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Abstract: Artisanal salami is produced in small-scale production plants, where the lack of full
automation might result in higher variability in food intrinsic properties. The aim of the present
study was to evaluate the inter- and intra-batch variability in physicochemical parameters and its
impact on microbial quality and occurrence of foodborne pathogens on 480 samples collected from
six batches of an artisanal Italian production of organic salami. Relatively high total bacterial counts
(TBC) were found on the surface of the table in the stuffing room (4.29 ± 0.40 log cfu/cm2). High
loads of Enterobacteriaceae in the meat mixture of batch 2 and TBC in batch 5 were associated with a
higher occurrence of bacterial pathogens. During ripening, water activity (aw) and pH failed to reach
values lower than 0.86 and 5.3, respectively. Six Staphylococcus aureus and four Listeria monocytogenes
isolates were collected from the salami meat mixture during ripening and the processing environment.
A total of 126 isolates of Enterobacteriaceae were characterized at a species level, with Escherichia coli,
Klebsiella pneumoniae, Enterobacter cloacae, and Citrobacter freundii isolated from the final products.
Results suggest the relevance of first steps of production in terms of the hygiene of raw materials and
handling during stuffing procedures, especially when the physicochemical parameters of the final
products do not reach values that represent hurdles for foodborne pathogens.

Keywords: pH; water activity; microbial quality; food safety; Staphylococcus aureus; Listeria monocytogenes;
Klebsiella pneumoniae

1. Introduction

An increased demand for artisanal foods has been observed in the last decades. These
products are generally elaborated locally in small-scale, family-based companies perceived
as producing healthier and more ethical food [1,2]. Due to the large variety of local, small-
scale productions, microbial data on each specific product are scarce. Moreover, in small-
scale food productions, the reduced automation results in variability in physicochemical
and microbiological parameters of the final product [3,4].

Italian salami falls within the category of dry fermented sausages with a ripening
period longer than 4 weeks and a water activity lower than 0.90 [5]. In Italy, a wide variety
of artisanal salami recipes exist with ripening times from 3 to 6 months [6,7]. In traditional
salami, the addition of salt and nitrates inhibits Gram-negative spoilage bacteria and
enhances coagulase-negative staphylococci (CNS) during fermentation and ripening [7].
CNS use oxygen contributing to a reduction in the redox potential, which in turn inhibits
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aerobic bacteria in favor of lactic acid bacteria (LAB). Acidification due to LAB growth
and the decrease in water activity during natural ripening represent the hurdles reducing
the risk of bacterial pathogen growth in fermented sausages [8]. However, the size of
these technological hurdles might vary in different productions. In particular, in organic
productions, the absence of starter cultures and of nitrates might potentially impact the
effective acidification of the food matrix and reduction in Gram-negative and Gram-positive
bacterial pathogens.

Shiga toxin-producing Escherichia coli (STEC) as well as Listeria monocytogenes, Salmonella
spp., and Staphylococcus aureus were isolated from fermented productions [8–10]. L. monocy-
togenes was detected in a French plant producing dry sausages, its equipment, and in 10% of
the final products [11]. Higher occurrences of 13–15%, 16%, 42%, and 60% were registered
in Italy, Spain, Greece, and Portugal, respectively [2,12–15]. Salmonella was detected in
Italy in three dry fermenting processing plants with a prevalence of 16.7% in food and
5.8% in the environment [10]. Additionally, S. aureus was detected in raw meat, casing,
semifinished, and finished fermented sausages produced in both a nitrite and a nitrite-free
production in Spain [9]. Although unusual, outbreaks associated with the consumption of
contaminated fermented sausages have been described. E. coli O157:H7, O103:H25, and
O26:H11 have been identified as etiologic agents in outbreaks involving fermented pork
and beef meat salami as vehicles in United States in 1994, in Sweden in 2002, in Italy in
2004, in Norway in 2008, and in Denmark in 2018 [16–20]. Similarly, fermented sausages
contaminated by Salmonella spp. were associated with outbreaks in Germany in 2001, Spain
in 2011, and more recently in the United States in 2022, linked to salami sticks [21–23].

The aim of the present study was to evaluate the variability in physicochemical
parameters and its impact on the microbiological quality and occurrence of foodborne
pathogens in an Italian artisanal factory producing an organic pig-meat salami over a year
of sampling. Based on results, potential routes of contamination are suggested.

2. Materials and Methods
2.1. Experimental Design

One artisanal Italian factory was sampled over 10 months (July 2020–May 2021). The
factory produces an organic salami made of pig meat with no addition of nitrites/nitrates
or starter cultures and with a ripening period of 6 months. Regarding processing, after the
stuffing of a mixture of meat, spices, and salt into natural casing, salami were dried at 10 ◦C
and RH 55–60% for 7–9 days and then stored in controlled environment for 5 weeks at 10 ◦C
and RH 70% for maturation. Afterwards, salami were stored in a cellar up to 6 months
(Figure 1). Raw materials were sampled, along with intermediate and final products, as
well as the processing environment. A total of 420 samples were analyzed, namely, meat
mixture (n = 30), salami from the drying room (n = 30), salami in the maturation room
(n = 30), and salami after 10 (n = 30), 18 (n = 30), and 28 (n = 30) weeks of ripening in the
storage room. Swabs from the surface of a table in the stuffing room (n = 30) as well as
the walls (n = 90) and drains (n = 90) were also collected from the stuffing, drying, and
maturation rooms. In addition, swabs from the stuffing machine (n = 30) were gathered. For
environmental samples, sterile cotton swabs (Copan Italia, Brescia, Italy) were moistened
in 10 mL of saline solution (0.9% NaCl) and then used to swab a 100 cm2 area. These
samples were collected before disinfection and cleaning. Five sample units per matrix
(food and environment) per batch were tested. Overall, six batches were analyzed: batch 1
(stuffing on the 1 July 2020), batch 2 (23 September 2020), batch 3 (7 October 2020), batch 4
(21 October 2020), batch 5 (4 November 2020), and batch 6 (18 November 2020).



Foods 2023, 12, 4086 3 of 13Foods 2023, 12, x FOR PEER REVIEW  3  of  14 
 

 

 

Figure 1. Production flowchart of the Italian organic salami. Sampling spots in the processing envi-

ronment are indicated in round circles. 

2.2. Microbiological and Physicochemical Analyses 

Total bacterial count (TBC) (ISO 4833-2), water activity (ISO 21807), pH (ISO 2917), 

and  the occurrence of L. monocytogenes  (ISO 11290-1), coagulase positive Staphylococci 

(ISO 6888-1), verotoxigenic E. coli (VTEC) (ISO 16649), and Salmonella (ISO 6579) were in-

vestigated in all 480 samples [24–30]. In particular for VTEC, after the isolation of E. coli 

on Tryptone Bile X-GLUC Agar (TBX, Thermo Scientific, Milan, Italy), a PCR for the iden-

tification of Shiga toxin-encoding genes was applied as previously described [31]. Addi-

tionally, lactic acid bacteria (LAB) (ISO 15214) and Enterobacteriaceae (ISO 21528-2) were 

enumerated in raw materials and semifinished and finished products [32,33]. Moreover, 

to characterize Enterobacteriaceae at a species level, 25 g of food sample was diluted in 225 

mL of Buffer Peptone Water (BPW, Thermo Scientific, Milan, Italy) and incubated for 24 h 

at 37 °C. BPW pre-enriched cultures were then streaked on MacConkey agar (Thermo Sci-

entific) and incubated for 24 h at 37 °C. Five colonies per plate (both lactose fermenting 

and non-lactose fermenting) were submitted to biochemical test (RapID ONE System and 

RapID STAPH PLUS System, Thermo Scientific) and PCR for confirmation [31,34–36]. One 

confirmed isolate per species per sample was retained.   

2.3. Data Analysis and Modelling 

Data analysis and modeling were carried out using R Studio v4.2.2. Statistical com-

parisons were made between microbial counts from various food batches and environ-

mental samples through ANOVA (with a significance level of p ≤ 0.05). To identify homo-

geneous  groups, we  applied  Tukey’s HSD  test. Additionally, we  created  boxplots  to 

Figure 1. Production flowchart of the Italian organic salami. Sampling spots in the processing
environment are indicated in round circles.

2.2. Microbiological and Physicochemical Analyses

Total bacterial count (TBC) (ISO 4833-2), water activity (ISO 21807), pH (ISO 2917),
and the occurrence of L. monocytogenes (ISO 11290-1), coagulase positive Staphylococci
(ISO 6888-1), verotoxigenic E. coli (VTEC) (ISO 16649), and Salmonella (ISO 6579) were
investigated in all 480 samples [24–30]. In particular for VTEC, after the isolation of
E. coli on Tryptone Bile X-GLUC Agar (TBX, Thermo Scientific, Milan, Italy), a PCR for
the identification of Shiga toxin-encoding genes was applied as previously described [31].
Additionally, lactic acid bacteria (LAB) (ISO 15214) and Enterobacteriaceae (ISO 21528-2) were
enumerated in raw materials and semifinished and finished products [32,33]. Moreover,
to characterize Enterobacteriaceae at a species level, 25 g of food sample was diluted in
225 mL of Buffer Peptone Water (BPW, Thermo Scientific, Milan, Italy) and incubated for
24 h at 37 ◦C. BPW pre-enriched cultures were then streaked on MacConkey agar (Thermo
Scientific) and incubated for 24 h at 37 ◦C. Five colonies per plate (both lactose fermenting
and non-lactose fermenting) were submitted to biochemical test (RapID ONE System and
RapID STAPH PLUS System, Thermo Scientific) and PCR for confirmation [31,34–36]. One
confirmed isolate per species per sample was retained.

2.3. Data Analysis and Modelling

Data analysis and modeling were carried out using R Studio v4.2.2. Statistical compar-
isons were made between microbial counts from various food batches and environmental
samples through ANOVA (with a significance level of p ≤ 0.05). To identify homogeneous
groups, we applied Tukey’s HSD test. Additionally, we created boxplots to visually repre-
sent the variation in microbial counts within and between batches of salami samples stored
at different temperatures throughout their shelf life.
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Longitudinal data sets, encompassing TBC and Enterobacteriaceae counts, collected
from various sources such as environmental surfaces, food contact surfaces, meat mixture,
and the finished salami within the drying room were analyzed using generalized linear
mixed models (GLMMs). These models were adjusted using the R packages lme4 [37]
and nlme to account for inter-batch variability, treating it as a random effect. Main effects
considered the influence of the variables “Stage” (mixing, stuffing, drying, and ripening)
according to the form:

Yis(b) = (β0 + ub) + Stages + εis(b), (1)

where Yis(b) represents the count (in log cfu/g) of a specific microbial group (TBC and
Enterobacteriaceae), determined within the processing stage denoted as s, belonging to the
batch labeled as b; β0 is the model inter-cept which can undergo random shifts denoted
as ub, associ-ated with the specific batch b; Stages represents a particular processing stage
s; and εis(b) rep-resents the error associated with the microbial count i determined within
the processing stage s, belonging to batch b. Sam-ples, including environmental and
drain swabs, meat mixture, and finished salami collected from each processing stage, were
integrated into another main effects model as follows:

Yis(b) = (β0 + ub) + Stages(Environmenti) + εis(b), (2)

where Stages(Envionmenti) represents a sample denoted as i, which was obtained from
the processing stage s within a specific batch b. The variability between batches within a
fac-tory was quantified by assessing the squared standard deviation of the random effects,
while it was assumed that errors also conformed to a normal distribu-tion.

3. Results
3.1. Enumeration of Total Bacterial Count, Lactic Acid Bacteria, and Enterobacteriaceae

Regarding environmental swabs collected at the processing plant, manhole samples
presented the highest loads of TBC compared to the other tested environmental sites (Figure 2).
More specifically, manhole samples in the drying and ripening rooms (SWD and SWR) showed
the highest TBC, with a mean value of 7.08 ± 0.29 log cfu/cm2 and 7.05 ± 0.61 log cfu/cm2,
respectively. No statistically significant differences (p > 0.05) were observed for TBC between
batches, also supported by the high intra-batch variability. Interestingly, the surface swab
of the table in the stuffing room (STM) showed TBC 4.29 ± 0.40 log cfu/cm2 higher than
those found in the other swabs of the same room, notably the stuffing machine swab (SM,
2.77 ± 0.99 log cfu/cm2) and the wall swab (SEM, 3.24 ± 1.32 log cfu/cm2) (Figure 2).
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Figure 2. Total bacterial count (TBC) (log cfu/cm2) on environmental samples collected at the
processing plant. SWD: manhole swab—drying room; SWR: manhole swab—ripening room; SWM:
manhole swab—stuffing room; SER: wall swab—ripening room; STM: surface swab—stuffing room;
SED: wall swab—drying room; SEM: wall swab—stuffing room; SM: minced-meat machine swab—
stuffing room (mean ± standard deviation of 6 batches).
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Regarding the meat mixture used to produce salami, high intra- and inter-batch
variability for the different groups evaluated was observed, especially for Enterobacteriaceae
(Figure 3). Higher Enterobacteriaceae counts were detected in meat mixture samples of batch
2 compared to the other batches, except for batch 1 (p ≤ 0.05). In addition, significantly
higher LAB counts were registered in samples of batch 2. Higher TBC counts in the meat
mixture samples of batch 5 were observed compared to the other batches, except for batch
2 (p ≤ 0.05).
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Figure 3. Enterobacteriaceae, lactic acid bacteria (LAB), and total bacteria counts (TBC) of meat mixture
samples (n = 5) belonging to six different batches.

Regarding salami samples, slight increases in TBC and LAB counts were associated
with a decrease in Enterobacteriaceae load in all batches (Figure 4). Interestingly, the increase
in TBC and LAB reached maximum levels in salami at 3 or 10 weeks of ripening (depending
on the batch), after which a decrease was observed up to 28 weeks of ripening. The increase
in TBC in batch 1, for example, started at 8.58 log cfu/g in minced meat mixture and
reached 9.75 log cfu/g in salami after 10 weeks of ripening, and slightly decreased to
8.77 log cfu/g in the final product (28 weeks of ripening). Similarly, in batch 1, LAB loads
increased from 8.53 to 9.34 log cfu/g (10 weeks of ripening) and reached 8.10 log cfu/g in
the final product. Regarding Enterobacteriaceae, loads showed a decreasing trend all across
the ripening process, starting from 4.56 and reaching 1.09 log cfu/g in the final product in
batch 1 (Figure 4). No statistically significant differences were observed between batches
in TBC and LAB loads in salami after 28 weeks of ripening (p > 0.05). In the final product
of all batches, the load of Enterobacteriaceae was lower or close to the detection limit of
1 log cfu/g, suggesting that the ripening process was effective in reducing the risk for
human health related to the potential occurrence of foodborne pathogens included in this
bacterial family.

3.2. Physicochemical Parameters (pH and aw)

As expected, the pH decreased along with the increase in LAB up to 3–10 weeks of
ripening, after which it increased along with a reduction in LAB (Figures 4 and 5). Initial
pH in the salami in the drying room ranged from 5.28 (batch 1) to 5.58 (batch 5). During
ripening, the pH decreased up to 5.3 in all batches except batch 5. However, after 10 weeks
of ripening, the pH increased in all batches, reaching values ranging from 5.87 (batch 4) to
6.25 (batch 3) in the final product (Figure 5).
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Regarding water activity, a constant decrease was observed from values ranging from
0.953 (batch 6) to 0.982 (batch 3) in the salami in the drying room to values ranging from
0.842 (batch 3) to 0.884 (batch 5) in salami after 28 weeks of ripening (Figure 5).

3.3. Generalized Linear Mixed Models

Generalized linear mixed models were created to explore whether variations in the
production stage and the environment could account for some of the differences observed
between batches in TBC and Enterobacteriaceae counts throughout the salami production
process. The outcomes of this investigation are presented in Tables 1 and 2.

Table 1. Estimations of model parameters in linear mixed models with random effects, investigating
the influence of “Stage” and “Sample” variables on total bacteria counts (TBC) in Italian salami,
alongside assessments of between-batch variability.

Model Parameters Estimate (SE) t-Value Pr > |t|

Main effects: Stage 1

Random effects (σ)

Batch in factory 0.504 - -
Residual 1.827 - -

Fixed effects

Intercept 3.153 (0.313) 10.085 <0.001
Drying 2.941 (0.304) 9.674 <0.001
Stuffing 0.845 (0.304) 2.780 0.005
Ripening 4.327 (0.272) 15.916 <0.001

Main effects: Sample 2

Random effects (σ)

Batch in factory 0.503 - -
Residual 1.390 - -

Fixed effects

Intercept 7.256 (0.335) 21.615 <0.001
Sample: MB −3.783 (0.367) −10.318 <0.001
Sample: SBR_28 1.148 (0.367) 3.130 0.002
Sample: SBR_18 1.117 (0.367) 3.047 0.002
Sample: SBR_10 0.092 (0.367) 0.251 0.801
Sample: SBR_3 0.992 (0.367) 2.705 0.007
Sample: SEM −4.421 (0.367) −12.058 <0.001
Sample: SED −3.311 (0.367) −9.031 <0.001
Sample: SER −1.796 (0.367) −4.899 <0.001
Sample: SM −4.574 (0.367) −12.473 <0.001
Sample: STM −3.681 (0.367) −10.039 <0.001
Sample: SWD −0.173 (0.367) −0.472 0.637
Sample: SWM −1.517 (0.367) −4.136 <0.001
Sample: SWR −0.202 (0.367) −0.550 0.583

1 TBC in mixing stage was set as reference category. 2 TBC in salami samples of drying room was set as reference
category. MB: meat mixture; SEM: wall swab (stuffing room); SED: wall swab (drying room); SER: wall swab
(ripening room); SM: minced-meat machine swab (stuffing room); STM: surface swab (stuffing room); SWD: water
drainage swab (drying room); SWM: water drainage swab (stuffing room); SWR: water drainage swab (ripening
room); SBR: ripened salami (3, 10, 18, and 28 weeks).

Results from GLMMs indicated that the TBC in the drying, stuffing, and ripening
phases were significantly higher than the TBC found in the meat mixture (p ≤ 0.05).
Specifically, the ripening step produced the largest increase (4.33 ± 0.27 log cfu/g), which
can be partially attributed to the increase in LAB populations. During ripening, a positive
effect was predicted for TBC counts in 18- and 28-week ripened salami (Table 1). Regarding
Enterobacteriaceae counts, there was a significant negative effect after mixing, indicating the
decrease in microbial counts during the drying, stuffing, and ripening phases. A significant
decrease in Enterobacteriaceae populations was predicted during salami ripening (Table 2).
Significant negative effects were found between most of the analyzed surfaces and TBC
and Enterobacteriaceae counts in the salami samples in the drying room, thus indicating
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an increase in microbial populations in the finished salami samples. Nevertheless, TBC
counts from the water drainages (ripening and drying rooms) were similar to the TBC
levels in the salami samples in the drying room (p > 0.05, Table 1). Regarding the inter-batch
variability, random effects indicate a higher inter-batch variability for TBC in comparison
to Enterobacteriaceae.

Table 2. Estimations of model parameters in linear mixed models with random effects, evaluating
the impact of “Stage” and “Sample” variables on Enterobacteriaceae in Italian salami, and including
assessments of between-batch variability.

Model Parameters Estimate (SE) t-Value Pr > |t|

Main effects: Stage 1

Random effects (σ)

Batch in factory 0.193 - -
Residual 1.654 - -

Fixed effects

Intercept 1.952 (0.228) 8.576 <0.001
Drying −0.588 (0.275) −2.132 0.034
Stuffing −1.337 (0.275) −4.849 <0.001
Ripening −0.658 (0.246) −2.670 0.008

Main effects: Sample 2

Random effects (σ)

Batch in factory 0.503 - -
Residual 1.390 - -

Fixed effects

Intercept 4.095 (0.171) 24.010 <0.001
Sample: MB −0.190 (0.188) −1.011 0.313
Sample: SBR_28 −3.096 (0.188) −16.506 <0.001
Sample: SBR_18 −3.045 (0.188) −16.233 <0.001
Sample: SBR_10 −1.926 (0.188) −10.267 <0.001
Sample: SBR_3 −0.547 (0.188) −2.909 0.004
Sample: SEM −4.095 (0.188) −21.830 <0.001
Sample: SED −4.095 (0.188) −21.830 <0.001
Sample: SER −4.095 (0.188) −21.830 <0.001
Sample: SM −4.095 (0.188) −21.830 <0.001
Sample: STM −2.247 (0.188) −11.978 <0.001
Sample: SWD −4.095 (0.188) −21.830 <0.001
Sample: SWM −4.095 (0.188) −21.830 <0.001
Sample: SWR −4.095 (0.188) −21.830 <0.001

1 Enterobacteriaceae in mixing stage was set as reference category. 2 Enterobacteriaceae in salami samples in the
drying room was set as reference category. MB: meat mixture; SEM: wall swab (stuffing room); SED: wall swab
(drying room); SER: wall swab (ripening room); SM: minced-meat machine swab (stuffing room); STM: surface
swab (stuffing room); SWD: water drainage swab (drying room); SWM: water drainage swab (stuffing room);
SWR: water drainage swab (ripening room); SBR: ripened salami (3, 10, 18, and 28 weeks).

3.4. Occurrence of Bacterial Pathogens

Regarding bacterial pathogens, none of the 480 samples collected were positive for
VTEC or Salmonella spp. Four isolates were positive for L. monocytogenes and six for S. aureus,
eight for S. warneri, one for S. capitis, and one for S. xilosus. Regarding Enterobacteriaceae,
the following species were identified: Klebsiella oxytoca and K. pneumoniae (33), E. coli (30),
Citrobacter freundii (26), Enterobacter cloacae (16), and Routella planticola (1) (Table S1).

Bacteria were collected from mixed meat and salami during and at the end of the
ripening period, and environmental swabs were gathered during production. In particular,
pathogens were mostly found in the meat mixture (22), the surface of the table in the
stuffing room (15), and in the salami in the drying room (25) and after 3 weeks of ripening
(19) (Table S2). Following ripening, the number of pathogens decreased from 25 in salami
in the drying room to 5 and 12 in salami at 18 and 28 weeks of ripening, respectively
(Table S2). One Enterobacter cloacae strain, six E. coli, two Citrobacter freundii, and two K. pneu-
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moniae were found in the finished product, suggesting that although the ripening process
was effective in reducing the risk associated with the presence of bacterial pathogens, it was
not enough to guarantee the lack of bacterial pathogens in the final food product. Although
the water activity in the final product was lower than 0.90, data on the increased pH suggest
the need to better control this parameter, for example, by considering the possibility of
shortening the ripening period from 28 to 18 weeks.

4. Discussion

In the present study, the effect of pH and water activity on the number of bacterial
indicators of the process’s hygiene and the occurrence of foodborne pathogens was assessed
in an artisanal Italian production of organic salami.

pH is an essential parameter in fermented meat products. The acid hurdle is crucial
for the control of the safety of the product [38,39]. pH values below 5.3 are essential to
inhibit the growth of Gram-positive bacteria such as S. aureus. The pH of the majority
of Mediterranean-style fermented sausages is approximately 4.5/5.4, which has several
beneficial effects on both the shelf life and the manufacturing process [39,40]. However, the
final pH can rise up to 6.0/6.7 in some low-acid fermented sausages (e.g., Soudjouk, Fuet).

In the present study, the pH decreased below 5.3 after 10 weeks of ripening, after
which an increase to values higher than 6 in the final products was achieved. These results
might be associated with the lack of standardized starter cultures and the different growth
rates of autochthonous LAB groups in each batch. In salami prepared with starter cultures
of dairy origin, pH 5.3 was reached after 3 weeks of ripening [41]. Neutral values of pH in
the final product might reduce the acid hurdles and thus enhance the growth of bacteria. In
the present study, although the number of Enterobacteriaceae was lower than the detection
limit in most final products, bacterial pathogens were detected.

Water activity values lower than 0.90 and 0.86 are essential to control the growth of
Gram-positive and Gram-negative bacterial pathogens, respectively [5,42]. In the final
product of the present study, all batches showed a water activity value lower than 0.90, but
only one (batch 3) fell under the 0.86 limit (batch 3, 0.842), suggesting a potential hurdle
for S. aureus control. Although not found in the final product, S. aureus was found in raw
materials, salami in the drying room, and salami after 3 weeks of ripening. This finding
suggests the relevance of a high microbiological quality of raw materials, especially when
pH and water activity hurdles cannot be fully maintained.

Besides bacterial pathogens being found in the final product, the detection of pathogens
in the processing environment is of concern since potential events of cross-contamination
might occur involving both workers and the food product before commercialization.

The ability of L. monocytogenes to survive on several environmental stress conditions
boost the likelihood of detecting this foodborne pathogen in contaminated ready-to-eat
products of meat, fish, and dairy-origin products [43,44]. Recently, several L. monocyto-
genes outbreaks were associated with ready-to-eat meat product contamination from Italy
and worldwide [45–47], among which a recent US outbreak involved Italian-type salami,
mortadella, and prosciutto [48]. Despite L. monocytogenes not being detected in the final
products, it was found in the processing environment of batch 2 (manhole of the drying
room). Therefore, a more intensive control of the contamination routes in the salami pro-
cessing plant might be necessary. Likewise, S. aureus is able to tolerate a wide range of
environmental conditions, including pH ranges from 4.5 to 9.0 and NaCl concentrations
up to 9%. Many strains have been recently recovered from dry-cured meat processing
facilities and related products [49,50]. The finding of six S. aureus strains from all batches
but the first one, as well as from different sources (including meat mixture, processing sur-
faces, and in salami of the drying and ripening rooms), suggests that different strains have
been introduced in the food processing chain through raw materials, hygiene failures, or
food handlers.

Enterobacteriaceae represented the predominant family recovered across the salami
facility, resulting in 6 species and 106 strains confirmed overall (84% prevalence). Among
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Enterobacteriaceae, E. coli corresponded to the dominant species, exhibiting a remarkable
predominance in the meat mixture and associated environment up to the drying and ripen-
ing of the product. Moreover, it represented the bacterial species isolated in the highest
proportion from the final product (n = 6 strains). Additionally, K. oxytoca and K. pneumoniae
as well as C. freundii and E. cloacae were recovered from five to six batches; these were
associated with the environment and food matrices of the meat mixture and the drying
room, then persisting in the salami throughout the ripening up to the final products, where
few strains were detected. Though strains belonging to enterohaemorrhagic E. coli (EHEC)
have been attributed to foodborne outbreaks associated with fermented sausage consump-
tion [51], the persistence of commensal Escherichia spp. strains has been already pointed
out in spontaneously fermented sausages of the Mediterranean area [52]. Correspondingly,
Klebsiella spp. were detected from minced pork meat during fermentation and raw pork
sausages before ripening in Belgium and Spain [53,54], as well as E. cloacae and Citrobacter
spp. during the ripening of traditional fermented sausages [53,55]. Considering that these
bacteria have already been involved in nosocomial infections [56–58], further investigations
should be addressed to verify their potential role as contributors to food-related infections.

Whether introduced from raw materials or environmental contamination due to poor
hygienic conditions, enhanced hurdle technologies, disinfection measures, and training
should be properly adopted to control the growth of potentially pathogenic or undesirable
bacteria along the whole food chain. In the present study, the meat mixture and the
surface of the table in the stuffing room were spotted as principal potential sources of
contamination. The meat mixture might have been contaminated at the first steps of the
production during the cutting and addition of spices, or before that, during the primary
production. Unfortunately, no samples from pig carcasses were collected; therefore, no
speculations can be formulated about carcass hygiene. However, since the same person
owns both the primary production of the organic pig and the food production of organic
salami, cross-contamination cannot be ruled out.

The adoption of tailor-made biosecurity plans including the hygiene of farms and
workers has been described as an effective measure to reduce the risk of occurrence of
foodborne pathogens in pig farms and the dissemination of those bacteria to humans
through direct contact [59]. In addition, special attention should be paid to hygiene
procedures for surfaces in direct contact with food [60]. The sampling of surfaces in direct
contact with food should be prioritized, and results obtained from different batches should
be compared in order to identify deviations and take corrective actions [60]. Besides
the implementation of hygiene procedures, food safety training has been described as
particularly effective in small-scale facilities. In particular, food safety training programs,
which incorporate both knowledge and behavior-based training, were described as the
most effective in commercial food services [61].

5. Conclusions

High inter-batch variability was detected in the physicochemical and microbiological
parameters of organic salami produced in an artisanal factory, confirming process standard-
ization to be a challenge in small-scale, not fully automized, production facilities. Higher
TBC in the meat mixture and on the surface of the table in the stuffing room were associated
with a higher occurrence of bacterial pathogens, suggesting TBC to be a good predictor of
the microbial quality of the final product. This predictor might be of particular relevance,
especially when the protocol of production cannot guarantee the acid and desiccation hur-
dles essential for biohazard control. In these conditions, enhanced hygiene measures and
training could be effective control measures against the growth of potentially pathogenic
or undesirable bacteria along the whole food chain.
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