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Abstract Collectiveness is an important property of many
systems—both natural and artificial. By exploiting a large number of
individuals, it is often possible to produce effects that go far beyond
the capabilities of the smartest individuals or even to produce
intelligent collective behavior out of not-so-intelligent individuals.
Indeed, collective intelligence, namely, the capability of a group to
act collectively in a seemingly intelligent way, is increasingly often a
design goal of engineered computational systems—motivated by
recent technoscientific trends like the Internet of Things, swarm
robotics, and crowd computing, to name only a few. For several
years, the collective intelligence observed in natural and artificial
systems has served as a source of inspiration for engineering ideas,
models, and mechanisms. Today, artificial and computational
collective intelligence are recognized research topics, spanning
various techniques, kinds of target systems, and application domains.
However, there is still a lot of fragmentation in the research
panorama of the topic within computer science, and the verticality
of most communities and contributions makes it difficult to extract
the core underlying ideas and frames of reference. The challenge is
to identify, place in a common structure, and ultimately connect the
different areas and methods addressing intelligent collectives. To
address this gap, this article considers a set of broad scoping
questions providing a map of collective intelligence research,
mostly by the point of view of computer scientists and engineers.
Accordingly, it covers preliminary notions, fundamental concepts,
and the main research perspectives, identifying opportunities and
challenges for researchers on artificial and computational collective
intelligence engineering.
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1 Introduction

Nowadays, technical systems are evolving in complexity: they are increasingly large scale, heteroge-
neous, and dynamic, posing several challenges to engineers and operators. For instance, progress
in information and communication technology (ICT) is promoting a future where computation is
deeply integrated into a large variety of environments: our bodies, homes, buildings, cities, planet,
and universe. In other words, the vision of pervasive and ubiquitous computing is stronger than
ever, with an increasing trend toward the mass deployment of a large number of heterogeneous
devices nearly everywhere, to improve existing applications and create new ones. However, we
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still seem quite far from exploiting the full potential of the interconnected networks of devices at
our disposal.

Nevertheless, there is some progress. New paradigms and solutions have been proposed, often
drawing from that powerful source of mechanisms and solutions that is nature. Indeed, we are wit-
nessing a long-term research endeavor aiming at bringing powerful properties and capabilities of
living systems into technical systems (Stein et al., 2021). Intelligence, evolution, emergence of novel
capabilities, resilience, and social integration (Bellman et al., 2021; Stein et al., 2021) are often ob-
served in natural, living systems and considered important features of artificial, engineered systems
as well. Indeed, computer scientists and engineers are increasingly often interested not only in mak-
ing individual devices smarter but also in making whole ecosystems of devices (and people) more
collectively intelligent. Creating collective intelligence (CI) in artificial systems, however, is challeng-
ing. Indeed, various computer science and engineering fields, such as multiagent systems (MASs)
(Wooldridge, 2009) and swarm robotics (Brambilla et al., 2013), have often encountered problems
related to this “CI challenge.” Moreover, the generality of the problem and the possibility of trans-
ferring ideas and techniques across fields have motivated the emergence of a general research field
specifically aimed at studying how to build CI in artificial systems, also known under terms such
as artificial collective intelligence (ACI) (Tumer & Wolpert, 2004; Zheng et al., 2018) and computational
collective intelligence (CCI) (Badica et al., 2014).

There exist some surveys on CI/ACI, but they tend to adopt specific viewpoints, limiting the
overall scope of the study, such as models for social computing systems (Suran et al., 2020),
interaction modality (He et al., 2019), or large-scale cooperative MASs (Tumer & Wolpert, 2004).
The main goal of this article is to review the concepts, models, and perspectives needed for the
engineering of ACI. We can say that the article mainly considers cyber-physical collectives as target systems,
namely, groups of interconnected computing devices, possibly situated in physical environments
and possibly involving “humans in the loop” (Schirner et al., 2013), which are to be thought of
as “programmable platforms” for services and applications benefiting from the CI emerging from
their activity. The idea is to provide a research map of CI for computer scientists and engineers,
generally useful for the broad technoscientific community.

In summary, we provide the following contributions:

� We perform a scoping review (Petticrew & Roberts, 2008), different from existing surveys in
scope and focus, covering concepts, models, and perspectives related to CI, ACI, and their
(software) engineering, which can also be seen as a foundation for more systematic reviews.

� We provide a map and taxonomy of the ACI field by connecting it with related fields and
providing categories to frame research works on ACI.

� We outline opportunities and challenges for further research, in terms of target domains
and interesting developments in existing methods.

In other words, we provide a broad overview of the field of CI/ACI, larger in scope and more
oriented toward software systems engineering with respect to He et al. (2019), Malone and Bernstein
(2015), Suran et al. (2020), and Tumer and Wolpert (2004).

The article is organized as follows. First, a set of broad scoping questions is elicited, to pro-
vide a structure for the article and its discussions. After this, a survey of existing reviews relevant
to CI is presented, also to motivate the perspective of this article. Then, the preliminary concepts
of a “collective” and “(individual) intelligence” are briefly reviewed. On this basis, to understand
what CI is, some reference definitions, examples, models, and classifications from the literature
are reviewed. Then, to discuss how CI can be engineered, a number of perspectives are consid-
ered, under which some main approaches for CI engineering are pointed out. Building on such a
presentation of approaches, a discussion of opportunities and challenges related to CI engineering
is developed, providing directions for further research. Finally, a wrap-up is provided, with some
conclusive thoughts.
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2 Method

Our goal is to scope the large and fragmented area of (artificial) CI to identify its key concepts,
relevant perspectives, research problems, and gaps—with an emphasis on its engineering and com-
putational/artificial intelligence (AI) side. Accordingly, we perform a scoping review (Petticrew &
Roberts, 2008). This tool can be preferred over systematic reviews whenever specific research ques-
tions are hard to identify or ineffective or when the goal is to identify the types of available evidence
or to clarify notions and key characteristics/factors related to a concept (Munn et al., 2018). Indeed,
we seek to provide a map of the field, supporting more focused and systematic reviews in the future.

We use a question-based method to drive the investigation and selection of the bibliography of
this manuscript. In particular, we consider the following scoping questions (SQs):

SQ0) What is a collective?

SQ1) What is (individual) intelligence?

SQ2) What is CI?

SQ3) What behaviors can be termed “collectively intelligent”? Are there paradigmatic
examples?

SQ4) What are the requirements for CI?

SQ5) What relationships exist between individual intelligence and CI?

SQ6) How does CI unfold/emerge?

SQ7) How can CI be measured?

SQ8) How can CI be built artificially/computationally?

SQ9) What is the state of the art of (computational) CI?

SQ10) How is the research community on CI structured?

SQ0–SQ1 cover the preliminary concepts underlying the notion of CI, setting the necessary back-
ground for addressing SQ2–SQ3 (which are about what CI is) and SQ4–SQ7 (which are about
the factors, characteristics, and mechanics of CI). Then, SQ8 is about the problem of engineering CI, and
SQ9–SQ10 are meta-questions concerning research in the field. Notice that these are broad, scoping
questions aimed mainly at providing directions for the search and identification of the research
works included in the survey.

3 Tertiary Study

To motivate the need for a survey on CI, we performed a tertiary study in which secondary studies
(e.g., surveys, systematic reviews) and collections were reviewed. We organize these according to
whether they consider CI in its generality (i.e., abstracting from its applications and areas) or focus
on its artificial/computational form (ACI/CCI), its swarm-like form, or specific kinds of collectives
or goals. Therefore this section also provides a partial answer to SQ10.

In general, we can observe a lack of comprehensive reviews and maps of the CI field. From this
situation, we draw a motivation for this article: providing a map of the topic, especially aimed at
computer scientists and engineers, showing different perspectives and providing some highlights
from the state of the art in ACI.

3.1 Reviews on CI as a General Topic
Two main surveys to date aim at addressing CI as a general topic. He et al. (2019) analyzed CI
across different fields based on a taxonomy that distinguishes between isolation, collaboration, and
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feedback-based CI paradigms. Suran et al. (2020) performed a systematic literature review to elicit a
general model of CI and its attributes, with a focus on social computing. These two contributions
considered, integrated, and somewhat subsumed previous, more limited, or less general CI models
and reviews (Krause et al., 2010; Lykourentzou et al., 2009; Salminen, 2012; Yu et al., 2018), and so
they will be discussed more extensively in later sections. However, to the best of our knowledge,
no comprehensive mapping studies provide a broad overview of the field for computer scientists.

3.2 Multidisciplinary Collections
In Malone and Bernstein (2015), essays on CI were collected from different fields, including
economics, biology, human–computer interaction, AI, organizational behavior, and sociology. In
Millhouse et al. (2021, p. 1), a collection of contributions from a workshop gathering scientists in
different areas was provided, with the goal of sharing “insights about how intelligence can emerge
from interactions among multiple agents—whether those agents be machines, animals, or human
beings.”

3.3 Reviews on ACI/CCI
The article by Tumer and Wolpert (2004) surveys CCI systems across the categories of (a) AI and
machine learning (ML), including MASs; (b) social science–inspired systems, such as those found in
economics and game theory; (c) evolutionary game-theoretical approaches; (d) biologically inspired
systems, such as swarm intelligence, Artificial Life, and population approaches; (e) physics-based
systems; and (f) other research fields ranging from network theory to self-organization. This is a
very rich survey but covers research published before the year 2000 and is slightly focused toward
automatic and utility-based approaches.

The editorial by Jung (2017) reviewed special issue papers on the integration of CCI and big data,
where it is considered how data-driven CI can help in (a) collecting data, (b) analyzing data, and
(c) using data, for example, to support decision-making.

The review by Rossi et al. (2018) provided a survey and taxonomy of multiagent algorithms
for collective behavior, classified into consensus, artificial potential functions, distributed feedback
control, geometric algorithms, state machines and behavior composition, bio-inspired algorithms,
density-based control, and optimization algorithms. What emerges is a rather sharp distinction be-
tween low-level (e.g., bio-inspired self-organization) and high-level coordination.

3.4 Reviews on Swarm Intelligence
Several reviews on swarm intelligence have been published (Brambilla et al., 2013; Chakraborty &
Kar, 2017; Dorigo & Stützle, 2019; Figueiredo et al., 2019; Fister et al., 2013; Kolling et al., 2016;
Mavrovouniotis et al., 2017; Navarro & Matía, 2013; Nguyen et al., 2020; Rajasekhar et al., 2017;
Schranz et al., 2021; Yang & He, 2013; Zedadra et al., 2018; Zhang et al., 2015). In the swarm
intelligence field, a large part of research is devoted to devising (meta-)heuristics and algorithms for
solving complex optimization problems. Mavrovouniotis et al. (2017) focused on swarm algorithms
for dynamic optimization, namely, in settings where the environment changes over time.

Moreover, reviews in this context have often adopted an angle based on what natural system
inspired swarm intelligence mechanisms. For instance, Rajasekhar et al. (2017) provided a survey on
algorithms inspired by honey bees, for example, based on mating, foraging, and swarming behaviors
of honey bees; similar surveys exist for bat algorithms (Yang & He, 2013), firefly algorithms (Fister
et al., 2013), ant colony optimization (Dorigo & Stützle, 2019).

Some surveys have considered swarm intelligence applied to specific problems, such as
self-organizing pattern formation (Oh et al., 2017), feature selection (Nguyen et al., 2020), cluster-
ing (Figueiredo et al., 2019), green logistics (Zhang et al., 2015), and collective movement (Navarro
& Matía, 2013). Other surveys have considered swarm intelligence in particular contexts or as ex-
hibited by particular kinds of systems, such as Internet of Things (IoT) systems (Zedadra et al.,
2018), cyber-physical systems (CPSs; Schranz et al., 2021), and robot swarms (Brambilla et al., 2013;
Kolling et al., 2016).
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3.4.1 Reviews of CI for Specific Systems and Settings
Reviews from specific viewpoints have included collections and surveys on human CI (Salminen,
2012), deep learning (Ha & Tang, 2021), enterprise information systems (Nguyen et al., 2019), and
sociotechnical systems supported by 5G communications (Narayanan et al., 2022).

Salminen (2012) performed a literature review of CI in the human context, grouping contribu-
tions into (a) micro-level, emphasizing enabling factors; (b) emergence (or meso-) level, emphasizing
how global patterns arise from local activity; and (c) macro-level, emphasizing the kinds of system
output. A review of human CI by a crowd science perspective has been provided by Yu et al. (2018).
Krause et al. (2010) reviewed and compared swarm intelligence in animals and humans.

Ha and Tang (2021) performed a survey of recent developments on the embedding of CI princi-
ples into deep learning methods. They discussed, for example, how CI can help in devising novel ar-
chitectures and training algorithms and recent works on multiagent (reinforcement) learning. Studies
like this one are important because they elicit and strengthen transdisciplinary relationships, which
are key to complex interdisciplinary fields like CI.

Narayanan et al. (2022) provided a survey of the CI emerging in human–machine sociotechnical
systems supported by 5G communications. The discussed applications included road traffic con-
trol, unmanned aerial vehicles, smart grid management, and augmented democracy. The point is
that to realize their full potential, these kinds of decentralized sociotechnical systems often require
proper connectivity properties and capabilities to support and foster the emergence of CI. For in-
stance, from the analysis, the authors foresaw that the 5G communication technology can promote
CI by enhancing aspects like connectivity with neighbor nodes, interaction protocols, knowledge
exchange, and the exploration–exploitation trade-off via improved speed, latency, and reliability.
On the other hand, significant challenges will be addressed by current and, it is hoped, by future
research in terms of security, privacy, and radio resource management.

4 Preliminary Concepts

This section provides an introduction to the notions of collectives and individual intelligence, hence
addressing SQ0 and SQ1 and providing preliminary concepts for introducing and discussing CI in
the next section.

4.1 Collectives
Informally, a collective is a (possibly dynamic) group of largely homogeneous individuals, which are
also called the members of the collective. Different works may use different or more specific defi-
nitions for a collective. Different fields often target different kinds of collectives, often resulting in
implicit assumptions.

Devising a general and comprehensive characterization of collectives is an open research prob-
lem, addressed in the context of mereology, namely, the study of parthood relations, and ontology, namely,
the study of “what there is.” In the literature, a few formal theories attempt to deeply characterize
collectives and collective phenomena (Bottazzi et al., 2006; Masolo et al., 2020; Galton & Wood,
2016; Wood & Galton, 2009).

For instance, in Wood and Galton (2009), a taxonomy of collective phenomena is provided,
along the classification criteria of membership (concerned with the identity and cardinality of the
members of a collective), location (of the collective as well as of its members), coherence (the source
of “collectiveness”), roles (if members are distinguished by roles), and depth (concerning levels of
collectives). In particular, two main sources for collectiveness can be devised: internal or external
causes, and shared purposes or goals. Regarding depth, it is worth noticing that, unlike the componenthood
relation in composites, membership in collectives is generally not transitive (Masolo et al., 2020).
Composites can be defined as structured pluralities or groups of parts, called components, playing
specific functions (Masolo et al., 2020). In the literature, it is generally assumed that composites are
heterogeneous, whereas collectives are homogeneous (Masolo et al., 2020).
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Moreover, a collective is often intended to be a “concrete particular” (i.e., not an abstraction like
a mathematical set) and a “continuant” (i.e., a particular existing and possibly changing over a time
span) (Wood & Galton, 2009). Defining a general, comprehensive, and precise characterization or
taxonomy of collectives is not trivial (Wood & Galton, 2009). For instance, certain collectives may
require a certain number of members or roles to be filled to exist (Wood, 2016) or may change
identity following certain changes in their composition. Sometimes collectives may be abstracted by
specific collective properties or collective knowledge (Nguyen, 2008). Collectiveness may also be
considered as a degree, and hence a quantifiable property (Daniels et al., 2016) of phenomena and
groups of individuals.

There exist several related group-like notions, which differ, for example, by perspective, the key
relation between items, or the fundamental property of the group. Some of these group-like notions
are summarized in Table 1, with a proposed classification—following Masolo et al. (2020)—though
different meronomies are possible. A collective is a particular kind of plurality or group. Crowds,
swarms, herds, flocks, and schools can generally be considered specific kinds of collectives. Or-
ganizations and systems might be modeled as constructs based on the structural arrangement
and heterogeneity of composites but are also amenable to being characterized as collectives.

For example, for the notion of intentional stance (Dennett, 1989), it may make sense to adopt a
collective stance in which “the human species [a group] is viewed as a single organism” (Gaines, 1994,
p. 19), though the idea of collective intentionality is problematic and the subject of intense philosophical
debate (Schweikard & Schmid, 2013). Indeed, we believe that the perspective of collectiveness can
provide a complementary point of view to that of an individual for understanding and engineering
various sorts of systems involving groups of individuals. However, when addressing themes involv-
ing collectives (such as CI), it is important to clarify what kinds of collectives are addressed, as this
would help to clarify the assumptions and generality of a specific contribution.

4.2 Intelligence
Intelligence is a controversial and elusive concept subject to philosophical debate (Legg & Hunter,
2007), best understood as a nomological network of constructs (Reeve et al., 2011). Etymologically,

Table 1. Common group-like notions addressed in computer science and engineering.

Concept (Typical) parent concept (Typical) defining properties

Plurality; collection; group; set Set-inclusion

Composite Plurality Componenthood; heterogeneity

Collective Plurality Membership; homogeneity

Crowd Collective Nature (humans)

Swarm Collective Nature (insect-like)

Robot swarm Swarm Nature (simple robots); structure(high numbers)

Herd; flock; school Collective Nature (animals)

Organization Composite/collective Structure; roles

System Composite/collective Interacting elements; boundary

Multiagent system System Nature (agency)
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intelligence comes from Latin intelligere, which means “to understand.” It can be defined as “the global
capacity of the individual to act purposefully, to think rationally, and to deal effectively with the
environment” (Wechsler, 1946, p. 7) or as the property that “measures an agent’s ability to achieve
goals in a wide range of environments” (Legg & Hunter, 2007). In general, there are two different
interpretations, intelligence as either a collection of task-specific skills or a general learning ability
(Chollet, 2019), which reflect the distinction between crystallized and fluid abilities, respectively.

Problems about intelligence include, for instance, its definition and modeling, such as devising
the structure of intelligence (Reeve et al., 2011), its relation with action, its measurement and evalu-
ation, its analysis, and its construction and development.

Concerning the theories of intelligence, there are two main traditions (Reeve et al., 2011): the
psychometric tradition, based on the number and nature of basic cognitive abilities or factors, and the
developmental or holistic perspective, based on acquired intellect.

The problem of the measure of intelligence (Chollet, 2019; Hernández-Orallo, 2017) is of course
related to what representation or model of intelligence is considered and is complicated by the
need to distinguish between causality and correlation, select a representative set of environments
for evaluation, and so on. Carroll (1993) defines an ability (i.e., an intelligence factor) as a source of
variance in performance for a certain class of tasks. Measuring intelligence is based on factor analysis,
that is, it works by running specific tests (observables) and using factors (unobservables) as possible
explanations for correlations among the observables, describing their variability. It is expected that
the nature of the entity whose intelligence we are considering would drive and require the definition
of suitable factor models.

Various taxonomies of intelligence have been proposed over time. A common distinction is
between natural (van Gerven, 2017) and artificial intelligence (Russell & Norvig, 2020). Both can be
considered under the unifying notion of abstract intelligence (Wang, 2009).

5 Understanding Collective Intelligence

On the basis of the preliminary concepts introduced in the previous section, this section focuses
on what CI is, according to literature, discussing definitions, examples, models, and the main clas-
sifications of CI (namely, ACI and CCI) in which we are interested hence addressing SQ2 to SQ7.
Understanding the goals, characteristics, and main frames of reference of CI is important before
turning to the problem of CCI engineering in the next section.

5.1 Definitions and Characterizations of Collective Intelligence
CI is the intelligence that can be ascribed to a collective—where a collective is a multiplicity of
entities (commonly characterized as discussed in the previous section). Indeed, by abstracting a
collective as a whole, namely, as a higher-order individual in turn (consisting of other individuals, which
are its members), it should be possible to transfer characterizations of individual intelligence to it.

Table 2 reports some definitions of CI taken from the literature. From them, it is possible to see
recurrent as well as peculiar aspects of CI characterizations.

5.1.1 Reuse of (Individual) Intelligence Definitions
Some definitions do not attempt to redefine “intelligence” but merely bring existing characteriza-
tions of intelligence, commonsense acceptations, or its general meaning as a nomological network of
concepts (Reeve et al., 2011) to the collective realm. This has the advantages of simplicity, generality,
and openness, which may promote multi-, inter-, and transdisciplinarity.

5.1.2 General Versus Task-Specific
If we reuse existing notions of intelligence, it means that we may consider how different definitions
in turn apply to collective entities. For instance, similarly to individual intelligence, CI may be con-
sidered as a general problem-solving ability or as a set of specific skills. Evidence for the existence
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Table 2. Some definitions of CI from the literature.

Reference Definition Remarks

Malone and
Bernstein
(2015, p. 1)

“Groups of individuals acting collectively in ways
that seem intelligent”

• “Reuse” of the notion of
intelligence

• Collective action

Nguyen et al.
(2009, p. v)

“The form of intelligence that emerges from
the collaboration and competition of many individuals
(artificial and/or natural)”

• Emergence
• Mechanisms (collaboration,

competition)
• Members of different nature

He et al. (2019,
P. 170213)

“Collective intelligence (CI) refers to the
intelligence that emerges at the macro-level of a
collection and transcends that of the individuals.”

• Emergence (transcendence)
• Levels (macro, micro)

Tumer and
Wolpert (1999,
p. 3)

“[COllective INtelligence (COIN)] Any pair of a
large, distributed collection of interacting computational
processes among which there is little to no
centralized communication or control,
together with a ‘world utility’ function
that rates the possible dynamic histories
of the collection.”

• Requirements (interaction,
decentralization)

• Embedded metric

Szuba (2001,
p. 65)

“We can say that the phenomenon of CI has
emerged in a social structure of interacting agents
or beings, over a certain period, if the weighted sum
of problems they can solve together as a
social structure is higher during the whole
period than the sum of problems weighted in the
same way that can be solved by the agents
or beings when not interacting”

• Requirements (social structure,
interaction)

• Embedded metric
• Dynamic property
• Negative and positive CI

Lykourentzou
et al. (2009,
p. 134)

“Collective intelligence (CI) is an emerging research
field which aims at combining human and machine
intelligence, to improve community processes
usually performed by large groups.”

• Hybrid or human–machine CI

of a general CI statistical factor c in human groups has been provided by Woolley et al. (2010), where
such a factor is shown to be more correlated with average social sensitivity and diversity, rather than
with average or maximum individual intelligence of the members.

5.1.3 Collectives of Different Natures
Some definitions largely abstract from the nature of collectives (e.g., “collections” or “groups of
individuals,” “artificial and/or natural”), some assume a minimal set of characteristics for individuals
(agency, ability to interact, etc.), and some require that the individuals be connected in some way
(e.g., interaction, existence of social structures).

5.1.4 Different Sources for Collectiveness and Mechanisms for CI
Terms like interaction, collaboration, competition, and social structure might be used to further constrain the
scope of CI to particular kinds of collectives or to different mechanisms thereof that are possible
for supporting CI.
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5.1.5 Connection to Emergence
Various definitions build on the notion of emergence, which relates to the production, in a system, of
radically novel, coherent macro-level patterns from micro-level activity (Wolf & Holvoet, 2004).

5.1.6 Phenomenological Approach
Similarly to emergence, which is often studied phenomenologically (Minati, 2018; Rainey &
Jamshidi, 2018), some CI definitions adopt a phenomological standpoint where the focus is not
on what CI actually is but on the phenomena that may be associated to it.

5.1.7 Positive Versus Negative CI
It is common to consider CI as a quantifiable property and specifically as a signed quantity, that is,
positive or negative. Indeed, various authors talk about negative collective intelligence (Laan et al.,
2017; Szuba, 2001) to characterize the cases in which a collective would perform worse than one
of its individual members. In such cases, the social constraints effectively hinder individual abilities
with no benefit.

5.2 Examples
In the following, notable examples of CI are briefly reviewed.

5.2.1 Example 1: (Markets)
Markets are economic systems that consist of a large number of rational self-interested agents,
buyers and sellers, that engage in transactions regarding assets. The prices of assets change to reflect
supply and demand, as well as the larger context, and can be seen as a reification of the CI of
the entire market (Lo, 2015). So, markets can be seen as a mechanism for sharing information
and making decisions about how to allocate resources in a collectively intelligent way (Malone &
Bernstein, 2015). Accordingly, market-based abstractions have been considered in computer science
to promote globally efficient systems (Mainland et al., 2004).

5.2.2 Example 2: (Wisdom of Crowds)
Crowds—groups of people—can be of different kinds (compare physical vs. psychological crowds)
and can exhibit different degrees of CI. A crowd can exhibit intelligent (Surowiecki, 2005) or un-
intelligent behavior (Laan et al., 2017). Surowiecki (2005) popularized the term wisdom of crowds,
showing that groups are capable of good performance under certain circumstances, providing ag-
gregate responses that incorporate and exploit the collective knowledge of the participants. Among
the conditions required for a crowd to be wise, Surowiecki (2005) identified diversity (of individu-
als), independence (of individual opinions), and decentralization (of individual knowledge acquisition)—
whose importance has been confirmed by later studies, such as that by Woolley et al. (2010).

5.2.3 Example 3: (Swarm Intelligence)
Swarm intelligence is the CI that emerges in groups of simple agents (Bonabeau et al., 1999).
Swarm intelligence was first observed in natural systems, such as insect societies (e.g., ant colonies,
beehives), which inspired mechanisms and strategies for improving the flexibility, robustness, and
efficiency of artificial systems. With respect to the general field of CI, swarm intelligence may be
considered as a subfield that deals with very large groups and individuals behaving according to
simple rules. Because the criteria of cardinality and simplicity are degrees, the boundaries of the
field are fuzzy.

5.2.4 Example 4: (Learning Multiagent Systems)
Another notable example of CI is given by MASs (Wooldridge, 2009). Unlike swarms, MASs
usually comprise rational agents, possibly structured into organizations, and possibly exhibiting
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properties of strong agency (Wooldridge, 2009), which may in turn be individually intelligent. The
agents as well as the MAS may be able to learn about the environment, themselves, or the behav-
ior that they should follow to maximize some local or global notion of utility (Tumer & Wolpert,
2004).

5.2.5 Example 5: (Human–Machine Collective Intelligence)
A powerful example of CI is the so-called human–machine collective intelligence (HMCI) (Smirnov &
Ponomarev, 2019) or hybrid CI (Moradi et al., 2019; Peeters et al., 2021), which is the one that
applies to heterogeneous systems involving both machines and humans. The idea is to promote
the synergy between artificial/machine intelligence and human intelligence, which are often seen as
complementary forms of intelligence. An exemplar of HMCI is Wikipedia, a hypermedia system of
interconnected collective knowledge that is created and revised by humans through the mediation
of web technologies. Wikipedia data can also be autonomously processed by agents to build other
kinds of applications leveraging its collective knowledge.

5.3 Models
Here we briefly review two main general models of CI from the literature that comprehensively
summarize and integrate previous models.

5.3.1 The Isolation-, Collaboration-, and Feedback-Based CI Paradigms
He et al. (2019) proposed a taxonomy of CI that divides it into three paradigms of increasing power,
based on the absence or presence of interaction and feedback mechanisms. In their view, CI can be
generally regarded as an aggregation of individual behavior results, thus the following:

1. Isolation paradigm. The individuals are isolated and behave independently, producing results
that are aggregated in some way. The aggregation result does not affect the individual
behaviors. Isolation studies use statistical and mining tools.

2. Collaboration paradigm. There is direct or indirect interaction between the individuals. Indirect
interaction can be modeled through a notion of environment. Aggregation operates on
individual behavior results and the environment state. The aggregation result affects neither
the individual behaviors nor the environment.

3. Feedback paradigm. This paradigm adds to the interaction paradigm a “downward causation”
of the aggregation result on the individual behaviors and/or the environment.

5.3.2 CI Framework
Suran et al. (2020) analyze 12 studies on CI and devise a generic model based on 24 CI attributes
split into three CI components: individuals, coordination/collaboration activities, and communica-
tion means. The generic model is based on (a) characterization of who is involved in a CI system,
in terms of passive actors (users); active actors (CI contributors), which may be crowds or hierar-
chies; properties of actors in terms of diversity, independence, and critical mass; and interactions;
(b) characterization of motivation of CI actors, intrinsic or extrinsic; (c) characterization of CI goals,
that is, individual and community objectives; and (d) characterization of CI processes, in terms of
types of activities (decide, contest, and voluntary) and interactions (dependent or independent).

Moreover, CI systems can be considered as complex adaptive systems and often are subject to
requirements for proper functioning, for example, on state, data, aggregation, decentralization, task
allocation, and robustness.

5.4 Factors and Quantification of CI
Key scientific questions, fundamental for both understanding and engineering CI, include what
factors promote or inhibit CI and, specifically, the relationship between individual intelligence and
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CI. We already mentioned the seminal work by Woolley et al. (2010) sustaining the idea of a gen-
eral CI factor c, shown to be more correlated with the level of sociality than with the levels of
intelligence of individuals. We also pointed out the example of swarm intelligence as a kind of CI
emerging from a multitude of simple agents characterized by limited individual intelligence. In this
example, clearly, it is the aspect of interaction—with other agents and/or the environment—that
fosters the production of effective patterns of behavior.

Works have been carried out to investigate these relationships. For instance, in a later study,
Woolley et al. (2015) focused on (a) group composition, for example, in terms of skills and diversity
of the members of a group, and (b) group interaction, for example, in terms of structures and norms
constraining and ruling the interaction. They found that the individual skills that contribute the most
to CI are those that bring sufficient diversity and effectiveness in collaboration, whereas group-level
psychological elements like satisfaction and cohesiveness are not influential. Considering different
kinds of interactive cognitive systems, Chmait et al. (2016) studied the influence of the following
factors: (a) concerning individuals, individual intelligence and individual reasoning/learning speed;
(b) concerning cooperation, cardinality of the collective, time to interact, and communication pro-
tocol; and (c) concerning agent–environment interaction, search space complexity (through uncer-
tainty) and algorithmic complexity of the environment. They quantify the CI of a group of agents as
the mean accumulated reward in a set of test environments, hence extending the Anytime Universal
Intelligence Test (Hernández-Orallo & Dowe, 2010) to collectives. What is observed is that such
factors—considered independently and/or in joint configurations with other factors—do shape the
CI of groups in nontrivial ways. These factors are also related to the components of CI models—a
nice overview is provided in Suran et al. (2020).

5.5 Main Kinds of CI
A typical classification of CI is by the nature of the entities involved.

5.5.1 Natural CI
Natural CI is the CI exhibited by collectives found in nature, such as swarms of insects; packs,
herds, or groups of animals; crowds of people; flocks of birds; and schools of fishes. In all these
systems, there exist nontrivial collective phenomena and societal aspects that deserve deep investi-
gation. Insect societies are analyzed, for example, in the seminal book by Bonabeau et al. (1999). For
collective animal behavior, one of the main references is the book by Sumpter (2010, p. 1), which
describes collective phenomena as those in which “repeated interactions among many individuals
produce patterns on a scale larger than themselves.” For CI in humans, some historical references
include Le Bon (1895/2002) and Surowiecki (2005); moreover, there are contributions for specific
human settings like crowds of pedestrians (Sieben et al., 2017) and problems like the relationship
between language and collective action (Smith, 2010).

The study of natural CI is important because it is a powerful source of inspiration for CI mech-
anisms to be applied to artificial systems (Bonabeau et al., 1999).

5.5.2 ACI and CCI
ACI is the CI exhibited by human-made machines. Notice that, strictly speaking, natural and ACI
constitute a false dichotomy because there is inherent subjectivity regarding where the line between
the two is drawn, and these could also be considered as a gradation. ACI and CCI are mostly
considered as synonyms in the literature. However, some authors refer to CCI as a particular kind
of ACI, that is, “as an AI sub-field dealing with soft computing methods which enable making group
decisions or processing knowledge among autonomous units acting in distributed environments”
(Badica et al., 2014, p. v). Soft computing methods are those that help to address complex problems
by overcoming approximation and uncertainty, using techniques such as fuzzy logic, expert sys-
tems, ML, genetic algorithms, and artificial neural networks (Ibrahim, 2016). In other words, the
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Figure 1. Relationships between collective intelligence (CI), artificial collective intelligence, and computational collective
intelligence. The dashed line is used to denote the false dichotomy between artificial and natural CI.

distinction between ACI and CCI may follow the common way to distinguish between artificial and
computational intelligence (Engelbrecht, 2007), where the former tends to prefer hard, symbolic
approaches, while the latter tends to prefer soft and bio-inspired computing techniques. The rela-
tionships between CI, ACI, and CCI are shown in Figure 1. CCI might also be intended as a part
of natural CI to account for the notion of biological computation (Mitchell, 2011), whereby biological
systems are considered as computing devices (van Gerven, 2017). However, not all of ACI is nec-
essarily computational, because mechanical machines also can exhibit intelligence (Stradner et al.,
2013; Wang, 2009)—compare. Some Braitenberg vehicles (Dvoretskii et al., 2022) are purely me-
chanical vehicles with hard-wired connections between sensors and actuators. Common subfields
of ACI include the semantic web, social networks, and MASs (Nguyen et al., 2009). Often, ACI
and CCI include systems comprising both machines and humans. Possible taxonomies for ACI are
proposed in the next section.

Notice that terms like swarm intelligence and multiagent intelligence may refer to natural systems, to
artificial systems, or to a general model comprising both.

Other kinds of CI are described in the following section, as they are very much related to peculiar
CI engineering methods and techniques.

6 Perspectives of Artificial Collective Intelligence Engineering

Building on the previous discussion of what CI is and its main models, this section focuses on how
CI can be engineered, according to the literature, hence addressing SQ8 to SQ10. In doing this, we will
picture a map of the state of the art in CI engineering, setting the stage for a discussion of research
opportunities and challenges in the next section.

Depending on what kind of CI has to be achieved (see the previous section), various perspectives
and approaches to CI engineering can be devised, each one leveraging and providing peculiar sets of
CI mechanisms.

6.1 Knowledge-Oriented Versus Behavior-Oriented CI
From an industrial point of view, the engineering of CI often revolves around engineering the ICT
platforms and algorithms for collecting data from human activity and extracting knowledge from
collected data (Alag, 2008; Segaran, 2007). Humans using web applications can provide data through
their interaction in several ways, for example, by what content they search, what paths they follow,
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what feedback they provide, and what content they add. Then, techniques like data mining, text
mining, and ML can be used to classify information, cluster information, predict trends, recommend
content, filter information, aggregate information, and so on. We may call this knowledge-oriented
CI because the CI lies in the data produced and processed by a collective, and ICT has a role
in supporting such information creation, ultimately promoting the emergence of latent collective
knowledge. This is essentially what Surowiecki (2005) calls cognition problems.

This kind of system may not seem like a form of CI. Indeed, one might be tempted to com-
pletely abstract over the collective of agents providing the data and merely consider a conceptually
single source of data and how data are processed and aggregated by a conceptually single process.
However, the CI nature of all this starts to emerge once one considers the overall process by a
larger, sociotechnical perspective. By this perspective, several agents produce information through
their activity and reasoning, possibly interacting with other agents and with supporting tools (e.g., a
network to share information, tools to make sense of others’ contributions)—compare the isolation,
collaboration, and feedback-based paradigms.

Conversely, we may call behavior-oriented CI the CI that drives the global behavior of a system. This
includes what Surowiecki (2005) referred to as coordination and cooperation problems. Examples include
the form of intelligence driving the way in which robotic swarms move (Navarro & Matía, 2013),
a computational ecosystem that self-organizes into activity and communication structures (Pianini
et al., 2021), and a market that self-regulates (Lo, 2015). However, as the latter example shows,
because collective action is connected with collective decision-making, which in turn is connected
to collective knowledge, the border between knowledge-oriented and behavior-oriented CI is fuzzy
and so these types of CI should not be thought of as containers for mechanisms but rather as
containers for typical CI goals.

The distinction between “plain” systems and systems of systems (SoS) (Nielsen et al., 2015), for
example, based on the properties of autonomy, belonging, connectivity, diversity, and emergence
(Boardman & Sauser, 2006), is also relevant to this discussion (Peeters et al., 2021). Research un-
der the knowledge-oriented CI umbrella, typically involving sociotechnical systems, seems mostly
related to the SoS framework. Research under the behavior-oriented CI umbrella, instead, seems
more uniformly distributed along both the system (cf. swarm intelligence and aggregate computing;
Bonabeau et al., 1999; Viroli et al., 2019) and SoS viewpoints (cf. hybrid human–machine systems;
Peeters et al., 2021; Scekic et al., 2020).

6.2 Manual Versus Automatic ACI Development
Regarding ACI, it is possible to distinguish two main kinds of approaches: those based on manual
design and those based on automatic design.

6.2.1 Manual Design of ACI
In the manual approach, a designer directly specifies the behavior of the computational agents
making up the collective by providing behavioral rules (or policies).

Here the key issue is determining what individual behavior, when replicated or combined with
other behaviors or phenomena, can give rise to the desired emergent behavior. Programming ap-
proaches that are thought to somehow address this goal are often known as macro-programming
in the literature (Casadei, 2023), a term that recurred especially in the early 2000s in the con-
text of wireless sensor networks (WSNs) (Newton et al., 2005). A foundational contribution to
macro-programming is given by Reina et al. (2015), where a methodology is proposed for pass-
ing from macroscopic descriptions to a microscopic implementation through a design pattern,
obtaining a quantitative correspondence between micro- and macro-dynamics. Research has pro-
duced different macro-programming frameworks, for example, for expressing the behavior of robot
swarms (Pinciroli & Beltrame, 2016) and distributed IoT systems (Mizzi et al., 2018; Noor et al.,
2019)—though most of them lack formal foundations.
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A notable macro-programming approach that has recently been subject to intense research is ag-
gregate computing (AC) (Viroli et al., 2019). AC consists of a functional macro-programming language
expressing collective behavior in terms of computations over distributed data structures called com-
putational fields (Mamei et al., 2004; Viroli et al., 2019). The basic language constructs provide support
for dealing with (a) lifting standard values to field values, (b) abstracting field computations through
functions, (c) stateful evolution of fields, and (d) handling bidirectional communication through
so-called neighboring fields. Using such constructs and library functions, for example, handling in-
formation flows through gradients or supporting higher-level patterns, a programmer can write an
aggregate program that expresses the global behavior of a possibly dynamic network of agents. The
agents, by repeatedly evaluating the program in asynchronous sense-compute-interact rounds, and
interacting with neighbors by exchanging data as dictated by the program, could steer self-organizing
behavior, fulfilling, it is hoped, the intent of the program. Casadei et al. (2021) argued that multiple
concurrent and dynamic aggregate computations could pave a path to CI engineering.

Whereas AC adopts a swarm-like self-organization model, another class of approaches for ACI
is given by multiagent programming, as supported, for example, by the JaCaMo platform (Boissier
et al., 2020), which comprises Jason for programming cognitive autonomous agents, CArtAgO for
programming the distributed artifacts-based environment of the MAS, and MOise for program-
ming agent organizations. However, it is worth noticing that the relationships between MAS re-
search and CI research are often hindered by different terminologies and separate communities. A
reason might be that a large part of MAS research properly focuses on composites rather than
collectives, that is, well-structured organizations of heterogeneous intelligent agents rather than
self-organizing swarms of largely homogeneous and cognitively simple agents.

6.2.2 Automatic Design of ACI
Because manually crafting control and behavioral rules of computational agents might be difficult,
especially for complex tasks in nonstationary environments, a different approach consists in devis-
ing strategies for automatically designing behaviors. The idea is to provide hints about the intended
behavior or the results to be attained by it (e.g., in terms of specifications or data) and to leverage mech-
anisms to generate or find behaviors that satisfy the specification. This can be addressed through
automatic programming (O’Neill & Spector, 2020), (machine) learning (Behjat et al., 2021), and search
(Russell & Norvig, 2020). For CI systems, these are essentially the approaches followed by promi-
nent methods like multiagent reinforcement learning (MARL) (Busoniu et al., 2008) and evolution-
ary swarm robotics (Trianni, 2008).

One of the early models and a notable example is collective intelligence, or COIN (Wolpert, 2003).
Essentially, COIN considers a collective as a system of self-interested agents trying to maximize their
private utility function, sharing an associated world utility and giving a measure of the CI of the overall
system. MARL is clearly a powerful technique for building CI, and it is currently a hot research area,
with several surveys emerging (Canese et al., 2021; Gronauer & Diepold, 2022; Zhang et al., 2021).
Learning of collective behavior may be related but should not be confused with collective learning,
which is learning carried out by multiple agents that does not necessarily yield collective behavior
models.

In evolutionary robotics (Trianni, 2008), the idea is to use evolutionary algorithms (i.e., algo-
rithms that use mechanisms inspired by biological evolution for evolving populations of solutions)
to optimize models of robot controllers (e.g., mapping inputs from sensors to outputs to actuators)
with respect to desired behavioral goals. Various techniques have been proposed in the literature to
improve traditional evolutionary approaches, for example, novelty search (Gomes et al., 2013). An
interesting approach for the automatic design of the control logic of swarms is given by AutoMoDe
(Francesca et al., 2014). AutoMoDe generates modular control software as a probabilistic finite state
machine by selecting, composing, and configuring behavioral modules (bias). The idea is to lever-
age the bias to make the automatic design approach robust to differences between simulation and
reality. Another relevant methodology for evolutionary robotics is the so-called embodied evolution
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approach (Bredèche et al., 2018; Watson et al., 2002), which is based on evolutionary processes that
are distributed in a population of robots situated in an environment to support online and long-term
adaptivity. Embodied evolution is an interesting setting for studying aspects like embodied intel-
ligence, coevolution, the role of environmental niches, the relationship between optimization and
selection pressure, and locality of interaction. The combination of learning and evolution is also a
very interesting research direction (Gupta et al., 2021).

A second possibility for automatic design comes from program synthesis (Gulwani et al., 2017),
which is the field studying the task of automatically crafting programs (in some given programming
language) that satisfy a specified intent. Particularly interesting are the recent attempts of combining
program synthesis and reinforcement learning (cf. Aguzzi et al., 2022; Bastani et al., 2020). However,
in the context of CI, this direction has not yet been investigated, representing an opportunity for
future research (see the next sections).

As a final remark, we stress that manual and automatic design can be seen as the extremes
of a continuum and that hybrid approaches can be used (cf. interactive program synthesis
Zhang et al., 2020).

6.3 Relationships Between Humans and Machines in HMCI
In HMCI, it is possible to distinguish multiple threads of research. A first classification could be
based on the aforementioned distinction between knowledge-oriented and behavior-oriented CI.
Other classifications can be made by considering what kind of entity plays the role of controller and
executor, that is, (a) tasking crowds of humans (Ganti et al., 2011; Guo et al., 2014; Sari et al., 2019;
Zhen et al., 2021) (compare crowdsourcing [Zhen et al., 2021] and crowdsensing [Guo et al., 2014])
or (b) using humans to guide machine operations, for example, interactively (Yu et al., 2021), or
considering what entity plays the role of input and output, that is, (a) using AI to extract or mine
intelligence from human contributions (Alag, 2008; Segaran, 2007) or (b) using humans (or hu-
man computation) to extract value from machine contributions, especially in tasks where machines
cannot (yet) generally perform well, such as visual recognition and language understanding (Quinn
& Bederson, 2011), or, finally, considering humans and machines as peers, hence the so-called
human–machine networks (Tsvetkova et al., 2017) or social machines (Berners-Lee, 1999; Burégio et al.,
2013).

Regarding the engineering of social machines, a notable macro-programming approach is given
by the SmartSociety platform (Scekic et al., 2020), which is based on abstractions like persistent
and transient teams of human–machine peers and collective-based tasks. The approach can be
used for human orchestration and human tasking activities like those found in crowdsourcing and
hybrid collectives.

Concerning the general design of ACI in social machines, Peeters et al. (2021) proposed three
principles: (a) Goals from the collective, technological, and human perspectives should be consid-
ered simultaneously; (b) development effort should continously embrace all the product’s life cycle;
and (c) the requirements of observability, predictability, explainability, and directability should be
considered at all abstractions levels (AI, team, and society).

6.4 Collective Tasks
Another main classification of CI engineering research is by the kind of collective task that is ad-
dressed. A collective task can be defined as a task that requires more than one individual to be carried
out. Notice that CI may be seen as a requirement or mechanism for solving collective tasks (the
general CI interpretation), or conversely, CI might be defined (and measured) in terms of the ability
to solve a set of collective tasks in a variety of environments.

Multiple taxonomies of collective tasks have been proposed in the literature. For instance,
Brambilla et al. (2013) classified collective behaviors (of swarm robotics systems) into (a) spatially
organizing behaviors, (b) navigation behaviors, (c) collective decision-making, and (d) others. Other
reviews of swarm robotics tasks include Bayindir (2016) and Nedjah and Junior (2019). Moreover,
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collective tasks can be classified according to the three paradigms discussed in He et al. (2019) and
reviewed in previous sections: isolation, collaboration, and feedback.

In the following pages, we review material for two general, main kinds of collective tasks—
collective decision-making and collective learning—and then point out references to other kinds
of tasks.

6.4.1 Collective Decision-Making
Collective decision-making is the problem of how groups reach decisions without any central-
ized leadership (Bose et al., 2017; Prasetyo et al., 2019). This is also known as group decision-making
(Tang & Liao, 2021; Zhang et al., 2019).

Decision-making and its collective counterpart can be classified according to the nature of the
decision to be made. Reaching consensus and multiagent task allocation are two common kinds of
collective decision-making behaviors, typical in swarm robotics (Brambilla et al., 2013). Guttmann
(2009) classified MAS decision-making by four dimensions: (a) use of models of self versus mod-
els of others; (b) individual inputs versus group input; (c) learning versus nonlearning, depending
on whether decision-making spans multiple rounds or just one round; and (d) collaboration ver-
sus competition. Surowiecki (2005) distinguished three kinds of problems or tasks of distributed
decision-making: (a) cognition, (b) cooperation, and (c) coordination.

Collective decision-making is often supported by self-organization mechanisms based on, for
example, collective perception (Schmickl et al., 2006), voter models (Valentini et al., 2014), opinion
formation models (Montes de Oca et al., 2011), and self-stabilizing leader election (Pianini, Casadei,
& Viroli, 2022).

Recent surveys on collective decision-making include the following. Valentini et al. (2017) fo-
cused on discrete consensus achievement and proposed a formal definition of the best-of-n problem
(choice of the best alternative among n available options); then, they defined a taxonomy based on
different classes of the problem and classified the literature on discrete consensus agreement accord-
ingly. Zhang et al. (2019) provided a review of consensus models in collective decision-making and
compared them based on multiple criteria for measuring consensus efficiency. They also argued that
two interesting research directions include (a) large-scale collective decision-making and (b) address-
ing social relationships and opinion evolution. Tang and Liao (2021) provided a review of literature
around five challenges in large-scale collective decision-making with big data: dimension reduction,
weighting and aggregation of decision information, behavior management, cost management, and
knowledge distribution and increase. Rizk et al. (2018) provided a survey of decision-making in
MASs. The survey focuses on five cooperative decision-making models: Markov decision processes
(and variants), control theory, game theory, graph theory, and swarm intelligence. These models are
discussed along the dimensions of heterogeneity, scalability, and communication bandwidth—which
are also crucial research challenges. Also particularly challenging is decision-making in dynamic en-
vironments (Prasetyo et al., 2019; Rizk et al., 2018). Other challenges include security, privacy, and
trust; approaches to address these include, for example, blockchain consensus (Pournaras, 2020b).

6.4.2 Collective Learning
Learning is intimately related to intelligence (Jensen, 1989). Collective learning is learning backed
by a collective process, with coordination and exchange of information between individuals and
artifacts (Fadul, 2009). As a multi-disciplinary theme, it is studied in areas like sociology and or-
ganizational theory (Fadul, 2009; Garavan & Carbery, 2012) and in AI research (Bock, 1993).
Collective learning spans both the knowledge-oriented and behavior-oriented perspectives of CI
and is the main technique for automatic design of ACI. Goals of collective learning include
supporting individual learning (Fenwick, 2008), producing collective knowledge, and promoting
collective decision-making (Garavan & Carbery, 2012). As a wide concept, collective learning can
be interpreted along multiple perspectives (Garavan & Carbery, 2012), for example, as the indepen-
dent aggregation of individual learning or as a collaborative activity. So, collective learning is related
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to but not necessarily the same as cooperative and collaborative learning (Fadul, 2009). These dif-
ferent views can also be found in AI and ACI research.

Artificial collective learning includes distributed ML (Verbraeken et al., 2020); examples include
centralized, federated, and decentralized ML systems. In centralized learning, the different individuals
of the system provide data to a central entity that performs the actual learning process. So, in this
case, the core learning process is not collective, though it would be collective if considered by a larger
perspective that included data generation. In federated learning (Kairouz et al., 2021), the idea is that
individual independent workers perform ML tasks on local data sets, producing models that are then
aggregated by a master into a global model without the need for sharing data samples. It enables
data privacy issues to be addressed. The combination of multiple models is also called ensemble
learning (Dong et al., 2020). Hegedüs et al. (2021) proposed gossip-based learning as a decentralized
alternative to federated learning, where no central entities are used and models are gossiped and merged
throughout the nodes of the system. Collective learning might be supervised or unsupervised. An
example of an unsupervised decentralized collective learning approach is provided by Pournaras
et al. (2018).

Another important example of collective learning is MARL (Busoniu et al., 2008), which consid-
ers learning by collections of reinforcement-learning agents. MARL algorithms are commonly clas-
sified depending on whether they address fully cooperative, fully competitive, or mixed cooperative/competitive
problems. In fully cooperative problems, the agents are given a common reward signal that evaluates the
collective action of the MAS. Instead, in fully competitive problems, the agents have opposite goals.
Mixed games are in between fully cooperative and fully competitive problems. Three common in-
formation structures in MARL are (a) centralized structures, involving a central controller aggregating
information from the agents; (b) decentralized structures, with no central entities and neighborhood
interaction; and (c) fully decentralized structures, namely, independent learning, with no information ex-
changed between the agents (Zhang et al., 2021). Various formal frameworks have been proposed
to address MARL problems, including COIN (Wolpert, 2003) and decentralised Markov decision processes
(Oliehoek & Amato, 2016). The reader interested in MARL algorithms and frameworks can consult
multiple comprehensive surveys on the topic (e.g., Busoniu et al., 2008; Hernandez-Leal et al., 2019;
Zhang et al., 2021).

There are surveys on collective learning. D’Angelo et al. (2019) performed a systematic literature
review on learning-based collective self-adaptive systems. Their analysis extracted as the main char-
acteristics of such systems, the application domains involving groups of agents with the ability to
learn, the levels of autonomy of the agents, the levels of knowledge access (i.e., the way in which
they explicitly share learning information), and the kinds of behaviors involved (e.g., selfish vs.
collaborative). Accordingly, the authors provided a framework for learning collective self-adaptive
systems based on three dimensions: autonomy, knowledge access, and behavior. The learning goals
are analyzed with respect to the target emergent behavior; from the analysis, two clusters of works
emerge: those for which the emergent behavior is associated with the anticipated learning task and
those for which it is not. Among the learning techniques, the authors reported that the majority of
research works leverage reinforcement learning, while game theory, supervised learning, probabilis-
tic, and other approaches are less investigated in these settings. Resilience and security are deduced
as the main open challenges in this research domain.

Pournaras (2020a) provided a review of 10 years of research on human-centered collective learn-
ing for coordinated multiobjective decision-making in sociotechnical systems, within the context
of the Economic Planning and Optimized Selections project. Collective learning is motivated as
a way to address the long-standing tragedy of the commons problem and is argued to be a promising
paradigm of AI. As research opportunities and challenges, the author identified explainability and
trust, resilience to plan violations and adversaries, collective learning in organic computing systems,
coevolution of collective human learning and ML, and digital democracy.

Learning is also very related to evolution (Bredèche et al., 2018). Learning and evolution are
generally considered as different mechanisms for adaptation working on different time and spatial
scales (Anderson et al., 2013; Mataric, 2007). However, these techniques can also be combined
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(Nolfi & Floreano, 1999): Learning can guide evolution (Hinton & Nowlan, 1987), and evolution
can improve learning (cf. evolutionary learning; Telikani et al., 2022), where different architectures
for the combination are possible (Sigaud, 2022).

6.4.3 Other Collective Tasks
Collective action (Oliver, 1993) commonly refers to the situation in which multiple individuals with
conflicting goals as well as common goals would benefit from coordinated action. Clearly the abil-
ity to act collectively in an effective manner can be seen as an expression of CI. The problem is
addressed mainly in sociology, but computer science also provides tools (e.g., simulations, models),
such as the SOSIEL (Self-Organising Social and Inductive Evolutionary Learning) simulation plat-
form (Sotnik, 2018), for studying the problem and investigating solutions for human societies as
well as for sociotechnical and artificial systems. Collective actions may be supported by collective
and self-organized decision-making processes and by leveraging abstractions like electronic institutions
and social capital (Petruzzi et al., 2015).

Collective movement (Navarro & Matía, 2013) is the problem of making a group of agents (e.g.,
robots, drones, vehicles) move toward a common direction in a cohesive manner. Notice that this
is not just about movement per se but rather moving in conjunction or to support other tasks as
well—for example, distributed sensing, exploration, and rescue tasks. Two main subproblems can
be identified (Navarro & Matía, 2013): (a) formation control (Yang et al., 2021), when the shape of the
group and/or the individual positions are important, and (b) flocking (Beaver & Malikopoulos, 2021),
where such aspects are less important.

Distributed optimization (Yang et al., 2019) refers to the problem of minimizing a global objective
function, which is the sum of the local objective functions of the members of a collective, in a
distributed manner. Distributed optimization can be a technique for collective decision-making.

Collective knowledge construction refers to the creation of new, distributed, and shared knowledge
by a collective (Hecker, 2012). This topic is generally studied by considering aspects like col-
laboration (Hmelo-Silver, 2003), sociotechnical infrastructures (Gruber, 2008), knowledge trans-
fer (Huang & Chin, 2018), the interplay between individual and collective knowledge (Kimmerle
et al., 2010), models of information diffusion dynamics (Maleszka, 2019), and lifelong learning
(Rostami et al., 2018).

6.5 A View of CI-Related Fields
CI being a multidisciplinary field, the engineering of CI and ACI can benefit from ideas and research
results from a variety of fields. It would be useful to have a comprehensive map of research fields
contributing to CI.

Though we consider providing a comprehensive research map of CI engineering as a future
work, we provide a research map (see Figure 2) from the perspective of collective adaptive system (CAS)
research (Bucchiarone et al., 2020; Casadei, 2020; Ferscha, 2015; Nicola et al., 2020). The idea is
that CI engineering should be supported through interdisciplinary research and a systems science
perspective (Mobus & Kalton, 2015), also providing a rigorous treatment of system-level properties
that could be sustained by CI processes. This includes leveraging studies of abstract and funda-
mental kinds of systems, for instance, CPSs namely, systems that combine discrete and continuous
dynamics (Alur, 2015). Then, a set of interrelated fields can promote the study of peculiar CI phe-
nomena, such as emergence, self-organization, and ensemble formation. Such fields include but are
not limited to coordination (Malone & Crowston, 1994), MASs (Wooldridge, 2009), autonomic/
self-* computing (Kephart & Chess, 2003), collective adaptive systems (Bucchiarone et al., 2020;
Casadei, 2020; Ferscha, 2015; Nicola et al., 2020), ubiquitous/pervasive computing (Weiser, 1991),
swarm intelligence (Bonabeau et al., 1999), and collective computing (Abowd, 2016). Some of
these are briefly overviewed in the following paragraphs.

We noticed multiple times in previous sections how interaction is a key element of CI. Coordina-
tion is the interdisciplinary study of interaction (Malone & Crowston, 1994). In computer science,
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Figure 2. Research map of fields and concepts contributing to (research on) CI engineering.

interaction was early recognized as a concern related to but clearly distinguished from computa-
tion (Gelernter & Carriero, 1992), hence amenable to separate modeling by so-called coordination
languages. A general meta-model of coordination (Ciancarini, 1996) consists of coordinables (the in-
teracting entities), coordination media (the abstractions supporting and constraining interactions), and
coordination laws (describing the behavior of a coordination medium). Languages, abstractions, and
patterns can be used to define the way in which computational components coordinate across as-
pects like control, information, space, and time. This has motivated the birth of whole communities
and long-standing research threads (Ciancarini & Hankin, 1996; ter Beek & Sirjani, 2022).

CASs are collectives of agents that can adapt to changing environments with no central con-
troller. Their engineering poses several challenges, tackled in corresponding research communities
(Bucchiarone et al., 2020; Nicola et al., 2020). CASs are sometimes considered to be heterogeneous
(Andrikopoulos et al., 2014; Loreti & Hillston, 2016), contrasted to more homogeneous intelligent
swarms, though we tend to disagree with this view. In our view, CASs are a superset of intelligent
swarms, which are characterized by (a) large numbers of (b) relatively simple (or not particularly
intelligent) individuals (Beni, 2004). Collectives are generally quite homogeneous, at least at some
level of abstraction (Pianini, Pettinari, et al., 2022), though research aims to address heterogeneous
CASs (Scekic et al., 2020) as well as heterogeneous swarms (Dorigo et al., 2013; Kengyel et al.,
2015), for example, with systems involving humans and robots (Hasbach & Bennewitz, 2022) or
groups of robots with different morphology or behavior. Swarm robotics is the combination of
swarm intelligence and robotics (Beni, 2004; Brambilla et al., 2013).

Coordination, CASs, and swarm robotics can also be seen as subfields of the larger field of MASs
(Faliszewski et al., 2022; Wooldridge, 2009), which itself stemmed from the field of distributed AI
(Ferber, 1999). In MAS engineering, two main levels and corresponding problems are considered:
the micro-level of agent design, and the macro-level of agent society design. Autonomy (encapsulation
of control) and agency (the ability to act) are generally considered the two fundamental proper-
ties of agents (Franklin & Graesser, 1996; van der Hoek & Wooldridge, 2003) from which other
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properties, such as proactiveness, interactivity, and sociality, stem. From a software programming
and engineering point of view, agents can be considered as an abstraction following active objects
and actors (Odell, 2002) that, together with other first-class abstractions like artifacts (Omicini et al.,
2008), environments (Weyns & Michel, 2014), and organizations (Horling & Lesser, 2004), provide
support for the so-called (multi-)agent-oriented programming paradigm (Boissier et al., 2020; Shoham,
1993). The MAS field/perspective is clearly intimately related to CI.

Like for MASs, the key property of autonomy is at the center of autonomic computing (Kephart &
Chess, 2003), namely, the field devoted to constructing computational systems that are able to man-
age/adapt themselves with limited or no human intervention. Following this vision, research has
been carried out to find approaches and techniques to endow artificial systems with different self-*
properties: self-adaptive (de Lemos et al., 2010; Salehie & Tahvildari, 2009), self-healing/repairing
(Psaier & Dustdar, 2011), self-improving/optimizing (Bellman et al., 2018), self-organizing
(Heylighen, 2013), and so on. To build autonomic systems, approaches typically distinguish be-
tween the managed system and the managing system, structuring the latter in terms of monitoring, adapta-
tion, planning, execution, and knowledge (MAPE-K) components (Kephart & Chess, 2003). In so-called
architecture-based self-adaptation (Garlan et al., 2004), architectural models of the managed systems are
leveraged at run time to organize the self-managing logic. The managing system could also be dis-
tributed and decentralized (Weyns et al., 2010). If the managed system is a collective, then its self-*
properties could be put in relation to its CI. Consider the property of being self-organizing, character-
ized by processes that autonomously and resiliently increase/maintain order or structure (Wolf &
Holvoet, 2004); it typically emerges from the interaction of several entities. Self-organization can be
considered as a key promoter or element of CI (Rodríguez et al., 2007).

As a last remark, we stress that the aforementioned fields are highly inter- and transdisciplinary.
For instance, MASs can be considered by economical, sociological, organizational, and compu-
tational perspectives (Wooldridge, 2009). The same goes for coordination (Malone & Crowston,
1994). Moreover, a great source of inspiration is given by natural (e.g., physical and biologi-
cal) systems, as recognized by a wealth of nature-inspired coordination (Zambonelli et al., 2015) and
nature-inspired computing (Siddique & Adeli, 2015) contributions.

7 Research Opportunities and Challenges

With an understanding of the nature of CI and its engineering perspectives, in the following sections
we discuss a few related research directions that include interesting opportunities and challenges for
researchers in CI engineering.

7.1 Programming Emergence and Macro-programming
The problem of programming emergent and self-organizing behaviors is an open research chal-
lenge (Gershenson et al., 2020; Varenne et al., 2015) intimately related to CI engineering. The
term macro-programming emerged in the early 2000s to identify programming approaches with the
goal of defining the global behavior of WSNs (Newton et al., 2005); currently, it generally denotes
paradigms aiming at supporting the programming of system- or macro-level properties and behav-
iors. A recent survey by Casadei (2023) showed that, beside the first wave of research in the context
of WSNs, we are witnessing a renewed interest in macro-programming fueled by scenarios like
the IoT, robot swarms, and CASs in general. This is also very much related to spatial computing
(Beal et al., 2013), as space is often a constraint, a means, or a goal in systems.

The key challenge here is determining what local behavioral rules of the individuals can promote
the desired collective behavior. In particular, we can distinguish two problems (Tumer & Wolpert,
2004): Given a set of individuals and the corresponding local behavioral rules, the local-to-global
mapping problem (or forward problem) is the problem of determining what global outcomes will be
produced; conversely, the global-to-local mapping problem (or inverse problem) is the problem of determin-
ing what local behaviors have produced the observed global outcomes. In macro-programming, the
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latter problem turns into how to map a description of a global intent (macro-program) into local
behavioral rules (micro-programs) (Casadei, 2023).

It has been shown that approaches like aggregate computing (Viroli et al., 2019) can support
forms of self-organization and CI with macro-programs that can be encoded as compositions of
functions of reusable collective behaviors (Audrito et al., 2022). This is promising, but still, little
research has as yet been devoted to investigating, systematizing, and formalizing the principles,
concepts, and mechanisms of macro-programming in general or specific settings (Casadei, 2023).

7.2 Integration of Manual and Automatic CI Engineering Methods
In previous sections, we have discussed how CI can be programmed manually (e.g., through
macro-programming languages, or using traditional techniques to connect and extract knowledge
from human activity) or automatically (e.g., via multiagent reinforcement learning techniques or
program synthesis). Arguably, the two approaches could be combined to overcome their individual
issues. This is a still an unexplored research direction, but early works and ideas are emerging.

A first idea could be to use program synthesis (Gulwani et al., 2017) to synthesize macro-
programs expressed in a macro-programming language (Casadei, 2023). This could be coupled with
simulation to verify how systems executing synthesized programs operate in various environments.
On one hand, because simulations may also be computationally intensive, it might be necessary
to limit simulation to a few program candidates. On the other hand, the problem of generating
macro-programs might be hard, especially if the space of possible programs is very large. There-
fore macro-programming languages admitting few primitives or combinators may be more suitable
for this.

Additionally, some recent attempts have been made at combining program synthesis and rein-
forcement learning (Bastani et al., 2020; Qiu & Zhu, 2022; Verma et al., 2018). For instance, Bastani
et al. (2020) discussed approaches to reinforcement learning based on learning programmatic poli-
cies (i.e., policies in the form of a program), which can provide benefits in terms of interpretability,
formal verification, and robustness. Therefore it would be interesting to consider the application of
MARL where policies are expressed in a multiagent-oriented or macro-programming language. An
early attempt has been carried out (e.g., Aguzzi et al., 2022) in which MARL has been used to fill
a hole in a sketched aggregate computing program (cf. the sketching technique in program synthesis;
Solar-Lezama, 2009), resulting in collective adaptive behavior that improves over a simple, manually
encoded collective behavior.

7.3 Integration of Bottom-Up and Top-Down Processes
Another interesting research challenge and opportunity for our ability of engineering CI lies in
achieving a better understanding of how bottom-up and top-down processes can be integrated—or,
in other words, how emergence and downward causation/feedback can be exploited altogether to
provide both flexibility and robustness in collective behavior. Indeed, we are considering the feed-
back CI paradigm (He et al., 2019), whereby the aggregation of contributions from the individ-
uals and the environment in turn affects the individuals and the environment. This is also what
Lykourentzou et al. (2009) called active CI systems, in which collective behavior is supported by
the system level, which are contrasted to passive CI systems, in which no collective awareness or
intentionality is present.

The problem of integrating top-down and bottom-up processes is indeed connected with the
problem of controlling emergence, addressed in research fields like autonomic computing (Kephart &
Chess, 2003), with its MAPE-K loops, and organic computing (Müller-Schloer & Tomforde, 2017),
with observer-controller architectures. One issue is that emergence itself is a controversial concept,
subject to philosophical and scientific investigation and often presented with definitions that hardly
apply to systems engineering (Müller-Schloer & Sick, 2006). Attempts to define emergence based
on hierarchical system models and ontological approaches (Gignoux et al., 2017) may prove useful.
Initial, working classifications of emergence for reasoning in systems engineering may be based,
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for example, on whether it is anticipated or not anticipated, and whether it is desirable or undesirable
(Iivari, 2016).

Some engineering techniques discussed in this section, such as macro-programming and MARL,
could support the design of “controlled emergence,” and in another direction, a deeper understand-
ing of emergence and its relationship with feedback could provide insights for mechanisms or the
implementation of such techniques. A macro-program, indeed, could be seen as a top-down struc-
ture for emergent processes. Also interesting in this respect are, for example, formal studies carried
out on self-stabilization of aggregate computations (Pianini, Casadei, & Viroli, 2022), which guarantees
that stable outputs are eventually achieved from stable inputs.

7.4 Integrating Humanity and Technology: Social Machines
A key subfield of CI that is still in its early days is HMCI (Smirnov & Ponomarev, 2019), also
known as hybrid CI (Moradi et al., 2019; Peeters et al., 2021) or hybrid CASs (Scekic et al., 2020).
In the systems we consider in this article, we can identify two main domains: (a) the domain of
space-time, which corresponds to physical environments and their evolution, and (b) the domain of
information, which evolves through computation (Beal et al., 2013). Of course, these two domains
interact, for example, by measuring space-time to get associated information, and using information
to manipulate space-time, through actuations. Now, addressing the integration of humans and ma-
chines passes through the realization that both kinds of individuals can fully operate on those two
domains. That is, humans can be thought as computing machines (cf. the concept of human computa-
tion; Quinn & Bederson, 2011), and (computing) machines can operate in the physical world (cf. the
notion of a CPS; Alur, 2015). Indeed, various terms or buzzwords are emerging to denote systems in
which such integration of humans, computation, and physical systems is present—compare human
CPSs (Liu & Wang, 2020), human-in-the-loop CPSs (Schirner et al., 2013), and crowd computing
(Murray et al., 2010). From the perspective of computing, it is worth noting that collective computing
based on heterogeneous human–machine collectives was identified by Abowd (2016) as the fourth
generation in computing following Weiser’s characterization of the evolution of computing from
mainframe computing to personal computing to ubiquitous computing (Weiser, 1991).

To address the complexity of systems and unleash the potential of humans and technology, it is
increasingly important to consider technical aspects together with human, social, and organizational
aspects (Bucchiarone et al., 2020). In other words, a key challenge and opportunity revolves around
the design of social machines (Berners-Lee, 1999; Burégio et al., 2013), hybrid societies (Hamann
et al., 2016), and sociotechnical systems (Baxter & Sommerville, 2011). A social machine can be
described as “a computational entity that blends computational and social processes” (Burégio et al.,
2013, p. 886) and that is at the intersection of social software, people as computational units, and
software as sociable entities (Berners-Lee, 1999; Burégio et al., 2013). In this respect, elements
whose formalization and use might promote the engineering of CI into social machines may include
macro-level and collective abstractions (Scekic et al., 2020), social concepts (Bellman et al., 2017),
and coordination models (Malone & Crowston, 1994). However, several challenges remain, related
to proper modeling of human computation, achieving effective communication and coordination
between humans and machines, and achieving self-improving system integration (Bellman et al.,
2021).

7.5 Summary of Recommendations for Future Research on ACI Engineering
This section has discussed multiple issues and directions providing for plenty of research oppor-
tunities and challenges. To summarize, we recommend that the following topics be further inves-
tigated: (a) language-based solutions to CI programming, as also fostered by recent research on
macro-programming (Casadei, 2023; Sene Júnior et al., 2022), possibly also working as a foundation
for explainability (Krajna et al., 2022); (b) approaches and mechanisms for controlling or steering
emergence and self-organization (Gershenson et al., 2020; Varenne et al., 2015), together with ef-
forts for building a deeper understanding of these very concepts (cf. Gignoux et al., 2017); (c) the
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role of CI across the various levels of modern computing systems (e.g., the application level, the
middleware level, and the physical system level) (Sene Júnior et al., 2022), to address functional as
well as non-functional aspects, including, for example, security, resilience, and resource efficiency;
(d) designs for integrating manual and automatic approaches to CI engineering, for instance, along
the lines of MARL with specifications (Ritz et al., 2021) or program synthesis (Aguzzi et al., 2022;
Bastani et al., 2020) of macro-programs; and (e) integration of human intelligence with machine
intelligence into hybrid, collectively intelligent systems (Peeters et al., 2021; Smirnov & Ponomarev,
2019), for example, leveraging wearable computing (Ferscha et al., 2014), ways for combining meth-
ods for human teamwork with AI, and self-organization protocols considering both humans and
artificial agents (Scekic et al., 2020; Smirnov & Ponomarev, 2019).

Last, but not least, we strongly believe that the collective viewpoint has yet to find its place
within software engineering practice. Recent efforts focused on formal models and languages
for CASs (Nicola et al., 2020; Scekic et al., 2020; Viroli et al., 2019) might highlight a path in
that direction.

8 Conclusion

CI is a rich theme that builds on multi-, inter-, and transdisciplinary collective endeavors. However,
research is largely fragmented across several specific research problems (e.g., types of collective
tasks), research methods (manual vs. automatic CI design), and even entire computer science re-
search areas (hybrid systems, CASs, MASs, etc.), and comprehensive mapping studies are currently
missing, making it difficult for people of diverse backgrounds to get a sense of the overall field or
even of CI-related work in their subfield. This scoping review aimed at providing a comprehen-
sive view on CI for computer scientists and engineers, with emphasis on concepts and perspec-
tives, and also at providing some research highlights on the forms of CI that most interest them,
namely, ACI, CCI, and HMCI. The final part reviews some interesting opportunities and chal-
lenges for researchers in computer science and engineering. These point at directions that, despite
visionary and preliminary work, are yet to develop: CI programming, integration of manual and
automatic techniques for CI engineering, integration of collectiveness and emergence, and hybrid
human–machine systems.
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