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The Adriatic Sea hosts diverse marine ecosystems, characterized by rich
biodiversity and unique ecological dynamics. Its intricate coastal habitats and
open waters support a range of species and contribute to the region’s ecological
and economic significance. Unraveling the consequences of the ongoing
climate changes on this delicate environment is essential to ensure the future
safeguard of this basin. To tackle this problem, we developed a biogeochemical
model for the entire basin, with a horizontal resolution of about 2 km and
120 vertical levels, forced by the projections of atmosphere, hydrology and
ocean circulation between 1992 and 2050, under emission scenario RCP8.5.
The changes projected between 2031–2050 and 1992–2011 were evaluated
on ecoregions characterized by di�erent trophic conditions, identified using
a k-medoid classification technique. The results point toward a generalized
oligotrophication of the basin, especially intense in the northern estuarine areas,
driven by a substantial decrease in river discharge projected for the rivers of
the Po Plain. This scenario of unproductive and declining resources, together
with the ongoing warming, salinization, and acidification of marine waters, cast
doubt on the long-term resilience of the Northern Adriatic food web structure,
which has evolved to thrive in high trophic conditions. The outcome of this study
provides the stakeholders with a tool to understand how potential long-term
decreases in the regimes of the Northern Adriatic Rivers could a�ect the marine
ecosystem and its goods and services in the future.
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decrease in river discharge

Introduction

Despite its relatively small size, the Adriatic Sea hosts a variety of marine ecosystems,
that support a range of habitats and species. The Northern Adriatic Rivers carry large
nutrient loads toward the sea, resulting in a nutrient-rich environment (e.g., Solidoro et al.,
2009) on the western side while the north-eastern regions are dominated by oligotrophy
(Gilmartin et al., 1990; Polimene et al., 2006, 2007;Mozetič et al., 2010). Themiddle-eastern
coasts are characterized by relatively small karstic rivers, and nutrient scarcity, which
induce prevalent oligotrophic conditions (e.g., Vilicic et al., 2002). Finally, the southern
part is characterized by relevant estuaries and upwelling in the East, producing a shelf
nutrient-rich area (Marini et al., 2010), and by oligotrophic conditions at the surface layers

Frontiers inClimate 01 frontiersin.org

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2024.1338374
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2024.1338374&domain=pdf&date_stamp=2024-02-02
mailto:lorenzo.mentaschi@unibo.it
https://doi.org/10.3389/fclim.2024.1338374
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fclim.2024.1338374/full
https://orcid.org/0000-0002-7561-618X
https://orcid.org/0000-0003-4765-0775
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Mentaschi et al. 10.3389/fclim.2024.1338374

of the deep waters (e.g., Zavatarelli et al., 2000; Polimene et al.,
2006), though convection events can create phytoplankton blooms
at the surface during winter (e.g., Civitarese et al., 2005; Bensi et al.,
2013; Najdek et al., 2014; Korlević et al., 2015; Batistić et al., 2019).

Such variety allows for the presence of a range of different
biomes. The north-western coastal areas host rich and productive
habitats, with abundant and diversified biocenosis. For example,
seagrass meadows and associated grazers (e.g., Facca et al., 2014),
or sandy, nutrient-rich benthic areas, important for burrowing
animals, such as worms and bivalves (e.g., Fedra et al., 1976;
Scroccaro et al., 2022). The pelagic zone is productive and rich in
biomass, harboring a rich ichthyofauna, and making the Adriatic
Sea one of the richest areas in the Mediterranean Sea (Giani
et al., 2012; Lipej et al., 2022). Such conditions reflect flourishing
economic activities in the area such as fishing (Bastardie et al.,
2017), shellfish farming (e.g., Brigolin et al., 2017) and harvesting
(e.g., Viaroli et al., 2005).

The more oligotrophic environment of the eastern and
southern areas results in pristine and nutrient-poor waters, where
biological communities adapted to nutrient scarcity can thrive.
Such conditions are often regarded as limiting the risk of Harmful
Algal Blooms (HAB), which can have damaging impacts on
ecology and coastal economic activities (e.g., Sellner et al., 2003).
Indeed, the north-eastern part of the Adriatic Sea, which is
prevalently oligotrophic, is not subject to recurrent eutrophication
events since the 1980s (e.g., Faganeli et al., 1985; Giani et al.,
2012; Kralj et al., 2019; Grilli et al., 2020), unlike the more
eutrophic north-western portion of the basin (e.g., Alvisi and
Cozzi, 2016; Brush et al., 2020). It is noteworthy that HABs are
extreme events whose frequency cannot be inferred from the sole
knowledge of the average conditions. For example Totti et al. (2019)
suggest that more frequent HAB episodes are possible amid mean
tendencies toward oligotrophication. On the other hand, the low
levels of nutrients reduce the overall productivity of the marine
ecosystem and can hinder the sustainability of high levels in specific
economic sectors, such as fishing or clam harvesting. Moreover, the
widespread practice of aquaculture in these areas can have negative
consequences on the environment, such as pollution by the release
of excess nutrients, or the aggregation of communities of wild fish
in the proximity of aquaculture sites (e.g., Tičina et al., 2020).

Climate change poses a threat to the delicate physical and
biogeochemical equilibria underpinning this ecological diversity.
Rising temperatures can alter the ecophysiology of marine
organisms, potentially leading to alterations in the nutrient cycles
and to a decrease in nutrients availability. Warmer waters come
with decreased oxygen solubility, which can expand the oxygen
minimum zone and cause further stress on marine organisms
(Keeling et al., 2010). Past studies suggest an imbalanced response
to warming of photosynthesis and respiration, with respiration
rates raising more rapidly than primary productivity, potentially
leading to a decrease in biomass (e.g., O’Connor et al., 2009;
Boscolo-Galazzo et al., 2018; Kralj et al., 2019). Increasing
concentration of CO2 in the atmosphere causes a decline in ocean
pH (ocean acidification, e.g., Gregor and Gruber, 2021; Ma et al.,
2023), with potential wide-range impacts on marine organisms
(Doney et al., 2009). The magnitude of these impacts differs
between taxa. For example, corals, coccolithophores, and mollusks

exhibit the highest declines in calcification, with significant survival
reduction in mollusks (Kroeker et al., 2013). Climate projections
suggest that the global ocean will be affected by increasing
stratification, with consequent oligotrophication and reduction in
productivity (e.g., Fu et al., 2016). Very important for the Adriatic
Sea, shifting precipitation and evapotranspiration patterns and
depletion of alpine glaciers could alter the hydrological regimes of
the river catchments, with substantial changes in the discharge of
freshwater and nutrient loads (e.g., Vezzoli et al., 2015). A major
threat to the Adriatic ecosystem is human-induced changes in
river discharges, connected to agricultural practices and climate
precipitation trends. Alterations in river patterns are known to
significantly impact nutrient loads and marine biogeochemistry
in regions affected by river estuaries (e.g., Cozzi et al., 2018).
Nevertheless, the examination of such effects in the context of
future climate changes is a new endeavor for the Adriatic Sea.
This study marks one of the initial efforts, incorporating river
discharge projections and employing a climate downscaling model
in this exploration.

From a point of view of physical modeling, high-resolution
is needed to account for the complex orography/bathymetry,
and the model must be set up for the correct reproduction of
mesoscale/submesoscale dynamics (e.g., Zavatarelli and Pinardi,
2003). Furthermore, a careful representation of the riverine release
plays a pivotal role in both physics and biogeochemistry in the
Adriatic Basin (Vilibić et al., 2016; Verri et al., 2018, 2024). From the
perspective of biogeochemistry, the Northern Adriatic is extremely
sensitive to the balance of freshwater and nutrients, as well as to
the southward transport of the constituents by the western coastal
currents (e.g., Spillman et al., 2007). A further challenge involves
the need to simulate vastly different conditions within a single
biogeochemical model, notably the contrast between nutrient-
rich conditions in the northwest and oligotrophic conditions in
other areas.

The last decades saw the development of 3D models coupling
transport and biogeochemistry at the Adriatic or sub-Adriatic scale,
with increasing degree of accuracy (e.g., Zavatarelli et al., 2000;
Polimene et al., 2007; Spillman et al., 2007; Scroccaro et al., 2022).
However, up to now, predictions/forecasts of future changes have
only been derived from (a) pioneering research using 1D models
at certain sites (Vichi et al., 2003), and (b) larger-scale 3D models
that lack the resolution needed to accurately describe the intricate
circulation patterns and biogeochemical dynamics of the Adriatic
Sea (e.g., Teruzzi et al., 2014; Macias et al., 2018; Richon et al., 2019;
Butenschön et al., 2021; Reale et al., 2022; Tojčić et al., 2023).

To fill in some of the gaps, within the AdriaClim project
we developed a high-resolution 3D biogeochemical model at the
Adriatic scale, forced by atmospheric, circulation and hydrological
data of a limited area climate model (Verri et al., 2024) downscaled
from a Med-CORDEX (Ruti et al., 2016) simulation under
Representative Concentration Pathway (RCP) scenario RCP 8.5
(van Vuuren et al., 2011). We then examined the model’s results
for two time periods, the past (1992–2011) and the future (2031–
2050), considering a set of Essential Ocean Variables (EOVs,
Muller-Karger et al., 2018), in particular temperature, oxygen
concentration, concentration of chlorophyll-a, inorganic nitrate
and phosphate, phytoplankton biomass, plus pH and Net Primary
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Productivity (NPP). In the reminder of the manuscript the model
is described, together with its ability to accurately reproduce the
biogeochemical dynamics, and the projected changes in relevant
Adriatic ecoregions are discussed.

Materials and methods

Model setup

The AdriaClim biogeochemical modeling system consists of the
Biogeochemical Fluxes Model (BFM) (Vichi et al., 2007), version
5.2 (Vichi et al., 2020), coupled with the offline transport module
Tracer in Ocean Paradigm (TOP) of the Nucleus for European
Modeling of the Ocean (NEMO), version 3.6 (Madec and NEMO
team, 2017; Aumont et al., 2018).

BFM is a well-established open-source community model,
based on the living and non-living Functional Groups approach,
and with variable stoichiometry, capable of reproducing the
main features of the pelagic and benthic lower trophic layers
and biogeochemical cycles. BFM operates by describing the
fluxes of key Chemical Functional Families (Carbon, Nitrogen,
Phosphorus, Silica, Chlorophyll-a) between different living and
non-living Functional Groups (FG) as well as with dissolved
inorganic nutrients (Nitrate NO−

3 , Ammonium NH+

4 , Phosphate
PO3−

4 , Silicate SiO4−
4 ). Our implementation uses a layout

similar to Lazzari et al. (2016) and Cossarini et al. (2021),
with 4 living FGs of phytoplankton (diatoms, autotrophic
nanoflagellates, picophytoplankton, large phytoplankton), 4 living
FGs describing mesozooplankton (omnivorous and carnivorous
mesozooplankton) and microzooplankton (microzooplankton and
heterotrophic nanoflagellates), one bacterial FG, and 4 non-living
FGs for the organic matter (labile and semi-labile Dissolved
Organic Matter – DOM, Particulate Organic Matter – POM, and
inorganic matter). Altogether, the biogeochemical dynamics of
each pelagic cell is described employing 51 state variables. Our
model adopts the approach suggested by Vichi et al. (2004) for
nutrient limitation and bacterial biology, and Lazzari et al. (2012)
for chlorophyll synthesis. Furthermore, as a large portion of the
Adriatic Sea is characterized by shallow depths, we included a
benthic return closure, able to provide an approximate balance
between deposition of organic material and remineralization at
the bottom. As BFM treats each numerical model grid cell as
a separate biogeochemical reactor, it is one-way coupled with
the transport module TOP that uses physical transport fields
and turbulent diffusion coefficients from the output of an Ocean
General Circulation Model-OGCM (Lovato et al., 2020) (Figure 1).

The OGCM was implemented on a domain consisting of a
regular grid covering the whole Adriatic Sea with a horizontal
resolution of ∼2 km and 120 vertical levels. The physical input
(circulation data, surface water balance, river discharge, winds and
shortwave radiation) was provided by the AdriaClim modeling
system, developed to downscale the Med-CORDEX climate model
LMDz-NEMOMED (L’Hévéder et al., 2013) at Adriatic scale, under
scenario RCP8.5. The system includes an atmospheremodel (WRF)
with a resolution of about 6 km covering the Central Mediterranean
area (Fedele et al., 2024), a hydrological model (WRFHydro)
implemented over the same domain as WRF which includes the

NOAH land surface submodel and a double shallow water system
prognostically solving 145 catchments ending into the Adriatic Sea
at about 600m resolution, a marine circulation model (NEMO)
and a wave model (Moulin et al., 2024) implemented on the same
domain as the biogeochemical model i.e., the Adriatic basin with
2 km horizontal resolution.

The OGCM output useful for biogeochemistry consists of the
horizontal (U, V) and vertical (W) components of the velocity,
temperature (T), salinity (S), and vertical diffusivity (K) for the
whole water column. Wind speed, short-wave radiation, and fresh-
water balance (evaporation - precipitation) are provided at the
surface. The river water discharge is provided as a surface boundary
condition at the cells corresponding with the river mouths.
The river chemical inputs consist of river loads of inorganic
nutrients (nitrate, phosphate, silicate from Ludwig et al., 2009)
and carbonate system parameters (Dissolved Inorganic Carbon,
DIC, from Ludwig et al., 2009, and Total Alkalinity, TA, from
Butenschön et al., 2021). As past studies found a strong linear
correlation between runoff and nutrient transport in the Northern
Adriatic (Cozzi and Giani, 2011; Ciglenečki et al., 2020) here we
assumed a proportionality between river discharge and nutrient
load. The atmospheric concentration of CO2 was provided by the
RCP8.5 specification (van Vuuren et al., 2011). The concentrations
of oxygen, DIC, nitrate, phosphate, silicate, and TA at the lateral
open boundary in the Ionian Sea (not shown) were obtained
from Butenschön et al. (2021) and their exchanges are handled
using the Orlanski Normal Propagation of Oblique radiation
scheme (Orlanski, 1976; Marchesiello et al., 2001). A zero-gradient
Neumann scheme was adopted for the open boundary conditions
of the other biogeochemical state variables.

The model simulations comprise two different time windows:
1992–2020 for the baseline period, 2021–2050 for the future
scenario. As marine biogeochemistry contains long-memory
process, and the model takes long before reaching an equilibrium
state, the model was run the first time with initial conditions
estimated from the Copernicus Marine Service (CMS) reanalysis
(Cossarini et al., 2021) for oxygen, DIC, nitrate, phosphate, silicate,
and using constant values for the other constituents. Simulations
were subsequently executed running the 10 years 1992–2011
recursively until reaching dynamic stability, and then using the
state at the end of 2011 to re-initialize the model at the beginning
1992 for the Baseline Scenario Simulation (BSS). The state of
BSS at the end of 2020 was then used to initialize the Future
Scenario Simulation (FSS) for the period 2021–2050. To better
characterize the ongoing tendencies, and the differences between
the biogeochemical state of the Adriatic Sea at the beginning and
the middle of the twenty-first century, we considered the baseline
scenario simulation over the 20 years 1992–2011 (BSS1992−2011),
and the future scenario simulation over the 20 years 2031–
2050 (FSS2031−2050).

Classification of marine ecoregions

To identify the ecoregions of the Adriatic Basin, a classification
was carried out using the K-Medoid methodology (Kaufman and
Rousseeuw, 1987). Similar to K-Means, K-Medoid selects the
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FIGURE 1

Diagram of the AdriaClim o	ine biogeochemical model architecture: BFM is coupled with the transport module of the NEMO modeling framework
and fed with physical input provided by the AdriaClim modeling system and chemical input from Ludwig et al. (2009) and Butenschön et al. (2021).

cluster’s centroid as the data point that has the lowest sum of
distances to all other points in the cluster. The centroid is thus
computed as the cluster’s “Medoid,” rather than its barycenter as
in K-Means, and bound to be an element of the analyzed sample.
This comes with advantages in terms of robustness and flexibility,
most noticeably, a reduced sensitivity to outliers, and the possibility
of adopting customized, non-Euclidean metrics.

In this study, we designed a non-dimensional metric able
to consider both the physical and chemical properties of the
environment. Given 2 geographical points P1 and P2, the distance
ξ is defined as Equation (1):

ξ (P1, P2) =

[∫

(

TN(P2, z)− TN(P1, z)
)2
dz dt

]
1
2

+

[∫

(

[Chl]N(P2, z)− [Chl]N(P1, z)
)2
dz dt

]
1
2

+

[∫

(

[O2]N(P2, z)− [O2]N(P1, z)
)2
dz dt

]
1
2

+κdpt log

{

max
[

depth(P1), depth(P2)
]

min
[

depth(P1), depth(P2)
]

}

(1)

where TN ,
[

Chla
]

N
and [O2]N are the time-varying vertical profiles

of temperature and of the concentrations of chlorophyll-a, and
oxygen, normalized with the field mean and standard deviation,
according to the formula XN = [X −mean (X)] /σX . The last term
is a “depth-penalty” introduced to increase the distance between
points with different depths. Given 2 points P1 and P2, this term
is equal to 0 when depth (P1) = depth (P2), while it increases
logarithmically with the ratio between the depths. If a shallow
point, e.g., with a depth of about 10m, would be compared with
an abyssal point, with a depth of about 1000m, the term would be
roughly equal to 5kdpt . In general, we found good results by setting
kdpt to the low value of 0.02. The results of clustering techniques
such as K-Means and K-Medoid depend on the algorithm seeds,

i.e., on the initial set of first-guess centroids. In this study we
selected 6 locations to diversify the geographic position, depth,
and dynamic/biogeochemical regime (Figure 2A). The number 6
was chosen after several attempts, and allows for the generation
of contiguous clusters, with a good interpretability compared with
subdivisions existing in literature. The algorithm was applied to
a monthly climatology of temperature, chlorophyll-a and oxygen
computed from the baseline simulations BSS1992−2011.

Comparison with observations and
reanalysis

To verify the ability of the model to provide realistic data,
the output of BSS1992−2011 was compared, for each cluster, with
observational climatologies for winter (January, February, March)
and summer (July, August, September). These seasons were
selected as the overall most and least productive ones, due to the
combined effect of nutrient supply and mixing (e.g., Zavatarelli
et al., 1998). To show the overall model’s skill, we also compared
simulation results and observations averaged on the year. The
concentration of chlorophyll-a integrated over the water column
down to the Secchi depth was compared with climatological means
of the CMS color-based satellite observations for theMediterranean
Sea (Volpe et al., 2019). The climatological winter, summer and
year profiles of chlorophyll-a, nitrate, phosphate and oxygen
were compared with those provided by the EMODnet chemistry
climatology from 1969 to today (Giorgetti et al., 2020) and by the
CMS reanalysis from 1999 to present (Cossarini et al., 2021).

Assessment of future changes

Future changes were assessed by comparing the concentrations
of chlorophyll-a, oxygen, phosphate, nitrate, Net Primary
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FIGURE 2

Classification of marine ecoregions based on the baseline scenario (A). Mean satellite and baseline scenario concentrations of chlorophyll-a, for
winter (B, E), summer (C, F), and annual means (D, G). Sat, satellite observations.

Productivity (NPP), phytoplankton biomass and the values of
temperature and pH on the baseline period (1992–2011) vs. the
future period (2031–2050). The values were averaged for each
cluster, over the winter, summer, and the whole year.

Results

Ecoregions of the Adriatic Sea

The clustering technique identifies regions of the Adriatic Sea
characterized by different biogeochemical dynamics, which were
labeled based on their geographic location and trophic regime
(Figure 2A). The regions are:

• Northern Estuarine (NE). This area is defined by the estuaries
of the Northern Adriatic river catchments, in particular the
Po Delta, and by high loads of nutrients. It stands out
as the most nutrient-rich region in the Adriatic Sea. The
prevalently cyclonic circulation of the Northern Adriatic and
itsWestern Adriatic Coastal Current intensification carries the
constituents southward, justifying the extension of the first
cluster along the central Italian coasts. This area overlaps with
the Shallow Northern Adriatic area identified by Zavatarelli
et al. (1998).

• Italy Center-South (ICS). This region comprises the coastal
areas of center and southern Italy, and is defined by the
western middle and southern Adriatic currents (W-MAd
and W-SAd) that transport southward temperature and
constituents, and by lower trophic levels with respect to NE.

• Eastern Coastal (EC). Coastal area of Southern Croatia,
Montenegro and Albania. Characterized by the deltas of
some important rivers, among the others the river system of
Buna-Bojana and Drin, Vjosa, and Neretva. Its circulation is

also influenced by the Levantine Intermediate Water (LIW)
entering the Adriatic Sea through the Otranto Channel.

• Northern Mesotrophic (NM). Comprises a large portion of
the offshore Northern Adriatic and the northern portion of
the Croatia coasts, and shows more oligotrophic conditions
with respect to NE, though still influenced by the hydrological
basins of the Northern Adriatic. It partially coincides with the
Deep Northern Adriatic area identified by Zavatarelli et al.
(1998).

• Intermediate-Depth Center (IDC). Area in the central
Adriatic with a median depth above 100m and a maximum
depth of about 270m, which includes the Middle Adriatic
Pit, and with prevalently oligotrophic conditions. This cluster
stretches southward parallel to the ICS region, in response to
the prevalent W-MAd currents.

• Southern Deep (SD). This is the southern abyssal portion
of the Adriatic, with a median depth of about 800m,
characterized by the Southern Adriatic gyre and affected by the
LIW entering the Adriatic Sea through the Otranto Channel.

Skill vs. historical data

The model reproduces spatial and temporal patterns of
chlorophyll-a qualitatively similar to those provided by color-
based satellite observations, both on an annual and seasonal
basis (Figures 2B–G). The north-western Adriatic basin stands out
as highly productive in model results and satellite observations,
especially during winter, and stretches southward along the Italian
coast, consistent with the prevalent currents. Furthermore, our
model also captures relatively high chlorophyll-a concentrations
along the eastern coasts in proximity to important rivers’ mouths,
especially during winter, though it shows limited ability to
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FIGURE 3

Vertical profiles for winter (A-D, I-M, R-U) and summer (E-H, N-Q, V-Y) for the concentrations of chlorophyll-a (A, E, I, N, R, V), oxygen (B, F, K, O, S,

W), phosphate (C, G, L, P, T, X), nitrate (D, H, M, Q, U, Y), for the ecoregions Northern Estuarine (NE, A–H), Italy Center-South (ICS, L–Q), Eastern
Coastal (EC, R–Y). The thick blue line is the model median, the cyan area is the model interquartile range, the red dots/lines are the EMODnet
climatology median/interquartile range, the hatched areas are the profiles from the CMS reanalysis, the green dot/line is the CMS satellite
observations median/interquartile range at the surface. The model vs. EMODnet bias and Root Mean Squared Di�erence (RMSD) are also reported.
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reproduce the nutrient-rich coastal area at the Albanian coasts.
While our model reproduces annual chlorophyll-a concentrations
that are lower than those from satellite data in nutrient-rich areas,
chlorophyll-a concentrations in oligotrophic areas are higher than
those from CMS satellite imagery during Winter.

The fit with observations noticeably improves when we
compare the model’s vertical profiles of chlorophyll-a with the
EMODnet climatology for each marine ecoregion identified in
the classification, especially during winter (Figures 3, 4). In the
NE region, the bias of median concentration of chlorophyll-
a vs. EMODnet is 0.09 µg L−1, or little more than 10%,
while the Root Mean Squared Difference (RMSD) is 0.1,
<20% of the median values (Figure 3A). During winter the
largest differences with the observations are in Eastern Coastal
(Figure 3R) and in the Intermediate-Depth Center (Figure 4I),
where model output shows a higher concentration of chlorophyll
than EMODnet, and in the Northern Mesotrophic area, where the
model reproduces conditions significantly more oligotrophic than
EMODnet (Figures 4A–H). Notably, during winter, the AdriaClim
model reproduces generally higher concentrations of chlorophyll-
a than the CMS reanalysis and is usually more in line with
the EMODnet estimations. On the other hand, the satellite data
shows concentrations of chlorophyll-a substantially higher than
those from EMODnet in NE and ICS ecoregions during winter.
During summer themodel shows the presence of Deep Chlorophyll
Maxima (DCM) more pronounced than both EMODnet and
CMS reanalysis, with correspondingly lower concentrations of
chlorophyll-a in the proximity of the surface (Figures 3E, N, V, 4E,
N, V). The depth of the DCM is generally well reproduced (e.g.,
Figures 3V, 4N, V).

The vertical profiles of dissolved oxygen concentration
reproduced by the model show a very good agreement with
those of the EMODnet climatology and the CMS reanalysis, in
all ecoregions (Figures 3C, G, L, P, T, X, 4C, G, L, P, T, X).
During winter/summer, the bias of the median profile in the NE
vs. EMODnet is −10.81/11.13µM equivalent to 3.94/3.70% of the
predicted value averaged over the water column. In the notation,
the symbol µM represents a micro-molar concentration (IUPAC,
2019). The RMSD is 11.13/8.15µM, equivalent to 4.05/3.79% of
the predicted value averaged on the water column. The other
ecoregions all exhibit lower biases, and values of RMSD are lower in
winter than in summer, except for NM, where the winter/summer
RMSD is 5.33/3.48 µM.

The concentrations of inorganic nutrients such as phosphate
and nitrate exhibit higher uncertainty, with substantial differences
between BSS1992−2011 and EMODnet, BSS1992−2011 and the
CMS reanalysis, and the EMODnet and the CMS reanalysis.
In NE, the concentration of phosphate shows vertical profiles
significantly higher than both EMODnet and the CMS reanalysis
(Figures 3C, G). In all the other marine ecoregions the BSS1992−2011

concentrations of phosphate are similar to those from the CMS
reanalysis, but substantially lower than those from the EMODnet
climatology (Figures 3L, P, T, X, 4C, G, L, P, T, X). For nitrate
the picture is more diversified: in some areas/seasons our model’s
concentration profiles are closer to those from EMODnet (ICS
summer, NM winter, Figures 3M, 4D), in others to those from the
CMS reanalysis (NE summer and winter, NM summer, SD summer

and winter, Figures 3D, H, 4H, U, Y), in others EMODnet and
the CMS reanalysis are closer to each other than in BSS1992−2011

(ICS winter, EC and IDC winter and summer, Figures 3Q, U, Y,
4M, Q). Similar to phosphate and nitrate, the vertical profiles of
silicate SiO4−

4 concentration exhibit significant differences with
respect to the ones from EMODnet (Supplementary Figures S1,
S2). In particular, the concentration of silicate from our model is
higher than EMODnet in NE (Supplementary Figures S1A, D) and
lower in the deeper layers of SD (Supplementary Figures S2C, F),
while the ecoregions where our vertical profiles most closely align
with EMODnet are ICS (Supplementary Figures S1B, E) and NM
(Supplementary Figures S2A, D).

Projected changes

According to our projections, the Adriatic Sea will experience
strong oligotrophication along with warming, deoxygenation, and
acidification in the next decades. This trend is observable for all
the EOVs considered in this work within the identified marine
ecoregions (Figure 5). The temperature is projected to rise by
<1◦C between 1992–2011 and 2031–2050 within all ecoregions,
with distinct differences between winter and summer, especially
in the shallow areas of the Northern Adriatic. The NE ecoregion
displays the smallest mean annual increase in winter and summer
temperatures (0.28◦C and 1.33◦C), the NM ecoregion the largest
increase (0.76 and 1.41◦C, respectively), with the SD reporting
smaller differences with a mean increase corresponding to 0.91◦C
in both seasons (Figures 5A–C).

The oxygen concentration is also projected to consistently
decline within all marine ecoregions (Figures 5D–F). On an annual
basis, the ICS and the NE are the ecoregions displaying the largest
and smallest decrease in oxygen concentrations (5.46µM and
2.15µM year on year, respectively), and those with the maximum
and minimum increase in temperature. The pH is also projected
to decrease in all marine ecoregions, with relatively small seasonal
variability and annual differences future vs baseline >0.07 in EC,
IDC and SD ecoregions, with the NE showing the lowest difference
(0.03, Figures 5G–I).

According to our model, the nutrient-rich NE and the ICS
and NM marine ecoregion, which are heavily influenced by the
regimes of the Northern Adriatic hydrological catchment, are
projected to experience the greatest decline in biological activity-
related variables, such as NPP, chlorophyll-a and phytoplankton
carbon. In these three ecoregions, chlorophyll-a levels will drop
on average by 49.4%, 14.2%, and 39.6% respectively, while
phytoplankton carbon levels will decrease by 43.5%, 24.6%, and
40.7% year on year, with respect to the baseline period. The
projected change is less pronounced for the other ecoregions
(EC, IDC, SD), with an average decline in chlorophyll-a lower
than 10%, and in phytoplankton C lower than 15% on the
year. Furthermore, these ecoregions exhibit a rise in NPP
(Figures 5J–R).

The concentrations of nutrients such as inorganic
phosphate and nitrate are projected to decrease substantially
across all marine ecoregions in the next decades, especially
during winter. When the annual average is considered, the
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FIGURE 4

As in Figure 3, for the ecoregions Northern Mesotrophic (NM, A–H), Intermediate-Depth Center (IDC, I–Q), and Southern Deep (SD, R–Y).

decrease in phosphate concentration will be >35% in all
ecoregions. In NE, NM and IDC, the phosphate concentration
is projected to decrease by 48.6%, 66.3% and 56.1% respectively.

In the case of nitrate, the decrease in concentrations is
projected to reach 34.6% in NE, 62.8% in NM and 40.2%
in IDC.
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FIGURE 5

Projected changes of temperature (A-C), oxygen (D-F), pH (G-I), Net Primary Productivity (NPP, J–L), chlorophyll-a (M–O), phytoplankton biomass
(P–R), inorganic phosphate (S-U) and nitrate (V-X), in each ecoregion of the Adriatic Sea: Northern Estuarine (NE), Italy Center South (ICS), Eastern
Coastal (EC), Northern Mesotrophic (NM), Intermediate-Depth Center (IDC), Southern Deep (SD), for winter (A, D, G, J, M, P, S, V), summer (B, E, H, K,
N, Q, T, W), and on the year (C, F, I, L, O, R, U, X). At the base of the histogram is reported the projected change for each variable/area, in absolute
terms for T, pH and oxygen, as a percentage for the remaining variables. The symbol µM C, used for NPP and phytoplankton biomass, indicates a
micromolar concentration of carbon equivalents.
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Discussion

Our classification of the marine ecoregions based on the
physical and biogeochemical outputs of the BSS1992−2011 shows a
realistic subdivision of the Adriatic Sea. The NE ecoregion closely
resembles the Shallow Northern Adriatic (SNA) area identified in
the pioneering work by Zavatarelli et al. (1998), who also discussed
the dominant role of river nutrient input in that area. The NM
ecoregion partially coincides with a superimposition of the Deep
Northen Adriatic (DNA) and the northern part of the Eastern
Coastal Region described in Zavatarelli et al. (1998). The other
areas differ significantly from the more traditional subdivision of
the basin into “stripes” in a North-West to South-East direction
adopted in previous studies on physics (e.g., Artegiani et al., 1997;
Vilibić and Supić, 2005;Mantziafou and Lascaratos, 2008; Janeković
et al., 2014) or biogeochemistry (Gacic et al., 1999; Polimene et al.,
2007; the same Zavatarelli et al., 1998 for other areas), often due
to limitations in spatial and temporal coverage related to field-
collected observations. Except for the NM cluster, which combines
mixing mesotrophic coastal and offshore features, the classification
provided in this study results in a separation between sub-areas
with predominant coastal regimes (in clusters NE, ICS, EC) and
areas located offshore (in clusters IDC and SD).

This technique offers a different perspective on how the
Adriatic Sea can be subdivided, in that it can identify marine
ecoregions consistent from the point of view of their physical and
trophic properties. The model capacity to capture the primary
biogeochemical features/variables of the Adriatic ecosystems on
the baseline scenario is demonstrated by the soundness of the
subdivision and the overall correspondence of the vertical profiles
with observations and reanalysis in each of the marine ecoregions.
In particular, the model reproduces nutrient-rich conditions in
the northern portion of the basin, and oligo-mesotrophic median
conditions elsewhere, and correctly detects winter as the most
productive season, in general agreement with the literature (e.g.,
Zavatarelli et al., 1998; Polimene et al., 2007; Fiori et al., 2016).

The vertical profiles of EOVs such as chlorophyll-a, oxygen,
inorganic phosphate, and nitrate show different degrees of
similarity with those from the EMODnet climatology and the CMS
reanalysis. For oxygen the resemblance is remarkable in all the
ecoregions and in both seasons, especially when compared with
EMODnet, showing that the BFM model is capable of accurately
capturing the dynamics of this important parameter (e.g., Di Biagio
et al., 2022).

In comparison to the EMODnet and the CMS reanalysis, the
AdriaClim model shows a systematic tendency to produce a more
pronounced DCM during summer. DCMs tend to develop in
the presence of low vertical mixing, otherwise an intense mixing
would smooth the vertical gradients (e.g., Huisman et al., 2006;
Weiss and Provenzale, 2008; Liccardo et al., 2013). In shallow areas
such as the NE and the NM, the difference between AdriaClim
and CMS can be explained by the lower velocity-sheer-dominated
vertical eddy diffusivity, which comes with a reduced mixing at
the surface (Supplementary Figures S2A, D), together with the
fact that unlike CMS, our model implements a benthic return
closure that withholds the biogeochemical constituents in the
bottom layers of the water column and releases them back to the

pelagic system. The vertical eddy diffusivity in the ICS is lower
than CMS both at the surface (Supplementary Figure S2B), and
below 40m depth, where the chlorophyll-a concentration is at
its maximum (Supplementary Figure S3B). The marked DCM in
the SD ecoregion can be associated with vertical eddy diffusivity
that is significantly lower than in CMS below a depth of 30m
(Supplementary Figure S3F). In the other 2 areas (EC and IDC) the
difference between AdriaClim and CMS seem less connected to the
vertical mixing, as in both cases the CMS vertical eddy diffusivity is
higher at the surface (Supplementary Figures S2C, E) but not in the
deeper layers, where the profiles are both characterized by very low
mixing between 30 and 80m depth (Supplementary Figures S3C,
E). A hypothesis is that in these 2 areas the horizontal circulation
from neighboring areas may play an important role.

The vertical profiles of chlorophyll-a reproduced by
BSS1992−2011 during the winter months often resemble those
from EMODnet more closely, with concentrations higher than
the CMS reanalysis everywhere. This can be related to the more
accurate representation of the rivers in our model with respect to
the CMS reanalysis. Indeed in our modeling system a subset of
71 rivers among the 145 solved by WRFHydro model enter the
marine components NEMO and BFM, following criteria described
in Verri et al. (2024). On the other hand, the CMS reanalysis
considers only 15 rivers flowing into the Adriatic basin with no
rivers on the western coastline south of Po River mouths. The
difference between the surface concentration of chlorophyll-a
determined from satellites, EMODnet, and the models in the NE
and ICS is noteworthy, which suggests a possible overestimation
of color-based satellite estimates in estuarine areas characterized
by high sediment load. Noteworthy, Mozetič et al. (2010) and
Kovač et al. (2018) reported similar results when comparing
long-term time-series data of in-situ measured chlorophyll with
satellited-derived time series in the North Adriatic Sea.

The discrepancies between observed and modeled
concentrations of phosphate and nitrate have many fold causes.
One of these is sparsity and uncertainty in the observations, which
hamper a thorough assessment of the modeled profiles (Guyennon
et al., 2015). Despite the development of Biogeochemical Argo
floats in recent years could change the scenario for large-scale
models (Teruzzi et al., 2014; Salon et al., 2019), these drifters
are not frequently available in a shallow marginal basins such
as the Adriatic Sea. Additionally, according to Zhu and Ma
(2020) using currently available analytical techniques to quantify
phosphate in aquatic environments still presents several challenges.
These include issues with precision in trace-level determination,
compromised analytical functionality in challenging environmental
circumstances, and the instability of in situ PO3−

4 techniques over
extended periods of deployment.

Finally, the fact that these datasets are examined over different
periods (1992–2011 for BSS1992−2011, 1978–2020 for EMODnet and
1999–2011 for CMS) represents a limitation in the comparison
vs. EMODnet and the CMS reanalysis. On one hand, our model’s
goal is to reproduce a reliable historical climate baseline, which
justifies the comparison with climatological fields from different
time frames. On the other hand, the possible presence of underlying
trends could contribute to amplifying the differences between CMS
and EMODnet.
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Oligotrophication trend

The projected tendency confirms trends that have been
observed in historical data on warming (e.g., Shaltout and Omstedt,
2014; Mohamed et al., 2019; Bonacci et al., 2021), oligotrophication
(e.g., Mozetič et al., 2010; Coppini et al., 2013; Cerino et al., 2019;
Novak et al., 2019; Ciglenečki et al., 2020; Penezić et al., 2022),
acidification (Luchetta et al., 2010; Hassoun et al., 2015, 2022;
Giani et al., 2023), and corroborates the results of recent climate
projections at Mediterranean scale (Reale et al., 2022). Our study
provides a closer look at the diversification of the projected changes
within the Adriatic basin.

The oligotrophication trend is particularly strong in the
northern portion of the Adriatic basin, especially in NE, where
the annual NPP and the concentrations of phytoplankton biomass
and chlorophyll-a are projected to decrease respectively by 37.8%,
46.3%, and 54.5% by the 20 years 2030–2050. This sharp change
is mostly due to a decrease in discharge of the Northern Adriatic
rivers projected by the hydrological model (Verri et al., 2024), and
the related reduction in nutrient load. Furthermore, we rely on the
hypothesis, consistent with scenario RCP8.5, that no policy will
be enforced to counteract this tendency. This decrease amounts
to about 35% on the year for the rivers with discharge location
in the Northern Estuarine area, rising to about 40% if the sole Po
Plain is considered (Figure 6, histograms NE and NEPV). In this
regard it is worth mentioning that an early signal of a regime shift
toward oligotrophication was revealed at the beginning of the 1980s
by long time-series of water column nutrients, chlorophyll a, and
phytoplankton biomass (Marić et al., 2012;Marini and Grilli, 2023),
and became more evident at the turn of the 2000s in the Gulf
of Trieste (Cozzi et al., 2020) and in the North Eastern Adriatic
(Djakovac et al., 2012), evidencing main the role of the decline in
Po River discharge (Cozzi et al., 2018) in the North Adriatic basin,
and that of minor rivers in the coastal areas of the Central Adriatic
(Ricci et al., 2022).

The NM ecoregion, strongly influenced by the dynamics of
the northern estuaries via horizontal transport and mesoscale
filaments, also shows a significant decrease in annual biological
activity: −12.1% in NPP, −33.2% in chlorophyll-a, −33% in
phytoplankton biomass year on year. These changes appear aligned
with the recent occurrence of extremely low annual discharges (e.g.,
Gervasio et al., 2023; Montanari et al., 2023; Aragão et al., 2024),
and the low levels of nutrients and chlorophyll-a concentrations
measured in the water column of the NE ecoregion (e.g., ARPAE,
2021; Gašparović et al., 2023). Although it is still too soon to
interpret these data as harbingers of future mean changes, they
surely represent an unprecedented event in our records (Bonaldo
et al., 2023; Montanari et al., 2023). A climate study conducted
at high resolution on the Po catchment reports a decrease in
discharge comparable to what is presented in Figure 6 by the end
of the century under scenario RCP8.5 (Vezzoli et al., 2015). On
the other hand, our results are only in partial agreement with past
climate studies based on ensembles of lower-resolution CORDEX
models, that point toward a significant increase in the intensity
and frequency of droughts in the Po Plain, at 1.5◦ and 2◦ of
global warming levels, albeit without a significant change in mean
discharge, and even an increase in the high extremes (Cammalleri

et al., 2020; Mentaschi et al., 2020; Naumann et al., 2021; Zittis
et al., 2021; Dottori et al., 2023). These studies reveal a substantial
variability in the projected changes of hydrological regimes within
the Adriatic Sea catchments, dependent on the specific model and
scenario employed. At any rate, the findings of this study offer
insights into the potential repercussions of prolonged decreases
in the discharge of Northern Adriatic Rivers. This scenario gains
more significance in light of the recent unprecedented low flow
observed in the rivers of the Po Plain. If the trends reproduced by
our model will be confirmed by future observations, these changes,
together with warming and acidification, can potentially threaten
the resilience of the nutrient-rich ecosystems of the Northern
Adriatic, and the sustainability of related human activities.

The growth in NPP in all the remaining areas mirrors
an increase in plankton metabolic rates related to the rise in
temperature. This outcome, which corroborates a result by Reale
et al. (2022) for the Mediterranean Sea, does not contradict past
climate studies that found a decrease in NPP at a global scale
related to global warming (e.g., Fu et al., 2016; Tagliabue et al.,
2021). In general, such reduction is associated with an increase
in ocean stratification at a global scale, while according to our
model, in the Adriatic Sea the stability of the water column is
projected to decrease in response to the reduction in river discharge
and the associated increase in surface salinity (Verri et al., 2024).
The growth in NPP occurs together with a generalized decrease
in chlorophyll-a and in phytoplankton biomass. This could be
due to the fact that amid warming conditions the heterotrophic
respiration rates tend to rise faster than photosynthetic efficiency
(e.g., O’Connor et al., 2009; Boscolo-Galazzo et al., 2018; Kralj et al.,
2019). A temperature-related intensification of the biogeochemical
cycles could also justify the sharp decrease in inorganic nutrients,
especially phosphate, together with the reduction in river discharge
and nutrient load (Figure 6), along with a decrease in nitrate and
phosphate entering through the open boundary condition that
will mainly affect the southern areas. Interestingly, the decrease in
river discharge is especially strong in the EC ecoregion but with
less dramatic effects (Figure 6), than in the NE, as the EC is a
less estuarine and deeper area, which is influenced by the abyssal
dynamics of SD, as well as by the southern boundary conditions.
Overall, marine ecoregions except the NE and the NM display
a noteworthy decline in phytoplankton biomass, phosphate and
nitrate concentrations, and a lower reduction in chlorophyll-a, thus
confirming a predominant oligotrophication trend in the future.

The projected changes in mean oxygen concentration, all
negative, are mostly explained by the warming-related reduction
in solubility (e.g., Matear and Hirst, 2003; Schmidtko et al., 2017).
Another possible cause mentioned in the literature, such as the
increased ocean stratification (Helm et al., 2011), may indirectly
affect the southern part of the Adriatic Sea through the open
boundary (Verri et al., 2024). The acidification trend obtained
within the different regions of the Adriatic Sea is of the same order
of changes detected at the global scale (e.g., Doney et al., 2009) as
well as in the Mediterranean Sea (Cossarini et al., 2021; Hassoun
et al., 2022; Reale et al., 2022; Solidoro et al., 2022; Kristiansen et al.,
2024). The Northern Estuarine area stands out as more acidic than
the others at present day, and at the same time less affected by
acidification, hinting at the important role that rivers can play as
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FIGURE 6

Projected changes of river discharge, in the ecoregions located along the coasts: Northern Estuarine (NE), Italy Center South (ICS), Eastern Coastal
(EC), Northern Mesotrophic (NM), and in the NE region restricted to the Po Plain (NEPV), for winter (A), summer (B), and on the year (C). The projected
percentage change of discharge is reported at the base of the histogram.

sources of carbon and alkalinity, already observed in past studies
(Müller et al., 2016; Butenschön et al., 2021; Gomez et al., 2021;
Reale et al., 2022), and object of further research in future projects
on the Adriatic Sea. Indeed, in the literature this behavior is
associated with the fact that in the Northern Adriatic Sea the TA
is in the upper range of that measured in the Mediterranean Sea,
primarily because riverine inputs transport carbonates dissolved
from Alpine dolomites and karstic watersheds (Brush et al., 2020).
Acidification poses a serious threat to marine life, as it increases
the undersaturation of aragonite. Ocean acidification has adverse
effects on marine ecosystems, and compromises their capacity to
provide functions and services, the provision of ecosystem services
including mariculture and fisheries, with important consequences
on local economies within the Mediterranean Sea (Partelow
et al., 2023). Multiple lines of evidence, ranging from simulated
experiments and laboratory studies have demonstrated the negative
effects of global warming and ocean acidification on phytoplankton
community structure (Dutkiewicz et al., 2015), fish eco-physiology
and behavioral performances (Cattano et al., 2018), as well as on
calcification, larval production and midstage growth in farmed
bivalves (Barton et al., 2012; Gazeau et al., 2014), which play
an important role in Northern Adriatic’s ecology and economy
(Lacoue-Labarthe et al., 2016).

Final remarks

The Adriatic Sea is a unique basin due to its semi-enclosed
geomorphology, variable depth, and diversified trophic state,
with nutrient-rich conditions prevailing along the north-western
coasts, and oligotrophic conditions elsewhere. According to our
projections, the basin will be affected by oligotrophication,
acidification and deoxygenation in the next decades, confirming
findings from earlier studies, both on historical and climate data.
Our high-resolution model reveals that projected trends across
the Adriatic Sea are diverse and related to the various trophic
conditions in its sub-regions as well as to many underlying causes.
For instance, alterations in hydrological regimes are particularly
relevant in the shallow Northern Adriatic, whereas shifts in

stratification will have a more pronounced impact on mesotrophic
and oligotrophic regions of the central-southern Adriatic. In this
respect, the classification of the marine ecoregion employed in
this study served as a useful tool to identify local dynamics and
influencing factors.

The oligotrophication is projected to be particularly intense
in the shallow regions of the North Adriatic basin by 2031–2050.
This result comes with the clear limitation that it was obtained
downscaling a single Med-CORDEX model, and is associated with
low river discharge, which was most severe in the Po Plain. If
confirmed by future research on climate models and by an evident
trend in current data, this tendency, along with the ongoing
acidification and warming, casts doubt on the resilience and long-
term sustainability of the nutrient-rich marine ecosystem of the
Adriatic Sea. Oligotrophy is often regarded as a healthy state,
and even a desirable outcome of policies devised to counter past
conditions of nutrient pollution and eutrophication (e.g., Justić,
1987; Tsiamis et al., 2013; Fiori et al., 2016; Giovanardi et al., 2018;
Le Fur et al., 2019). On the other hand, excessive oligotrophication
can come with unproductive and declining biological resources,
especially in ecosystems long evolved to be supported by high
trophic conditions (Stockner et al., 2000). In this sense, the findings
of this study provide insight into how the projected decline in
the hydrological regimes of the Northern Adriatic could negatively
affect the future of the marine food web structure. The ongoing
and projected oligotrophication of the Adriatic Sea warrants deeper
investigation, in view of the potential harm it poses to important
sectors of the economy such as fisheries. This aligns with the
concern, recently expressed by the European Commission, on the
resilience and sustainability of healthy ecosystems, and with the
objectives stated by the Sustainable Development Goal (SDG) 14
of the United Nations, “life below water”.
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Djakovac, T., Degobbis, D., Supić, N., and Precali, R. (2012). Marked reduction
of eutrophication pressure in the northeastern Adriatic in the period 2000–2009.
Estuarine Coast. Shelf Sci. 115, 25–32. doi: 10.1016/j.ecss.2012.03.029

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean
acidification: the other CO2 problem. Ann. Rev. Marine Sci. 1, 169–192.
doi: 10.1146/annurev.marine.010908.163834

Dottori, F., Mentaschi, L., Bianchi, A., Alfieri, L., and Feyen, L. (2023). Cost-effective
adaptation strategies to rising river flood risk in Europe.Nat. Clim. Change 13, 196–202.
doi: 10.1038/s41558-022-01540-0

Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T.,
et al. (2015). Impact of ocean acidification on the structure of future phytoplankton
communities. Nat. Clim. Change 5, 1002–1006. doi: 10.1038/nclimate2722

Facca, C., Ceoldo, S., Pellegrino, N., and Sfriso, A. (2014). Natural recovery and
planned intervention in coastal wetlands: venice lagoon (Northern Adriatic Sea, Italy)
as a case study. The Sci. World J. 2014, 1–15. doi: 10.1155/2014/968618
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