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We prove a real interpolation characterization for some non Euclidean Hölder spaces, 
built on the Lie structure induced by a class of ultra-parabolic Kolmogorov-type 
operators satisfying the Hörmander condition. As a by-product we also obtain an 
approximation property for intrinsically regular functions on the whole space.
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1. Introduction

1.1. Statement of the problem

We consider the problems of approximation and interpolation for some non Euclidean Hölder spaces built 
on the intrinsic geometry of the following Kolmogorov operator

K = 1
2

p0∑
i=1

∂xixi
+ Y, Y = 〈Bx,∇〉 + ∂t, (t, x) ∈ R×Rd, (1.1)

where 1 � p0 � d and B is a d × d constant matrix. If p0 = d then K is a parabolic operator while 
in general, for p0 < d, K is degenerate, and not uniformly parabolic. However, K can be a hypoelliptic 
operator, provided some structural assumptions on the matrix B are verified. This kind of PDEs appears in 
many linear and non-linear models in physics (see, for instance, [4], [8]) and in mathematical finance (see, 
for instance, [2], [7]).

In [15], Lanconelli and Polidoro first studied the non-Euclidean intrinsic Lie group structure induced by 
the vector fields ∂x1 , . . . , ∂xp0

, Y , and from there on, many authors carried the study of general Kolmogorov 
operators in the framework of the theory of homogeneous groups. We recall, among many, [9], who proved 
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the existence of a fundamental solution under optimal regularity assumptions, [10], [12] and [21], who 
proved Schauder type estimates for the associated Cauchy and Dirichlet problems, [13], who considered the 
case of integro-differential diffusions. One basic tool in the study of regularity properties of solutions to 
Kolmogorov operators with variable coefficients is the notion of Hölder spaces which are intrinsic to the 
aforementioned geometric structure. Over the years, different notions of Hölder classes have been proposed 
by several authors, based on the Carnot-Carathéodory distance associated to the group (see, among many, 
[10], [21], [11]). Eventually Pagliarani et al. in [22] established an optimal definition of Cn,α

B for any n ∈ N0, 
which is given in terms of the regularity in the directions of the vector fields ∂x1 , . . . , ∂xp0

and Y with their 
different formal degrees: for instance, the case n = 0 consists of functions that are Cα continuous in the 
directions ∂x1 , . . . , ∂xp0

and C
α
2 in Y . With this definition they managed to prove a Taylor-type formula 

with related estimates of the remainder, given in terms of the intrinsic distance.
Our main result, Theorem 1.6, shows that these intrinsic spaces interpolate well with each other through 

the so called real method, namely that

(Cn1,α1
B , Cn2,α2

B )θ,∞ = Cn,α
B , (1.2)

for any n1, n2 ∈ N0, α1, α2 ∈ [0, 1], for some expected parameters n ∈ N0, α ∈ (0, 1). In the Euclidean 
case, this identification is well known (see [20], [26]), and can be proved by means of the general theory 
of semigroups. Similar arguments can be adapted for a different class of Hölder spaces also associated 
to degenerate elliptic and parabolic differential equations, the so called anisotropic Hölder spaces, which, 
unlike the intrinsic spaces, only refer to the spatial variables (see Section 1.3 for a more in-depth discussion). 
Here we choose to pursue a constructive approach based on explicit approximations of intrinsically regular 
functions (Theorem 3.1), which can possibly be of independent interest. This approach is more or less 
inspired by the approximation theory for Sobolev functions (see [1], Chapter 5), it does not rely on the 
theory of semigroups, but instead, it heavily exploits the aforementioned intrinsic Taylor formula.

Classically, characterizations of type (1.2) have remarkable applications in the study of optimal regularity 
in Hölder classes for linear elliptic and parabolic differential operators (see [14], [20], [18], [19]) as well as 
approximation theory (see [3]). In the context of Kolmogorov operators, many works already exploit some 
kind of interpolation inequalities to obtain different versions of Schauder estimates in different settings 
(see, for instance [12], [10] and [21] among others, see also [17] for the most recent global estimate for the 
evolution problem, as well as a complete overview of the existing literature). Let us also mention that our 
results, together with the embeddings of intrinsic Sobolev spaces of integer order in [24] could be applied to 
deduce Morrey-type embeddings for suitable notions of Sobolev-Slobodeckij and Besov intrinsic spaces as 
well, which, as far as our understanding, are yet to be explored in the literature in generality. Such studies 
will be subjects of future research. For the application of interpolation results to fractional embeddings in 
the Euclidean setting, see for instance, the references [1] or [25].

The paper is organized as follows: in the remaining part of this Section, we specify the precise functional 
framework, state the structural hypothesis on the matrix B and our main interpolation results, Proposi-
tion 1.5 and Theorem 1.6, and finally discuss the previous literature on the subject and justify our approach. 
In Section 2 we collect some results that are preliminary to the subsequent proofs; in Section 3 we prove 
the core result of this work, the approximation property for intrinsically regular functions, which eventually 
leads to the proof of our main results in Section 4.

1.2. Hölder spaces and real interpolation

We start by recalling the Lie group structure that is naturally associated to the differential operator (1.1). 
In [15] the authors observed that K is invariant with respect to the left translations of the group (Rd+1, ◦), 
where the non-commutative group law is defined by
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(t, x) ◦ (s, ξ) = �(t,x)(s, ξ) := (s + t, ξ + esBx), (t, x), (s, ξ) ∈ Rd+1. (1.3)

Precisely, �(t,x)◦K = K◦�(t,x) for any (t, x) ∈ Rd+1. Notice that (Rd+1, ◦) is a group with identity Id = (0, 0)
and inverse (t, x)−1 = (−t, e−tBx).

The authors also proved that the operator K is hypoelliptic if and only if, on a certain basis of Rd+1 the 
matrix B takes the form

B =

⎛
⎜⎜⎜⎜⎝

∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗

0p2×p0 B2 · · · ∗ ∗
...

...
. . .

...
...

0pr×p0 0pr×p1 · · · Br ∗

⎞
⎟⎟⎟⎟⎠ , (1.4)

where Bj is a pj × pj−1 matrix of rank pj , with

p0 � p1 � . . . � pr � 1,
r∑

j=1
pj = d,

0pi×pj
is a pi×pj null matrix and the ∗-blocks are arbitrary. Throughout the paper we assume the following

Assumption 1.1. B is a constant d × d matrix as in (1.4), where each ∗-block is null.

If (and only if) Assumption 1.1 holds, then K is homogeneous of degree two with respect to the family of 
dilations (Dλ)λ>0 on Rd+1 given by

Dλ = (λ2, λIp0 , λ
3Ip1 . . . , λ

2r+1Ipr
),

where Ipj
are pj × pj identity matrices, i.e. (KDλu)(t, x) = λ2(Ku)(Dλ(t, x)), for any (t, x) ∈ Rd+1, λ > 0. 

In this case, the matrix B uniquely identifies the homogeneous Lie group GB := (Rd+1, ◦, D(λ)). We define 
the D(λ)-homogeneous quasi-norm on GB as follows: let

p̄j = p0 + · · · + pj , j = 0, . . . , r, (1.5)

and p̄−1 ≡ 0. Then

‖(t, x)‖B := |t| 12 + |x|B , |x|B :=
r∑

j=0

p̄j∑
i=p̄j−1+1

|xi|
1

2j+1 . (1.6)

Next we recall the notions of B-intrinsic regularity and B-intrinsic Hölder space introduced in [22]. We 
start with some useful notations: for any (t, x) ∈ Rd+1, i = 1, . . . , p0 we denote

eδ∂xi (t, x) = (t, x + δei), eδY (t, x) = (t + δ, eδBx), δ ∈ R, (1.7)

the (unique) integral curves of the vector fields ∂xi
and Y respectively.

Definition 1.2. Let X ∈ {∂x1 , . . . , ∂xp0
, Y } and α ∈]0, 1]. We say that u ∈ Cα

X if

[u]Cα
X

:= sup
z∈Rd+1

∣∣u(eδXz) − u(z)
∣∣

|δ|α < ∞. (1.8)

δ∈R\{0}
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We say that u is X-differentiable in z if the function δ �→ u(eδXz) is differentiable in 0 and refer to the 
function z �→ Xu(z) := d

dδu(eδXz) |δ=0 as the X-Lie derivative of u.

Definition 1.3. Let α ∈ [0, 1], then:

i) If α = 0, C0,0
B ≡ C(Rd+1) is the space of bounded and continuous function on Rd+1, endowed with the 

sup-norm

‖u‖C0,0
B

:= |u|∞.

If α ∈]0, 1] we say that u ∈ C0,α
B if u ∈ C

α
2
Y and u ∈ Cα

∂xi
for any i = 1, . . . , p0, with norm

‖u‖C0,α
B

:= |u|∞ + [u]
C

α
2
Y

+
p0∑
i=1

[u]Cα
∂xi

< ∞, α ∈]0, 1].

ii) u ∈ C1,α
B if u ∈ C

1+α
2

Y and ∂xi
u ∈ Cα

B for any i = 1, . . . , p0, with norm

‖u‖C1,α
B

:= |u|∞ + [u]
C

1+α
2

Y

+
p0∑
i=1

‖∂xi
u‖C0,α

B
< ∞.

iii) for n ∈ N with n � 2, u ∈ Cn,α
B if Y u ∈ Cn−2,α

B and ∂xi
u ∈ Cn−1,α

B for any i = 1, . . . , p0, with norm

‖u‖Cn
B

:= |u|∞ + ‖Y u‖Cn−2,α
B

+
p0∑
i=1

‖∂xi
u‖Cn−1,α

B
< ∞.

Remark 1.4. Cn,α
B is a Banach space. Notice also that Cn,α

B ⊆ Cn′,α′

B for 0 � n � n′ and 0 � α′ � α � 1.

For any two real Banach spaces Z1, Z2, by Z1 = Z2 we mean that Z1 and Z2 have the same elements with 
equivalent norms and by Z1 ⊆ Z2 we mean that Z1 is continuously embedded in Z2. We recall that the 
couple {Z1, Z2} is called interpolation couple if both Z1 and Z2 are continuously embedded in some Hausdorff 
topological vector space Z; in this case, the intersection Z1 ∩ Z2 and the sum Z1 + Z2 = {u1 + u2, u1 ∈
Z1, u2 ∈ Z2}, endowed with the norms

‖u‖Z1∩Z2 := max{‖u‖Z1 , ‖u‖Z1}, ‖u‖Z1+Z2 := inf{‖u1‖Z1 + ‖u2‖Z1 , u1 ∈ Z1, u2 ∈ Z2},

are Banach spaces. Moreover, any Banach space E such that

Z1 ∩ Z2 ⊆ E ⊆ Z1 + Z2, (1.9)

is called an intermediate space. Among these, we have the real interpolation space (Z1, Z2)θ,∞, which can 
be defined, for any θ ∈ (0, 1) (see, for instance [20]), as

(Z1, Z2)θ,∞ := {u ∈ Z1 + Z2, ‖u‖(Z1,Z2)θ,∞ := sup
λ�0

λ−θK(λ, u;Z1, Z2) < ∞} (1.10)

where

K(λ, u;Z1, Z2) := inf {‖u1‖Z1 + λ‖u2‖Z2 , u = u1 + u2, u1 ∈ Z1, u2 ∈ Z2} .
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Our first results states that any space Cn,0
B belongs to a special class of intermediate spaces between the 

larger space Cn1,0
B , n1 < n and a smaller space Cn2,0

B , n < n2, with n, n1, n2 ∈ N0.

Proposition 1.5. Let n, n1, n2 ∈ N0, n1 < n < n2.

i) There exists a constant c1 such that, for any u ∈ Cn2,0
B , we have

‖u‖Cn,0
B

� c1‖u‖
n2−n
n2−n1

C
n1,0
B

‖u‖
n−n1
n2−n1

C
n2,0
B

; (1.11)

i) There exists a constant c2 such that, for any u ∈ Cn,0
B , we have

K(λ, u;Cn1,0
B , Cn2,0

B ) � c2λ
n−n1
n2−n1 ‖u‖Cn,0

B
, λ > 0. (1.12)

Equivalently (see, for instance [20], Proposition 1.20) it holds that

(
Cn1,0

B , Cn2,0
B

)
n−n1
n2−n1

,1
⊆ Cn,0

B ⊆
(
Cn1,0

B , Cn2,0
B

)
n−n1
n2−n1

,∞
. (1.13)

Next, our main result, gives a characterization of B-Hölder spaces of any order as interpolation spaces.

Theorem 1.6. Let n1, n2 ∈ N0 and α1, α2 ∈ [0, 1], with n1 + α1 � n2 + α2, and let θ ∈ (0, 1). Let n ∈ N0, 
n1 � n � n2 such that

n− (n1 + α1)
(n2 + α2) − (n1 + α1)

< θ <
n + 1 − (n1 + α1)

(n2 + α2) − (n1 + α1)
. (1.14)

If α := (n1 + α1) + θ[n2 + α2 − (n1 + α1)] − n �= 0, 1 then it holds that

(Cn1,α1
B , Cn2,α2

B )θ,∞ = Cn,α
B (1.15)

Remark 1.7. If Ω is an open set of Rd+1, one can define the Hölder spaces Cn,α
B (Ω), n ∈ N0, α ∈ (0, 1) as 

in the case Ω = Rd+1, where in particular, for X ∈ {∂x1 , . . . ∂xp0
, Y },

[u]Cα
X(Ω) := sup

{
|u(eδXz) − u(z)|

|δ|α , z ∈ Ω, δ ∈ R \ {0} s.t. eδ
′Xz ∈ Ω, |δ′| < |δ|

}
.

Then it is likely that our results also hold for the spaces Cn,α
B (Ω), provided that the domain Ω is smooth 

enough (see [26], Theorem 1.2.4 and Section 4.5). The construction of the appropriate extension operators 
under optimal regularity assumptions for Ω is outside the scope of the present paper and is postponed to 
future research.

Remark 1.8. Notice that the assumption n1 + α1 � n2 + α2 is not restrictive. Indeed we can always write

(Cn1,α1
B , Cn2,α2

B )θ,∞ = (Cn2,α2
B , Cn1,α1

B )1−θ,∞ .

1.3. Related works and strategy of the proof

As already mentioned, in the Euclidean case, the interpolation identity (1.2) can be proved by means 
of the theory of semigroups ([20], [26]): let C, C1 denote the spaces of bounded continuous functions and 
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bounded continuously differentiable functions with bounded derivatives respectively, and let Cθ denote the 
space of bounded and uniformly θ-Hölder continuous functions, all endowed with the usual norms. Roughly 
speaking, denoting with Ti the translation semigroup of the i-th variable, and D(∂xi

) = {f ∈ C, ∃∂xi
f ∈ C}, 

we have

(C,C1)θ,p =
(
C,

d⋂
i=1

D(∂xi
)
)
θ,p

=
d⋂

i=1

(
C,D(∂xi

)
)
θ,p

, (1.16)

for any p � 1, where

(
C,D(∂xi

)
)
θ,∞ = {f ∈ C, t �→ φ(t) := t−θ‖Ti(t)f − f‖∞ ∈ L∞(0,∞)}, (1.17)

that is the space of θ-Hölder continuous functions in the i-th variable. Therefore (C, C1)θ,∞ = Cθ. In 
particular (1.17) holds more generally for p � 1, and substituting Ti and ∂xi

with any bounded semigroup 
T and its infinitesimal generator on a Banach space, while the second equality in (1.16) precisely holds 
because the semigroups Ti, i = 1, . . . , d commute.

In [19], Lunardi adapted these arguments to derive an interpolation result for anisotropic Hölder spaces 
associated with operators of the type (1.1), which are spaces of functions on Rd (only the spatial variables 
are considered) defined with respect to the metric induced by | · |B (cf. (1.6)). For instance, let us consider 
the degenerate prototype of (1.1), that is the Langevin operator

K = 1
2∂x1x1 + Y, Y = x1∂x2 + ∂t,

which corresponds to the matrix

B =
(

0 0
1 0

)
.

In this case the anisotropic Hölder regularity in the space variables reads:

|u(x) − u(ξ)| � C|x− ξ|αB ∼ |x1 − ξ1|α + |x2 − ξ2|
α
3 , x, ξ ∈ R2. (1.18)

A regularity theory for equations with variable coefficients, built on this functional setting, is useful when 
one needs to consider coefficients or data that are irregular in time (see also [5], [23], [6], [16] for recent 
developments). This approach leads to mild or weak/distributional solutions also because it cannot benefit 
from any regularizing effect of the semigroup in time.

On the other hand, for B as above, a function u ∈ C0,α
B satisfies (see Theorem 2.4 in the next Section), 

for any (t, x), (s, ξ) ∈ R3,

|u(t, x) − u(s, ξ)| � C‖(s, ξ)−1 ◦ (t, x)‖αB ∼ |t− s|α2 + |x1 − ξ1|α + |x2 − ξ2 − (t− s)ξ1|
α
3 .

Notice that for points that are on the same time level, the increments are controlled as for (1.18); otherwise, 
as opposed to the standard parabolic case, the regularity in the euclidean directions is somehow entangled 
due to the group law associated to B. This functional setting, which exploits some regularity in the full set 
of variables, is more suited to obtain classical solutions (see [10], [21] and the references therein). To the 
best of our knowledge this is the first attempt at obtaining a general interpolation characterization for the 
spaces Cn,α

B . For this purpose, notice that while it is true that

(
C,D(Y )

)
= {f ∈ C, t �→ φ(t) := t−θ‖etY f − f‖∞ ∈ L∞(0,∞)} = Cθ

Y ,
θ,∞
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since the vector fields ∂x1 and Y don’t commute, it’s not at all clear whether

(
C,D(∂2

x1
) ∩ D(Y )

)
θ
2 ,∞

=
(
C,D(∂2

x1
)
)

θ
2 ,∞

∩ (C,D(Y )) θ
2 ,∞

. (1.19)

This makes it difficult to pursue an approach based on semigroup theory. Instead of trying to prove (1.19)
we follow a constructive approach based on approximation: for instance, for any u ∈ C0,α

B we can define

uε(z) =
∫

Rd+1

u(ζ)φ
(
Dε−1(ζ−1 ◦ z)

) dζ

εQ+2 , z ∈ Rd+1,

where φ is a test function with unit integral, supported on ‖y‖B � 1. This approximation complies with 
the Lie structure induced by B, and indeed we prove the following expected controls

|u− uε|∞ � cεα‖u‖C0,α
B

, ‖uε‖C1,0
B

� cεα−1‖u‖C0,α
B

, (1.20)

so that

ε−αK(ε, u;C,C1,0
B ) � ε−α(|u− uε|∞ + ε‖uε‖C1,0

B
) � 2c‖u‖C0,α

B
.

This way of reasoning is fairly standard (see, for instance, Chapter 1 in [20]), though the estimates (1.20)
are new for the intrinsic spaces and we present a generalization for any order n ∈ N0 in Theorem 3.1.

2. Preliminaries

Here we collect some remarks and known preliminary results which will play a central role for the next 
Sections.

Remark 2.1. Under Assumption 1.1 the matrix B is a nilpotent matrix of degree r + 1. In particular

eδB = Id +
r∑

j=1

Bj

j! δ
j ,

is a lower triangular matrix with diagonal (1, . . . , 1) and therefore it has determinant equal to 1. Indeed, 
by Assumption 1.1, a direct computation shows that, for any n � r (recalling the notation (1.5) for p̄j) we 
have

Bn =

⎛
⎜⎜⎜⎜⎜⎝

0p̄n−1×p0 0p̄n−1×p1 · · · 0p̄n−1×pr−n
0p̄n−1×(p̄r−p̄r−n

)∏n
j=1 Bj 0pn×p1 · · · 0pn×pr−n

0pn×(p̄r−p̄r−n)

0pn+1×p0

∏n+1
j=2 Bj · · · 0pn+1×pr−n

0pn+1×(p̄r−p̄r−n)
...

...
. . .

...
...

0pr×p0 0pr×p1 · · ·
∏r

j=r−n+1 Bj 0pr×(p̄r−p̄r−n)

⎞
⎟⎟⎟⎟⎟⎠ ,

n∏
j=1

Bj = BnBn−1 · · ·B1,

(2.1)
and Bn = 0 for n > r.

Remark 2.2. A simple computation shows that, for any z, y ∈ Rd+1,

y−1 ◦ eδY z = eδY (y−1 ◦ z), y−1 ◦ eδ∂xi z = eδ∂xi (y−1 ◦ z), i = 1, . . . , d, (2.2)

which is a way to restate the invariance of operator (1.1) w.r.t. the group law.
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Lemma 2.3. The following identities hold:

Dλe
δY (z) = eδλ

2Y (Dλz) , Dλe
δ∂xi (z) = eδλ

2j+1∂xiDλz, i = p̄j−1 + 1, . . . , p̄j , (2.3)

for any z ∈ Rd+1 and δ, λ ∈ R.

Proof. Let z = (t, x), and let D0
λ be the spatial part of the dilation operator Dλ, namely D0

λ =
(λIp0 , λ

3Ip1 , . . . , λ
2r+1Ipr

). Denoting with x{i}, i = 0, . . . , r, the projection of x on Rpi defined by

x{i} := (xp̄i−1+1, . . . , xp̄i
),

by (2.1) we can write

(
eδBx

)
{i} = x{i} +

i−1∑
j=0

δi−j

⎛
⎝ i∏

k=j+1

Bk

⎞
⎠x{j}, i = 0, . . . , r. (2.4)

Then we have

(
D0

λe
δBx

)
{i} = λ2i−1x{i} + λ2i−1

i−1∑
j=0

δi−j

⎛
⎝ i∏

k=j+1

Bk

⎞
⎠x{j}

= λ2i−1x{i} +
i−1∑
j=0

(λ2δ)i−j

⎛
⎝ i∏

k=j+1

Bk

⎞
⎠λ2j−1x{j} =

(
eδλ

2B
(
D0

λx
))

{i}
.

where in the last equality we used that λ2i−1x{i} = (Dλx){i} and λ2j−1x{j} = (Dλx){j}. Thus we get

Dλe
δY z =

(
λ2(t + δ), eδλ

2B
(
D0

λx
))

= eδλ
2Y (D(λ)z) .

The second equality is clear from the definitions. �
We conclude this Section by recalling the crucial intrinsic Taylor expansion proved in [22]. Here β =

(β1, . . . , βd) ∈ Nd
0 denotes a multi-index, and as usual β! :=

∏d
j=1(βj !). Moreover, for any x ∈ Rd, xβ =

xβ1
1 . . . , xβd

d and ∂β = ∂β
x = ∂β1

x1
· · · ∂βd

xd
. The B-length of β is defined as

|β|B :=
r∑

i=0
(2i + 1)

p̄i∑
j=p̄i−1+1

βj .

Theorem 2.4 (Intrinsic Taylor formula). If u ∈ Cn,α
B then we have

Y k∂β
xu ∈ C

n−2k−|β|B ,α
B , 0 � 2k + |β|B � n, (2.5)

and

|u(z) − Tnu(ζ, z)| � cB‖u‖Cn,α
B

‖ζ−1 ◦ z‖n+α
B , z, ζ ∈ Rd+1, (2.6)

where cB is a positive constant which only depend on B and Tnu(ζ, ·) is the n-th order B-Taylor polynomial 
of u around ζ = (s, ξ) defined as

Tnu(ζ, z) =
∑ 1

k!β!

(
Y k∂β

ξ u(s, ξ)
)

(t− s)k(x− e(t−s)Bξ)β , z = (t, x) ∈ Rd+1. (2.7)

0�2k+|β|B�n
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Notation: Eventually, we will frequently use the notation �. For two quantities Q1 and Q2, we mean by 
Q1 � Q2 that there exists a constant cB , only dependent on the matrix B, such that Q1 � cBQ2.

3. Approximation of Cn,α
B functions

This Section is mainly devoted to the proof of the following Theorem 3.1, which establishes an approxi-
mation property for our B-Hölder continuous functions.

Theorem 3.1 (Approximation property). Let n, l ∈ N0 and α ∈ [0, 1]. There exists a constant cB, only 
dependent on B and d, such that for any u ∈ Cn,α

B and 0 < ε � 1, there exists uε ∈ C∞ such that

‖u− uε‖Cl,0
B

� cBε
n+α−l‖u‖Cn,α

B
, l � n, (3.1)

‖uε‖Cl,0
B

� cBε
n+α−l‖u‖Cn,α

B
l > n. (3.2)

The proof is based on the intrinsic Hölder expansion of Theorem 2.4 and the invariance properties of 
Lemma 2.3 and Remark 2.2. We also need the following technical Lemma, which remarkably says that 
we can exchange the differentiation of the intrinsic Taylor polynomial with the differentiation of the inner 
function, taking into account the intrinsic degree of the derivatives ∂i, i = 1, . . . , p0 and Y .

To avoid ambiguity, when necessary, we will write Yz, Yζ as well as ∂xi
, ∂ξi to clearly distinguish the 

variables with respect to which the derivation is applied.

Lemma 3.2. For any u ∈ Cn,α
B and z = (t, x), ζ = (s, ξ) ∈ Rd+1 we have

∂xi
Tnu(ζ, z) = Tn−1(∂iu)(ζ, z), n � 1, i = 1, . . . , p0, (3.3)

YzTnu(ζ, z) = Tn−2(Y u)(ζ, z), n � 2. (3.4)

Proof. Equality (3.3) is analogous to the Euclidean case and follows by a direct computation. Indeed it 
suffices to notice that, for i = 1, . . . , p0, Tnu(ζ, z) depends on xi only in the terms (x − e(t−s)Bζ)i and 
∂xj

(x − e(t−s)Bζ)i = δij (δij being the Kronecker Delta) for i, j = 1, . . . , p0. Equality (3.4) on the other 
hand, needs a more careful analysis: the directional derivative Yz is not null when applied both to the terms 
(t − s)k and (x − e(t−s)Bζ)i for any i > p0 and, most importantly, some commutators need to be introduced 
in order to exchange the order of derivation between ∂ξi and Yζ , and make Yζu appear in any term of the 
sum.

First we introduce some notations: let v := x − e(t−s)Bξ ∈ Rd and let us denote with v[i], i = 0, . . . , r, 
the projection of v on {0}p̄i−1 ×Rpi ×{0}d−p̄i ; then we denote with Xi the vector field Xi := 〈v[i], ∇〉, were 
∇ represent the usual Nabla operator. Clearly we have

YzX0 = 0, (3.5)

Moreover we have

YzXiu(ζ) =
p̄i∑

j=p̄i−1+1
(Bv)j∂ξju(ζ) = 〈(Bv)[i],∇u(ζ)〉

= 〈Bv[i−1],∇u(ζ)〉 = [Xi−1, Yζ ]u(ζ) =: X(1)
i−1u(ζ). (3.6)

To prove (3.4) we proceed by induction. For n = 2 we directly get
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YzT2u(ζ, z) = Yz

(
u(ζ) + X0u(ζ) + 1

2!X
2
0u(ζ) + Yζu(ζ)(t− s)

)
= YzYζu(ζ)(t− s) = Yζu(ζ).

Then we proceed in two steps, namely, the induction from 2n + 1 to 2n + 2 and the induction from 2n to 
2n + 1.

1: Induction from 2n + 1 to 2n + 2

Let β = (β0, . . . , βr) ∈ Nr+1
0 and let us denote just in the context of this proof

|β|B =
r∑

i=0
(2i + 1)βi, β! = β1! · · ·βr!.

Then, with the notation introduced above we can conveniently write

T2n+2u(ζ, z) = T2n+1u(ζ, z) +
n+1∑
k=0

∑
|β|B=2(n+1)−2k

1
k!β!Y

k
ξ Xβ0

0 · · ·Xβn−k

n−k u(ζ)(t− s)k (3.7)

=: T2n+1u(ζ, z) + T̃2n+1u(ζ, z). (3.8)

By (3.5) and (3.6) we have

YzY
k
ζ (t− s)k = Y k

ζ (t− s)k−1, (3.9)

YzX
βi

i = βiX
βi−1
i X

(1)
i−1 (3.10)

YζX
βi

i = Xβi

i Yζ − βiX
βi−1
i X

(1)
i . (3.11)

Therefore, applying Yz to T̃2n+1u(ζ, z) we get YzT̃2n+1u(ζ, z) =
∑n+1

k=0 Sk with

S0 =
∑

|β|B=2n+2

1
β!

n∑
i=0

βiX
β0
0 · · ·Xβi−1

i · · ·Xβn
n X

(1)
i−1u(ζ)

=
∑

|β|B=2n+2

n−1∑
i=0

1
β0! · · · (bi+1 − 1)! · · ·βn!X

β0
0 · · ·Xβi+1−1

i+1 · · ·Xβn
n X

(1)
i u(ζ)

=
n−1∑
i=0

∑
|β|B=2(n−i)−1

1
β!X

β0
0 · · ·Xβn−i−1

n−i−1 X
(1)
i u(ζ),

and, for k = 1, . . . , n + 1,

Sk =
∑

|β|B=2(n+1)−2k

(t− s)k−1

(k − 1)!β! Y
k−1
ζ

(
Xβ0

0 · · ·Xβn−k

n−k Yζ −
n−k∑
i=0

βiX
β0
0 · · ·Xβi−1

i · · ·Xβn−k

n−k X
(1)
i

)
u(ζ)

+
∑

|β|B=2(n+1)−2k

(t− s)k

k!β! Y k
ζ

n−k∑
i=0

βiX
β0
0 · · ·Xβi−1

i · · ·Xβn−k

n−k X
(1)
i−1u(ζ)

=S
(1)
k −

n−k∑
i=0

∑
|β|B=2(n−k−i)+1

1
(k − 1)!β!Y

k−1
ζ Xβ0

0 · · ·Xβn−i−k

n−i−k X
(1)
i u(ζ)(t− s)k−1

+
n−k−1∑ ∑ 1

k!β!Y
k
ζ Xβ0

0 · · ·Xβn−i−k−1
n−i−k−1 X

(1)
i u(ζ)(t− s)k
i=0 |β|B=2(n−k−i)−1
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=S
(1)
k + S

(2)
k + S

(3)
k .

Now notice that

S0 + S
(2)
1 = 0 S

(3)
k + S

(2)
k+1 = 0, k = 1, . . . , n. (3.12)

Moreover S(3)
n = S

(2)
n+1 = S

(3)
n+1 = 0 by (3.9). Thus we finally get

YzT̃2n+2u(ζ, z) =
n∑

k=0

S
(1)
k+1 =

n∑
k=0

∑
|β|B=2n−2k

1
k!β!Y

k
ζ Xβ0

0 · · ·Xβn−k−1
n−k−1 Yζu(ζ)(t− s)k = T̃2nY u(ζ, z),

and therefore, using the induction hypotheses

YzT2n+2u(ζ, z) = T2n−1Y u(ζ, z) + T̃2nY u(ζ, z) = T2nY u(ζ, z).

2: Induction from 2n to 2n + 1

This Step only differs from the previous one by the tracking of the indexes throughout the computations and 
the fact that the polynomial T̃2n+1 always contains at least one field of type Xi. We write YzT̃2n+1u(ζ, z) =∑n

k=0 Sk and we derive, with similar computations than in the previous step

S0 =
n−1∑
i=0

∑
|β|B=2(n−i)

1
β!X

β0
0 · · ·Xβn−i−1

n−i−1 X
(1)
i u(ζ),

and, for any k = 1, . . . , n − 1,

Sk =
∑

|β|B=2(n−k)+1

1
(k − 1)!β!Y

k−1
ζ Xβ0

0 · · ·Xβn−k

n−k Yζu(ζ)(t− s)k−1

−
n−k∑
i=0

∑
|β|B=2(n−k−i)

1
(k − 1)!β!Y

k−1
ζ Xβ0

0 · · ·Xβn−i−k

n−i−k X
(1)
i u(ζ)(t− s)k−1

+
n−k−1∑
i=0

∑
|β|B=2(n−k−i−1)

1
k!β!Y

k
ζ Xβ0

0 · · ·Xβn−i−k−1
n−i−k−1 X

(1)
i u(ζ)(t− s)k

=S
(1)
k + S

(2)
k + S

(3)
k .

In particular, S0 + S
(2)
1 = 0, S(3)

k + S
(2)
k+1 = 0 for any k = 1, . . . , n − 1 and S(3)

n = 0 by (3.5). Therefore we 
can eventually derive (3.4). �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let u ∈ Cn,α
B and let φ be a test function supported on ‖z‖B � 1 with unit integral. 

We define our candidate approximation by

u(n)
ε (z) = Tnu(·, z) B φε(z) :=

∫
Rd+1

Tnu(ζ, z)φ
(
Dε−1(ζ−1 ◦ z)

) dζ

εQ+2 ,

where Tnu(ζ, z) is the Taylor polynomial in (2.7) and Q is the spatial homogeneous dimension of Rd+1 w.r.t.
(Dλ)λ>0, that is the positive integer
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Q = p0 + 3p1 + · · · (2r + 1)pr.

Notice that, by the change of variables ζ̄ = Dε−1(ζ−1 ◦ z), recalling Remark 2.1, it is easy to verify that

∫
Rd+1

φ
(
Dε−1(ζ−1 ◦ z)

) dζ

εQ+2 =
∫

‖ζ‖B�1

φ(ζ)dζ = 1. (3.13)

In particular we have

u(z) − u(n)
ε (z) =

∫
Rd+1

(u(z) − Tnu(ζ, z))φ
(
Dε−1(ζ−1 ◦ z)

) dζ

εQ+2 .

Observe now that the differentiation of u(n)
ε falls back both on the test function and the polynomial Tnu, 

the latter being handled by Lemma 3.2; for the former case, by Lemma 2.3 and Remark 2.2 we deduce

Yzφ(Dε−1(ζ−1 ◦ z)) = ε−2Y φ(ζ̄) |ζ̄=Dε−1 (ζ−1◦z),

∂zjφ(Dε−1(ζ−1 ◦ z)) = ε−(2i+1)∂jφ(ζ̄) |ζ̄=Dε−1 (ζ−1◦z), p̄i−1 < j � p̄i,

and, more generally, for any β ∈ Nd
0 ,

Y k
z ∂β

z φ(Dε−1(ζ−1 ◦ z)) = ε−2k−|β|BY k∂βφ(z̄) |z̄=Dε−1 (ζ−1◦z) . (3.14)

1: Preliminary controls

Let us denote a general intrinsic derivative of order m, Dm =
∑

2k+|β|B=m Y k∂β , and let

I(n,m)
ε u(z) :=

∫
Rd+1

(u(z) − Tnu(ζ, z))Dβ
zφ(Dε−1(ζ−1 ◦ z)) dζ

εQ+2 .

We want to prove that

|I(n,m)
ε u|∞ � εn+α−m‖u‖Cn,α

B
, (3.15)

[I(n,m)
ε u]

C
1
2
Y

� εn+α−(m+1)‖u‖Cn,α
B

, n � 1. (3.16)

By (3.14), the change of variable ζ̄ = Dε−1(ζ−1 ◦ z), and Theorem 2.4, we have

|I(n,m)
ε u|∞ �

∫
Rd+1

∣∣(u(z) − Tnu(ζ, z))Dm
z φ(Dε−1(ζ−1 ◦ z))

∣∣ dζ

εQ+2

� ‖u‖Cn,α
B

∫
Rd+1

‖ζ−1 ◦ z‖n+α
B ε−mDmφ(ζ̄) |ζ̄=Dε−1 (ζ−1◦z)

dζ

εQ+2

� ‖u‖Cn,α
B

∫
‖ζ̄‖B�1

‖Dεζ̄‖n+α
B ε−mDmφ(ζ̄)dζ̄ � εn+α−m‖u‖Cn,α

B
,

were we used that ‖Dεζ̄‖B = ε‖ζ̄‖B in the last inequality, and this proves (3.15). On the other hand we 
have
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|I(n,m)
ε u(z) − I(n,m)

ε u(eδY z)|

�
∫

Rd+1

|u(z) − Tnu(ζ, z)|
∣∣Dm

z′φ(Dε−1(ζ−1 ◦ z′)) −Dm
z φ(Dε−1(ζ−1 ◦ z))

∣∣
z′=eδY z

dζ

εQ+2

+
∫

Rd+1

∣∣u(eδY z) − Tnu(ζ, eδY z) − (u(z) − Tnu(ζ, z))
∣∣ ∣∣Dm

z φ(Dε−1(ζ−1 ◦ z))
∣∣ dζ

εQ+2

=: ΔI
(n,m)
ε,1 + ΔI

(n,m)
ε,2 .

By (3.14), Theorem 3.3, Lemma 2.3, and the usual change of variables ζ̄ = Dε−1(ζ−1 ◦ z), we have

ΔI
(n,m)
ε,1 � ‖u‖Cn,α

B

∫
Rd+1

‖ζ−1 ◦ z‖n+α
B ε−m

∣∣Dmφ(ζ̄ ′) −Dmφ(ζ̄)
∣∣
ζ̄′=e

δ
ε2

Y
ζ̄

dζ

εQ+2

� ‖u‖Cn,α
B

∫
‖ζ̄‖B�1

εn+α−m

∣∣∣∣ δε2

∣∣∣∣
1
2

‖φ‖Cm+1,0
B

dζ̄ � |δ| 12 εn+α−(m+1)‖u‖Cn,α
B

.

To control ΔI
(n,m)
ε,2 we write

ΔI
(n,m)
ε,2 = ΔI

(n,m)
ε,2 Iδ>ε2 + ΔI

(n,m)
ε,2 Iδ�ε2 .

We have

ΔI
(n,m)
ε,2 Iδ>ε2 �

∫
Rd+1

(
|u(eδY z) − Tnu(ζ, eδY z)| + |u(z) − Tnu(ζ, z)|

)
ε−m

∣∣Dmφ(ζ̄)
∣∣ dζ

εQ+2 Iδ>ε2

(using that ζ−1 ◦ eδY z = Dεe
δε2Y ζ̄ by Lemma 2.3 and Remark 2.2)

� ‖u‖Cn,α
B

∫
‖ζ̄‖B�1

εn+α−m(‖eδε2Y ζ̄‖n+α
B + ‖ζ̄‖n+α

B )
∣∣Dmφ(ζ̄)

∣∣ dζ̄Iδ>ε2

� εn+α−m‖u‖Cn,α
B

Iδ>ε2 � |δ| 12 εn+α−(m+1)‖u‖Cn,α
B

.

Finally, assume for a moment n � 2. By the standard mean value theorem and Lemma 3.2, there exists 
λ ∈ [0, 1] such that

ΔI
(n,m)
ε,2 Iδ�ε2 � |δ|

∫
Rd+1

|Y u(z′) − Tn−2Y u(ζ, z′)|ζ′=eλδY z ε
−m

∣∣Dmφ(ζ̄)
∣∣ dζ

εQ+2 Iδ�ε2

� |δ|‖Y u‖Cn−2,α
B

∫
Rd+1

‖ζ−1 ◦ eλδY z‖n−2+α
B ε−m‖φ‖Cm,0

B

dζ

εQ+2 Iδ�ε2

� |δ|‖u‖Cn,α
B

∫
‖ζ‖B�1

εn−2+α−m‖eλδε2Y ζ̄‖n−2+α
B dζ̄Iδ�ε2

� |δ|εn−2+α−m‖u‖Cn,α
B

Iδ�ε2 � |δ| 12 εn+α−(m+1)‖u‖Cn,α
B

.

If n = 0 or n = 1 we have T1u(ζ, eδY z) = T1u(ζ, z) and T0u(ζ, z) = T0u(ζ, eδY z) = u(ζ), so that the 
expression simplifies and it suffices to exploit the regularity of u w.r.t. the field Y : this proves (3.16).
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2: Conclusions

Let

J (n,m)
ε u(z) :=

∫
Rd+1

Tnu(ζ, z)Dm
z φ(Dε−1(ζ−1 ◦ z)) dζ

εQ+2 .

By iterative applications of the generalized Leibniz formula and Lemma 3.2, for l � n:

‖u− u(n)
ε ‖Cl,0

α
�

l∑
i=0

∣∣∣I(n−i,l−i)
ε Diu

∣∣∣
∞

+
l−1∑
i=0

[
I(n−i,l−i−1)
ε Diu

]
C

1
2
Y

(using that Diu ∈ Cn−i,α
B by Theorem 2.4, and (3.15)-(3.16) with n − i instead of n and m = l − i)

�
l∑

i=0
εn+α−l‖Diu‖Cn−i,α

B
+

l−1∑
i=0

εn+α−l‖Diu‖Cn−i,α
B

� εn+α−l‖u‖Cn,α
B

. (3.17)

Similarly, for l > n, we have

‖u(n)
ε ‖Cl,0

α
�

n∑
i=0

(∣∣∣J (n−i,l−i)
ε Diu

∣∣∣
∞

+
[
J (n−i,l−i−1)
ε Diu

]
C

1
2
Y

)

Since l > n any term of the first sum sports, at least, one derivative applied on φ; since the integral of 
the mollifier (3.13) is constant in z, the cancellation property J (n−i,l−i)

ε Diu = I
(n−i,l−i)
ε Diu holds for any 

i = 0, . . . , n. Similarly for the second sum. Therefore we finally get

‖u(n)
ε ‖Cl,0

α
�

n∑
i=0

(∣∣∣I(n−i,l−i)
ε Diu

∣∣∣
∞

+
[
I(n−i,l−i−1)
ε Diu

]
C

1
2
Y

)

�
n∑

i=0
εn+α−l‖Diu‖Cn−i,α

B
� εn+α−l‖u‖Cn,α

B
. (3.18)

The proof is completed. �
4. Proofs of Proposition 1.5 and Theorem 1.6

Proof of Proposition 1.5. Let u ∈ Cn,0
B . By Proposition 3.1 we have

K(λ, u;Cn1,0
B , Cn2,0

B ) � ‖u− uε‖Cn1,0
B

+ λ‖uε‖Cn2,0
B

� (εn−n1 + λεn−n2)‖u‖Cn,0
B

.

Then, taking ε = λ
1

n2−n1 we directly get K(λ, u; Cn1,0
B , Cn2,0

B ) � λ
n−n1
n2−n1 ‖u‖Cn,0

B
, which gives the set inclusion 

on the right. It remains to prove that, for any u ∈ Cn2,0
B

‖u‖Cn,0
B

� ‖u‖1− n−n1
n2−n1

C
n1,0
B

‖u‖
n−n1
n2−n1

C
n2,0
B

. (4.1)

We check that (4.1) holds for (n1, n2) = (n − 1, n + 1), n ∈ N, in which case, the inequality reads

‖u‖Cn,0 � ‖u‖
1
2

n−1,0‖u‖
1
2

n+1,0 . (4.2)

B CB CB
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Then it is straightforward to see that (4.1) follows by repeated applications of (4.2) with itself. We proceed 
by induction on n. By the standard Mean Value Theorem we have

|u(eδ∂xi z) − u(z) − ∂xi
u(z)δ| � 1

2 |∂
2
xi
u|∞δ2, i = 1, . . . , p0

|u(eδ
2Y z) − u(z)| � |Y u|∞δ2,

and therefore

p0∑
i=1

|∂xi
u|∞ + [u]C1

Y
� δ−1|u|∞ + δ

(
|∂2

xi
u|∞ + |Y u|∞

)
.

Taking the optimal δ > 0 we get

‖u‖C1,0
B

� |u|∞ + |u|
1
2∞
(
|∂2

xi
u|∞ + |Y u|∞

) 1
2 � |u|

1
2∞‖u‖

1
2
C2,0

B

. (4.3)

This proves (4.2) for n = 1. Next, by the mean value Theorem along the vector field Y we have that, for 
every z ∈ Rd+1 and δ �= 0, there exists δ̄, |δ̄| � |δ| such that

u(eδY z) − u(z) − δY u(z) = δ
(
Y u(eδ̄Y z) − Y u(z)

)
.

Then, dividing by |δ| 12 we easily derive

|δ| 12 |Y u|∞ � [u]
C

1
2
Y

+ |δ|[Y u]
C

1
2
Y

(4.4)

By (4.3) and (4.4), taking the optimal δ, we eventually get

‖u‖C2,0
B

= |u|∞ + |Y u|∞ +
p0∑
i=0

‖∂xi
u‖C1,0

B

� |u|∞ + [u]
1
2

C
1
2
Y

[Y u]
1
2

C
1
2
Y

+
p0∑
i=0

|∂xi
u|

1
2∞‖∂xi

u‖
1
2
C2,0

B

� ‖u‖
1
2
C1,0‖u‖

1
2
C3,0 .

This proves (4.2) for n = 2. The general case simply follows by the iterative definition of the spaces and the 
induction hypothesis. �

Before we proceed with the proof of Theorem 1.6, we recall another important tool in the theory of 
interpolation, that is the well known Reiteration Theorem (see [20], Theorem 1.23 or [26], Section 1.10.2).

Theorem 4.1 (Reiteration Theorem). Let {Z1, Z2} be an interpolation couple, and let E1, E2 be some inter-
mediate spaces between Z1 and Z2. If

(
Z1, Z2

)
θi,1

⊆ Ei ⊆
(
Z1, Z2

)
θi,∞, i = 1, 2

for some θi such that 0 � θ1 < θ2 � ∞, then

(
E1, E2

)
α,p

=
(
Z1, Z2

)
(1−α)θ1+αθ2,p

, α ∈ (0, 1), p � 1.

We are finally ready to prove Theorem 1.6.
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Proof of Theorem 1.6. The proof is a fairly standard application of Theorem 3.1, Proposition 1.5 and The-
orem 4.1. We proceed in two steps:

Step 1 : We prove (1.15) for α1 = α2 = 0 and n1 = n, n2 = n + 1. Precisely, for any n ∈ N0, and 0 < α < 1,

(
Cn,0

B , Cn+1,0
B

)
α,∞

=
(
Cn,0

B , Cn,1
B

)
α,∞

= Cn,α
B .

(⊇): This inclusion is a direct consequence of the approximation result of Theorem 3.1. Indeed, for any 
u ∈ Cn,α

B and λ ∈ [0, 1) we have

K(λ, u;Cn,0
B , Cn+1,0

B ) � ‖u− uε‖Cn,0
B

+ λ‖uε‖Cn+1,0
B

� (εα + λεα−1)‖u‖Cn,α
B

.

Therefore, taking ε = λ we get

K(λ, u;Cn,0
B , Cn+1,0

B ) � λα‖u‖Cn,α
B

.

On the other hand, for λ � 1 it suffices to take uε ≡ 0.

(⊆): We proceed by induction on n. Let u ∈ C0,α
B , then, for any choice of a ∈ C, b ∈ C1,0

B such that 
u = a + b we have |u|∞ � |a|∞ + |b|∞ and therefore |u|∞ � K(1, u; C, C1,0

B ) � ‖u‖(C,C1,0
B )α,∞

. Similarly, for 
any i = 1, . . . , p0

|u(eδ∂xi z) − u(z)| � 2|a|∞ + [b]C1
∂xi

|δ|, |u(eδY z) − u(z)| � 2|a|∞ + [b]
C

1
2
Y

|δ| 12 , z ∈ Rd+1,

and thus, for any i = 1, . . . , p0

|u(eδ∂xi z) − u(z)| � 2K(|δ|, u;C,C1,0
B ) � 2|δ|α‖u‖(C,C1,0

B )α,∞
, (4.5)

|u(eδY z) − u(z)| � 2K(|δ| 12 , u;C,C1,0
B ) � 2|δ|α2 ‖u‖(C,C1,0

B )α,∞
. (4.6)

Gathering together (4.5)-(4.6), we get the inclusion in the case n = 0. Next, let u ∈ C1,α
B . Clearly |u|∞ �

K(1, u; C1,0
B , C2,0

B ). Moreover, for any choice of a ∈ C1,0
B , b ∈ C2,0

B such that u = a + b we have, for any 
i = 1, . . . , p0

|u(eδ∂xi z) − u(z) − δ∂xi
u(z)| � 2|∂xi

a|∞|δ| + δ2[∂xi
b]C1

∂xi

|δ2|,

|u(eδY z) − u(z)| � [a]
C

1
2
Y

|δ| 12 + |Y b|∞|δ|,

|∂xi
u(z′) − ∂xi

u(z)|z′=eδY z � 2|∂xi
a|∞ + [∂xi

b]
C

1
2
Y

|δ| 12 ,

and therefore, for any i = 1, . . . , p0

|u(eδ∂xi z) − u(z) − δ∂xi
u(z)| � 2|δ|K(|δ|, u;C1,0

B , C2,0
B ) � 2|δ|1+α‖u‖(C1,0

B ,C2,0
B )α,∞

, (4.7)

|u(eδY z) − u(z)| � |δ| 12K(|δ| 12 , u;C1,0
B , C2,0

B ) � |δ| 1+α
2 ‖u‖(C1,0

B ,C2,0
B )α,∞

, (4.8)

|∂xi
u(z′) − ∂xi

u(z)|z′=eδY z � 2K(|δ| 12 , u;C1,0
B , C2,0

B ) � 2|δ|α2 ‖u‖(C1,0
B ,C2,0

B )α,∞
. (4.9)

Gathering together (4.7)-(4.9), we get the inclusion in the case n = 1. Finally, for u ∈ Cn,α
B , n � 2, we have
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‖u‖Cn,α
B

= |u|∞ + ‖Y u‖Cn−2,α
B

+
p0∑
i=1

‖∂xi
u‖Cn−1,α

B

� |u|∞ + ‖Y u‖(Cn−2,0
B ,Cn−1,0

B )α,∞
+

p0∑
i=1

‖∂xi
u‖(Cn−1,0

B ,Cn,0
B )α,∞

� ‖u‖(Cn,0
B ,Cn+1,0

B )α,∞
,

where we used that K(λ, ∂xi
u; Cn−1,0

B , Cn,0
B ) � K(λ, u; Cn,0

B , Cn+1,0
B ) as well as K(λ, Y u; Cn−2,0

B , Cn−1,0
B ) �

K(λ, u; Cn,0
B , Cn+1,0

B ), for any λ � 0, i = 1, . . . , p0.

Step 2 : Let now n1, n2 ∈ N0, n1 < n2, and let α1, α2 ∈ [0, 1]. By the interpolation result of Step 1, and the 
Reiteration Theorem paired with Proposition 1.5, we get

(Cn1,α1
B , Cn2,α2

B )θ,∞ =
((

Cn1,0
B , Cn1+1,0

B

)
α1,∞

,
(
Cn2,0

B , Cn2+1,0
B

)
α2,∞

)
θ,∞

=
((

Cn1,0
B , Cn2+1,0

B

)
α1

n2+1−n1
,∞

,
(
Cn1,0

B , Cn2+1,0
B

)
n2+α2−n1
n2+1−n1

,∞

)
θ,∞

=
(
Cn1,0

B , Cn2+1,0
B

)
(1−θ) α1

n2+1−n1
+θ

n2+α2−n1
n2+1−n1

,∞

=:
(
Cn1,0

B , Cn2+1,0
B

)
θ′,∞

Taking n as in (1.14) we finally obtain, again by the Reiteration Theorem,

(Cn1,α1
B , Cn2,α2

B )θ,∞ =
(
Cn,0

B , Cn+1,0
B

)
θ′(n2+1−n1)−(n−n1),∞

= C
n,α1+θ[(n2+α2)−(n1+α1)]−(n−n1)
B .

The proof is completed. �
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