
3.13.8

A New Proposal for the
Interpretation of the Diagonal
Compression Test on Masonry
Wallettes: The Identification of
Young’s Modulus, Poisson’s Ratio,
and Modulus of Rigidity

Elena Ferretti

Special Issue
Editorial Board Members’ Collection Series: Building Structures Ⅲ

Edited by

Prof. Dr. Michele Barbato, Dr. Giovanni Minafo and Dr. Elena Ferretti

Article

https://doi.org/10.3390/buildings14010104

https://www.mdpi.com/journal/buildings
https://www.scopus.com/sourceid/26980
https://www.mdpi.com/journal/buildings/stats
https://www.mdpi.com/journal/buildings/special_issues/272W6BH1G1
https://www.mdpi.com
https://doi.org/10.3390/buildings14010104


Citation: Ferretti, E. A New Proposal

for the Interpretation of the Diagonal

Compression Test on Masonry

Wallettes: The Identification of

Young’s Modulus, Poisson’s Ratio,

and Modulus of Rigidity. Buildings

2024, 14, 104. https://doi.org/

10.3390/buildings14010104

Academic Editor: Chenggao Li

Received: 16 December 2023

Revised: 23 December 2023

Accepted: 26 December 2023

Published: 31 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A New Proposal for the Interpretation of the Diagonal
Compression Test on Masonry Wallettes: The Identification of
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Abstract: This paper is the continuation of a previous study, which highlighted some inconsisten-

cies in the RILEM guidelines for the interpretation of the diagonal compression test. Although

improved compared to the ASTM guidelines, in fact, the RILEM guidelines underestimate the state

of hydrostatic stress induced by the diagonal compression test at the center of the wallette. The

new interpretation of the diagonal compression test proposed in this article shows that the RILEM

guidelines actually underestimate both the hydrostatic and the deviatoric stress states at the center

of the wallette. The new formulation complies with the linear elastic theory and allows us to use

the diagonal compression test to identify the three elastic coefficients of masonry. In particular, it

allows the identification of the Poisson ratio, which instead takes on a conventional value in the

RILEM and ASTM guidelines. The difference of one order of magnitude between the conventional

and proposed Poisson’s ratio is in agreement with the experimental results on another brittle material,

namely concrete. Finally, the new proposal fills the gap between the results provided by the two tests

usually performed to identify the shear behavior of masonry: the diagonal compression test and the

shear-compression test.

Keywords: masonry walls; diagonal compression test; shear-compression test; ASTM guidelines;

RILEM guidelines; elastic moduli; Poisson’s ratio

1. Introduction

The diagonal compression test on masonry wallettes (Figure 1) has always been
a source of conflicting interpretations [1–8]. In fact, although it is a common idea that the
crisis begins from the center of gravity of the masonry wallette (point A in Figure 1), there
is no agreement on what the stress state is in the infinitesimal neighborhood of A.
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Figure 1. Stresses acting in the infinitesimal neighborhood of the center of gravity, A, of the ma-

sonry wallette.
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With reference to the symbols in Figure 1 (for a complete explanation of the symbols,
see Table S1), the American Standard [9] assumes a uniform distribution of shear stresses
inside the masonry wallette, with the center of gravity in a state of pure shear stress:

σx = σy = 0, (1)

τxy =
|P|cos(ϑ)

An
, (2)

where An is the net transversal area of the masonry wallette of width w, height h, and
thickness t:

An =
w + h

2
tn, (3)

n being the percent of the gross area of the brick that is solid—for solid bricks and ungrouted
hollow bricks—expressed as a decimal.

In the Mohr plane, the assumption σx = σy = 0 results in a Mohr circle centered at
the origin [10].

Following the results of linear elastic theory and some photoelastic experiments on
square plates made of an elastic isotropic material—provided by Frocht in 1931 [11]—the
RILEM guidelines [12] instead decompose the stress state at A into the sum of a pure
shear stress state and a hydrostatic stress state. The stress values at point A for the RILEM
guidelines are:

σx
∼= −0.56

|P|
An

, (4)

σy
∼= −0.56

|P|
An

, (5)

τxy = τyx
∼= 1.06

|P|
An

, (6)

with An expressed by Equation (3).
Due to the presence of a hydrostatic stress state at point A (σx = σy ̸= 0), the center of

the Mohr circle in the RILEM interpretation of the diagonal compression test is not on the
origin of the Mohr plane.

The analysis of the experimental results in Reference [10] showed that the RILEM pro-
posal is actually an improvement of the ASTM standard. However, some inconsistencies in
the identification of the Young modulus, E, the diagonal compressive strength, fdc, and the
diagonal tensile strength, fdt, led us to conclude that the RILEM approach underestimates
the hydrostatic stress state at point A [10]. In other words, the center of the Mohr circle
does not actually lie on the origin of the Mohr plane, but its translation with respect to the
origin is larger than it is for the RILEM standard.

This article presents a new proposal for the interpretation of the diagonal compression
test (Section 3), in order to overcome the inconsistencies highlighted in the RILEM stan-
dard. The comparison with the experimental results for unreinforced masonry (URM) in
Reference [10] shows that the new formulation actually provides more consistent values of
E, fdc, and fdt (Section 5).

2. Problem Setting

To allow a synthetic representation of the coordinates of the stress points in the Mohr
plane, in the remainder of this article the axes σn and τn, of common origin at the point B in
the Mohr plane, will undergo a normalization with respect to the ratio |P|/An (Figure 2):
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Figure 2. Stress state at point A in the modified Mohr plane (with normalized axes), according to the

RILEM interpretation of the diagonal compression test.

σ̂n =
σn

|P|
An

= σn
An

|P| , (7)

τ̂n =
τn

|P|
An

= τn
An

|P| , (8)

with An expressed by Equation (3).
The stress components in the modified Mohr plane are therefore:

σ̂i = σi
An

|P| , (9)

τ̂ij = τij
An

|P| , i ̸= j. (10)

Figure 2 shows the RILEM Mohr circle in the modified Mohr plane, where:

σ̂I,I I =
σ̂x + σ̂y

2
±
√

(

σ̂x − σ̂y

2

)2

+ τ̂2
xy, (11)

are the first and second normalized principal normal stresses (the two normalized principal
stresses):

σ̂I
∼= 0.5, (12)

σ̂I I
∼= −1.62. (13)

According to the maximum-principal-stress criterion [13,14], the diagonal tensile
strength is the maximum value attained at point A by the maximum principal stress, σI

(the tensile stress) [15–19]:

fdt = σImax = σ̂Imax

|P|
An

, (14)

and the diagonal compressive strength is the maximum value attained at point A by the
minimum principal stress, σI I (the compressive stress), in absolute value:

fdc = |σI I |max = |σ̂I I |max

|P|
An

. (15)



Buildings 2024, 14, 104 4 of 29

It is worth noting that it is possible to establish equalities between stresses at the
ultimate state ( fdt and fdc) and stresses calculated in the assumption of material in the linear
elastic state (σImax and |σI I |max) because the stress redistribution that occurs in nonlinear
range does not affect the values of the maximum principal stresses computed with the
linear elastic solution [7].

Due to the value assumed by the ratio σ̂I/|σ̂I I | in the RILEM interpretation of the
diagonal compression test, with σ̂I and σ̂I I expressed by Equations (12) and (13):

σ̂I

|σ̂I I |
∼= 0.31, (16)

the ratio fdt/ fdc also takes on the value 0.31 in the RILEM approach:

fdt

fdc

∼= 0.31. (17)

Equation (17) does not conform to experimental evidence, which provides a ratio
between tensile strength, ft, and compressive strength, fc, usually lower than 0.1 [20]. In
fact, although the diagonal compression test induces a biaxial stress state at point A while
the tensile and compression characterization tests are uniaxial tests, it is reasonable to
expect an fdt/ fdc ratio not very different from the ft/ fc ratio.

Furthermore, the RILEM approach leads to identifying elastic moduli in tension, Et,
different from the elastic moduli in compression, Ec, which is not physically acceptable [10].
The inconsistencies on the values of fdt/ fdc and Et/Ec indicate that Equations (4)–(6) need
appropriate redefinition.

3. Problem Solving in Parametric Form

3.1. Stress State at Point A

Since the analysis carried out in the modified Mohr plane revealed inconsistencies
in the RILEM proposal (Section 2), we will address the problem precisely in the mod-
ified Mohr plane, where the stress points Q′

x and Q′
y have coordinates

(

σ̂x,−τ̂xy

)

and
(

σ̂y, τ̂yx

)

=
(

σ̂y, τ̂xy

)

, respectively (for sign conventions, see Reference [10]). The solution
will proceed in parametric form, making use of the Pole Method [10].

For the stress state and reference frame of Figure 1, also drawn in Figure 3a for
convenience, the Pole Method leads to identifying the Mohr pole, Q∗, at the coordinate
point (σ̂I , 0) of Figure 3b. This is a direct consequence of the Mohr pole property for the
stress state, which constitutes the statement of Theorem 1.

 

 
(a) (b) 𝐴𝐵

𝜑𝜑
𝑧𝑥 𝑦⁄
𝜑𝜑

ffi𝜎 = 𝜎 𝜏 =𝜏 tt 𝑄 ≡ 𝜎 ,−�̂�𝜎 = 𝜎 𝜏 = 𝜏 tt 𝑄 ≡𝜎 , �̂� 𝑟
𝜎 = 𝑟 − 𝑟cos(𝛼) = 𝑟 1 − cos(𝛼) ,

𝜎 = − 𝑟 + 𝑟cos(𝛼) = −𝑟 1 + cos(𝛼) .𝛼 𝑟 �̂�

Figure 3. Stress state for the infinitesimal neighborhood of point A in: (a) the reference frame of

Figure 1; (b) the modified Mohr plane of origin B, according to the RILEM interpretation of the

diagonal compression test.
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Theorem 1. The Mohr pole is the only point of the Mohr circle such that the point of intersection
of the Mohr circle with a straight line drawn from the Mohr pole with any inclination angle, ϕ, with
respect to the horizontal provides the stress state on the plane inclined at the angle ϕ with respect to
the horizontal plane [21].

Remembering that the line of intersection of a plane with another plane is the trace
of the first plane on the second plane, we can also define the Mohr pole according to the
statement of Theorem 2, where the trace is the intersection between a plane parallel to z
(the outgoing axis in Figure 3a) and the x/y plane.

Theorem 2. The Mohr pole is the only point of the Mohr circle such that the point of intersection
of the Mohr circle with a straight line drawn from the Mohr pole with any inclination angle, ϕ,
with respect to the horizontal provides the stress state on the plane whose trace forms an angle of
amplitude ϕ with respect to the horizontal direction.

Through the condition of parallelism between lines traced by the Mohr pole and traces
of the planes on which we want to know the stress components, Theorem 2 establishes
a one-to-one relationship between the Mohr pole and the other points of Mohr’s circle. This
allows us to find the Mohr pole when we know the coordinates of at least one point on the
Mohr circle. To find the Mohr pole, it is therefore sufficient to intersect the Mohr circle with
the straight line parallel to the trace of the plane on which the normal stress takes on the
value σn = σx and the shear stress takes on the value τn = τxy (Figure 3a), plotted from the
stress point Q′

x ≡
(

σ̂x,−τ̂xy

)

(Figure 3b). Alternatively, it is possible to intersect the Mohr
circle with the straight line parallel to the trace of the plane on which σn = σy and τn = τxy

(Figure 3a), plotted from the stress point Q′
y ≡

(

σ̂y, τ̂xy

)

(Figure 3b).
With reference to the symbols introduced in Figure 3b, it is then possible to find

a relationship between the two normalized principal stresses and the radius, r, of the
normalized Mohr circle:

σ̂I = r − rcos(α) = r(1 − cos(α)), (18)

σ̂I I = −(r + rcos(α)) = −r(1 + cos(α)). (19)

The angle α also relates r to τ̂0, the normalized pure shear stress:

τ̂0 = rsin(α). (20)

The parameter of the analytical solution proposed in this article is k, defined as the
ratio between fdc and fdt:

k =
fdc

fdt
, (21)

which also fixes the ratio (in absolute value) between the two normalized principal stresses:

k =
|σ̂I I |
σ̂I

, (22)

σ̂I =
1

k
|σ̂I I |. (23)

By substituting Equations (18) and (19) into Equation (23):

r(1 − cos(α)) =
1

k
r(1 + cos(α)), (24)

we can therefore express the angle α as a function of the parameter k:

α = arccos

(

k − 1

k + 1

)

. (25)
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Similarly, for the angle β in Figure 3b:

β = arctan

(

τ̂0

σ̂I

)

= arctan

(

sin(α)

1 − cos(α)

)

, (26)

where we used Equations (18) and (20) to express β as a function of α. Substituting
Equation (25) into Equation (26) then gives the expression of β as a function of k:

β = arctan

(

k + 1

2
sin

(

arccos

(

k − 1

k + 1

)))

. (27)

On the other hand, the relationships established by the angles β and γ in Figure 3b
between the pure shear stress and the principal stresses:

τ̂0 = σ̂Itan(β), (28)

τ̂0 = −σ̂I Itan(γ), (29)

allows us to equate the second terms in Equations (28) and (29):

−σ̂I Itan(γ) = σ̂Itan(β), (30)

which provides a new expression for the ratio |σ̂I I |/σ̂I :

|σ̂I I |
σ̂I

=
tan(β)

tan(γ)
. (31)

Moreover, noting that the triangle with vertices at the coordinate points (σ̂I , 0), (σ̂I I , 0),
and (0, τ̂0) is a right-angled triangle—because inscribed in a semicircle (Figure 3b)—γ turns
out to be the complementary angle of β:

γ =
π

2
− β. (32)

Therefore, by comparison between Equations (22) and (31), with γ expressed by
Equation (32):

k =
|σ̂I I |
σ̂I

=
tan(β)

tan
(

π
2 − β

) = (tan(β))2, (33)

which gives a more compact expression of β as a function of k:

β = arctan
(√

k
)

. (34)

Likewise for the angle γ:

k =
|σ̂I I |
σ̂I

=
tan
(

π
2 − γ

)

tan(γ)
=

1

(tan(γ))2
, (35)

gives a compact expression of γ as a function of k:

γ = arctan

(√
k

k

)

. (36)

Finally, noting that α is a central angle subtended by the same arc that subtends the
angle at the circumference γ, we obtain that:

α = 2γ = 2arctan

(√
k

k

)

, (37)
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because the angle subtended by an arc at the center of the circle is double the angle
subtended by the same arc at any other point on the circumference of the circle (the central
angle theorem).

By expressing the Mohr circle equation in parametric form (in the σ̂n/τ̂n plane) using
the ω anomaly:

σ̂n =
σ̂I + σ̂I I

2
+

σ̂I − σ̂I I

2
cos(2ω), (38)

τ̂n =
σ̂I − σ̂I I

2
sin(2ω), (39)

α is the value of the central angle to assign to the parameter 2ω to reach the coordinate
point (0, τ̂0) starting from the coordinate point (σ̂I , 0), which represents the stress state on
the (vertical) planes (in the neighborhood of A) with horizontal normal unit vector:

σ̂n(2ω = α) =
σ̂I + σ̂I I

2
+

σ̂I − σ̂I I

2
cos(α) = σ̂x + rcos(α) = 0, (40)

τ̂n(2ω = α) =
σ̂I − σ̂I I

2
sin(α) = rsin(α) = τ̂0, (41)

where α is a positive angle if it represents a counterclockwise rotation starting from the
coordinate point (σ̂I , 0). Due to the relationship between the angles α and γ (Equation (37)),
we can also write:

σ̂n(ω = γ) = 0, (42)

τ̂n(ω = γ) = τ̂0. (43)

The value ω = 0 is associated with the vertical trace (in the neighborhood of A), which
represents the reference trace in the parametric study of the stress state starting from the
principal stress values.

Having fixed the ratio between the coordinates of the diametrically opposite points

(σ̂I I , 0) and (σ̂I , 0), to find r and draw the Mohr circle it is sufficient to know the coordinates
of at least one point on the Mohr circle. Therefore, it is necessary to relate at least one point
of the Mohr circle to the applied load, P, in Figure 1.

By the statement of Theorem 2 (for further details see Reference [10]), a pure shear
stress, ±τ0, acts on the planes in the neighborhood of point A whose traces form angles of
amplitude β ≶ 0 with the horizontal direction in the x/y plane (Figure 4):

±𝜏 𝐴𝛽 ≶ 0 𝑥 𝑦⁄

 

𝜏 = |𝑃|𝐴 �̂� .
𝛽 < 0 +𝜏 −𝜏𝛽 > 0𝑥 𝑦⁄(0,−�̂� )+𝜏 𝜋 2⁄ − 𝛽𝛾 2𝜔 𝛾(0, �̂� )(𝜎 , 0)

Figure 4. Trace of the plane on which the pure shear stress is positive.
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τ0 =
|P|
An

τ̂0. (44)

For reasons of clarity of representation, Figure 3b shows only the straight line parallel
to the trace rotated clockwise (β < 0) with respect to the horizontal direction, which is the
same trace in Figure 4, with positive pure shear stress (+τ0). However, the property of
the Mohr pole identifies a second plane with pure shear stress (−τ0) on the Mohr circle,
rotated counterclockwise (β > 0) with respect to the horizontal direction. The trace of this
second plane in the x/y plane is parallel to the straight line joining the Mohr pole to the
coordinate point (0,−τ̂0), not shown in Figure 3b.

Since the reference trace is vertical, the rotation of the trace with positive pure shear
stress,+τ0, is the angle π/2 − β in Figure 4, formed with the vertical diagonal. Using
Equation (32), the rotation angle γ—counterclockwise, therefore positive—then identifies
the position of the trace with positive pure shear stress (Figure 5a). Since the anomaly of
the parametric Mohr circle equations (Equations (38) and (39)) is 2ω, γ is half the rotation
at the center of the Mohr circle needed to reach the coordinate point (0, τ̂0), starting from
the coordinate point (σ̂I , 0) (Figure 5b). Moreover, the two rotation angles in the reference
frame of Figure 5a and in the Mohr circle for the stress state (Figure 5b) have the same
direction of rotation.

 

 

(a) (b) +𝜏
𝑃 𝑃𝑃 𝑥 𝑦⁄ ±𝛽

𝜗 = 𝜋4 , 
𝑃 = |𝑃|cos 𝜋2 − 𝛽 .

tt 𝛽𝐴 = 𝐴cos 𝛽 − 𝜋4 .
±𝛽

𝜏 = 𝑃𝐴 = |𝑃|𝐴 sin(𝛽)cos 𝛽 − 𝜋4 , ±𝛽𝛽 �̂� = 𝐴|𝑃| 𝜏 = sin(𝛽)cos 𝛽 − 𝜋4 . �̂�𝑘 �̂� = sin arctan √𝑘 cos arctan √𝑘 − 𝜋4 .

Figure 5. Rotation angle of the trace with positive pure shear stress, +τ0, in: (a) the reference frame

of Figure 4; (b) the Mohr circle for the stress state.

The ASTM standard [9] decomposes P along the direction of the presumed pure shear
stress (the mortar bed joints) and its orthogonal direction (the mortar head joints). Similarly
to what the ASTM standard does, we will therefore indicate by Ps the component of P along
the traces (in the x/y plane) that form angles of amplitude ±β with the horizontal direction.

Since the standards specify that the specimens for the diagonal compression test must
have a square shape [9,12] (Figure 4):

ϑ =
π

4
, (45)

Ps = |P|cos
(π

2
− β

)

. (46)
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The area of the wallette intersected by a plane inclined at an angle β (Figure 4) is:

Ans =
An

cos
(

β − π
4

) . (47)

The pure shear stress (in absolute value) on the planes inclined at angles ±β is therefore:

τ0 =
Ps

Ans
=

|P|
An

sin(β)cos
(

β − π

4

)

, (48)

which provides the normalized pure shear stress on the planes inclined at angles ±β, as
a function of β:

τ̂0 =
An

|P|τ0 = sin(β)cos
(

β − π

4

)

. (49)

After substituting Equation (34) into Equation (49), the expression of τ̂0 as a function
of the parameter k is:

τ̂0 = sin
(

arctan
(√

k
))

cos
(

arctan
(√

k
)

− π

4

)

. (50)

Remembering the trigonometric relationships between sin(ϕ) and tan(ϕ) and between
cos(ϕ) and tan(ϕ) (derived from the defining relation for tan(ϕ) and the Pythagorean
formula for sines and cosines):

sin(ϕ) = ± tan(ϕ)
√

1 + tan2(ϕ)
, (51)

cos(ϕ) = ± 1
√

1 + tan2(ϕ)
, (52)

and using Ptolemy’s identity that gives the difference formula for cosine:

cos(ϕ − θ) = cos(ϕ)cos(θ) + sin(ϕ)sin(θ). (53)

we can rewrite Equation (50) in the form:

τ̂0 =

√
2

2

√
k
(

1 +
√

k
)

1 + k
, (54)

where we chose the positive sign for sin(β), with β = arctan
(√

k
)

, because β is a positive

scalar in Figure 4 (as in Figure 3b), not the value of an oriented angle. Moreover, since:

0 ≤ β ≤ π

2
, (55)

the sign of cos(β) is also positive.
Equation (54) allows a direct comparison between the value that τ̂0 takes in the new

proposal and τ̂ASTM
0 , the normalized pure shear stress in the ASTM interpretation of the

diagonal compression test:

τ̂ASTM
0 =

√
2

2
. (56)

In fact, by recognizing the value of τ̂ASTM
0 in the multiplicative factor of Equation (54),

we can define cτ0 :

cτ0 =
√

k
1 +

√
k

1 + k
, (57)
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as the correction factor of the normalized pure shear stress, with respect to the ASTM
interpretation of the diagonal compression test:

τ̂0 = cτ0 τASTM
0 . (58)

Since the right-angled triangle with vertices at the coordinate points (σ̂I , 0), (0, 0), and

(0, τ̂0) is similar to the right-angled triangle with vertices at the coordinate points (0, 0),
(σ̂I I , 0), and (0, τ̂0) (Figure 6), σ̂I and σ̂I I are directly proportional to τ̂0 through the tangents
of the angles γ and β, respectively:

sin(𝜑) tan(𝜑)cos(𝜑) tan(𝜑) tan(𝜑)
sin(𝜑) = ± tan(𝜑)1 + tan (𝜑) , 
cos(𝜑) = ± 11 + tan (𝜑) , 

ffcos(𝜑 − 𝜃) = cos(𝜑)cos(𝜃) + sin(𝜑)sin(𝜃).
�̂� = √22 √𝑘 1 + √𝑘1 + 𝑘 ,sin(𝛽) 𝛽 = arctan √𝑘 𝛽

0 ≤ 𝛽 ≤ 𝜋2,cos(𝛽) �̂��̂�
�̂� = √22 .�̂�𝑐

𝑐 = √𝑘 1 + √𝑘1 + 𝑘 ,
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Figure 6. Similarity between the right-angled triangle with vertices at the coordinate points (σ̂I , 0),

(0, 0), and (0, τ̂0) and the right-angled triangle with vertices at the coordinate points (0, 0), (σ̂I I , 0),

and (0, τ̂0).

σ̂I = τ̂0tan(γ) =
√

k
k τ̂0 =

√
k

k sin
(

arctan
(√

k
))

cos
(

arctan
(√

k
)

− π
4

)

=
√

2
2

1+
√

k
1+k ,

(59)

σ̂I I = −τ̂0tan(β) = −
√

kτ̂0 = −
√

ksin
(

arctan
(√

k
))

cos
(

arctan
(√

k
)

− π
4

)

= −
√

2
2 k 1+

√
k

1+k ,
(60)

where we made use of Equations (34) and (36).
The half-sum between σ̂I and σ̂I I then gives the first coordinate of the center of the

circle, C, which is equal to the first coordinates of the points Q′
x and Q′

y (Figure 6):

σ̂x = σ̂y = σ̂I+σ̂I I
2 = 1−k

2k

√
kτ̂0

= 1−k
2k

√
ksin

(

arctan
(√

k
))

cos
(

arctan
(√

k
)

− π
4

)

=
√

2
4

(

1 +
√

k
)

1−k
1+k ,

(61)

while the half-difference between σ̂I and σ̂I I provides the radius, r, which is equal to the
second coordinates (in absolute value) of the points Q′

x and Q′
y (Figure 6):

τ̂xy = r = σ̂I−σ̂I I
2 = 1+k

2k

√
kτ̂0

= 1+k
2k

√
ksin

(

arctan
(√

k
))

cos
(

arctan
(√

k
)

− π
4

)

=
√

2
4

(

1 +
√

k
)

.

(62)

Equations (61) and (62) therefore replace the normalizations of Equations (4)–(6).
Having expressed the solution of the new formulation as a function of a single parameter,
k, the knowledge of k directly provides the stress state at point A. Seen in these terms, the
coefficient k becomes an unknown of the problem of determining the stress state at point
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A. To find k, it is necessary to couple Equations (61) and (62) with an additional condition
(Section 4).

As a further observation, the comparison between Equations (20) and (62) provides
an expression of the angle α as a function of both k and

√
k:

α = arcsin

(

2
√

k

1 + k

)

. (63)

3.2. Strain State at Point A

As known, strain analysis deals with the study of continuum deformation, which is
a geometric problem and has nothing to do with the properties of materials. The description
of the deformation therefore requires the introduction of some geometric quantities and
algebraic operators [22].

Denoted as h and v, respectively, the horizontal and vertical axes of the reference
system of origin A (Figure 7a), let [ε] be the infinitesimal strain tensor in the neighborhood
of point A (infinitesimal strain theory):

 

 

(a) (b) 

𝐴
𝜀 =

⎣⎢⎢
⎢⎢⎡ 𝜀 12 𝛾 12 𝛾12 𝛾 𝜀 12 𝛾12 𝛾 12 𝛾 𝜀 ⎦⎥⎥

⎥⎥⎤ , 
𝑧 ℎ 𝑣⁄𝛽 𝑠ℎ 𝛽𝑠𝜏 𝐴 𝑠 𝜎 = 0. 𝑠𝜎 𝜏 = 𝜏𝑄∗ 𝑠𝛾 𝜎 < 0 𝐴𝑠

ℎ 𝑣𝑧 ℎ 𝑣 𝑧𝐴
𝛾 = 𝛾 = 𝛾 = 0, 

Figure 7. Stress state of an elementary cube with faces parallel and orthogonal to the trace with

positive pure shear stress, in: (a) the reference frame with origin in A; (b) the modified Mohr plane.

[ε] =





εh
1
2 γhv

1
2 γhz

1
2 γhv εv

1
2 γvz

1
2 γhz

1
2 γvz εz



, (64)

where z indicates the direction orthogonal to the h/v plane.
It is worth noting that β is no longer a positive scalar in Figure 7a, because it is the

amplitude of an oriented angle, which indicates the angle of rotation of the positive s
half-axis relative to the positive h half-axis. Since positive values of an angle of rotation
correspond to counterclockwise rotations, β is a negative rotation angle in Figure 7a.

The positive s half-axis lies on the trace of one of the two planes of pure shear stress,
τ0 (Figure 7b). Therefore, there are no normal stresses on the planes (in the neighborhood
of A) parallel to s (Figure 7a):

σt = 0. (65)

On the planes perpendicular to s, however, both normal and shear stresses are present,
σs and τst = τ0, respectively (Figure 7a). In fact, a straight line drawn from the Mohr pole,
Q∗, in a direction perpendicular to the s-axis (the line that forms an angle of amplitude γ

with the horizontal direction in Figure 7b) intersects the Mohr circle at a point with first
coordinate σs < 0 (Figure 7b). This means that the stress state at point A is the sum of
a pure shear stress and a uniaxial compressive stress state in the s-axis direction.



Buildings 2024, 14, 104 12 of 29

In linear elasticity, the principal directions of stress coincide with the principal direction
of strain. This cancels out the change in the angles between the axes h, v, and z, since h and
v lie along the principal directions of stress found in Section 3.1 (z is one of the principal
directions of stress as a result of the stress state at point A, which is a plane stress state):

γhv = γhz = γvz = 0, (66)

[ε] =





εh 0 0
0 εv 0
0 0 εz



. (67)

The transformation of the strain components from the reference system (A, h, v, z) to
the reference system (A, s, t, z) respects the typical transformation law of double symmetric
tensors:





εs
1
2 γst

1
2 γsz

1
2 γst εt

1
2 γtz

1
2 γsz

1
2 γtz εz



 =





ah av az

bh bv bz

ch cv cz









εh 0 0
0 εv 0
0 0 εz









ah bh ch

av bv cv

az bz cz



, (68)

where ah, av, az, bh, bv, bz, ch, cv, and cz are the direction cosines of the three positive
coordinate axes s, t, and z with respect to the three positive coordinate axes h, v, and z
(Appendix A).

The transformation law therefore reads:





εs
1
2 γst

1
2 γsz

1
2 γst εt

1
2 γtz

1
2 γsz

1
2 γtz εz



 =





cos(β) sin(β) 0

−sin(β) cos(β) 0

0 0 1









εh 0 0

0 εv 0

0 0 εz









cos(β) −sin(β) 0

sin(β) cos(β) 0

0 0 1



. (69)

From Equations (68) and (69), it follows that the normal strain along the s-axis direction
is a quadratic form of the direction cosines:

εs = εha2
h + εva2

v = εhcos2(β) + εvsin2(β). (70)

Since from Equations (51) and (52) it follows that:

cos2(β) =
1

1 + tan2(β)
=

1

1 + k
, (71)

sin2(β) =
tan2(β)

1 + tan2(β)
=

k

1 + k
, (72)

where we made use of Equation (34), εs also reads:

εs =
1

1 + k
(εh + kεv). (73)

The Double-Angle Formulas then allow us to write the terms cos2(β) and sin2(β) in
Equation (70) as functions of cos(2β):

cos2(β) =
1 + cos(2β)

2
, (74)

sin2(β) =
1 − cos(2β)

2
, (75)

which gives the expression of εs as a function of the angle 2β, after substituting
Equations (74) and (75) into Equation (70):

εs =
εh + εv

2
+

εh − εv

2
cos(2β). (76)
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Similarly for the normal strain along the t-axis direction:

εt = εhb2
h + εvb2

v = εhsin2(β) + εvcos2(β), (77)

we can find the relationship between εt and k:

εt = εh
tan2(β)

1 + tan2(β)
+ εv

1

1 + tan2(β)
=

1

1 + k
(kεh + εv), (78)

while the Double-Angle Formulas provide the expression of εt in function of the angle 2β:

εt =
εh + εv

2
− εh − εv

2
cos(2β). (79)

The shear strain γst is defined as positive if it causes the right angle of the first
quadrant (between the +s and +t-axes) to decrease. Its expression, given by Equation (68),
is a bilinear form of the direction cosines:

1

2
γst = εhahbh + εvavbv = −εhcos(β)sin(β) + εvsin(β)cos(β). (80)

By rewriting Equation (80) in the form:

1

2
γst = −2

εh − εv

2
sin(β)cos(β), (81)

and recognizing the sine of the angle 2β in the double product 2sin(β)cos(β):

2sin(β)cos(β) = sin(2β), (82)

we finally obtain:
1

2
γst = − εh − εv

2
sin(2β). (83)

In the assumption of a generic rotation angle, δ, between the two reference systems of
Figure 7a (redrawn, for convenience, in Figure 8a), the functions of the angle 2β provided
by Equations (76) and (83) allow a parametric plot in the parameter 2δ of the strain state at
point A, in the plane defined by the axes εi and 1/2γij:

𝜀 𝑘𝜀 = 𝜀 tan (𝛽)1 + tan (𝛽) + 𝜀 11 + tan (𝛽) = 11 + 𝑘 (𝑘𝜀 + 𝜀 ), 𝜀2𝛽 𝜀 = 𝜀 + 𝜀2 − 𝜀 − 𝜀2 cos(2𝛽). 𝛾+𝑠 +𝑡
12 𝛾 = 𝜀 𝑎 𝑏 + 𝜀 𝑎 𝑏 = −𝜀 cos(𝛽)sin(𝛽) + 𝜀 sin(𝛽)cos(𝛽). 

12 𝛾 = −2 𝜀 − 𝜀2 sin(𝛽)cos(𝛽), 2𝛽 2sin(𝛽)cos(𝛽)2sin(𝛽)cos(𝛽) = sin(2𝛽), 
12 𝛾 = − 𝜀 − 𝜀2 sin(2𝛽). 𝛿 2𝛽2𝛿𝐴 𝜀 1 2⁄ 𝛾

 

 
(a) (b) 𝐴𝐶

𝜀 = 𝜀 + 𝜀2 + 𝜀 − 𝜀2 cos(2𝛿), 12 𝛾 = − 𝜀 − 𝜀2 sin(2𝛿). 

Figure 8. Relationship between the rotation angles around: (a) the origin A of the reference frame in

Figure 7a; (b) the center C of the Mohr circle for the strain state.
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εi =
εh + εv

2
+

εh − εv

2
cos(2δ), (84)

1

2
γij = − εh − εv

2
sin(2δ). (85)

As with the stress state (Equations (38) and (39)), the parametric plot of the strain state
at point A is a circle centered on the horizontal axis (Figure 8b). By analogy with the stress
state, we can denote this graph as the Mohr circle for the strain state and the plane of the
graph as the Mohr plane for the strain state. The center of the Mohr circle for the strain
state is point C, as for the stress state.

Equations (84) and (85) allow us to reach the coordinate point (εs,−1/2γst) after
a rotation at the center, C, equal to 2β, starting from the coordinate point (εh, 0) (Figure 8b):

εi(δ = β) =
εh + εv

2
+

εh − εv

2
cos(2β) = εs, (86)

1

2
γij(δ = β) = − εh − εv

2
sin(2β) =

1

2
γst. (87)

Since εh > 0 and εv < 0, it follows from Equation (87) that γst > 0 for β < 0 (clockwise
rotation, as in Figure 8a) and γst < 0 for β > 0 (counterclockwise rotation). Consequently,
after a rotation at the center, C, equal to −π/2 (the angle that is double the clockwise
rotation, around point A, which causes the h-axis to overlap with the x-axis), we reach the
coordinate point

(

εx,−1/2γxy

)

, with γxy > 0 (Figure 8b):

1

2
γxy =

1

2
γij

(

δ = −π

4

)

=
εh − εv

2
, (88)

which is the same expression provided by the ASTM guidelines and adopted by all
other standards.

Due to the presence of a uniaxial compressive stress state in the s-axis direction (the
normal stress σs in Figure 8a), the normal strain in the t-axis direction is positive, because
of the Poisson effect:

εt = −νεs > 0, (89)

where ν is the Poisson ratio. This causes the coordinate point (εt, 1/2γst) not to be on the
vertical axis of Figure 8b.

Furthermore, the point R∗ in Figure 8b is the only point on the Mohr circle that enjoys
the property stated in Theorem 3.

Theorem 3. A straight line drawn from R∗ in the direction of the i-axis intersects the Mohr
circle at a point whose coordinates are εi and −1/2γij where j is the axis rotated by π/2 in
a counterclockwise direction with respect to i.

We will denote R∗ as the Mohr pole of the strain state. Due to the property of R∗,
the coordinate point (εt, 1/2γst) lies on the straight line drawn from R∗ in the direction of
the t-axis (Figure 8b). Since εt > 0, the strain state on planes (in the neighborhood of A)
perpendicular to t is not a state of pure shear strain, although the stress state on those planes
is a state of pure shear stress. Therefore, it is not possible to use the shear strain γst together
with the shear stress τst = τ0 to plot the shear stress–shear strain curves for masonry.

It is worth noting that the coordinates εi and −1/2γij in the Mohr plane take on
a specific meaning for the point P of the i-axis that is at a unit distance from point A:

• εi = ui, where ui is the displacement component of point P in the direction of the
i-axis (normal component of the displacement, or normal displacement);

• 1/2γij = uj, where uj is the displacement component of point P in the direction of the
j-axis (tangential component of the displacement, or tangential displacement).



Buildings 2024, 14, 104 15 of 29

This justifies the use of the letter R for the points in the Mohr plane for the strain state,
as R is the capital letter in the Western alphabet that corresponds to ρ, the Greek letter used
to denote the displacement vector.

3.3. Elastic Coefficients

Since the elementary cube (in the neighborhood of point A) with faces perpendicular
to the s- and t-axes is subjected to both pure shear stress and uniaxial compression in the
direction of the s-axis (Figure 8a), we can calculate the Young modulus as the ratio of the
normal stress σs and the normal strain εs (linear elastic theory):

E =
σs

εs
. (90)

In fact, the shear stress does not involve any component of normal strain in homo-
geneous and isotropic linear elastic materials (pure shear stress and normal stress are
decoupled problems), which allows us to calculate E as if the elementary cube were in
uniaxial compression. By noting (in Figure 7b) that σs is double the first coordinate of the
center, C, of the Mohr circle, given by Equation (61):

σs = σI + σI I = 2σx =

√
2

2

(

1 +
√

k
)1 − k

1 + k

|P|
An

, (91)

and using Equation (73) for the value of εs, we obtain:

E =

√
2

2

(

1 +
√

k
)

(1 − k)

εh + kεv

|P|
An

. (92)

Equations (73), (78) and (89) then allow us to find a relationship between the Poisson
ratio, k, and the principal strains along the diagonals:

ν = − εt

εs
= − kεh + εv

εh + kεv
. (93)

It is worth noting that we could obtain the result in Equation (92) using Hooke’s laws
with σz = 0 (plane stress state), to find εh and εv:

εh =
1

E
[σI − νσI I ], (94)

εv =
1

E
[σI I − νσI ]. (95)

By solving Equations (94) and (95) for the unknown E:

E =
σI − νσI I

εh
, (96)

E =
σI I − νσI

εv
, (97)

and using Equations (59), (60) and (93) to simplify the two expressions, in both cases we
reobtain Equation (92).

The decoupling between the pure shear stress and normal stress problems also allows
us to express the modulus of rigidity, G, as the ratio between τst and γst:

G =
τst

γst
=

τ0

γst
, (98)
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where τ0 comes from Equation (54):

τ0 =

√
2

2

√
k
(

1 +
√

k
)

1 + k

|P|
An

, (99)

and γst comes from Equation (81), with:

cos(β) = cos
(

arctan
(√

k
))

=
1√

1 + k
, (100)

sin(β) = sin
(

arctan
(√

k
))

= −
√

k√
1 + k

, (101)

because β is a negative rotation angle (Figure 8a):

β < 0. (102)

After simplification, the shear modulus is therefore:

G =

√
2

4

1 +
√

k

εh − εv

|P|
An

. (103)

We could obtain the same result from the ratio τxy/γxy, with τxy derived from
Equation (62) and γxy calculated as double the radius of the Mohr circle in Figure 8b:

τxy = τ̂xy
|P|
An

=

√
2

4

(

1 +
√

k
) |P|

An
, (104)

γxy = εh − εv, (105)

G =
τxy

γxy
=

√
2

4

1 +
√

k

εh − εv

|P|
An

. (106)

The values of E, ν, and G in Equations (92), (93) and (103) comply with the relationship
valid for the elastic coefficients in homogeneous and isotropic linear elastic materials:

G =
E

2(1 + ν)
. (107)

3.4. Limiting Values of the Parameter k

The limiting values for E and ν:
E > 0, (108)

0 < ν <
1

2
, (109)

with E and ν expressed by Equations (92) and (93), respectively, provide information about
the limiting values of k.

Starting from Equation (92), we can note that the value k = 1 would cancel the
numerator of the equation and, consequently, the value of E. Since having E = 0 is
physically unacceptable, we must therefore discard the possibility k = 1. Ultimately, this
is evidence of why the stress field at point A (Figure 1) cannot be a state of pure shear
stress, as is the stress state in the ASTM guidelines. In fact, since the state of pure shear
stress implies that the two principal stresses have the same (absolute) value, Equation (22)
provides precisely the value k = 1 in the ASTM interpretation of the diagonal compression
test. We can therefore conclude that the ASTM assumption of a pure shear stress at point A
does not comply with the theory of linear elasticity, because the presence of normal stress
components at point A finds justification precisely in the theory of linear elasticity. It is
worth noting that even some numerical methods confirmed, in the past, that a square plate
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made of an elastic isotropic material loaded in diagonal compression does not experience
a state of pure shear stress but a complex nonuniform stress state, with normal components
different from zero [7,23,24].

Furthermore, since:
εv < 0, (110)

|εv| > εh, (111)

the denominator of Equation (92) is positive for small values of k, much lower than 1, while
the numerator is positive for k < 1. This means that E takes positive values in the two
intervals:

0 < k ≪ 1, (112)

k > 1. (113)

Excluding the possibility 0 < k ≪ 1—because it would imply that fdc ≪ fdt—
Equation (113) is the first limitation for k.

The second limitation arises from the first inequality in Equation (109), with ν ex-
pressed by Equation (93). For Equations (110), (111) and (113), the denominator in Equation
(93) is negative. Therefore, ν > 0 if:

εt = kεh + εv > 0, (114)

which provides (in the linear elastic range):

k > − εv

εh
. (115)

Due to the inequality in Equation (111), this second condition is more restrictive
than Equation (113). To be precise, the second member in Equation (115) depends on the
individual test. However, assuming that the −εh/εv ratio does not exceed the value 0.25
(as usually done for the strains along the two diagonals [25–28]):

− εh

εv
≤ 0.25, (116)

it is reasonable to conclude that k is never less than 4. This also raises serious doubts
about the validity of the RILEM interpretation of the diagonal compression test, since the
value assumed by k in the RILEM guidelines is equal to 3.24 (the inverse of the value in
Equation (17)).

Finally, from the second inequality in Equation (109), it follows that:

k > −
1
2 εh + εv

1
2 εv + εh

, (117)

which—assuming the validity of Equation (116)—is a less restrictive condition than
Equation (115). In conclusion, from the theory of linear elasticity, we can derive the lower
limit value (lower bound) for k, expressed by Equation (115).

4. How to Identify the Coefficient k and Obtain the Solution

The identification of k requires the comparison of the parametric solution with a certain
datum, which can be an elastic coefficient or a stress value. In the impossibility of having
this comparison datum, the results provided by the shear-compression test may be useful.

The shear-compression test is another mechanical characterization test for determining
the shear strength in masonry [6,15]. It is common opinion that it reproduces the stress
state in a masonry element subjected to pure shear stress more faithfully than the diagonal
compression test. The results provided by the two tests according to the current legislation
are actually very different from each other, as the shear-compression test gives a shear
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strength value approximately double that of τASTM
xy , the shear strength obtainable through

the ASTM interpretation of the diagonal compression test [29,30]:

τASTM
xy = τASTM

0 =

√
2

2

|P|
An

. (118)

This information provides the comparison datum to identify the coefficient k. In
fact, in the assumption that both the shear-compression test and the new interpretation
of the diagonal compression test provide a realistic representation of the stress state in
the specimens, both should give a shear strength value double of that in Equation (118).
Therefore, equating Equation (104) to double the value in Equation (118) solves the problem
of identifying k:

τNEW
xy =

√
2

4

(

1 +
√

k
) |P|

An
=

√
2
|P|
An

= 2τASTM
xy , (119)

which provides the new interpretation of the diagonal compression test in the (modified)
Mohr plane:

k = 9, (120)

σ̂NEW
x = σ̂NEW

y = −4

5

√
2, (121)

τ̂NEW
xy = r =

√
2, (122)

σ̂NEW
I =

1

5

√
2, (123)

σ̂NEW
II = −9

5

√
2, (124)

τ̂NEW
0 =

3

5

√
2, (125)

where the normalized pure shear stress, τ̂0, acts on planes inclined (to the horizontal plane)
at angles ±β, with (Equation (34)):

β ∼= 1.249rad ∼= 71◦33′54′′. (126)

It is worth noting that the value 9 of the coefficient k = fdc/ fdt falls within the range
of variability of the fc/ ft ratio for masonry solids:

8 ≤ fc

ft
≤ 12. (127)

This is an indirect confirmation of the correctness of the value found for k. In fact, as
already specified in Section 2, it is reasonable to expect an fdc/ fdt ratio not very different
from the fc/ ft ratio, even if the stress state is biaxial rather than uniaxial.

The advantage of having used information given by a different mechanical characteri-
zation test rather than identifying k by comparison with the value of an elastic coefficient
or stress value is that the solution found here is independent of the single test and the prop-
erties of the single specimen. Within the limits of the approximation made by considering
the results given by the shear-compression test and the new interpretation of the diagonal
compression test as equivalent, this is therefore the exact solution of the stress state at the
center of gravity of the wallette.

Figure 9 shows the comparison between the Mohr circles of the ASTM, RILEM, and
new interpretations of the diagonal compression test.
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Figure 9. The Mohr circles in the ASTM, RILEM, and new interpretations of the diagonal compres-

sion test.

As predicted in Reference [10], the center of the new Mohr circle is further from the
origin of the axes, B (Figure 9), than is the center of the RILEM circle. This means that the
actual hydrostatic stress state at point A is greater than that hypothesized in the RILEM
guidelines. On the other hand, the deviatoric stress state at point A is also greater for
the new formulation compared to that hypothesized in the RILEM guidelines, since the
radius of the new circle is larger than the radius of the RILEM circle. Therefore, the RILEM
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Therefore, small errors in the evaluation of τ̂0 would lead to large errors in the evalu-
ation of k, particularly in the range k > 3.24. This means that τ̂0 is not the most suitable
parameter to identify k.

The principal stresses in the RILEM and new interpretations of the diagonal compres-
sion test, on the contrary, differ considerably. As is evident in Figure 9, in fact, the RILEM
principal stresses are the average values between the principal stresses in the ASTM and
new interpretations of the diagonal compression test:

σ̂RILEM
I

∼= σ̂ASTM
I + σ̂NEW

I

2
, (129)

σ̂RILEM
II

∼= σ̂ASTM
II + σ̂NEW

II

2
. (130)

The same type of relationship links the normal and tangential stresses on the x/y
plane, for the three formulations:

σ̂RILEM
x

∼= σ̂ASTM
x + σ̂NEW

x

2
, (131)

σ̂RILEM
y

∼=
σ̂ASTM

y + σ̂NEW
y

2
, (132)

τ̂RILEM
xy

∼=
τ̂ASTM

xy + τ̂NEW
xy

2
. (133)

Regarding the comparison between the principal stresses in the new and ASTM
interpretations of the diagonal compression test, the new proposal corrects the first principal
stress by a factor of 0.4 and the second principal stress by a factor of 3.6:

σ̂NEW
I =

2

5
σ̂ASTM

I , (134)

σ̂NEW
II =

18

5
σ̂ASTM

II , (135)

while the ratio between the two shear stresses at zero normal stress is 1.2, the value given
by cτ0 in Equation (57):

τNEW
0 =

6

5
τASTM

0 . (136)

As far as Equation (134) is concerned, it is worth noting that also Reference [31] found
a correction factor of 0.4 for the first principal stress, based on a finite element analysis in
the linear elastic field.

5. The Elastic Coefficients Obtained for a Real Set of Experimental Data

As shown in Section 3.3, the diagonal compression test allows the identification of
Young’s modulus, E, and Poisson’s ratio, ν, of masonry walls, although not originally
intended for this purpose [25–28]. As an example of the identification procedure for E
and ν, we will use the experimental results of Reference [10], with the strains εv and εh,
calculated as the ratios of the relative displacements along the diagonals to the initial gage
lengths along the diagonals:

εh =
∆H

g
, (137)

εv =
∆V

g
, (138)

where:

• ∆H is the extension along the horizontal diagonal;
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• ∆V is the shortening along the vertical diagonal (the compressed diagonal);
• g is the gage length in the direction of both diagonals (the gage length for the identifi-

cation of ∆V must be equal to the gage length for the identification of ∆H [9]).

The specimens of Reference [10] are square masonry wallettes, strengthened with
stainless steel straps [32]. However, the strengthening is ineffective in one of the specimens.
Therefore, the results of the diagonal compression test performed on that specimen provide
the mechanical characteristics of the unreinforced masonry (URM) and are useful for
finding the URM elastic moduli.

In the linear elastic range of the URM specimen of Reference [10], the −εh/εv ratio
took on the value 0.13 (Table 7 of Reference [10]):

− εh

εv
= 0.13. (139)

Because of the relationship in Equation (115), this value sets the lower bound for k to
be 7.65:

k > 7.65. (140)

Being greater than the values of k adopted by both the ASTM and RILEM interpreta-
tions of the diagonal compression test, the lower bound in Equation (140) confirms that
neither the ASTM not the RILEM guidelines conform to linear elasticity theory. In par-
ticular, the k = 1 value of the ASTM guidelines provides unacceptable values for both E
(Figure 11a) and ν (Figure 11b), regardless of the test performed (Equations (92) and (93),
respectively):
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Figure 11. Plot of the two independent elastic moduli as a function of the parameter k: (a) Young’s

modulus, E; (b) Poisson ratio, ν.

EASTM = 0, (141)

νASTM = −1. (142)

The k = 3.24 value of the RILEM guidelines provides E values that do not contradict
the limiting values for Young’s modulus (Figure 11a), regardless of the test performed:

ERILEM
> 0, (143)

but makes it necessary to evaluate the acceptability of the ν values (νRIELM) on the individ-
ual test.
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As shown in Figure 11b, the νRIELM value for the URM specimen of Reference [10]
does not comply with the limiting values for the Poisson ratio:

νRIELM
< 0. (144)

The k = 9 value of the new formulation, on the contrary, generates a Young’s mod-
ulus and a Poisson’s ratio that respect the limiting values for both E (Figure 11a) and ν

(Figure 11b).
Figure 12a shows an enlargement of Figure 11a in the 7 ≤ k ≤ 12 range (slightly larger

than 8 ≤ k ≤ 12, the most common range for k in brittle materials), to better appreciate
the behavior of the E function in the range of validity of the linear elastic solution. The
secondary axis of Figure 12a shows the values of the G function—the third elastic constant—
given by Equation (103). Similarly, Figure 12b is the enlargement of Figure 11b in the
7 ≤ k ≤ 12 range, useful for appreciating the weak variations of the Poisson ratio in the
range of validity of the linear elastic solution.
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value for masonry, since it is the Poisson ratio of cast iron and carpentry steel. Being a 
brittle material, in fact, masonry should have a Poisson ratio significantly lower than that 
of a metallic material.
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Figure 12. Detail of the relationships between the elastic moduli and the parameter k, in the range

7 ≤ k ≤ 12: (a) Young’s modulus, E, and modulus of rigidity, G; (b) Poisson ratio, ν.

The values of the three elastic coefficients provided by Equations (92), (93) and (103)
for the new formulation are:

E = 15, 041 MPa, (145)

ν = 0.02, (146)

G = 7373 MPa. (147)

The value of ν in Equation (146) may seem completely unreasonable, since it is an
order of magnitude lower than 0.25, the value commonly assumed for the Poisson ratio in
masonry [25–28]. This conventional value has no other motivation than that of being the
average value between the two limiting values of the Poisson ratio [33]. In reality, although
adopted by almost all masonry building codes, 0.25 is a highly questionable value for
masonry, since it is the Poisson ratio of cast iron and carpentry steel. Being a brittle material,
in fact, masonry should have a Poisson ratio significantly lower than that of a metallic
material.

Wanting to find an upper bound for the Poisson ratio in masonry, the −εh/εv ratio
in Equation (139) could give a first indication. This ratio is actually 48% lower than
0.25. However, there are two observations to make regarding Equation (139). The first
observation concerns the ratio itself, which, limited to a uniaxial compression load test
performed along the vertical direction, expresses precisely the Poisson ratio. Therefore,
since the test performed in Reference [10] is not the uniaxial compression test and the stress
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state at point A is biaxial, rather than uniaxial, the ratio in Equation (139) does not give the
exact value of Poisson’s ratio.

The second observation concerns the scale of acquisitions of the displacements for the
identification of the strains. The strains in Equation (139) come from displacements acquired
along the entire diagonals, using a horizontal and a vertical potentiometer (produced by
Gefran SpA, Brescia, Italy). Well, since micro-cracks propagate in brittle materials even
for very low values of the applied load [34], two contributions make up the displacements
acquired along the two diagonals: a rheological one (the deformation of the body in
the context of continuum mechanics) and a non-rheological one (the opening of micro-
cracks). The non-rheological contribution has a particular effect on the acquisition of
the displacements along the tensioned diagonal. Therefore, the rheological part in the
numerator of Equation (139) could be much lower than the values of εh identified by the
horizontal potentiometer (arranged along the tensioned diagonal). This means that the
Poisson ratio identified after excluding the non-rheological contribution could be even
much lower than the value provided by Equation (139). Similar observations expressed for
another brittle material, namely concrete, suggested acquiring the displacements inside
the specimen core that presumably remains intact for the entire duration of the uniaxial
compression test, using fiber optic sensors. This allowed us to identify Poisson’s ratio
values for concrete, which, for the linear elastic range, are perfectly consistent with the
0.02 value in Equation (146) [34]. Now, the very low values of Poisson’s ratio in the linear
elastic range of brittle materials also find an analytical justification.

Equations (122) and (88) then allow us to compare the shear stress–shear strain curves
for the three proposals, in the x/y plane (Figure 13). According to Equation (133), the
RILEM curve is the average curve between the ASTM curve and the new curve. Due to the
assumption in Equation (119), the values of shear stress in the new formulation, τNEW

xy , are

then double the values assumed in the ASTM curve, τASTM
xy . Therefore, the relationship

between the shear stresses in the three formulations (at any given shear strain) is:
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diagonal compression test (x/y plane).

τNEW
xy = 2τASTM

xy =
4

3
τRILEM

xy , (148)

where τRILEM
xy is the shear stress in the RILEM interpretation of the diagonal compres-

sion test.
The slope at the origin of the new curve in Figure 13, GNEW

xy , is equal to the value of G
given by Equation (147). Its relationship to the moduli of rigidity in the ASTM and RILEM
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interpretations of the diagonal compression test, GASTM
xy and GRILEM

xy , respectively, is the
same as that established by Equation (148) between the three shear stresses:

GNEW
xy = 2GASTM

xy =
4

3
GRILEM

xy . (149)

As already discussed in Section 3.3, GNEW
xy does not depend on the plane (x/y rather

than s/t) for the calculation of the modulus of rigidity. Consequently, the slope at the origin
of the shear stress–shear strain curve is the same in the x/y and s/t planes (Figure 14),
with τst and γst given by Equations (125) and (83), respectively (for the value of β, see
Equation (126)).

where 𝜏𝑥𝑦𝑅𝐼𝐿𝐸𝑀 is the shear stress in the RILEM interpretation of the diagonal compression 
test.
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Figure 14. Shear stress–shear strain curves for the new interpretations of the diagonal compression

test, in the x/y and s/t planes.

Finally, Equations (12), (13), (123), (124), (137) and (138) allow us to compare the σI/εh

and σI I/εv curves in the RILEM (Figure 15a) and new (Figure 15b) proposals, with the
stress–strain curves in compression that occupy the first quadrants and the stress–strain
curves in tension that occupy the third quadrants (as usual for brittle materials):
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RILEM interpretation of the diagonal compression test; (b) the new interpretation of the diagonal 
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Figure 15. Stress–strain relationships along the principal directions of stress and strain, for: (a) the

RILEM interpretation of the diagonal compression test; (b) the new interpretation of the diagonal
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σ∗
I = −σI , (150)
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σ∗
I I = −σI I , (151)

ε∗h = −εh, (152)

ε∗v = −εv. (153)

As specified in Reference [10] and Section 2, the σ∗
I/ε∗h and σ∗

I I/ε∗v curves in
Figure 15b do not represent the stress–strain relationships in uniaxial tension and compres-
sion, because the stress state at point A is biaxial (and not uniaxial). Therefore, the slopes at
the origin of the σ∗

I/ε∗h and σ∗
I I/ε∗v curves are not the elastic moduli in uniaxial tension,

Et, and compression, Ec, respectively (Young’s moduli [35]), with:

Et = Ec = E. (154)

The relationships between σI and εh and between σI I and εv, in fact, also depend on
the Poisson effect, as expressed by Equations (94) and (95). In this paper, Edt will denote the
diagonal tensile elastic modulus (the slope at the origin of the σ∗

I/ε∗h curve), and Edc will
denote the diagonal compressive elastic modulus (the slope at the origin of the σ∗

I I/ε∗v

curve), with:
Edt ̸= Edc. (155)

As noted in Reference [10], the percentage difference between ERILEM
dt and ERILEM

dc ,
the diagonal tensile and compressive elastic moduli in the RILEM interpretation of the
diagonal compression test:

∣

∣ERILEM
dt − ERILEM

dc

∣

∣

ERILEM
dc

∼= 136%, (156)

with:
ERILEM

dt > ERILEM
dc , (157)

is too large to depend only on the approximation introduced by neglecting the Poisson effect,
which allows us to treat the biaxial stress state as a uniaxial stress state. The percentage
difference between ENEW

dt and ENEW
dc , the diagonal tensile and compressive elastic moduli in

the new interpretation of the diagonal compression test, is actually an order of magnitude
smaller than the value in Equation (156):

ENEW
dt = 12,753 MPa, (158)

ENEW
dc = 15,008 MPa, (159)

∣

∣ENEW
dt − ENEW

dc

∣

∣

ENEW
dc

∼= 15%. (160)

In particular, the percentage difference between ENEW
dc and the value of E in

Equation (145) is almost negligible, due to the very low value of the Poisson ratio identified
for the specimen (Equation (146)):

∣

∣ENEW
dc − E

∣

∣

E
∼= 0.2%. (161)

This allows us to use the σ∗
I I/ε∗v curve in Figure 15b to obtain the Young modulus as

a first approximation. In other words, the stress–strain relationship along the compressed
diagonal is representative (with good approximation) of the constitutive law for unrein-
forced masonry walls in uniaxial compression. Therefore, the new interpretation of the
diagonal compression test in the Mohr plane offers a procedure for estimating (with good
approximation) the uniaxial stress–strain relationship in compression.



Buildings 2024, 14, 104 26 of 29

Finally, the diagonal compressive strength and the diagonal tensile strength in the
new interpretation of the diagonal compression test (Figure 15b) take on values within the
ranges of values for the compressive and tensile strength [36], respectively:

fdc
∼= 3.52 MPa, (162)

fdt
∼= 0.39 MPa, (163)

fdt

fdc
=

1

k
= 0.1. (164)

Due to the observations made regarding Equation (161), the diagonal compressive
strength is representative (with good approximation) of the compressive strength for
unreinforced masonry walls in uniaxial compression:

fdc
∼= fc. (165)

Finally, it is worth noting that 1/k = 0.1 is a slightly larger value than the tensile-to-
compressive-strength ratio usually identified by uniaxial tensile and compression tests [20].
However, due to the technical difficulties associated with uniaxial tensile tests, it is rea-
sonable to assume that the tensile strength value estimated from uniaxial tensile tests is
underestimated. This, together with the difference already noted between the fdt/ fdc ratio
and ft/ fc ratio, makes 0.1 a reasonable value for the fdt/ fdc ratio.

6. Conclusions

The results of a previous experimental campaign on the shear behavior of masonry
wallettes were an opportunity to highlight some inconsistencies in the RILEM interpre-
tation of the diagonal compression test, which represents an improvement of the ASTM
interpretation of the diagonal compression test. The present article took inspiration from
these inconsistencies and re-examined the state of stress at the center of gravity of the
wallette, in the context of the theory of linear elasticity.

The choice made in this paper was to perform the stress analysis in parametric form,
as a function of the ratio between the diagonal compressive strength, fdc, and the diagonal
tensile strength, fdt. The extension of the analysis to the strain field then led to the identifi-
cation of the three elastic coefficients, as functions of the fdc/ fdt ratio. This allowed us to
demonstrate that both the ASTM and RILEM interpretations of the diagonal compression
test do not conform to the theory of linear elasticity. In particular, adopting the ASTM
fdc/ fdt ratio is equivalent to assuming that Young’s modulus has zero value, which is
evidently impossible. Since the ASTM fdc/ fdt ratio equals 1—which means that the stress
state at the center of gravity, A, is a pure shear stress—this is the analytic reason why
the stress state at point A of a wallette subjected to a diagonal compression test is not
a pure shear stress. This means that, in addition to a deviatoric stress state, a hydrostatic
stress state is present at point A. Furthermore, both the ASTM and RILEM fdc/ fdt ratios
would provide negative values for the Poisson ratio, which is an unverified circumstance
in natural materials.

The comparison between the stress results of the diagonal compression test and those
of the shear-compression test—which is the second useful test for studying the shear
behavior of masonry walls—then made it possible to identify the fdc/ fdt ratio in the
new proposal. This allowed us to obtain an interpretation of the diagonal compression
test consistent with the results of the shear-compression test, which is more realistic in
describing the shear behavior of masonry walls.

The stress state plot in the Mohr plane showed that the stress field at point A is the
sum of a pure shear stress state and a uniaxial compressive stress state, with the planes at
zero normal stress inclined at angles equal to ±71◦ with respect to the tensioned diagonal.
As in the RILEM guidelines, the center of the new Mohr circle does not lie on the origin
of the Mohr plane. However, its distance from the origin is larger than it is in the RILEM
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guidelines. This means that the RILEM guidelines underestimate the hydrostatic stress
state at point A. Furthermore, since the radius of the new Mohr circle is larger than the
radius of the RILEM Mohr circle, the RILEM guidelines also underestimate the deviatoric
stress state at point A. As a consequence of the translation of the Mohr circle from the origin,
both the ASTM and RILEM guidelines then overestimate the diagonal tensile strength. In
particular, the new tensile strength is:

• 40% of the ASTM tensile strength;
• 57% of the RILEM tensile strength.

The new proposal made it possible to rework the experimental results of the previous
experimental campaign, in particular those on unreinforced masonry. This led to the
identification of a Young’s modulus, E, and a Poisson’s ratio, v, more consistent with the
experimental evidence in uniaxial compression. In particular, the value identified for v
agrees in order of magnitude with the experimental results on the Poisson ratio in concrete
solids. As it is one order of magnitude lower than the Poisson ratio value usually assumed
to identify the Young modulus with both the ASTM and RILEM guidelines, this constitutes
a further reason for uncertainty on the elastic modulus obtained with the current standards
for the diagonal compression test.

7. Future Developments

As an example of the procedure for identifying elastic moduli, this article has re-
worked the experimental results of a diagonal compression test on reinforced masonry,
with an ineffective reinforcement system. Although the ineffectiveness of the reinforcement
made it possible to state that the results obtained are referable to unreinforced masonry
(URM), a single experimental test is obviously insufficient to identify the elastic moduli
and strength of masonry walls. A proper mechanical characterization, in fact, requires
extensive experimental analysis and statistical treatment of the data obtained. Furthermore,
we cannot entirely exclude that the reinforcement interventions, even if with ineffective
results, have somehow altered the mechanical properties of the masonry. In this sense, the
values provided in this article for E, ν, G, fdc, and fdt can only be considered indicative.
A large experimental campaign on the shear behavior of the URM is therefore desirable,
with results elaborated through the new interpretation of the diagonal compression test.

Finally, it is worth noting that the parametric analysis presented in this article can also
be a guide to identifying the shear behavior of other brittle building materials. Among
others, rammed earth walls and habitable modules 3D printed with earthen materials
deserve a special mention, given the growing interest that these building typologies are
gaining recently.
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Appendix A. Meaning of the Direction Cosines in Equation (68)

With reference to Figure 7a, the direction cosines of the three positive coordinate axes
s, t, and z with respect to the three positive coordinate axes h, v, and z are:

• ah, namely the cosine of the angle between the positive coordinate axis s and the
positive coordinate axis h:

ah = cos(β), (A1)

https://www.mdpi.com/article/10.3390/buildings14010104/s1
https://www.mdpi.com/article/10.3390/buildings14010104/s1
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• av, namely the cosine of the angle between the positive coordinate axis s and the
positive coordinate axis v:

av = cos
(π

2
− β

)

= sin(β), (A2)

• az, namely the cosine of the angle between the positive coordinate axis s and the
positive coordinate axis z:

az = cos
(π

2

)

= 0, (A3)

• bh, namely the cosine of the angle between the positive coordinate axis t and the
positive coordinate axis h:

bh = cos
(π

2
+ β

)

= −sin(β), (A4)

• bv, namely the cosine of the angle between the positive coordinate axis t and the
positive coordinate axis v:

bv = cos(β), (A5)

• bz namely the cosine of the angle between the positive coordinate axis t and the
positive coordinate axis z:

bz = cos
(π

2

)

= 0, (A6)

• ch, namely the cosine of the angle between the positive coordinate axis z and the
positive coordinate axis h:

ch = cos
(π

2

)

= 0, (A7)

• cv, namely the cosine of the angle between the positive coordinate axis z and the
positive coordinate axis v:

cv = cos
(π

2

)

= 0, (A8)

• cz, namely the cosine of the angle between the positive coordinate axis z and the
positive coordinate axis z:

cz = cos(0) = 1. (A9)
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