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Abstract. Recent trends like the Internet of Things (IoT) suggest a vi-
sion of dense and multi-scale deployments of computing devices in nearly
all kinds of environments. A prominent engineering challenge revolves
around programming the collective adaptive behaviour of such compu-
tational ecosystems. This requires abstractions able to capture concepts
like ensembles (dynamic groups of cooperating devices) and collective
tasks (joint activities carried out by ensembles). In this work, we con-
sider collections of devices interacting with neighbours and that execute
in nearly-synchronised sense–compute–interact rounds, where the com-
putation is given by a single control program. To support programming
whole computational collectives, we propose the abstraction of a dis-
tributed collective process (DCP), which can be used to define at once
the ensemble formation logic and its collective task. We implement the
abstraction in the eXchange Calculus (XC), a core language based on
neighbouring values (maps from neighbours to values) where state man-
agement and interaction is handled through a single primitive, exchange.
Then, we discuss the features of the abstraction, its suitability for differ-
ent kinds of distributed computing applications, and provide a proof-of-
concept implementation of a wave-like process propagation.

Keywords: collective computing · collective processes · ensembles · for-
mation control

1 Introduction

Programming the collective behaviour of large collections of computing and in-
teracting devices is a major research challenge, promoted by recent trends like
the Internet of Things [6] and swarm robotics [15]. This challenge is investigated
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and addressed by several related research threads including coordination [24,
42], multi-agent systems [14], collective adaptive systems [23], macroprogram-
ming [18, 40], spatial computing [13], field-based coordination [36], aggregate com-
puting [49], and attribute-based communication [1].

This activity can be supported by suitable programming abstractions sup-
porting declarative specifications of collective behaviours. Examples of abstrac-
tions include ensembles [41], computational fields [49], collective communication
interfaces [50, 1], and collective orchestration tasks [46]. In this work, we cover
the abstraction of a distributed collective process (DCP), inspired by aggregate
processes [20, 21, 48], which consists of a model for concurrent collective tasks
running and spreading on dynamic domains of devices. We provide an abstract
model of the abstraction on event structures, and discuss its implementation
on the eXchange Calculus (XC) [9], a language, inspired by field calculi [49],
for programming homogeneous systems of neighbour-interacting devices. Then,
we discuss how the DCP abstraction can support multiple patterns of collective
behaviour and self-organisation.

The paper is organised as follows. Section 2 provides context, related work,
and motivation. Section 3 reviews the basics of the XC language. Section 4
provides the contribution. Section 5 discusses features and applications of the
approach, and provides a proof-of-concept implementation. Section 6 summarises
results and points out directions for future work.

2 Context, Related Work, and Motivation

This work lies in the context of models and languages for programming collective
behaviour [23, 17, 15]. Indeed, achieving the desired collective behaviour is an
engineering goal for different domains and applications:

– Swarm robotics. Multiple robots may be tasked to move and act as a collec-
tive to explore an unknown environment [37], to search and rescue victims
for humanitarian aid after disasters [5], to map a crop field for the presence
of weeds [3], to transport objects exceeding [26], etc.

– The IoT. The things should coordinate to promote application-level goals
(e.g., by gathering and processing relevant data) while making efficient use of
resources. For instance, the nodes could support the aggregation of machine
learning models [47], or collaborate to measure the collective status of the
network to support various activities from environment sensing [35] to remote
attestation of system integrity [4].

– Hybrid Collective Intelligence (CI). Socio-technical systems involving hu-
mans and computing devices could be programmed as “social machines” [30]
executing coordinated tasks [46], or promoting the emergence of collective
knowledge [27].

– Computing ecosystems. Modern infrastructures spanning the edge–fog–cloud
layers can be considered as collective systems. The computing nodes should
exchange and process information to create suitable topologies and struc-
tures [33, 45] and coordinate task allocation [38], resiliently.
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This problem is at the heart of several related research threads. The field of
coordination [24, 42] addresses it by governing interaction; collective adaptive
systems engineering [23] investigates means for collective adaptation in large
populations of agents; spatial computing [13] leverages spatial abstractions to
guide behaviour and perform computation; macroprogramming [18, 40] takes a
programming language-perspective to expressing macroscopic behaviour; multi-
agent systems programming [14] considers autonomy, cognitive, and organisa-
tional concerns; and so on.

In this work, we consider a language-based software engineering perspec-
tive [29]. In other words, we seek for abstractions supporting expressing collective
behaviour. Examples of abstractions proposed in previous research include:

– ensembles [41]: dynamic composites of devices, e.g., formed by attribute-
based formation rules;

– computational fields [36, 49]: maps from devices to values, used to capture
collective inputs, and collective outputs;

– aggregate computations [49]: functions mapping input computational fields
to output computational fields, implicitly handling coordination;

– aggregate processes [10, 11, 20, 21]: dynamic aggregate computations [49] on
evolving domains of devices;

– collective communication interfaces [50]: abstractions able to flexibly express
the targets of communications actions, e.g., via attributes [41, 1];

– collective-based tasks [46]: abstractions keeping track of the lifecycle and
state of tasks assigned to collectives.

In particular, we consider collective systems, namely largely homogeneous
collections of devices or agents. Each device can be thought of as a resource
that provides capabilities and provides access to a local context that depends
on its situation on the environment and possibly its state. For instance, in a
smart city, fixed smart lights may be located nearby streets, smart cameras
may support monitoring of facilities, smart vehicles may move around to gather
city-wide infrastructural data, etc. Since we would like to avoid bottlenecks and
single-points-of-failure, we avoid centralisations and opt for a fully decentralised
approach: a device can generally interact only within its local context, which
may include a portion of the environment and other nearby devices. If our goal
is to exploit the distributed, pervasive computer made of an entire collection of
situated devices, an idea could be to run collaborative tasks involving subsets
of devices—to exploit their resources, capabilities, and contexts. Since a process
may not know beforehand the resources/capabilities it needs and the relevant
contexts, it may embed the logic to look for them, i.e., to spread over the col-
lective system until its proper set of supporting devices have been identified.
Moreover, the requirements of the process may change over time, dynamically
self-adapting to various environmental conditions and changing goals. Within a
process that concurrently spans a collection of devices, local computations may
be scheduled and information may flow around in order to support collective ac-
tivities [15, 53] such as collective perception [28], collective decision-making [16],
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collective movement [39], etc. So, if the collective that sustains the process de-
cides that more resources are needed, the process may spread to a larger set of
devices; conversely, if the collective task has been completed, the devices may
quit the process, eventually making it vanish. This is, informally, our idea of
a distributed collective processes (DCP), i.e., a process (i.e., a running program
or task) which is collective (i.e., a joint activity carried out by largely homoge-
neous entities) and distributed (i.e., concurrently active on distinct networked
devices), whereby the collective task and the underlying ensemble can mutually
affect each other, and ensemble formation is driven by decentralised device-to-
device interaction.

In the following, we explain a formal framework (Section 3) particularly suit-
able to study and implement this DCP abstraction; then, we formalise a language
construct (Section 4) to effectively program such DCPs; and finally discuss fea-
tures and applications enabled by our abstraction implementation (Section 5).

3 Background: the eXchange Calculus

We consider the eXchange Calculus (XC) [9] as the formal framework for mod-
elling, reasoning about, and implementing DCPs. In this section, we first present
the system and execution model (Section 3.1), providing an operational view of
the kinds of systems we target, and then describe the basic constructs of XC
that we leverage in this work (Section 3.2).

3.1 System Model

The target system that we would like to program can be modelled as a collection
of nodes, able to interact with the environment through sensors and actuators,
and able to communicate with neighbours by exchanging messages. We assume
that each node runs in asynchronous sense–compute–act rounds, where

1. sense: the node queries sensors for getting up-to-date environmental values,
and gathers recent messages from neighbours (which may expire after some
time)—all this information is what we call as the node’s context ;

2. compute: the node evaluates the common control program, mapping the
context (i.e., inputs from sensors and neighbours) to an output describing
the actions to perform (i.e., actuations and communications);

3. act : the node executes the actions as dictated by the program, possibly
resulting into environment change or message delivery to neighbours.

This kind of loop is used to ensure that the context is continuously assessed (at
discrete times), and the reactions are also computed and performed continuously.
This model has shown to be particularly useful to specify self-organising and col-
lective adaptive behaviours, especially for long-running coordination tasks [49].

The semantic of a system execution can be expressed as an event structure
(see Figure 1), where events ε denote whole sense–compute–act rounds, and
arrows between events denote that certain source events have provided inputs
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ε11 ε12 ε13

ε21 ε22 ε23 ε24 ε25

ε31 ε32 ε33 ε34

ε41 ε42 ε43 ε44 ε45 ε46

ε51 ε52 ε53

Devices

Time

Fig. 1. Example of an event structure modelling a distributed system execution. Nodes
labelled by εδk denote the k-th round of device δ. The yellow background highlights a
reference event, from which its past (green) and future (blue) are identified through
the causal relationship implied by the arrows denoting neighbour events.

(i.e., messages) to target events. In particular, if event ε′ is connected with an
arrow to ε, we say that ε′ is a neighbour of ε, denoted ε′  ε. We denote with N (ε)
the set of all neighbours of ε, and with d(ε) the device where event ε happens,
i.e., where it is executed.

Programming the systems described in this section thus means defining the
control rules that specify how the context at each event is mapped to the mes-
sages to be sent to neighbour events.

3.2 XC key data type: Neighbouring Values

In XC we distinguish two types of values. The Local values ` include classic
atomic and structured types A such as int, float, string or list. The neighbouring
values (nvalues) are instead maps w from device identifiers δi to corresponding
local values `i, with an additional local value ` that acts as a default :

w = `[δ1 7→ `1, ... , δn 7→ `n]

A nvalue specifies a (set of) values received from or sent to neighbours: received
values are gathered into nvalues, then can be locally processed, and the final
resulting nvalue can be interpreted as messages to be sent back to neighbours.
The devices with an associated entry in the nvalue are thus typically a (small)
subset of all devices, namely those that are close-enough to the current device,
and which are of course working correctly.

The default is used when a value is not available for some neighbour δ′,
e.g., because δ′ has just been switched on and has not yet produced a value,
or because it has just moved close enough to the current device δ to become



6 G. Audrito et al.

one of its neighbours. The notation above should therefore read as “the nvalue w
is ` everywhere (i.e., for all neighbours) except for devices δ1, ... , δn which have
values `1, ... , `n.

To exemplify nvalues, in Figure 1, upon waking up for computation ε32, device
δ3 may process a nvalue w = 0[δ4 7→ 1, δ3 7→ 2, δ2 7→ 3], corresponding to the
messages carrying scalar values 1, 2, and 3 received when asleep from δ4, δ3 (i.e.,
itself at the previous round), and δ2. The entries for all other (neighbour) devices
default to 0. After the computation, δ2 may send out the messages represented
by the nvalue w′ = 0[δ4 7→5, δ3 7→6]; so that 5 is sent to δ4, 6 is sent to δ3, and 0
is sent to every other device, such as a newly-connected device. For convenience,
we may use the notation w(δ′) for the local value (specific or default) associated
with δ′ by w.

Note that a local value ` can be naturally converted to a nvalue `[] where
it is the default value for every device. Except for clarity, thus local values and
nvalues can be treated uniformly. Functions on local values are implicitly lifted
to nvalues, by applying them on the maps’ content pointwise. For example, if w1
assigns value 2 to δ3 and w2 assigns default value 1 to δ3, then w3 = w1 · w2 shall
assign value 2 · 1 = 2 to δ3.

A fundamental operation on nvalues is provided by the built-in function
nfold(f : (A,B)→ A, w : B, ` : A) : A. As suggested by the name, the function
folds over a nvalue w, i.e., starting from a base local value ` it repeatedly applies
function f to neighbours’ values in w, excluding the value for the current device.
For instance, if δ2 with set of neighbours {δ1, δ3, δ4} performs a nfold operation
nfold(∗, w, 1), the output will be 1 ·w(δ1) ·w(δ3) ·w(δ4). Note that, as nvalues are
unordered maps, it is sensible to assume that f is associative and commutative.

Two built-in operations on nvalues act on the value associated with the cur-
rent (self) device:

– self(w : A) : A returns the local value w(δ) in w for the self device δ
– updateSelf(w : A, ` : A) : A returns a nvalue where the value for the self

device δ is set to `.

There are several other fundamental built-in operators in XC, such as
exchange and mux, which are however not necessary for understanding the rest
of this paper. Please refer to [9] for their detailed, formal description.

4 Distributed Collective Processes in XC

In this section, we present an implementation of DCPs in XC. First, we charac-
terise the implementation in terms of an abstract notation and formulas on event
structures (Section 4.1). Then, we provide a formalisation of DCPs in terms of
the big-step operational semantics for a new XC construct (Section 4.2), that
can be used to actually program DCPs.
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4.1 Modelling on event structures

In this discussion, we refer to an event structure as the one depicted in Figure
1. A distributed collective process (DCP) P is a computation with given pro-
grammed behaviour. A single DCP can be run in multiple process instances Pi,
each associated to a unique process identifier (PID) i, which we assume also
embeds construction parameters for the process instance. New instances of an
aggregate process P are spawned through a generation field GP , producing a set
of identifiers G(ε) = {i ...} in each event ε, of process instances that need to be
created in that event ε (which we call initiator for Pi). For each process instance
Pi, we use the Boolean predicate πPi

(ε) to denote whether such instance is being
executed at event ε (either being initiated by ε, or through propagation from pre-
vious events). Each process instance Pi, if active in an event ε (i.e., πPi(ε) = >),
locally computes both an output OPi

(ε) (returned to the process caller) and a
status sPi

(ε), which is an nvalue mapping the device d of each neighbour event
ε ∈ N to a bool value.

A process instance Pi which is active in an event ε potentially propagates the
process to any event ε′ of which ε is a neighbour (ε ε′) depending on the value
of sPi

(ε). In formulas:

πPi(ε) =


> if i ∈ GP (ε)

> if ∃ε′  ε. πPi
(ε′) ∧ sPi

(ε′)(d(ε)) = >
⊥ otherwise.

The XC defines a built-in construct spawnXC (P,GP ) that runs indepen-
dent instances of a field computation P , where new instances are locally gen-
erated according to generation field GP as explained above. The output of a
spawnXC (P,GP ) expression in an event ε is the set of pairs {(i,OPi (ε)), ...} for
which πPi

(ε) = >.

4.2 Formalisation

The spawnXC construct, defined mathematically in the previous Section 4.1,
embeds naturally in XC as a built-in function, derived by converting the clas-
sical spawn construct [20] into XC. As a built-in in XC, spawn assumes the
same type as the classical spawn construct in field calculus: ∀αk, αv.((αk) →
pair[αv, bool], set[αk]) → map[αk, αv]. However, in XC every type allows nval-
ues, which translates into practical differences.

Figure 2 presents the semantics of the spawn built-in, relative to the XC
semantics presented in [9], which we do not include for brevity. As in [32], the
overbar notation indicates a (possibly empty) sequence of elements, and multiple
overbars are expanded together, e.g., x 7→ y is short for x1 7→ y1, ... , xn 7→ yn
(n ≥ 0). The semantics is given by the auxiliary evaluation judgement for built-
ins δ;σ;Θ ` b(w) ⇓∗ w; θ, to be read as “expression b(w) evaluates to nvalue
w and value-tree θ on device δ with respect to sensor values σ and value-tree
environment Θ”, where:
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Auxiliary definitions:

θ ::= 〈θ〉
∣∣ w〈θ〉

∣∣ ` 7→ θ value-tree

π`(` 7→ θ) = θi s.t. `i = ` if it exists else •

Auxiliary evaluation rules: δ;σ;Θ ` f(w) ⇓∗ w; θ

[A-SPAWN]
k1, ... , kn = wk(δ) ∪ {k for δ′ ∈ dom(Θ), k 7→ b〈θ〉 ∈ Θ(δ′) with b(δ) = True}
δ;σ;π1(π

ki(Θ)) ` wp(ki) ⇓ wi; θi where wi = pair(vi, bi) for i ∈ 1, ... , n

δ;σ;Θ ` spawn(wp, wk) ⇓∗ k 7→ w; k 7→ b〈θ〉

Fig. 2. Device (big-step) operational semantics of FXC

– θ is an ordered tree with nvalues on some nodes, representing messages to be
sent to neighbours by tracking necessary nvalues and stack frames produced
while evaluating b(w);

– Θ collects the most recent value-trees received by neighbours of δ, as a map
δ1 7→ θ1, ..., δn 7→ θn (n ≥ 0) from device identifiers to value-trees.

In order to introduce the spawn construct, it is necessary to extend the aux-
iliary definition of value-trees (highlighted in grey), to also allow for maps from
local literals ` (identifiers of the running processes) to their corresponding value-
trees. Then, rule [A-SPAWN] can be written by naturally porting the similar rule in
[20], while using the fact that the Boolean returned by the process is an nvalue,
and thus can be different for different neighbours. In this rule, a list of process
keys k is computed by adjoining (i) the keys wk(δ) currently present in the second
argument wk of spawn for the current device δ; (ii) the keys that any neighbour δ′
broadcast in their last message Θ(δ′), provided that the corresponding Boolean
value b returned was true for the current device b(δ) = True (thus, demanding
process expansion to δ). To realise “multiple alignment”, for each key ki, the
process wp is applied to ki with respect to the part of the value-tree environment
π1(π

ki(Θ)) that corresponds to key ki, producing wi; θi as a result. Finally, the
construct concludes returning the maps k 7→ w; k 7→ θ mapping process keys to
their evaluation result.

5 Discussion and Proof-of-Concept

In this section, we discuss the proposed abstraction (Section 5.1), the character-
istics of the proposed programming model for DCPs (Section 5.2), then provide
examples of applications (Section 5.3), and provide a proof-of-concept imple-
mentation of a wave-like propagation of a DCP (Section 5.4).

5.1 The DCP abstraction

The crucial problem that we investigate in this paper revolves around the def-
inition of collaborative activities carried out by dynamic collections of devices
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(a.k.a. ensembles [41]). We call these DCPs since they are defined by a common
control program that regulates the behaviour of a largely homogeneous set of
devices.

In particular, a device may participate concurrently to multiple collective
processes, or to multiple ensembles. How participation to multiple DCPs relates
to local resource usage (cf. resource-constrained devices) is abstracted away and
may be dealt both programmatically (e.g., through a status computed depending
on the resource availability perceived through a sensor) or automatically at the
virtual machine level (e.g., by runtime checks). Furthermore, notice that, in any
single round, a device executes the computation associated to all the currently
joined DCPs. That is, in the basic model, the number of processes joined by
a device has no effect whatsoever on the number of rounds, which follow a
given scheduling policy. Therefore, the participation to several processes may
in principle increase the duration of rounds significantly, possibly slowing down
the reactivity of a device; so, real-world implementations have also to consider
these aspects. Associating different scheduling policies to different processes is
however possible, but requires an extension to the basic execution model, e.g.,
along the lines of [44].

We define as the domain of a DCP the set of the nodes that are currently
running it. We define as the shape of a DCP the spatiotemporal region that is
identified by the spatiotemporal locations of the nodes belonging to the domain
of the DCP. Often, DCPs are transient, i.e., they have a limited lifetime: they
start to exist at some time, and they dissolve once no more nodes run them.

In this work, we are mainly concerned with studying how to create and ma-
nipulate these DCPs. The supporting formal framework and implementation is
described in Section 4. In summary, the developer has the following mechanisms
for defining systems of DCPs:
– generation logic: the need for collective activities can be encoded in a rule

for generating new instances of DCPs;
– identity logic: the logic used to identify DCPs can be used to distinguish

between them and hence to regulate their domains (e.g., for controlling the
granularity of teams);

– internal logic: this logic defines a collective computation (scoped within the
domain of a single DCP) promoting decentralised decision-making, e.g., in
terms of typical self-organisation patterns (collection, propagation, leader
election, evaporation, etc.);

– shape control logic: it is possible to specify rules for the local expansion of
the domains of DCPs (e.g., to gather more participants), typically also lever-
aging results from the internal computation itself—the XC implementation
provides an especially flexible way to specify this, as different neighbours can
receive different information;

– termination logic: this logic, strictly related to shape control, enables to
specify how individual agents may leave a DCP instance as well as how an
entire DCP may be terminated;

– input logic: existing DCPs may also be controlled be specifying “external
inputs” provided as explicit arguments or closed over a lambda closure—an
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example is meta-control logic, based on inspecting the (results of) multiple
DCPs to take decisions about their evolution.

In the following, we discuss features and examples of use of the abstraction.

5.2 Features of the abstraction and programming model

Progressive and live construction of ensembles (cf. self-organisation, self-healing,
etc.). The DCPs have a dynamic domain, that evolves progressively to include
more or less devices. The devices at the border of the DCP can choose to expand
it to (a subset of) their neighbours and the neighbours themselves can opt in or
out. Moreover, since evaluation of the program is repeated over time, the border
is live, meaning that membership can be always re-evaluated, in order to consider
the up-to-date context. Conversely, members that are no longer interested in
participating in the collective task, or that have completed the tasks associated
to their role, can leave the process by returning False[] in the spawn routine, or
even start process termination patterns as those investigated in [11].

Flexible control of collective process shape and state. The shape and state of a
DCP can be regulated flexibly, by leveraging different kinds of mechanisms. For
instance, the state and shape of a process can be controlled at a collective level,
as a result of a collective consensus or decision-making activity. As an alterna-
tive, the leader or owner of the DCP may centralise some of the decision-making:
for instance, it may gather statistics from its members (using adaptive collection
algorithms [8]), and use locally-computed policies to decide whether to let more
members join (sharing the local decision with a resilient broadcast algorithm
[49]). Between fully centralised and fully decentralised settings, there are inter-
mediate solutions based e.g. on a partitioning of the DCP into sub-groups using
partitioning mechanisms that can be applied at the aggregate programming level
[2, 19]. The state can be used, for instance, to denote different phases of a collec-
tive task [22], hence it is important that all the members of the DCP eventually
become aware of the up-to-date situation. Regarding shape control, further flex-
ibility is provided by XC, thanks to differentiated messages to neighbours: this
feature could be used to essentially control the direction of process propagation
(e.g., by filtering, random selective choice, or any other ad-hoc mechanisms).

Support for privacy-preserving collective computations. The possibility in XC
to send differentiated messages to neighbours (unlike classical field calculi [49]),
especially when supported infrastructurally through point-to-point communica-
tion channels, can also promote privacy in collective computations. This way,
devices that are unrelated to certain tasks, are not exposed to the information
that those tasks are being carried out.

5.3 Examples

Given its features, the DCP abstraction could turn useful to program several
kinds of higher-level distributed computing abstractions and tasks such as, for
instance, the following.
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Modelling of teams or ensembles of agents [41]. A DCP can represent, through
its very domain, the set of agents that belong to a certain team or ensemble. It
can spread around the system to gather and (re-)evaluate a membership con-
dition, to effectively recruit agents into different organisational structures [31].
Two main mechanisms regulate the joining of devices into DCPs: the propaga-
tion of PIDs to neighbours (i.e., an internal control of the process border), and
the possibility to leave a process by a device that received a PID, which would
not propagate the process further (i.e., an external control of the process bor-
der). The former mechanism is directly supported by our XC implementation,
through the notion of differentiated messages to neighbours, enabled by nvalues.
Concurrent participation to multiple teams is directly supported by the fact that
a single device can participate in an arbitrary number of DCPs. As participation
to multiple DCPs leads to increased resource requirements (in both computation
time and message size), the programmer has to take into account performance
issues when designing the generation and propagation logic of concurrent DCPs.
However, the fully asynchronous and resilient nature of XC implies that some
additional slack can be used on top of resource bounds posed by the architecture,
as longer round execution or message exchange time (or even a device crash) can
be handled seamlessly by the XC programming model. Last but not least, the
activity within a DCP can be used to support the coordination within the en-
semble it represents, e.g., through gossip or information spreading algorithms,
whose scope is limited to the domain of the DCP; therefore, it may be useful
also for privacy-preserving computations.

Space-based coordination (e.g., spatiotemporal tuples [22]). A DCP could also be
attached to a spatial location—to implemented spatially-attached processes. This
could be used to support space-based coordination, or to implement coordina-
tion models like spatiotemporal tuples [22], whereby tuples and tuple operations
can be emitted to reside at or query a particular spatial location. To implement
the spatiotemporal tuples model, an DCP instance can be used to represent a
single out (writing), rd (reading), and in (retrieval) operation—see Figure 3 for
a visual example. A tuple is denoted by its out process: it exists as long as its
DCP is alive in some device. Creating tuples that reside at a fixed spatial loca-
tion/area (e.g., as described by geodetic coordinates) or that remain attached
to a particular mobile device is straightforward. In the former case, the DCP
membership condition is just that the device’s current location is inside or close
by the provided spatial location. In the latter case, the DCP membership condi-
tion is just that the device’s current distance to the DCP source device (which
may be computed by a simple gradient) is within a certain threshold. We may
call these node-attached processes: as a node moves, a DCP attached to it can
follow through, to support collective contextual services; for instance, a node
may recruit other nodes and resources for mobile tasks.

Creation of adaptive system structures to support communication and coordi-
nation. The ability of DCPs to capture both the formation evolution and the
collective activity of a group of devices within a pervasive computing system can
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Fig. 3. Graphics of interacting DCPs modelling spatiotemoral tuple operations. Each
DCP is denoted as a trapezoid-like shape that springs out at a certain event (a round
by a single device). Notation: εin and εout mean that the event generates a process
modelling an in (retrieval) and out (writing) tuple operation, respectively; εM means
that a matching out tuple for an in operation has been found; εC means that the out
tuple process has reached consensus about the in process to serve; the † superscript
denotes a termination event, starting a process to close an existing process.

be leveraged to create resilient structures supporting non-local or system-wide
coordination. For instance, this can be used to implement messaging channels in
a peer-to-peer network of situated neighbour-interacting devices (e.g., in a smart
city) [20]: the channel consists only of the devices between the source and the
destination of a message, hence avoiding expensive gossip or flooding processes
that would (i) consume resources of possibly all the devices in the system, and
(ii) exacerbate privacy and security issues. As another example, consider the
Self-organising Coordination Regions (SCR) pattern [19]: it is a mechanism to
control the level of decentralisation in systems to flexibly support situated tasks,
based on (i) decentralised leader election [43]; (ii) creation of areas around the
leaders to basically partition the overall system into manageable regions [51];
and (iii) supporting intra-region and inter-region coordination e.g. by means of
information flows [52]. Now, traditional solutions based on field calculi [19] do
not easily allow for the partitions to overlap: this, instead, could be desired for
fault-tolerance, flexibility, and improved interaction between adjacent regions,
and it turns out to be easily implementable using DCPs.

Modelling of epidemic processes [25]. Finally, DCP also represent a tool for
studying how to relate computation, coordination, and epidemic processes. By
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the ability of programmatically controlling how processes spread, possibly using
conditions that depend on the collective computation carried out by the current
ensemble, it is possible to model complex diffusion dynamics. In future work,
it would be interesting to explore how XC programs leveraging DCPs could
promote network-based and agent-based simulation models for epidemic spread,
e.g. such as those reviewed in [34].

5.4 Proof-of-Concept Implementation

As a proof-of-concept of the techniques described in this paper, we have imple-
mented a simple use case exploiting the FCPP simulator [7, 12], which has been
extended to support the XC and, in particular, the spawnXC built-in construct
described above. The implemented use case is a network of devices where, at
some point in time, a source device δFROM sends a message through a DCP to
reach a destination device δTO. For simplicity, we considered devices to be sta-
tionary in the simulation, thus inducing a fixed network topology (although the
proof-of-concept program could be run with dynamic topologies as well). Round
durations are not identical (they can vary by 10% from base value).

We implement a spherical propagation, where the message originating in
δFROM spreads radially in 3D trying to reach δTO. The process function executed
by each process node implements the following logic:

1. if the self device δ is δTO just return a false nvalue F [] (no propagation, since
destination has been reached);

2. if it is the first round that δ executes the process, and the neighbours it knows
(i.e., that have propagated the process to δ) are δ1, ... , δk, it propagates it to
itself and to its new neighbours (that are not yet in the process) by returning
an nvalue T [δ 7→T, δ1 7→F, ...];

3. finally, at the second round δ exits itself the process by returning a false
nvalue F [].

The following snippet of FCPP code shows the core of the simple function
described above:

1 i f (dest)
2 fdwav = field<bool>(false ) ;
3 else i f (rnd == 1) {
4 fdwav = field<bool>(false ) ;
5 fdwav = mod_self(CALL, fdwav, true) ;
6 fdwav = mod_other(CALL, fdwav, true) ;
7 } else
8 fdwav = field<bool>(false ) ;

Note that: flag dest is true only on device δTO; fdwav if the field that determines
process propagation; a call to field<bool>(false) constructs a constant field
of Booleans set to false; and a call to mod_self (resp. mod_other) sets the
value in a field for the current device (resp. its known neighbours).
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Fig. 4. Average number of active processes over time for the single-process use case.
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Fig. 5. Average number of active processes over time for the multi-process use case.

We exploit FCPP to simulate a first use case where only one process is
generated. The simulation shows that the process propagates as a wave starting
from δFROM outwards. Immediately after the wave front goes beyond a device,
the device itself exits the process thus releasing potentially precious resources
for other computations. Figure 4 shows the average number of active processes
(aproc) within the network of devices in one specific execution of the use case
(which took a time interval [1, 50]). For the first 10 sec, the average is 0, since
no process has been created yet. After the process is created by δFROM , it
propagates until it reaches its destination, and then quickly vanishes.
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In a second use case, we let 10 different devices generate a new process at
each round with probability 5%, in the time interval [1, 25]. Figure 5 shows that
the average number of active processes aproc grows from 0 (at time 0) up to
slightly more than 1.6 (just after 25), and then quickly drops again down to
0. Given that more than 10 processes are generated during the use case, the
average number of active processes is kept low by the fact that the nodes exploit
spawnXC to immediately exit processes after entering and propagating them.

6 Conclusion

In this paper, we have covered the abstraction of a distributed collective process
(DCP), which supports the definition of the collective adaptive behaviour of per-
vasive collections of neighbour-interacting devices working in sense–compute–
interact rounds. In particular, DCPs model decentralised collective tasks that
also move, spread, and retract over the collective system in which they are
spawned. We have discussed the abstraction, analysed it in the general frame-
work of event structures, and implemented it in the eXchange Calculus (XC),
a minimal core language particularly suitable for implementing DCPs, for its
Neighbouring Value data structure, that enables fine-tuned control of what data
gets shared with neighbours. Finally, we have discussed its features and applica-
bility, and have shown a proof of concept implementation of a wave-propagation
algorithm—which may be used for model resource-efficient information flows.

In future work, we would like to further study DCPs by a dynamical perspec-
tive, and possibly explore its ability to model and simulate epidemic processes.
Further, we would like to implement in XC a library of reusable functions cap-
turing common patterns of DCPs usage, to streamline pervasive and collective
computing application development.
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