
0 val loc = accumulate(𝚗, value); // local

estimate
1 return loc
2 send extract(loc, normalize(weight(dist,

radius)))
3 )
4 }

The exchange construct (Line 9) handles neighbour-to-neighbour
ropagation of partial accumulates. First, it applies accumulate (Line
0) to aggregate the local value with the received partial accumulates
into loc; this is the result of collect (Line 11). In other words, the

idea is that the local partial accumulate is obtained by accumulating
the partial accumulates of neighbours. Then, it computes a normalised
weight (Line 12), via functions weight and normalise, measuring
neighbour reliability, using this weight to extract from loc the
artial accumulates to send to neighbours (Line 12). Function weight
Line 1) is parametrised by a gradient value dist and value radius
epresenting the maximum communication range for neighbour inter-
ction; so, the expression is non-negative and the computed weight
s larger for neighbours farther from the communication boundaries
i.e., less likely to be lost as neighbours) and closer to the source
f the collection. In normalise (Line 4), normalisation of weights
is achieved by dividing the computed weights for neighbours by

the sum of the neighbours’ weights. Depending on the nature of the
aggregation (arithmetic or idempotent, e.g., sum or minimum), different
accumulate and extract functions are used: in the former case,
the value is multiplied by the weight:

1 def accumulate(𝚟, l) { nfold(+, 𝚟, l) } //type:
(𝐴,𝐴) → 𝐴

2 def extract(v, w) { v * w } //type:
(𝐴, 𝚗𝚞𝚖) → 𝐴

In the latter case, we choose to either send the value or not (also
increasing efficiency as in Example 8) depending on whether the weight
exceeds a given threshold:

1 def accumulate(𝚟, l) { nfold(min, 𝚟, l) }
2 def extract(v, w) { mux(w >= 0.25, v, Infinity) }

Improvements over (Audrito et al., 2021a) are both stylistic (cleaner
code) and in the precision of weights, since in Audrito et al. (2021a)
they had to be indirectly (and approximately) deduced on the receiving
end.

Example 11 (Smart City Monitoring). We consider SmartC, a scenario
of smart city monitoring, where devices cooperate with neighbours
to process and relay information in the distributed system. This is
achieved by the collective execution of an 𝖷𝖢 program. The system
8

consists of detectors, non-mobile nodes (e.g., smart traffic lights) that
Fig. 5. 𝖷𝖢 implementation of a smart city monitoring application.

collect in a bounded surrounding area the contributions of other possi-
bly mobile devices that we call data-providers (e.g., buses or people with
wearables). Data-providers exhibit a local warning value, which signals
a need for intervention. Detectors collect warning values and compute
a mean warning in their area: when the mean warning exceeds some
threshold, then they also collect logs from data-providers and dispatch
collected data towards the closest operations centre. The operations
centre might be several hops away from the source, so we want to
‘‘broadcast’’ data hop-by-hop along a short ‘‘path’’ of devices—but with-
out flooding the whole network. The system (i) collects and routes data
from nodes closer than a certain range towards the closest detector; (ii)
lets detectors compute the mean levels of warning of the corresponding
areas; (iii) lets detectors collect and aggregate logs if their mean warn-
ing exceeds a certain threshold; and (iv) creates self-healing broadcast
channels from detectors to the closest operations centres. This logic is
implemented by function smartC (Fig. 5), which reuses distanceTo
, collect, broadcast and channelBroadcast (Examples 3 and
8 to 10 ).

Function smartC is defined in terms of local values representing
arameters for the algorithm (e.g., warningThreshold) or varying

inputs (e.g., localLog, which denotes a set of log items for a node),
which can be thought of as provided by sensors and may change dy-
namically. The algorithm works as follows. First, a gradient of distances
from detectors is computed in the system (Line 2). The nodes that
are inspected are only those for which the gradient value is less
than inspectionRadius (Line 3). Then, two different behaviours
are defined based on whether a node is inspected or not (Line 5).
Nodes not inspected just return nullReport (Lines 4 and 19). In
the domain of inspected nodes, including the detector, a collection
process is activated (Line 7 to 11) in order to let the detector obtain
the sum of warning and the number of devices in the area. With such
information, the detector can process the mean warning (Line 12) and
decide whether the warning level is high (Line 13): such a decision
(warning significance) is broadcast from the detector to the rest of
the area (Line 14), as a kind of notification to the devices in the
surroundings. Also, depending on whether the warning level is high
(Line 15 to 17), it either collects the logs from all the nodes in the area
(Line 16), or not. In any case, a broadcast on a channel is performed
to resiliently communicate the report (set of logs) from the detector to
the operations centre (Line 20).
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Fig. 6. Syntax (top), free variables (middle) and syntactic sugar (bottom) for FXC expressions.
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4. Formalisation of 𝗫𝗖

In this section, we present a formalisation of the core concepts
introduced in this paper through Featheweight XC (FXC), a mini-

al calculus for 𝖷𝖢. By virtue of its minimality, FXC is particularly
onvenient for proving properties both of the language as a whole
nd of algorithms and fragments of it, such as: type soundness and
eterminism with respect to let-polymorphic typing, denotational char-
cterisation of expressions as space–time values (Audrito et al., 2018a),
ith functional compositionality of global behaviour.

The formalisation of typing (Section 4.2) and of device-level se-
antics (first part of Section 4.3) is inspired by classical functional

anguages with let-polymorphism like ML, while differing in crucial
ays: in the presence and handling of nvalues, and in the alignment-
ased semantics. Due to these significant differences, ML soundness
roperties are not directly inherited by 𝖷𝖢. We further discuss 𝖷𝖢

xpressiveness and resilience properties in Section 8.

.1. Syntax

Fig. 6 (top) shows the syntax of FXC. As in Igarashi et al. (2001),
he overbar notation indicates a (possibly empty) sequence of elements,
.g., 𝑥 is short for 𝑥1, ... , 𝑥𝑛 (𝑛 ≥ 0). Note that the syntax induces a

standard functional language, with no peculiar features for distribution:
distribution is nonetheless apparent in the operational semantics.

An FXC expression 𝚎 can be either:

• a variable 𝚡;
• a (possibly recursive) function 𝚏𝚞𝚗 𝚡(𝚡){𝚎}, which may have free

variables;
• a function call 𝚎(𝚎);
• a let-style expression 𝚟𝚊𝚕 𝚡 = 𝚎; 𝚎;
• a local literal 𝓁, that is either a built-in function 𝚋, a defined

function 𝚏𝚞𝚗 𝚡(𝚡){𝚎} without free variables, or a data constructor
𝚌 applied to local literals (possibly none);

• an nvalue 𝚠, as described in Section 2.2.

he set of built-in functions includes sensors 𝚜, the communication
uilt-in 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎, functions manipulating nvalues, and further built-
ns as needed (e.g., for numbers, pairs, lists, etc.). FXC can be typed
sing standard let-polymorphism for higher-order languages, without
istinguishing between types for local values and types for neigh-
ouring values. This is accomplished by promoting local values to
values, and designing constructs and built-in functions of the language
o always accept nvalues for their arguments (more details on this
n Section 4.3, Device semantics). As local and neighbouring types
re not distinguished by FXC, in this section we avoid underlying
eighbouring values and their types. Free variables are defined in a
tandard way (Fig. 6, middle), and an expression 𝚎 is closed if 𝖥𝖵(𝚎) = ∅.
9

rograms are closed expressions without nvalues as sub-expressions.
ndeed, nvalues only arise in computations, and are the only values
roduced by evaluating (closed) expressions.

The syntax in Fig. 6 (top) diverges partially from the one used in
ections 2 and 3. However, the full syntax of 𝖷𝖢 can be recovered by
efining missing constructs as syntactic sugar. Besides some standard
implifications (infix notation for binary operators, omitted parenthesis
n 0-ary constructors, implicit 𝚙𝚊𝚒𝚛 constructor), some non-trivial en-

coding is described in Fig. 6 (bottom). In particular, lambda expressions
can be converted into fun-expressions with a fresh name, and defined
functions can be encoded as a let expression binding the function name.
Branching can be encoded by abstracting the code in the branches,
selecting one of them with the 𝚖𝚞𝚡 operator and then applying it.

4.2. Typing

Fig. 7 presents a classic Hindley-Milner type system (Damas and
Milner, 1982) for FXC. A type 𝑇 can be:

• a type variable 𝛼;
• a (recursive) data type 𝐾[𝑇 ], consisting of a parametric type name
𝐾 of arity 𝑛 ≥ 0, applied to 𝑛 types 𝑇1, ... , 𝑇𝑛 (possibly zero);

• or a function type (𝑇 ) → 𝑇 .

Since local values and nvalues are treated uniformly in the FXC seman-
ics, and nvalues are the only values produced by evaluating (closed)
xpressions, there is no need for dedicated types for nvalues: an nvalue
ets the type of its messages. Indeed, the underline notation to highlight
values types and variables is only for the readers’ convenience and
oes not need to be modelled in the type system. We write 𝖳𝖵(𝑇 ) for

the set of type variables in 𝑇 . Polymorphism of functions and data
constructors is supported by type schemes 𝑇𝑆 of the form ∀𝛼.𝑇 where
𝛼 occur free in 𝑇 , representing all types obtained by substituting 𝛼
with types 𝑇 , as per the type scheme instantiation relation ≺. A typing
nvironment  is a set of assumptions 𝚊 ∶ 𝑇𝑆 where the assumption
ubject 𝚊 can be either a variable, a built-in function or constructor.
e assume that sensors 𝚜 have types () → 𝑇 where 𝖳𝖵(𝑇 ) = ∅. In the

yping of programs, an initial typing environment 0 declares a (unique)
ype scheme for every available constructor and built-in function. This
0 is then extended with (unique) assumptions for bounded variables

ncountered while typing sub-expressions of the program. We write
(𝚊) for the unique type scheme 𝚊 in .

We specify typing of expressions via judgements  ⊢ 𝚎 ∶ 𝑇 which
ead ‘expression 𝚎 has type 𝑇 under assumptions ’. Following Igarashi
t al. (2001), multiple overbars are expanded together (e.g.,  ⊢ 𝚎 ∶ 𝑇

stands for  ⊢ 𝚎1 ∶ 𝑇1, ⋯,  ⊢ 𝚎𝑛 ∶ 𝑇𝑛). Typing judgements for
expressions are syntax-directed. All rules are standard except [T-NVAL],
which ensures that all messages 𝓁,𝓁 of a nvalue have a same type 𝑇 ,
and there are no repetitions in 𝛿.
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Fig. 7. Typing of FXC expressions.
Fig. 8. Device (big-step) operational semantics of FXC.
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4.3. Semantics

The semantics of FXC expressions is defined in terms of:

1. an operational big-step device semantics, formalising the compu-
tation of a device within one round; and

2. a denotational network semantics, formalising how the computa-
tion of devices give rise to the overall network evolution.

Device-level semantics. Fig. 8 presents the device semantics, formalised
by judgement 𝛿; 𝜎;𝛩 ⊢ 𝚎 ⇓ 𝚠; 𝜃, to be read as ‘‘expression 𝚎 evaluates
to nvalue 𝚠 and value-tree 𝜃 on device 𝛿 with respect to sensor values
𝜎 and value-tree environment 𝛩’’, where:

• 𝚠 is called the result of 𝚎;
• 𝜃 is an ordered tree with nvalues on some nodes (cf. Fig. 8 (top)),

representing messages to be sent to neighbours by tracking the
nvalues produced by exchange-expressions in 𝚎, and the stack
frames of function calls;
10

i

• 𝛩 collects the (non expired) value-trees received by the most
recent firings of neighbours of 𝛿, as a map 𝛿1 ↦ 𝜃1, ..., 𝛿𝑛 ↦ 𝜃𝑛
(𝑛 ≥ 0) from device identifiers to value-trees;

• 𝜎 associates nvalues to every sensor name 𝚜, and in case of open
expression, to every free variable 𝚡 occurring in 𝚎.2

he semantics is based on value-trees as means of communication,
s they allow grouping messages relative to every exchange construct
xecuted in a single round, while storing alignment information within
heir tree structure by encoding all stack frames encountered during the
xecution.

We assume every function expression 𝚏𝚞𝚗 𝚡(𝚡){𝚎} occurring in the
program is annotated with a unique name 𝜏 before the evaluation
starts. Then, 𝜏 will be the name for the annotated function expression
𝚏𝚞𝚗𝜏𝚡(𝚡){𝚎}, and 𝚋 the name for a built-in function 𝚋.

The syntax of value-trees and value-tree environments is in Fig. 8
top). The rules for judgement 𝛿; 𝜎;𝛩 ⊢ 𝚎 ⇓ 𝚟; 𝜃 (Fig. 8, middle)

2 Defining the semantics also for open expressions is convenient to enable
nduction in the upcoming proofs.
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are standard for functional languages, extended to evaluate a sub-
expression 𝚎′ of 𝚎 w.r.t. the value-tree environment 𝛩′ obtained from

by extracting the corresponding subtree (when present) in the value-
rees in the range of 𝛩. This alignment process exploits the auxiliary
‘projection’’ functions 𝜋𝑖 for any positive natural number 𝑖 (Fig. 8,
op). When applied to a value-tree 𝜃, 𝜋𝑖 returns the 𝑖th sub-tree 𝜃𝑖 of 𝜃.

hen applied to a value-tree environment 𝛩, 𝜋𝑖 acts pointwise on the
alue-trees in 𝛩.

The alignment process ensures that value-trees in environment 𝛩
lways correspond to the evaluation of the same sub-expression cur-
ently being evaluated. To ensure this match holds (as said before, of
he stack frame and position in the AST), in the evaluation of a function
pplication 𝚏(𝚠), the environment 𝛩 is reduced to the smaller set 𝛩 |𝚏

f trees which corresponded to the evaluation of a function with the
ame name (as defined in Fig. 8 (top)).

Rule [E-NVAL] evaluates an nvalue 𝚠 to 𝚠 itself and the empty value-
ree. Rule [E-LIT] evaluates a local literal 𝓁 to the nvalue 𝓁[] and
he empty value-tree. Rule [E-VAR] evaluates a free variable 𝚡 to the
value stored for it in 𝜎. Rule [E-VAL] evaluates a val-expression, by
valuating the first sub-expression with respect to the first sub-tree
f the environment obtaining a result 𝚠1, and then the second sub-
xpression with respect to the second sub-tree of the environment, after
ubstituting the variable 𝚡 with 𝚠1.

Rule [E-APP] is mostly standard eager function application: the func-
ion expression 𝚎0 and each argument 𝚎𝑖 are evaluated w.r.t. 𝜋𝑖+1(𝛩)

producing result 𝚟𝑖 and value-tree 𝜃𝑖. Then, the function application
tself is demanded to the auxiliary evaluation rules, w.r.t. the last sub-
ree of the trees corresponding to the same function: 𝜋𝑛+2(𝛩 |𝚏). Notice
hat the reduction 𝛩 |𝚏 ensures that only trees corresponding the same
unction execution (stack frame) are considered. The auxiliary rule [A-
UN] handles the application of fun-expression, which evaluates the
ody after replacing the arguments 𝚡 with their provided values 𝚠, and
he function name 𝚡 with the fun-expression itself. Rules [A-UID] and [A-

SELF] trivially encode the behaviour of the 𝚞𝚒𝚍 and 𝚜𝚎𝚕𝚏 built-ins. Rule
[A-SENS] defines the behaviour of sensors through the values stored in 𝜎.
Rule [A-XC] evaluates an exchange-expression, realising the behaviour
described at the beginning of Section 2.3. Notation 𝚠1[𝛿 ↦ 𝚠(𝛿)] is
sed to represent the nvalue 𝚠1 after the update for each 𝑖 of the
essage for 𝛿𝑖 with the custom message 𝚠𝑖(𝛿). The result is fed as

rgument to function 𝚠𝑓 : the first element of the resulting pair is the
verall result, while the second is used to tag the root of the value-
ree. Rule [A-FOLD] encodes the 𝚗𝚏𝚘𝚕𝚍 operators. First, the domain of 𝛩
s inspected, giving a (sorted) list 𝛿1, ... , 𝛿𝑛. An initial local value 𝓁0 is
et to the ‘‘self-message’’ of the third argument. Then, a sequence of 𝓁𝑖
s defined, each by applying function 𝚠1 to the previous element in the
equence and the value 𝚠2(𝛿𝑖) (skipping 𝛿 itself). The final result 𝓁𝑛 is
he result of the application, with empty value-tree. Auxiliary rules for
he other available built-in functions are standard, do not depend on
he environment, hence have been omitted.

etwork-level semantics. The evolution of a network executing a pro-
ram 𝚎𝚖𝚊𝚒𝚗 is formalised through structures of events, atomic rounds of
omputation performed by devices according to the device-level seman-
ics. Such events across space (i.e., the devices where they happen) and
cross time (i.e., when they happen w.r.t. other events) can be seen as
he execution of the program on a single ‘‘aggregate machine’’ (Beal
t al., 2015) in which information is exchanged across events (and
ence, devices) following a messaging relationship ⇝. This idea can be
ormalised through augmented event structures, which augments a classi-
al event structure (Lamport, 1978) with further information associated
o events: device identifiers and sensor status.

efinition 1 (Augmented Event Structure). An augmented event structure
= ⟨𝐸,⇝, 𝑑, 𝑠⟩ is a tuple where:

• 𝐸 is a countable set of events 𝜖,
11

• ⇝ ⊆ 𝐸 × 𝐸 is a messaging relation, m
• 𝑑 ∶ 𝐸 → 𝛥 is a mapping from events to the devices where they
happened, and

• 𝑠 ∶ 𝐸 → 𝑆 maps each event 𝜖 to a sensors status 𝜎 (as in the
device-level semantics),

uch that:

• 𝜖1 = 𝜖2 whenever 𝑑(𝜖1) = 𝑑(𝜖2) and 𝜖𝑖 ⇝ 𝜖 for 𝑖 = 1, 2 (i.e., all
predecessors of an event happened on different devices);

• there are no sequences 𝜖1 ⇝ ... ⇝ 𝜖𝑛 ⇝ 𝜖1 (i.e., the ⇝ relation is
acyclic);

• the set 𝑋𝜖 =
{

𝜖′ ∈ 𝐸 ∣ 𝜖′ ⇝ ...⇝ 𝜖
}

of events that can reach 𝜖 in
⇝ is finite for all 𝜖 (i.e., ⇝ is well-founded and locally finite).

We say that event 𝜖′ is a supplier of event 𝜖 iff 𝜖′ ⇝ 𝜖. We call
ausality relation the irreflexive partial order < ⊆ 𝐸 ×𝐸 obtained as the
ransitive closure of ⇝.

An example of augmented event structure is in Fig. 9 (top left).
he example is based on the evolving topology in Fig. 9 (top right).
t illustrates how the causality relation effectively partitions the set of
vents, w.r.t. a reference event 𝜖, into sub-spaces: the ‘‘causal past’’,
‘causal future’’, and ‘‘present’’ (concurrent). A computation at 𝜖 can
se the information from past events, and its outcomes can potentially
ffect any future event. The messaging relation induces causality by
xpressing when an event can directly influence another (by sending
message).

This computational model captures the behaviour of communicating
hysical devices. The evolution of the state of devices is a chain of
-connected events associated to the same device. Communication is

aptured by ⇝-connected events associated to different devices. Such
computational model allows us to express programs abstracting from

ynchronisation, shared clocks, or regularity and frequency of events.
nformally, following previous work (Mamei and Zambonelli, 2004;
luch-Lafuente et al., 2017; Viroli et al., 2018), we refer to a field of
alues as a mapping from devices to values, capturing a global snapshot
f the values produced by the most recent firing of each device. The
volution over time of a field of values is a global data structure,
space–time value, which maps each event (in an augmented event

tructure) to a corresponding value.

efinition 2 (Space-Time Value). Let E = ⟨𝐸,⇝, 𝑑, 𝑠⟩ be an augmented
vent structure and 𝐕𝑇 be the domain of nvalues of type 𝑇 . A space–
ime value (in E of type 𝑇 ) is a function mapping events to nvalues
∶ 𝐸 → 𝐕𝑇 .

In this computational model, the evaluation of a program 𝚎𝚖𝚊𝚒𝚗 in
n augmented event structure E then produces a space–time value,
nduced by repeatedly applying the device-level semantics.

efinition 3 (Program Evaluation on Event Structures). Let 𝚎 be an FXC
xpression of type 𝑇 given assumptions . Let E be an augmented
vent structure whose 𝑠 includes values of the appropriate type for each
ensor and free variable appearing in 𝚎.

Let 𝜃E
𝚎

∶ 𝐸 → 𝛺 (where 𝛺 is the set of all value-trees) and ΦE
𝚎
∶

→ 𝐕𝑇 be defined by induction on 𝜖 in 𝐸, so that 𝑑(𝜖); 𝑠(𝜖);𝛩𝜖 ⊢ 𝚎 ⇓
E
𝚎
(𝜖); 𝜃E

𝚎
(𝜖) where 𝛩𝜖 = {𝑑(𝜖′) ↦ 𝜃E

𝚎
(𝜖′) ∶ 𝜖′ ⇝ 𝜖}. Then we say that

E
𝚎
∶ 𝐸 → 𝐕𝑇 is the evaluation of expression 𝚎 on E.

Notice that this semantics models round computations 𝜖 that are
erformed with respect to a given 𝛩𝜖 that cannot change during the
ocal execution.3 Furthermore, notice that a program may not have
ny interpretation in an event structure E (i.e., the definition may fail)
n case the program was non-terminating in some 𝜖 in E. Indeed, a

3 Realising this in practice may require to implement a buffer mechanism
n incoming messages, which we abstract away by only focusing on which
essages are available in each event.
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Fig. 9. Left: An augmented event structure E = ⟨𝐸,⇝, 𝑑, 𝑠⟩ where E = {𝜖00 , ... , 𝜖
0
4 , 𝜖

1
0 , ... , 𝜖
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5 , 𝜖

2
0 , ... , 𝜖
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4 , 𝜖
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0 , ... , 𝜖

3
3 , 𝜖
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0 , ... , 𝜖

4
5} consists of 24 events such that 𝑑(𝜖𝑖𝑗 ) = 𝛿𝑖; it depicts events

circle nodes), messaging relations (curly arrows), devices 𝛿0 , ... , 𝛿4 (y-axis) and each circle node is labelled with the depicted event of E. Colours denote the causal relation w.r.t.
he reference event 𝜖21 (doubly-circled, blue), partitioning events into causal past (red), causal future (green) and concurrent (non-ordered, in black). Right: A (possible) evolving
etwork topology on devices which can give rise to E (assuming some selected messages to be dropped). (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)
Fig. 10. FXC: value-tree and configuration typing.
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ractical execution of a non-terminating program can never result in
an event structure with non-terminating events: if a round of execution
starts and does not terminate in a device, from an external point of view
the behaviour of that device is indistinguishable from a device that was
removed from the network. A non-terminating execution can not be
considered an event, as it does not result in sending messages to other
devices: thus, our model correctly reflects that those event structures
are impossible for such programs.

The meaning of a program 𝚎𝚖𝚊𝚒𝚗 can thus be understood according
to two intimately related points of view, corresponding to the global-vs-
local perspective, called the micro and macro perspective in the context
of self-organising systems (Beal et al., 2013; Newton and Welsh, 2004;
Gummadi et al., 2005). In the local viewpoint, given by the device-level
semantics, an expression 𝚎𝚖𝚊𝚒𝚗 is a procedure that, when executed in
a round 𝜖, takes as input the current device identifier 𝛿, the sensor
status 𝜎, and the environment 𝛩 grouping the message-collections that
𝛿 received from the suppliers of event 𝜖, and outputs a value 𝚠 ∈ 𝐕
(the result of 𝚎𝚖𝚊𝚒𝚗) and the message-collection 𝜃 to send to neighbours
in return.

In the global viewpoint, given by the network-level semantics, the
program 𝚎𝚖𝚊𝚒𝚗 describes a partial functor which, when applied to an
augmented event structure E = ⟨𝐸,⇝, 𝑑, 𝑠⟩,4 returns a space–time value
Φ encoding the values produced by the program across space–time.

4 The function is partial since a program has no interpretation in an E with
events 𝜖 in which 𝙿 diverges.
12
5. Properties

In this section, building on the FXC calculus presented in Section 4,
we provide a formal account of the properties of 𝖷𝖢, and we hint at
how further more advanced properties could be conveniently proved
in future works.

5.1. Type soundness and determinism

In order to formally state type soundness, program typing needs to
be extended to value-tree typing (Fig. 10 top) and configuration typing
(Fig. 10 bottom). The former, formalised by judgement  ⊢ 𝚎, 𝜃 ∶ 𝑇 ,
ensures that both  ⊢ 𝚎 ∶ 𝑇 holds, and 𝜃 has a structure that could
possibly be produced by an evaluation of 𝚎. The latter, formalised by
judgement  ⊢ (𝛿, 𝜎, 𝛩, 𝚎, 𝚎′, 𝜃) ∶ 𝑇 , ensures that every value-tree in
𝛩 could be an outcome of 𝚎, and either 𝜃 is empty and 𝚎 = 𝚎′ (initial
configuration) or 𝚎′, 𝜃 could be an outcome of 𝚎 (final configuration).

Final configurations are defined in order to match the shape of a
ig-step judgement, and thus correspond to an evaluated, terminating
rogram. In the following, we also use the special final configuration

to model non-terminating executions. Initial configurations represent
omputations that still need to be done, and are thus fully determined
y the left-hand-side of the big-step judgement, with the right-hand side
eplaced by dummy values for convenience of definitions (a duplicate
f the expression, and the empty value-tree). This choice of defaults is
ade so that the only initial configurations 𝑐 = (𝛿, 𝜎, 𝛩, 𝚎, 𝚎′, 𝜃) that are

also final configurations are those with 𝚎 = 𝚎′ = 𝚠, 𝜃 = ⟨⟩, and represent
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m

T

the evaluation of a value (which results in itself). We write 𝑐 ⇓ 𝑟 to
ean that the final configuration 𝑟 is a possible evaluation result of

configuration 𝑐.
The proofs of the following theorems and lemma rely on the fact

that the type system (Fig. 10) enjoys the standard inversion of the typing
relation and canonical form properties (cf. Sect. 9.3 of Pierce, 2002).

heorem 1 (Type Preservation). Let 𝑐 = (𝛿, 𝜎, 𝛩, 𝚎, 𝚎, ⟨⟩) be such that
 ⊢ 𝑐 ∶ 𝑇 holds, 𝜎 include values for every sensor and variable as per
assumptions , and assume that 𝛿; 𝜎;𝛩 ⊢ 𝚎 ⇓ 𝚠; 𝜃 holds for some 𝚠, 𝜃.
Then  ⊢ 𝚠 ∶ 𝑇 and  ⊢ 𝚎, 𝜃 ∶ 𝑇 hold.

Proof. We prove the result by induction on the height of tree 𝜃. For
expressions 𝚎 composed of multiple sub-expressions 𝚎1, ... , 𝚎𝑛 we define
sub-configurations 𝑐𝑖 = (𝛿, 𝜎, 𝜋𝑖(𝛩), 𝚎𝑖, 𝚎𝑖, ⟨⟩) for 𝑖 ≤ 𝑛, together with their
evaluation results 𝚠𝑖, 𝜃𝑖 (where applicable).

• 𝚎 = 𝚡 or 𝚠 or 𝓁: By either rule [E-VAR], [E-NVAL] or [E-LIT], 𝚎

evaluates to 𝚠, ⟨⟩ where 𝚠 is respectively 𝜎(𝚎), 𝚎 itself, or 𝚎[]. All
of them trivially have type 𝑇 by hypothesis on 𝜎 and rule [T-XWL’].
Notice that this case includes 𝚎 = 𝚏𝚞𝚗 𝚡(𝚡){𝚎}, since by hypothesis
on 𝜎 every free variable in 𝚎 has to be bound in 𝜎.

• 𝚎 = 𝚟𝚊𝚕 𝚡 = 𝚎1; 𝚎2: By rules [E-VAL], [T-CONF] and inductive
hypothesis, we have that the sub-configurations 𝑐1 and 𝑐2 have
the correct types, thus by rule [T-VAL’] and [T-CONF] so does 𝑐.

• 𝚎 = 𝚎0(𝚎): By rule [E-APP], [T-APP’] and [T-CONF], 𝑐𝑖 has type 𝑇𝑖
for 𝑖 ≤ 𝑛. By rule [T-CONF], 𝛩 must consist of value-trees that
can be produced by the evaluation of 𝚎. This ensures that in
the root of each of those value-trees there is a functional value
𝚏[], and the corresponding sub-tree must be coherent with the
application 𝚏(𝚡). By rule [E-APP], the evaluation of 𝚏(𝚠) is carried
out with respect to 𝜋𝑛+2(𝛩 |𝚏), which only contains trees that are
compatible with 𝚏(𝚡). Thus, we can apply the inductive hypothesis
to obtain that 𝑐𝑛+1 = (𝛿, 𝜎, 𝜋𝑛+2(𝛩 |𝚏), 𝚏(𝚠), ⟨⟩) has type 𝑇 for 𝚠 of
type 𝑇 . The thesis follows by rule [T-APP’] and [T-CONF].

• 𝚎 = 𝚏𝚞𝚗 𝚡(𝚡){𝚎1}(𝚠): By rule [A-FUN], 𝚎 evaluates to 𝚎1[𝚡 ∶=
𝚏𝚞𝚗 𝚡(𝚡){𝚎1}, 𝚡 ∶= 𝚠], and the thesis follows by rule [A-FUN’] and
[T-CONF].

• 𝚎 = 𝚋(𝚠): If 𝚋 is not 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎, the thesis follows trivially by
rule [A-BF’] and either [A-SENS], [A-UID], [A-SELF] or [A-FOLD]. Assume
now that 𝚎 = 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚠1, 𝚠2). Following rule [A-XC], we construct
𝚠 by picking values from 𝛩, which must have the correct type
by rule [T-CONF]. The overall result 𝚠𝑟, 𝜃 is then obtained as the
result of application 𝚠2(𝚠), which produces a result of the correct
type by inductive hypothesis. The thesis follows by rule [A-XC’] and
[T-CONF]. □

As a corollary, by induction on the messaging relation, the eval-
uation of an expression 𝚎 on an augmented event structure E only
contains value-tree environments that are well-formed for 𝚎. This result
ensures that evaluation preserves typing, but it does not rule out stuck
terms, since they cannot be distinguished from diverging ones by the
semantics in Fig. 8: in both cases there is no valid proof tree since
there is no explicit modelling of errors (needed to identify stuck con-
figurations) and infinite derivations are not allowed (needed to model
non-termination). In fact, this limitation event prevents to formulate
a soundness statement at all. This issue is known in the literature
since (Cousot and Cousot, 1992) and has been analysed in detail
in Leroy and Grall (2009). More recently, automated techniques have
been developed that can generate a conservative extension of a big-step
inference system, using corules (Ancona et al., 2017a; Dagnino, 2019)
to model divergence: Fig. 11 presents such an extension, performed
according to the procedure in Ancona et al. (2018) and Dagnino
(2022).

The extension introduces an additional configuration ∞ modelling
divergence, with corresponding judgements 𝛿; 𝜎;𝛩 ⊢ 𝚎 ⇓ ∞. Every
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evaluation rule with premises generates multiple rules for divergence
propagation from premises to the conclusion; and a single corule is
added for divergence introduction. The judgements derived from this
inference system with corules are those having a possibly infinite proof
tree using rules only, where nodes of the tree have a finite proof using
rules and corule [C-DIV]. This ensures that no judgement 𝛿; 𝜎;𝛩 ⊢ 𝚎 ⇓ ∞
can be derived with a finite proof tree, and conversely, only judgements
𝛿; 𝜎;𝛩 ⊢ 𝚎 ⇓ ∞ can be derived with an infinite proof tree (see Ancona
et al., 2018 for further details).

Theorem 2 (Soundness-May). Let 𝑐 = (𝛿, 𝜎, 𝛩, 𝚎, 𝚎, ⟨⟩) be a well-typed
initial configuration in 𝖷𝖢. Then there exist a final configuration 𝑟 (possibly
∞) such that 𝑐 ⇓ 𝑟.

This result can be proved following step-by-step the proof strategy
in Ancona et al. (2017b): by Ancona et al. (2017b, Theorem 3.3), a
sufficient condition for soundness is given by the following lemma.
Notice that due to the presence of the auxiliary big-step evaluation
judgement, in order to know which judgement should be applied when
evaluating a configuration, two possible strategies could be used: (i)
marking each configuration with a Boolean value, indicating whether
the main or auxiliary judgement should be applied; (ii) compiling out
the auxiliary judgement, by duplicating rule [E-APP] for each auxiliary
rule. In the following proof, we assume that one of these means to
detect which judgement to use is in place.

Lemma 3 (Progress). Let 𝑊 𝑇∞ be the set of well-typed initial configu-
rations 𝑐 with no final configuration 𝑟 ≠ ∞ such that 𝑐 ⇓ 𝑟. Given any
𝑐 = (𝛿, 𝜎, 𝛩, 𝚎, 𝚎, ⟨⟩) ∈ 𝑊 𝑇∞, then 𝑐 ⇓ ∞ is the consequence of a rule
where, for all premises of shape 𝑐′ ⇓ ∞, 𝑐′ ∈ 𝑊 𝑇∞, and all premises of
shape 𝑐′ ⇓ 𝑟 with 𝑟 ≠ ∞ are derivable.

Proof. The proof is by case analysis over 𝚎. Let 𝑇 be the type of
𝑐, and whenever 𝚎 has sub-expressions 𝚎1, ... , 𝚎𝑛 we consider 𝑐𝑖 =
(𝛿, 𝜎, 𝜋𝑖(𝛩), 𝚎𝑖, 𝚎𝑖, ⟨⟩) for 𝑖 ≤ 𝑛.

• 𝚎 = 𝚡, 𝚠 or 𝓁: empty case since such expressions 𝚎 always evaluate
to a configuration 𝑟 ≠ ∞ by rules [E-VAR], [E-NVAL] or [E-LIT].

• 𝚎 = 𝚟𝚊𝚕 𝚡 = 𝚎1; 𝚎2: By rule [E-VAL], it must be that either 𝚎1 does
not evaluate to 𝑟 ≠ ∞ or 𝚎2[𝚡 ∶= 𝚟1] does not evaluate to 𝑟 ≠ ∞.
The thesis follows by either rule [D-VAL1] or [D-VAL2] respectively.

• 𝚎 = 𝚎0(𝚎): by rule [T-APP’], we have that 𝑐𝑖 has type 𝑇𝑖 and 𝚏 has
type scheme 𝑇𝑆 ≺ (𝑇 ) → 𝑇 . We have the following sub-cases:

– ∃𝑘 such that ∄𝑟𝑘 ≠ ∞ such that 𝑐𝑘 ⇓ 𝑟𝑘: let 𝑗 be least with
this property, then 𝑐 ⇓ ∞ by rule [D-APP1], with derivable
premises 𝑐𝑖 ⇓ 𝑟𝑖 for 𝑖 < 𝑗 and premise 𝑐𝑗 ⇓ ∞ such that
𝑐𝑗 ∈ 𝑊 𝑇∞;

– 𝑐𝑖 ⇓ 𝑟𝑖 = (𝛿, 𝜎, 𝜋𝑖(𝛩), 𝚠𝑖, 𝜃𝑖) for all 𝑖 ≤ 𝑛, and ∄𝑟𝑛+1 ≠ ∞ such
that 𝑐𝑛+1 = (𝛿, 𝜎, 𝜋𝑛+2(𝛩 |𝚏), 𝚏(𝚠), ⟨⟩) ⇓ 𝑟𝑛+1: then 𝑐 ⇓ ∞ by
rule [D-APP2], with derivable premises 𝑐𝑖 ⇓ 𝑟𝑖 for 𝑖 < 𝑛 and
premise 𝑐𝑗 ⇓ ∞ such that 𝑐𝑗 ∈ 𝑊 𝑇∞;

– 𝑐𝑖 ⇓ 𝑟𝑖 for all 𝑖 ≤ 𝑛+1: empty case since by rule [E-APP] there
is 𝑟 such that 𝑐 ⇓ 𝑟.

• 𝚎 = 𝚏𝚞𝚗 𝚡(𝚡){𝚎1}(𝚠): By rule [A-FUN], it must be the case that
𝚎1[𝚡 ∶= 𝚏𝚞𝚗 𝚡(𝚡){𝚎1}] does not evaluate to 𝑟 ≠ ∞. Then 𝑐 is
consequence of rule [D-FUN] with premise in 𝑊 𝑇∞.

• 𝚎 = 𝚋(𝚠): By rules [A-SENS], [A-UID] and [A-SELF] we have that
𝚋 cannot be a sensor or 𝚞𝚒𝚍, 𝚜𝚎𝚕𝚏 as such applications always
evaluate to a configuration 𝑟 ≠ ∞. If 𝚋 is 𝚗𝚏𝚘𝚕𝚍 and 𝑐 does not
evaluate to an 𝑟 ≠ ∞, there must be a minimal 𝑗 ≤ 𝑛 for which the
corresponding premise is not derivable, thus in 𝑊 𝑇∞. The thesis
follows by rule [D-FOLD].
Assume now that 𝚎 = 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚠1, 𝚠2). By rule [T-XC’], we have
that 𝑐1 has type 𝑇 . By rule [A-XC] we have the following sub-cases:

– ∄𝑟1 ≠ ∞ such that 𝑐1 ⇓ 𝑟1: then 𝑐 ⇓ ∞ is the consequence of
∞
rule [D-XC] with premise 𝑐1 ⇓ ∞ such that 𝑐1 ∈ 𝑊 𝑇 ;
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– 𝑐1 ⇓ 𝑟1 = (𝛿, 𝜎, 𝜋1(𝛩), 𝚠1, 𝜃1) and ∄𝑟2 ≠ ∞ such that 𝑐2 =
(𝛿, 𝜋2(𝛩), 𝚠2(𝚠), ⟨⟩) ⇓ 𝑟2: since 𝑐 has type 𝑇 , by rules [T-XC’]
and [T-CONF] it follows that every value-tree in 𝛩 as a value
of type 𝑇 in its root. Similarly, 𝑐1 has type 𝑇 hence 𝑟1 has
type 𝑇 by Theorem 1 hence 𝚠1 has type 𝑇 . It follows that 𝚠 in
rule [A-XC] has type 𝑇 by rule [T-NVAL], hence 𝑐2 has type 𝑇 by
rule [T-XC’] and substitution. Then 𝑐 ⇓ ∞ is the consequence
of rule [D-XC] with derivable premise 𝑐1 ⇓ 𝑟1 and premise
𝑐2 ⇓ ∞ such that 𝑐2 ∈ 𝑊 𝑇∞;

– 𝑐1 ⇓ 𝑟1 and 𝑐2 ⇓ 𝑟2: empty case since by rule [A-XC] it would
imply that ∃𝑟 such that 𝑐 ⇓ 𝑟. □

We are now able to prove that the execution of a round of com-
putation in a local device is deterministic (although the execution of a
whole system is not).

Theorem 4 (Round Determinism). Let 𝑐 = (𝛿, 𝜎, 𝛩, 𝚎, 𝚎, ⟨⟩) be a well-typed
initial configuration in 𝖷𝖢. Then there exist a unique final configuration 𝑟
(possibly ∞) such that 𝑐 ⇓ 𝑟.

Proof. Since the evaluation rules are syntax directed and deterministic,
there exists either a single finite proof tree for 𝑐 ⇓ 𝑟 ≠ ∞, or a single
infinite proof tree for 𝑐 ⇓ ∞. □

As a consequence of determinism, the soundness-may result in The-
orem 2 (which ensures that there exists a non-stuck computation, either
converging or diverging) becomes equivalent to standard soundness
(which requires that there are no stuck computations).

5.2. Expressiveness

In this section, we discuss other formal properties of 𝖷𝖢 that derive
from the ability of 𝖷𝖢 to express field calculus programs, thus directly
inheriting its properties. What is more, 𝖷𝖢 shares the compositional
nature of FC, thus hinting that similar proofs may lead to stronger
results, when applied directly to 𝖷𝖢 programs rather than FC programs.

A recent survey (Viroli et al., 2019) points out properties for subsets
of the field calculus (FC) language, including eventual recovery and
stabilisation after transient changes (self-stabilisation) (Viroli et al.,
2018), independence of the results from the density of devices (Beal
et al., 2017), real-time error guarantees (Audrito et al., 2018b), and
ability to express all physically consistent computations (space–time
universality) (Audrito et al., 2018a), and to monitor spatio-temporal
logic formulas (Audrito et al., 2021b, 2022c). By showing that every FC
program can be encoded within 𝖷𝖢, we automatically import all these
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results from literature, allowing for future extensions of them to 𝖷𝖢
programs not expressible in FC. We conclude showcasing this automatic
import process for the paradigmatic case of self-stabilisation.

FC (Viroli et al., 2018) features two separate kinds of values (and
types): local values (of local type) and neighbouring values (of field type).
A local value models a value 𝓁 that is not dependent from neighbours,
while a neighbouring value represents a neighbour-dependent value,
as a map 𝜙 = 𝛿 ↦ 𝓁 from local values to neighbours. Neighbouring
values are used to model received messages, while only local values
are allowed for messages to send, thus not supporting differentiated
messages to neighbours.

𝖷𝖢 combines these two categories into a single class of nvalues
𝚟 = 𝓁[𝛿 ↦ 𝓁]. In particular, local values are equivalent to nvalues
𝓁[] without custom messages, and neighbouring values are equivalent to
nvalues with any valid default message; while preserving the behaviour
of FC programs interpreted within 𝖷𝖢. This unification allows a simpler
type system and for differentiated messages to neighbours, increasing
the expressiveness of the language.

By interpreting FC values as nvalues, all FC message-exchanging
constructs (𝚗𝚋𝚛, 𝚛𝚎𝚙 Viroli et al., 2018 and 𝚜𝚑𝚊𝚛𝚎 Audrito et al.,
2020) can be modelled within 𝖷𝖢: 𝚗𝚋𝚛 is the same defined function
introduced in Section 2.2, just restricted to operate on local values
only; 𝚜𝚑𝚊𝚛𝚎 corresponds to an 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 with 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 restricted to
operate on local values only; and 𝚛𝚎𝚙(𝚎1){(𝚡) => 𝚎2} can be translated
to 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎1, (𝚡) => 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 𝚎2[𝚡 ∶= 𝚜𝚎𝚕𝚏(𝚡)]). Notice that the
onverse translation is not possible, as 𝚗𝚋𝚛, 𝚛𝚎𝚙 or 𝚜𝚑𝚊𝚛𝚎 expressions
ith arguments of neighbouring type have no defined behaviour in
C. Thus, 𝚗𝚋𝚛 and 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 in 𝖷𝖢 are strictly more expressive than
heir corresponding FC counterparts 𝚗𝚋𝚛 and 𝚜𝚑𝚊𝚛𝚎: they can be used

with expressions producing nvalues with custom messages to model
differentiated messages.

5.3. Self-stabilisation

While the interpretation of a general program has to be given in
spatio-temporal terms, self-stabilising programs allow for a space-only
representation, where augmented event structures and space–time values
are replaced by network graphs and computational fields.

Definition 4 (Computational Field). A network graph 𝐆 = ⟨𝛥,↣, 𝛴⟩ is a
finite set of devices 𝛥 with a reflexive neighbouring relation ↣⊆ 𝛥 × 𝛥
and a sensors-map 𝛴 ∶ 𝛥 → 𝑆. A computational field in 𝐆 and 𝐕𝑇 is a
map Ψ ∶ 𝛥→ 𝐕𝑇 where 𝐕𝑇 is the domain of values of type 𝑇 .

Intuitively, 𝛿1 ↣ 𝛿2 (in a given instant of time) represents the
possibility for a device 𝛿1 to successfully send a message to another
device 𝛿 , thus creating a corresponding messaging 𝜖 ⇝ 𝜖 for events 𝜖
2 1 2 𝑖
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Fig. 12. Syntax of the self-stabilising fragment of 𝖷𝖢. Self-stabilising expressions 𝚎𝚜 occurring inside 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 statements cannot contain free occurrences of the 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎-bound
ariable 𝚡. Function nbrlt is defined as def nbrlt(x) { nbr(x, self(x)) < self(x) }.
M

R

n devices 𝛿𝑖 (1 ≤ 𝑖 ≤ 2). Note ↣ may be asymmetric—e.g., high-power
evices could send messages to far devices with not enough power to
eply.

We say that an expression 𝚎 is self-stabilising iff given a network
raph 𝐆, for any E which eventually conforms to 𝐆, the result of
he program eventually becomes a unique computational field 𝜓 =
[𝚎]]self−stab(𝐆) depending only on 𝐆, and independent of the specific E
onsidered. Thus, a self-stabilising program can always adapt to a new
nput (the eventual 𝐆) given enough time, regardless of its previous
istory (the specific E before conforming to 𝐆).

These space-only, time-independent representations are to be in-
erpreted as ‘‘limits for time going to infinity’’ of their traditional time-
ependent counterparts, where the limit is defined as in the following.

efinition 5 (Stabilising Augmented Event Structure and Limit). Let
= ⟨𝐸,⇝, 𝑑, 𝑠⟩ be a countably infinite augmented event structure.

e say that E is stabilising to its limit 𝐆 = ⟨𝛥,↣, 𝛴⟩ = limE iff
= {𝛿 ∣ {𝜖 ∈ 𝐸. 𝑑(𝜖) = 𝛿} is infinite} is the set of devices appearing

nfinitely often in E, and for all except finitely many 𝜖 ∈ 𝐸, 𝑠(𝜖) =
(𝑑(𝜖)) and the devices of suppliers are the neighbours of the device of

:
{

𝑑(𝜖′) ∣ 𝜖′ ⇝ 𝜖
}

=
{

𝛿′ ∣ 𝛿′ ↣ 𝑑(𝜖)
}

.

Although the notion of limit of an event structure provided by Def-
nition 5 is not identical to the notion of limit in analysis; they are
ntimately connected, justifying the usage of the same name. Notice
hat although a limit of an event structure E may not exist (thus E
ot being stabilising), if it does it is unique, as the definition above
rovides a constructive procedure for 𝛥,𝛴 and ↣ in terms of what
ppears infinitely often in E.

In concrete deployments, the augmented event structure represent-
ng a distributed computation performed over time and across space
rises from a network graph (evolving over time) which represents the
ossible connections across devices in every instant of time. Then, the

imit of the event structure is (intuitively) the network graph that is
btained for the time that goes to infinity. A similar notion of limit (and
tabilisation) can also be applied to space–time values and expressions
s shown in the following.

efinition 6 (Stabilising Space-Time Value and Limit). Let Φ be a space–
ime value on a stabilising augmented event structure E = ⟨𝐸,⇝, 𝑑, 𝑠⟩
ith limit 𝐆 = limE. We say that Φ is stabilising to its limit Ψ = limΦ

ff for all except finitely many 𝜖 ∈ 𝐸, Φ(𝜖) = Ψ(𝑑(𝜖)).

Notice that 𝐆 is not a parameter of the definition above, by being
uniquely determined by E. These definitions induce the notion of self-
stabilisation of a program, interpreted as a procedure producing a
space–time value from an augmented event structure.

Definition 7 (Self-Stabilising Program and Limit). Let 𝚎 be an expression,
which given any augmented event structure E produces a space–time
value Φ. We say that 𝚎 is self-stabilising iff for any E with limit 𝐆, the
corresponding space–time value Φ has a limit Ψ.

An extension of the self-stabilising fragment in Viroli et al. (2018)
using 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 is given in Fig. 12, defining a class 𝚎𝚜 of self-stabilising
15

expressions, which may be:
• any expression not containing an 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 construct, comprising
built-in functions (which are self-stabilising by being stateless, not
keeping memory or exchanging messages);

• four special forms of the 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 construct, called nbr, con-
verging, acyclic and minimising pattern (respectively), defined by
restricting both the syntax and the semantic of relevant functional
parameters.

We recall here a brief description of the patterns: for a more detailed
presentation, the interested reader may refer to Viroli et al. (2018). The
semantic restrictions on functions are the following.

Converging (𝖢) A function 𝚏(𝚠𝑜, 𝚠, 𝚟) is C with respect to a metric
dist(𝓁1,𝓁2) iff its return value 𝚠𝑟 has lower maximum distance
from 𝚠 than 𝚠𝑜: max𝛿 dist(𝚠𝑟(𝛿), 𝚠(𝛿)) < max𝛿 dist(𝚠𝑜(𝛿), 𝚠(𝛿)).

onotonic non-decreasing (𝖬) a stateless5 function 𝚏(𝚡, 𝚡) is M iff
it applies pointwise on nvalues and whenever 𝓁1 ≤ 𝓁2, also
𝚏(𝓁1, 𝚟) ≤ 𝚏(𝓁2, 𝚟).

Progressive (𝖯) a stateless function 𝚏(𝚡, 𝚡) is P iff it applies pointwise
on nvalues and 𝚏(𝓁, 𝚟) > 𝓁 or 𝚏(𝓁, 𝚟) = ⊤ (where ⊤ denotes the
unique maximal element of the relevant type).

aising (𝖱) a function 𝚏(𝓁1,𝓁2, 𝚟) is raising with respect to total partial
orders <, ⊲ iff: (i) 𝚏(𝓁,𝓁, 𝚟) = 𝓁; (ii) 𝚏(𝓁1,𝓁2, 𝚟) ≥ min(𝓁1,𝓁2); (iii)
either 𝚏(𝓁1,𝓁2, 𝚟) ⊳ 𝓁2 or 𝚏(𝓁1,𝓁2, 𝚟) = 𝓁1.

Hence, the four patterns can be described as follows.

Neighbourhood This pattern simply corresponds to the 𝚗𝚋𝚛 function
defined in Section 2.2, which accesses values shared by direct
neighbours. This pattern self-stabilises, since after stabilisation
of its arguments, waiting one more round of executions of every
device, the values shared by direct neighbours are stable and so
is the result of 𝚗𝚋𝚛.

Converging In this pattern, variable 𝚡 is repeatedly updated through
function 𝚏𝖢 and a self-stabilising value 𝚎𝚜. The function 𝚏𝖢 may
also have additional (not necessarily self-stabilising) inputs 𝚎. If
the range of the metric granting convergence of 𝚏𝖢 is a well-
founded set6 of real numbers, the pattern self-stabilises since it
gradually approaches the value given by its second argument
𝚎𝚜, reducing the maximum distance appearing in the network
at every round of executions of every device.

Acyclic In this pattern, the neighbourhood’s values for 𝚡 are first
filtered through a self-stabilising partially ordered ‘‘ranking’’,
keeping only values held in devices with lower ranking (thus
in particular discarding the device’s own value of 𝚡). This is

5 A function 𝚏(𝚡) is stateless iff its outputs depend only on its inputs and
not on other external factors.

6 An ordered set is well-founded iff it does not contain any infinite
descending chain.
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accomplished by function 𝚗𝚋𝚛𝚕𝚝, which returns an nvalue of
Booleans selecting the neighbours with lower argument values.

The filtered values are then combined by any function (possibly
together with other values obtained from self-stabilising expres-
sions) to form the new value for 𝚡. No semantic restrictions
are posed in this pattern, and intuitively it self-stabilises since
there are no cyclic dependencies between devices, hence devices
self-stabilise from the lowest ranks to the highest.

Minimising In this pattern, the neighbourhood’s values for 𝚡 are first
increased by a monotonic progressive function 𝚏𝖬𝖯 (possibly
depending also on other self-stabilising inputs). As specified
above, 𝚏𝖬𝖯 needs to operate pointwise on nvalues.

Afterwards, the minimum among those values and a local self-
stabilising value is then selected by function 𝚗𝚏𝚘𝚕𝚍. Finally, this
minimum is fed to the raising function 𝚏𝖱 together with the
value of 𝚜𝚎𝚕𝚏(𝚡) (and possibly any other inputs 𝚎), obtaining a
result that is higher than at least one of the two parameters. We
assume that the partial orders <, ⊲ are Noetherian,7 so that the
raising function is required to eventually conform to the given
minimum.

Intuitively, this pattern self-stabilises since it computes the min-
imum among the local values 𝓁 = 𝚜𝚎𝚕𝚏(𝚎𝚜) passed as third
argument of 𝚗𝚏𝚘𝚕𝚍, after being increased by 𝚏𝖬𝖯 along every
possible path (and the effect of the raising function can be
proved to not affect the final result after stabilisation).

Theorem 5. Expressions 𝚎𝚜 as in Fig. 12 are self-stabilising.

Proof. Let E = ⟨𝐸,⇝, <, 𝑑⟩ be any augmented event structure with
a given limit 𝐆. The proof proceeds by induction on the syntax of
expressions 𝚎𝚜, which could be:

• A variable, 𝚏𝚞𝚗 -expression, exchange-free local literal or nvalue:
in all those cases, the expression is constant hence self-stabilises
as soon as the event structure starts to conform to the limit graph.

• A 𝚟𝚊𝚕 -expression 𝚟𝚊𝚕 𝚡 = 𝚎𝚜1; 𝚎𝚜2. By inductive hypothesis, the
sub-expression 𝚎𝚜1 stabilises to Ψ after a certain event. Then,
𝚟𝚊𝚕 𝚡 = 𝚎𝚜1; 𝚎𝚜2 evaluates to the same value as the expression
𝚎𝚜2 after adding Ψ to 𝛴, which is self-stabilising by inductive
hypothesis. Thus, the whole 𝚟𝚊𝚕 -expression self-stabilises.

• A functional application 𝚎𝚜(𝚎𝚜). By inductive hypothesis, all sub-
expressions self-stabilise to Ψ,Ψ after a certain event. First, as-
sume that Ψ(𝛿)(𝛿) = 𝚏 is a built-in (which cannot be an 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎

by the posed syntax restrictions) or sensor. Then 𝚏(𝚎𝚜) stabilises
immediately as built-ins and sensors do not depend on the en-
vironment 𝛩. Otherwise, 𝚏 has to be a 𝚏𝚞𝚗 -expression 𝚏𝚞𝚗 𝚡(𝚡)
{𝚎𝚜′}, and thus 𝚏(𝚎𝚜) evaluates to the same value as 𝚎𝚜′ after
adding 𝚡 ↦ Ψ, 𝚡 ↦ Ψ to 𝛴, which is self-stabilising by inductive
hypothesis.

• A neighbourhood pattern 𝚗𝚋𝚛(𝚎𝚜1, 𝚎𝚜2). By inductive hypothesis,
expressions 𝚎𝚜1, 𝚎𝚜2 self-stabilise to Ψ1,Ψ2 after a certain event.
Then, 𝚗𝚋𝚛(𝚎𝚜1, 𝚎𝚜2) self-stabilise to the corresponding nvalue after
one additional full round of execution of each device.

• A converging pattern 𝚎𝚜𝑐 = 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎, (𝚡) => 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 𝚏𝖢(𝚡, 𝚎𝚜,
𝚎)). By inductive hypothesis, 𝚎𝚜 self-stabilises to Ψ after a certain
event 𝜖0. Given any index 𝑛, let 𝑑𝑛 be the maximum distance
between 𝚎𝚜𝑐 (𝛿′) and Ψ(𝛿)(𝛿′) for all devices 𝛿′ and events 𝜖 with
𝛿 = 𝑑(𝜖) of the 𝑛th round of execution of every device after 𝜖0.
We prove that 𝑑𝑛 is strictly decreasing with 𝑛. Since distances
are computed on a well-founded set, it follows that they have to

7 A partial order is Noetherian iff it does not contain any infinite ascending
hains.
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became zero for a sufficiently large 𝑛, proving self-stabilisation of
𝚎𝚜𝑐 to Ψ.
Consider an event on the 𝑛th round of execution of every device
after 𝜖0. Thus, supplier events belong to rounds of execution ≥
𝑛 − 1, hence their distance with Ψ is at most 𝑑𝑛−1. By definition
of converging function, it follows that 𝚎𝚜𝑐 is strictly closer to Ψ
than 𝑑𝑛−1, concluding the proof.

• An acyclic pattern 𝚎𝚜𝑎 = 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎, (𝚡) => 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 𝚎𝚜𝑓 (𝚖𝚞𝚡
(𝚗𝚋𝚛𝚕𝚝(𝚎𝚜𝑟), 𝚡, 𝚎𝚜𝑣), 𝚎𝚜)). By inductive hypothesis, 𝚎𝚜𝑓 , 𝚎𝚜𝑟, 𝚎𝚜𝑣, 𝚎𝚜
self-stabilise to Ψ𝑓 ,Ψ𝑟,Ψ𝑣,Ψ after a certain event 𝜖0.
Let 𝜖 be any event after 𝜖0 of the device 𝛿0 of minimal ranking
Ψ𝑟(𝛿0)(𝛿0) in the network. Since Ψ𝑟(𝛿0)(𝛿0) is minimal, 𝚗𝚋𝚛𝚕𝚝(𝚎𝚜𝑟)
is false, the 𝚖𝚞𝚡-expression reduces to 𝚎𝚜𝑣 and the whole 𝚎𝚜𝑎 to
𝚎𝚜𝑓 (𝚎𝚜𝑣, 𝚎𝚜), which self-stabilises by inductive hypothesis after 𝜖1.
Similarly, in any event of the second-minimal ranked device after
𝜖1 the 𝚖𝚞𝚡-expression is stable, thus ensuring stabilisation after
a certain event 𝜖2. The thesis follows by repeating the same
reasoning on all devices in order of increasing ranking.

• A minimising pattern 𝚎𝚜𝑚 = 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎, (𝚡) => 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 𝚏𝖱

(𝚗𝚏𝚘𝚕𝚍(𝚖𝚒𝚗, 𝚏𝖬𝖯(𝚡, 𝚎𝚜), 𝚎𝚜), 𝚜𝚎𝚕𝚏(𝚡), 𝚎)). By inductive hypothesis,
𝚎𝚜, 𝚎𝚜 self-stabilise to Ψ,Ψ after 𝜖0. Let 𝑃 = 𝛿 be a path in the
network graph 𝐆, and define its weight as the result of picking
the eventual value 𝓁1 = Ψ(𝛿1) of 𝚎𝚜 in the first device 𝛿1, and re-
peatedly passing it to subsequent devices through the monotonic
progressive function, so that 𝓁𝑖+1 = 𝚏𝖬𝖯(𝓁𝑖,Ψ(𝛿𝑖+1)(𝛿𝑖)). Notice
that the weight is well-defined since function 𝚏𝖬𝖯 is required to
be stateless. Finally, let Ψout be such that Ψout(𝛿) = 𝓁𝛿 is the
minimum weight for a path 𝑃 ending in 𝛿.
Let 𝛿0, 𝛿1, ... be the list of all devices 𝛿 ordered by increasing
Ψout(𝛿). Notice that the path 𝑃 of minimal weight 𝓁𝛿𝑖 for device 𝑖
can only pass through nodes such that 𝓁𝛿𝑗 ≤ 𝓁𝛿𝑖 (thus s.t. 𝑗 < 𝑖). In
fact, whenever a path 𝑃 contains a node 𝑗 the weight of its prefix
until 𝑗 is at least 𝓁𝛿𝑗 , and any longer prefix has strictly greater
weight as 𝚏𝖬𝖯 is progressive.
We prove by complete induction on 𝑖 that after a certain event
𝜖𝑖+1 expression 𝚎𝚜𝑚 stabilises to Ψout(𝛿𝑖) in device 𝛿𝑖, and assumes
values ≥ Ψout(𝛿𝑖) in devices 𝛿𝑗 with 𝑗 ≥ 𝑖. By inductive hypothesis,
assume that devices 𝛿𝑗 with 𝑗 < 𝑖 are all self-stabilised after 𝜖𝑖. Af-
ter every device performed an additional round, these values are
available in the 𝚡 variable of 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎. Consider the evaluation
of the expression 𝚎𝚜𝑚 in a device 𝛿𝑘 with 𝑘 ≥ 𝑖. Since argument 𝚎𝚜
of 𝚗𝚏𝚘𝚕𝚍 is also the weight of the single-node path 𝑃 = 𝛿𝑘, it has
to be at least 𝓁 ≥ 𝓁𝛿𝑘 ≥ 𝓁𝛿𝑖 . Similarly, the second argument 𝚠 of
𝚗𝚏𝚘𝚕𝚍 for devices 𝛿𝑗 with 𝑗 < 𝑖 has to be at least 𝚠(𝛿𝑗 ) ≥ 𝓁𝛿𝑘 ≥ 𝓁𝛿𝑖
since it corresponds to weights of (not necessarily minimal) paths
𝑃 ending in 𝛿𝑘 (obtained by extending a minimal path for a device
𝛿𝑗 with 𝑗 < 𝑖 with the additional node 𝛿𝑘). Finally, values of 𝚠 for
devices 𝛿𝑗 with 𝑗 ≥ 𝑖 are strictly greater than the minimum value
for the whole 𝚎𝚜𝑚 expression among all devices 𝛿𝑗 with 𝑗 ≥ 𝑖,
since 𝚏𝖬𝖯 is progressive.
Thus, as long as the minimum value for the whole expression
among non-stable devices is lower than 𝓁𝛿𝑖 , the result of the 𝚗𝚏𝚘𝚕𝚍

subexpression is strictly greater than this value. The same holds for
the overall value, since it is obtained by combining the output of
𝚗𝚏𝚘𝚕𝚍 with the previous value for 𝚡 through the rising function
𝚏𝖱, and a rising function has to be equal to the first argument
(the 𝚗𝚏𝚘𝚕𝚍 result strictly greater than the minimum), or ⊳ than
the second. In the latter case, it also needs to be greater or equal
to the first argument (again, strictly greater than the minimum)
or strictly greater than the second argument8 (not below the
minimum value).
Thus, after a round of execution of every device, the minimum
value among non-stable devices has to increase, until it eventually

8 It cannot be equal to the second argument, as it is ⊳-greater than it.
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surpasses 𝓁𝛿𝑖 since < is Noetherian. From that point on, that
minimum cannot drop below 𝓁𝛿𝑖 , and the output of 𝚗𝚏𝚘𝚕𝚍 in 𝛿𝑖

stabilises to 𝓁𝛿𝑖 . In fact, if 𝑃 is a path of minimum weight for 𝛿𝑖,
then either:

– 𝑃 = 𝛿𝑖, so that 𝓁𝛿𝑖 is exactly the third argument of 𝚗𝚏𝚘𝚕𝚍,
hence also the output of it (since the second argument is
greater than 𝓁𝛿𝑖 ).

– 𝑃 = 𝑄, 𝛿𝑖 where 𝑄 ends in 𝛿𝑗 with 𝑗 < 𝑖. Since 𝚏𝖬𝖯 is
monotonic non-decreasing, the weight of 𝑄′, 𝛿𝑖 (where 𝑄′

is minimal for 𝛿𝑗) is not greater than that of 𝑃 ; i.e., 𝑃 ′ =
𝑄′, 𝛿𝑖 is also a path of minimum weight. It follows that 𝚠(𝛿𝑗 )
(where 𝚠 is the second argument of 𝚗𝚏𝚘𝚕𝚍) is 𝓁𝛿𝑖 .

Since the order ⊲ is Noetherian, the rising function on 𝛿𝑖 has to
eventually select its first argument. Thus, it will select the output
of the 𝚗𝚏𝚘𝚕𝚍 subexpression, which is 𝓁𝛿𝑖 , and from that point on
the minimising expression will have self-stabilised on device 𝛿𝑖

to 𝓁𝛿𝑖 , and every device 𝛿𝑗 with 𝑗 ≥ 𝑖 will attain values ≥ 𝓁𝛿𝑖 ,
concluding the inductive step and the proof. □

6. Implementation

To showcase the broad applicability of the proposed language de-
sign, we implemented a Scala and a C++ version of 𝖷𝖢. The Scala
version has been developed as an extension of ScaFi (Casadei et al.,
2022b), and aims at showcasing the DSL and maximise portability to
different platforms, including simulators. The C++ version has been de-
veloped as an extension of FCPP (Audrito, 2020), and has consequently
been integrated into the main FCPP distribution. This version targets
performance and devices with limited resources (Testa et al., 2022;
Audrito et al., 2023b).

6.1. Scala DSL

We provide an implementation of 𝖷𝖢 as a DSL embedded into
the Scala language9 because of its cross-platform support (Doeraene,
2018), popularity for building distributed systems (Ghosh et al., 2012),
and advanced support for internal DSLs (Artho et al., 2015). This
implementation has been developed as an extension of ScaFi (Casadei
et al., 2022b). The DSL is organised into a few core 𝖷𝖢 constructs
and a library of reusable functions. The core constructs (cf. Fig. 6) are
declared by a Scala trait with the following interface:

1 trait XCLang {
2 def branch[T](cond: NValue[Boolean])(th: =>

NValue[T])(el: => NValue[T]): NValue[T]
3 def exchange[T](init: NValue[T])(f: NValue[T]

=> (NValue[T],NValue[T])): NValue[T]
4 }

The 𝚒𝚏/ 𝚎𝚕𝚜𝚎 of 𝖷𝖢 is modelled as a branch function to avoid conflicts
with Scala’s if. The two branches are call-by-name parameters, as
usual. A neighbour value is implemented as a class with a default
message and a concrete map of messages for other devices.

1 class NValue[T](val defaultMessage: T, val
customMessages: Map[ID,T] = Map.empty) {

2 def fold[V>:T](init: V)(f: (V,V)=>V): NValue[V]
= // ...

3 def map2[R,S](other: NValue[R])(m: (T,R)=>S):
NValue[S] = // ...

4 // more built-ins ... (cf. Fig. 2)
5 }

9 The Scala DSL is publicly available under the Apache 2.0 licence at https:
/github.com/scafi/artifact-2021-ecoop-xc and permanently as an archived
rtefact on Zenodo (Casadei, 2022b).
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We leverage Scala implicit conversions and extension methods
(Oliveira et al., 2010), imported by mixing in XCLib, to automatically
convert values of type T to NValues of Ts and, e.g., to extend NValues
of Numerics to accept operators like + (to combine nvalues point-
wise). An abstract class XCProgram[T] requires programmers to
override the method main:T. Moreover, it exposes methods sense
and senseNeighbour to subclasses for retrieving local and neigh-
bouring values from the execution environment. For instance, the
gradient program (Example 3) can be encoded as follows.

1 object gradient extends XCProgram[Double] with
XCLib {

2 def main =
3 exchange(Double.PositiveInfinity)(n =>
4 mux(sense[Boolean]("source")){ 0.0 }{
5 (n + senseNeighbour("distance")).fold(

Double.PositiveInfinity)(Math.min)
6 })
7 }

An XCProgram[T] models a single local computation. As discussed
Section 2.1), a 𝖷𝖢 system consists of multiple devices repeatedly
i) acquiring context, (ii) computing the round, and (iii) propagating
essages to neighbours. The execution environment provides a context

omprising sensor values (e.g., for the built-in sensing functions—cf.
ig. 2) and messages from the neighbours. For instance, the following
ode shows the execution on a device:

1 while(true) {
2 val sensorData = getData() // implementation-

specific
3 val messagesFromNeighbours = getMessages() //

implementation-specific
4 val context = Context(sensorData,

messagesFromNeighbours)
5 val (output, messageCollection) = gradient.fire(

context)
6 process(output) // implementation-specific
7 propagate(messageCollection) // implementation-

specific
8 }

In this implementation, message communication occurs only before
(Line 3) and after (Line 7) the firing (Line 5) to ensure that the
exchange within the round are all executed atomically w.r.t. the mes-
sages that are received and sent by the device (Section 2.1). Concrete
details of a system implementation depend on the target deployment.
Example deployments that could be implemented include a peer-to-
peer network of IoT devices (where each node handles computation
and communication with neighbours), a collection of thin IoT devices
connected to the cloud (where only sensor and actuator data flows
between the IoT nodes and the cloud, which is responsible for running
computations and internally handling the message passing), or a sim-
ulator (where physical and/or logical devices are virtualised) (Casadei
et al., 2020). What these implementations must do in order to support
a 𝖷𝖢 system is providing the implementation-specific functions of the
listing above: getData() to obtain values from the local environment,
etMessages() to retrieve messages from neighbours (e.g., a peer
ode may keep them in a buffer, a cloud platform may use an in-
emory database service, a simulator may use an ad-hoc map-like data

tructure), process() to drive actuations (e.g., locally on a node,
r through a command on a cloud back-end), and propagate() to

send exported data to neighbours (e.g., through a direct message to the
neighbour, or through a write on shared state in simulations or cloud).

https://github.com/scafi/artifact-2021-ecoop-xc
https://github.com/scafi/artifact-2021-ecoop-xc
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Fig. 13. Implementation of gossipEver in C++/𝖷𝖢.

6.2. C++ DSL

We implemented 𝖷𝖢 as a C++ DSL,10 by extending FCPP (Audrito,
2020). This implementation is designed for (i) efficiency, and (ii) cus-
tom architectures. For (i), we rely on C++’s compile-time optimisation
and execution on the bare metal. We also performed careful profiling
to manually optimise crucial parts of the library. For neighbouring
values, we use vector<T> (having two sorted lists for ids and values)
from C++ STL—which is more efficient than hash maps for linear
folding and point-wise operations. For communication, we serialise
messages and pass them to the network driver (for low level devices
this is usually a non-standard API where one can configure the byte
content of the message and the transmission power). For (ii) we exploit
that C/C++ compilers are usually available for custom architectures,
while also aiming to minimise the amount of dependencies, to ease
the deployment. For instance, the implementation includes its own
serialisation header, compile-time type inspection utilities, multi-type
valued maps, option types, quaternions, tagged tuples, etc.

Compared to the Scala implementation, the embedding of 𝖷𝖢 into
C++ is more verbose, thus requiring additional effort for development
(see Fig. 13 for a code sample). This implementation has been already
used and tested on several different back-ends, including:

• batch simulations of distributed networks, producing plots sum-
marising the network behaviour across several runs (Audrito,
2020);

• graphical and interactive 3D simulation of a distributed network
through OpenGL (Audrito et al., 2022e);

• processing of 𝖷𝖢 algorithms on large graph-based data in HPC
(Audrito et al., 2022d);

• deployment on microcontroller architectures with either Contiki
OS or MIOSIX (Testa et al., 2022; Audrito et al., 2023b), also
interoperable with Android phones (work in progress).

No external dependencies are needed for those back-ends.

7. Evaluation

In this section, we evaluate 𝖷𝖢.11 The goal is to show that (RQ1)
the decentralised execution of the 𝖷𝖢 program on each device results
in the desired collective behaviour and that (RQ2) the overall behaviour
can be expressed by composing functions of collective behaviour that
correctly combine thanks to alignment. The evaluation does not focus
on the efficiency of fault recovering because this aspect is application-
dependent – not language-dependent. For instance, the recovery time
for a channel depends on the algorithms used to compute distances and
broadcasts, relative to the network assumptions.

10 The C++ DSL is publicly available under the Apache 2.0 licence at:
https://fcpp.github.io.

11 The simulation framework, its description, and instructions for repro-
ducing the experiments are publicly available at https://github.com/scafi/
artifact-2021-ecoop-smartc and permanently as an archived artefact on
Zenodo (Casadei, 2022a). This artefact is also described by the artefact
paper (Audrito et al., 2022b).
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Fig. 14. Two snapshots of the SmartC case study.

7.1. SmartC case study

We consider a simulation of the SmartC scenario described in Ex-
ample 11, and we implement it both in the Scala and C++ DSLs (the
results in this section refer to the Scala implementation). We believe
that other application domains, such as WSNs and WSNs, would not
pose fundamentally different challenges compared to the considered
scenario: WSNs focus on information flows, which is part of the case
study, and CPSs emphasise on actuation, which could be a simple
variant of the scenario, e.g., where agents move according to the
gathered reports. In the simulation setup, 600 devices each running
the 𝖷𝖢 program communicate with every neighbour currently in a 50-
metre range once per second. We consider a single detector and a single
operations centre. The simulator enables the collection of data exported
at the individual nodes (i.e., the program Example 11 is extended
with simulation-specific code). We measure, every second, the actual
(instantaneous) mean warning in the inspection area (using an oracle,
namely a process that can inspect the simulated system at any instant)
and the mean warning measured by the operations centre. We consider
the average result over 30 simulations varying the actual displacement
of devices and scheduling offsets. We inject a blackout event that
disconnects a set of devices from the system, hence disrupting the
channel. Fig. 14 shows two snapshots of the simulation with devices
(black dots), detector (red dot), sensors within the area inspected by the
detector (green dots), operations centre (magenta dot), and inoperable
devices (cyan dots). Semi-transparent red squares denote the warning

https://fcpp.github.io
https://github.com/scafi/artifact-2021-ecoop-smartc
https://github.com/scafi/artifact-2021-ecoop-smartc
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Fig. 15. Execution of SmartC.

evel locally perceived by sensors. Blue squares are nodes in the channel
rom detector to operations centre.

.2. Results

Fig. 15 shows that the mean warning received by the operations
entre (blue) during a run approximates the actual warning in the
nspected area (magenta). The jags in the second blue wave are due
o perturbations (exacerbated by the obstacle) that temporarily destroy
he channel in a few simulations, while delays depend on the firing
requency and communication hops (from inspection area edges to
etector to operations centre).

For (RQ1), this result shows that the 𝖷𝖢 program enables the
system to self-organise in such a way that the operations centre can
acquire the mean warning level aggregated by the detector, in spite of
environmental changes and perturbations induced by mobility and fail-
ure. For (RQ2), we remark that the self-organising behaviour resulting
from the 𝖷𝖢 program in SmartC is achieved by direct composition of
several reusable blocks of collective behaviour, namely distanceTo,
broadcast, collect, and channelBroadcast (cf. Example 11).

7.3. Comparison with other programming models

In order to get a sense of the benefit of the 𝖷𝖢 implementa-
tion w.r.t. other programming models, we re-implemented functions
distanceTo and channel (a version of channelBroadcast
without the final broadcast) with actors and pub-sub.12 These two
functions are typical patterns of self-organisation as well as paradigmatic
examples for the presented language, for they show, respectively, (i)
how data exchange is integrated into computations and (ii) compositional-
ity, namely how the approach enables composition of self-organising
behaviours that involve both interaction and processing. The com-
parison revolves around the analysis of the resulting code of the
implementations of each example for the different paradigms, using ba-
sic quantitative code metrics (such as Lines of Code (LoC) and number
of occurrences of specific language constructs used) and also qualitative
arguments (e.g., related to the structure of each implementation).

Essentially, the intuition of the 𝖷𝖢 advantage in terms of expressive-
ness lies in the implicit declaration of data exchange for each building
lock usage, instead of the more explicit and verbose message han-
ling/sending (for actors) and topic forging with event consuming/pro-

ducing (for pub-sub). Despite field calculi have been studied in a series
of papers (Viroli et al., 2019), no systematic comparison (e.g. via formal

12 The paradigm comparison is publicly available at: https://github.com/
etaphori/aggregate-paradigm-comparison .
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translation) with other approaches has been previously carried out.
There are two challenges for a rigorous comparison: (i) very few works
target the kind of distributed systems (e.g. self-organisation) targeted
by 𝖷𝖢, hence a comparison needs to consider general-purpose lan-
guages and a wide spectrum of software designs; (ii) system behaviour
unfolds by the interplay of device semantics and network semantics
(namely, the ‘‘execution model’’—cf. Section 4.3), which are brittle to
neatly separate in other approaches. To address these challenges, we
have considered multiple design, focussing on a comparison involving
(i) a pub-sub ‘‘idiomatic’’ solution, 𝑆PS, (ii) a pub-sub 𝖷𝖢-like solution
𝑆PS𝖷𝖢 with a design inspired by 𝖷𝖢, and (iii) an 𝖷𝖢 solution 𝑆𝖷𝖢. This
allows us to draw some interesting indications on the compactness that
programming in 𝖷𝖢 can provide.

The core programs are 82, 28, 22 LoC long. In 𝑆PS, the logic spreads
over multiple subscription handlers, while in 𝑆PS𝖷𝖢 and 𝑆𝖷𝖢 the core logic
is neatly separated. The 𝑆PS version uses 4 handlers (and crucially,
any additional field would need a further handler), 2 sends, and 4
publishes, while 𝑆PS𝖷𝖢 uses 2, 1, and 3 resp. Also, 𝑆PS keeps 6 state
variables for the input context of a device–𝑆PS𝖷𝖢 only 3. W.r.t. 𝑆𝖷𝖢,
𝑆PS𝖷𝖢 has a coding overhead due to the topics management and to the
more brittle handling of neighbour data, of about 27% more LoC, 73%
more words, and 35% more method calls. Finally, the main limitation
of 𝑆PS is the loss of compositionality, the inter-dependence between the
different computations of fields, and the fragility that stems from the
management of change propagation.

8. Related work

𝖷𝖢 can be framed in the context of a long-term research thread on
programming languages and tools for programming collective adaptive
systems, known under the umbrella terms of field-based coordina-
tion (Mamei and Zambonelli, 2006; Viroli et al., 2019) and aggregate
computing (Beal et al., 2015; Viroli et al., 2019). This research area is
characterised by works on formal calculi (Audrito et al., 2019, 2023a),
new constructs (Audrito et al., 2020; Casadei et al., 2019), formal
properties of programs and computations (Viroli et al., 2018; Beal et al.,
2017; Audrito et al., 2018a), programming language implementations
of formal calculi as DSLs (Casadei et al., 2022b, 2021; Audrito, 2020),
simulators (Pianini et al., 2013; Audrito et al., 2022e), algorithms and
patterns (Beal, 2009; Audrito et al., 2017b,a; Pianini et al., 2021b;
Audrito et al., 2021a; Pianini et al., 2022), execution models (Pianini
et al., 2021a), distributed platforms and deployments (Casadei et al.,
2020, 2022a), and libraries for application domains such as swarm
robotics (Aguzzi et al., 2023) and distributed monitoring (Audrito et al.,
2021b). In a nutshell, this work proposes a new calculus, 𝖷𝖢, inspired
by previous calculi, that subsumes them and is strictly more expressive
in its ability to model messages differentiated on a neighbour basis (see
Section 8.3 for a more detailed comparison). The implementations of
𝖷𝖢 covered in Section 6 are integrated into the existing Scala/C++
toolchains, hence providing the ability to reuse existing simulators
(cf. the use of Alchemist Pianini et al., 2013 in the case study arte-
fact Casadei, 2022a). As discussed in Section 5.2, by subsuming other
field constructs, reusing existing libraries (Aguzzi et al., 2023; Casadei
et al., 2021; Audrito et al., 2021b) is also straightforward.

We organise related work by first providing a high-level perspec-
tive on field-based coordination (Section 8.1). Next we describe ap-
proaches based on ensembles and attribute-based communication (Sec-
tion 8.2), which are close to our solution but adopt fundamentally
different design choices. Finally, we compare in detail with field cal-
culi (Section 8.3) and briefly discuss abstraction and compositionality
(Section 8.4).

https://github.com/metaphori/aggregate-paradigm-comparison
https://github.com/metaphori/aggregate-paradigm-comparison
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8.1. Field-based coordination

Field-based coordination, as a paradigm to develop self-organising
systems, originate from two main research areas: spatial computing (De-
Hon et al., 2007), where the idea of aggregate computing (Beal et al.,
2015) emerged, and coordination models and languages (Malone and
Crowston, 1994). Two surveys cover these two perspectives. The work
in Beal et al. (2013) reviews various DSLs ranging from multi-agent
modelling to WSNs with respect to how they measure and manipulate
space–time, model physical evolution and computation, and (meta-
)manipulate computation itself. More recently, Viroli et al. (2019)
outlines the historical development from tuple-based and field-based
coordination to field calculi, covering the state of the art and future
challenges within aggregate computing research. The latter work also
reviews various formalisations of field computations. As discussed later,
𝖷𝖢 subsumes the constructs of field calculi as of Viroli et al. (2018)
and Audrito et al. (2020) and so has a potential as foundation for
field-based coordination, and as lingua franca to describe distributed
algorithms for large-scale systems, and specifically for self-organisation.

8.2. Ensembles and attribute-based communication

Recently, field-based coordination is also framed as a paradigm for
collective adaptive systems (CASs) (Ferscha, 2015), which is a further
application target for self-organisation techniques in general. There, re-
lated approaches include ensemble-based engineering (Bures et al., 2013;
De Nicola et al., 2014) and attribute-based communication (Abd Alrah-
man et al., 2020). Ensemble approaches leverage the notion of ensemble,
i.e., a dynamic group of components typically specified through a mem-
bership relationship, for CAS programming. De Nicola et al. propose
SCEL (De Nicola et al., 2014), a process-algebraic approach where
systems are made of components, i.e., processes with an attribute-
based interface for addressing their state (knowledge) and evolving by
executing actions on predicated groups of target components; actions
provide ways to read, retrieve, put information, and to create new
components. AbC (Abd Alrahman et al., 2020) captures the essence
of attribute-based interaction of SCEL: components are (parallel com-
positions of) processes associated with an attribute environment, and
actions are guarded through predicates over such attributes. Attribute-
based communication approaches exploit attributes labelling devices
and matching mechanisms to dynamically define sets of recipients
for multi-casts, to promote coordination in CASs. This is also pos-
sible in field calculi, but it is made much simpler by the selective
communication mechanism in 𝖷𝖢, a key contribution of this paper.

.3. Field calculi

Field calculi, surveyed in Viroli et al. (2019), assume a neighbouring
elationship for connectivity and, upon that, enable defining dynamic
roups of devices by exploiting branching and recursion. However,
nteraction is not based on attribute matching but on execution of the
ame functions (alignment) involving communication constructs like
𝚡𝚌𝚑𝚊𝚗𝚐𝚎.

In the following we compare 𝖷𝖢 with the field calculus (FC) (Viroli
t al., 2018; Audrito et al., 2020), which is the reference model for
omputational fields (Viroli et al., 2019), also implemented by DSLs like
caFi (Casadei et al., 2022b, 2021) and FCPP (Audrito, 2020; Audrito
t al., 2022e). FC features two separate kinds of values (and types):
ocal values (of local type) and neighbouring values (of field type). 𝖷𝖢
combines these into a single class of nvalues 𝚟 = 𝓁[𝛿 ↦ 𝓁]. In particular,
local values are equivalent to nvalues 𝓁[] without custom messages,
and neighbouring values are equivalent to nvalues with any valid default
message. This unification allows a simpler type system and, crucially,
differentiated messages to neighbours.

By interpreting FC values as nvalues, all FC message-exchanging
20

constructs (𝚗𝚋𝚛, 𝚛𝚎𝚙 Viroli et al., 2018 and 𝚜𝚑𝚊𝚛𝚎 Audrito et al.,
2020) can be modelled within 𝖷𝖢: 𝚗𝚋𝚛 is the same defined function
ntroduced in Section 2.2, just restricted to operate on local values
nly; 𝚜𝚑𝚊𝚛𝚎 corresponds to an 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 with 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 restricted to
perate on local values only; and 𝚛𝚎𝚙(𝚎1){(𝚡) => 𝚎2} can be translated
o 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎(𝚎1, (𝚡) => 𝚛𝚎𝚝𝚜𝚎𝚗𝚍 𝚎2[𝚡 ∶= 𝚜𝚎𝚕𝚏(𝚡)]). Notice that the
onverse translation is not possible, as 𝚗𝚋𝚛, 𝚛𝚎𝚙 or 𝚜𝚑𝚊𝚛𝚎 expressions
ith arguments of neighbouring type have no defined behaviour in
C. Thus, 𝚗𝚋𝚛 and 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 in 𝖷𝖢 are strictly more expressive than
heir corresponding FC counterparts 𝚗𝚋𝚛 and 𝚜𝚑𝚊𝚛𝚎: they can be used
ith expressions producing nvalues with custom messages to model
ifferentiated messages.

The properties for subsets of the field calculus (FC), as surveyed
n Viroli et al. (2019), include eventual recovery and stabilisation after
ransient changes (self-stabilisation) (Viroli et al., 2018), independence
f the results from the density of devices (Beal et al., 2017), real-
ime error guarantees (Audrito et al., 2018b), efficient monitorability
f spatio-temporal logic properties (Audrito et al., 2021b, 2022c), and
bility to express all physically consistent computations (space–time
niversality) (Audrito et al., 2018a). The fact that every FC program
an be encoded within 𝖷𝖢, automatically imports all these results into
𝖢 and paves the way towards future extensions to 𝖷𝖢 programs not
xpressible in FC — as done for self-stabilisation in Section 5.3.

The neighbours calculus (Audrito et al., 2023a) is a variant of FC
hat aims to simplify embeddability of DSLs inside general-purpose host
anguages by not requiring to deal with fields at the type level. This is
chieved by considering a primitive folding operator inside which 𝚗𝚋𝚛

xpressions can be evaluated.

.4. Shared memory models

𝖷𝖢’s mechanism to send and receive messages to/from neighbours
rovides a high-level programming model for message passing which
bstracts over failures (cf. Section 2.6) and is reminiscent of shared
emory models. Namely: (i) nodes work on a fixed snapshot of in-

oming messages once the round starts (because message exchange
ccurs only between rounds) and (ii) messages can be overwritten or
ead multiple times until they expire, resulting in a model similar to
hared memory. This combination, thanks to the alignment property
a distinctive feature of 𝖷𝖢 and field calculi, which enables functional
omposition as illustrated in Sections 2.4 and 2.5), achieves an abstrac-
ion level that it is not available in the competing spatial computing
pproaches (surveyed, e.g., in Beal et al., 2013; Viroli et al., 2019)
r shared memory models (surveyed, e.g., in Morin and Puaut, 1997;
ushtaq et al., 2011).

By a modelling and implementation perspective, an 𝖷𝖢 system
ould be thought of as consisting of devices where each device has its
wn portion of shared memory, e.g., as a tuple space (refer to Viroli
t al., 2019 for a historical account of the evolution from tuple-based
o field-based coordination). Then, interaction in 𝖷𝖢 could be realised
n at least three main ways: (i) by writing and reading data from a
lobal tuple space, (ii) by distributing the tuple space into device-
pecific tuple spaces, then writing data on neighbours’ tuple spaces,
nd reading data from the local tuple space, or dually, (iii) by writing
ata on the local tuple space, and reading data from neighbours’ tuple
paces. One important difference, however, is that whereas read and
rite operations in shared memory models usually have an explicit

arget location (or, in centralised solutions, explicit parameters in tuple
emplates for retrieval via pattern matching), in 𝖷𝖢 these targets are
mplicit and depend on the program’s runtime structure (cf. the notion
f alignment discussed in Section 2.4). Among tuple-based models and
ystems, LiME (Linda in Mobile Environments) (Murphy et al., 2006)
eems especially related (also in motivation and target systems), with
ts idea of replacing a global tuple space with ‘‘transiently shared tuple
paces’’ whose contents are automatically populated based on connec-
ivity (cf. neighbouring relationship in 𝖷𝖢). A detailed investigation of
imilar approaches, left as a future work, can be especially instrumental
or addressing the problem of building a middleware for 𝖷𝖢 systems.
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9. Conclusion and outlook

In this article, we present and discuss the design of 𝖷𝖢, a program-
ming language for homogeneous distributed systems that abstracts over
common issues in developing distributed applications, including faults,
loss of messages, and asynchronicity. The design of 𝖷𝖢 is minimal,
featuring only one communication primitive. Despite its simplicity, we
show that 𝖷𝖢 can capture several communication patterns for self-
organising and distributed collective systems and it is effective for
writing software controlling large-scale collections of devices.

The design of 𝖷𝖢, through nvalues and the new semantic construct
𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎, promotes interesting directions for future work. A first di-
rection is to develop comprehensive libraries of reusable 𝖷𝖢 blocks:
works such as Viroli et al. (2018) define combinators, i.e., general field
functions implementing key behavioural elements of information diffu-
sion, collection, and degradation—the composition of which enables
the definition of a wide spectrum of higher-level and application-
specific functions. We plan to devise new such building blocks with
𝖷𝖢, e.g. to realise sparse choice of leaders (Pianini et al., 2022), con-
sensus (Beal, 2016), and concurrent collective processes (Casadei et al.,
2021). Secondly, we are currently assessing the impact of 𝖷𝖢 constructs
on real-world application programming, thanks to our porting in Scala
and C++.
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