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Abstract: This paper is part of a line of research devoted to developing a compositional and geometric
theory of Group Equivariant Non-Expansive Operators (GENEOs) for Geometric Deep Learning.
It has two objectives. The first objective is to generalize the notions of permutants and permutant
measures, originally defined for the identity of a single “perception pair”, to a map between two
such pairs. The second and main objective is to extend the application domain of the whole theory,
which arose in the set-theoretical and topological environments, to graphs. This is performed using
classical methods of mathematical definitions and arguments. The theoretical outcome is that, both
in the case of vertex-weighted and edge-weighted graphs, a coherent theory is developed. Several
simple examples show what may be hoped from GENEOs and permutants in graph theory and how
they can be built. Rather than being a competitor to other methods in Geometric Deep Learning, this
theory is proposed as an approach that can be integrated with such methods.
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1. Introduction

In recent years, the need for an extension of Deep Learning to non-Euclidean domains
has led to the development of Geometric Deep Learning (Section 1.1). This line of research
focuses on applying neural networks to manifolds and graphs, making available new
geometric models for artificial intelligence. In doing this, Geometric Deep Learning uses
techniques from differential geometry, combinatorics, and algebra. In particular, it largely
uses the concepts of group action and the equivariant operator (Section 1.2), which allow
for a strong reduction in the number of parameters involved in machine learning.

1.1. Geometric Deep Learning

The basic idea of Geometric Deep Learning (GDL) [1–3] is to take into account the
“geometric” nature of data to better focus the learning process and for parameter reduction.
In fact, data may occur as sampled manifolds or as graphs, and the inherent structure may
be essential for knowledge extraction. Moreover, functions defined from data may reveal
essential features; this is, for example, the case with weighted graphs, the main object of
the present study.

GDL should help to overcome the “black box syndrome” of deep learning, going
towards “explainable AI” [4]. On this line of thought, one study [5] suggested shifting
the focus from rough data to operators on data because operators are seen as elementary
components that could substitute neurons in a neural network. Above all, operators
represent the protagonist of explainable AI: the observer.

A prominent geometric feature is a symmetry with respect to a group of transforma-
tions, and this makes equivariance a necessary requirement when dealing with such data.
The relevance of equivariance in GDL has been stressed in two recent studies [6,7].
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1.2. Equivariant Operators

Consider an operator F on data Γ (e.g., a convolution by a blurring kernel on an image)
and a group G of transformations on Γ (e.g., translations). Roughly said, F is equivariant with
respect to G if F commutes with the transformations in G (in the example, first translating
and then blurring gives the same result as first blurring and then translating).

The presence of symmetry with respect to a certain group of transformations is the
most common reason for embedding equivariance in Deep Learning. For example, this is
the case with the Euclidean, Lorenz, and Poincaré groups in the physical environments
considered in [8]. Equivariance with respect to translations, rotations, and scaling is
incorporated in deep learning for image processing and computational imaging in [9]. An
SE(3)-equivariant deep learning model is introduced in [10] for protein binding prediction.

Group Equivariant Non-Expansive Operators (GENEOs, Definition 2) were intro-
duced for building smart averages in the presence of such symmetries [5]; non-expansivity
was required to express the information reduction and to grant convenient topological
conditions. A way of producing GENEOs (preceding permutants) was first introduced
in [11]. Permutants (Definition 3) and permutant measures (Definition 6) are general and
flexible tools for building families of GENEOs. Bongard problems (typical intelligence tests)
are faced through GENEOs in [12]. An application of GENEOs to protein pocket detection
is mentioned in [13].

GENEOs inspired the introduction of Set Equivariant Operators (SEOs) for comparing
structures within the framework of Persistent Homology in [14] and were a first step
towards the comprehensive, formal description of artificial neural networks and their
architectures [15,16].

1.3. Objectives

The present research had two objectives: giving a wider definition of permutant and
extending the applicability of the whole theory to the domain of graphs.

The original definition of permutant concerned a single “perception pair” (Definition 1);
here, it is defined for two perception pairs (Definition 4) and provides a construction
method for GENEOs in this wider context (Theorem 1).

Since the beginning of GDL [1], the application of deep learning to data in the form of
graphs appeared as a very interesting and promising development, both from theoretical
and applied viewpoints. Much research is being done in this direction [17–19]. The main
objective of the present paper is then to extend the application domain of the whole theory
of GENEOs (generalized permutants included) to weighted graphs, where the weight
function can be on vertices (Section 4.1) or edges (Section 4.2).

1.4. Outline

The rest of the paper is structured as follows. Section 2 recalls the mathematical setting,
based on the concepts of perception pairs, GENEOs, and permutants. Section 3 introduces
and describes the new concepts of generalized permutants and generalized permutant
measures, proving that each of these can be used to build a GENEO (Theorems 1 and 3). In
Section 4, the concepts of vertex-weighted-/edge-weighted-graph GENEOs are introduced,
and the new mathematical model is illustrated with several examples. A section devoted to
experiments (Section 5) shows how graph GENEOs may extract useful information from
graphs, and how permutants can be built. Section 6 presents the final discussion.

2. The Set-Theoretical Setting

This section recalls the notions of perception pairs, GENEOs, and permutants as they
were initially defined in the set-theoretical and topological environments [5,20], so that the
generalizations defined in the following sections do not require consulting the references.

Let X be a non-empty set, Φ be a subspace of

RX
b := {ϕ : X → R | ϕ is bounded} (1)
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endowed with the topology induced by the L∞ distance

DΦ(ϕ1, ϕ2) := ‖ϕ1 − ϕ2‖∞ = sup
x∈X
|ϕ1(x)− ϕ2(x)|, ϕ1, ϕ2 ∈ Φ, (2)

and G be a subgroup of

AutΦ(X) := {g : X → X | g is bijective and ϕ ◦ g, ϕ ◦ g−1 ∈ Φ, ∀ϕ ∈ Φ} (3)

with respect to the composition of functions.

Definition 1. We say that (Φ, G) is a perception pair.

The elements ϕ of Φ are often called measurements. The fact that X is the common
domain of all maps in Φ will be expressed as dom(Φ) = X. The space Φ of measurements
endows X and AutΦ(X) (and, therefore, every subgroup G of AutΦ(X)) with topologies
induced, respectively, by the extended pseudometrics

DX(x1, x2) := sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)|, x1, x2 ∈ X (4)

and

DAut( f , g) := sup
ϕ∈Φ

DΦ(ϕ ◦ f , ϕ ◦ g), f , g ∈ AutΦ(X). (5)

It is known that each g ∈ AutΦ(X) is an isometry of X [5].

Definition 2. Let (Φ, G) and (Ψ, K) be perception pairs with dom(Φ) = X and
dom(Ψ) = Y, and T : G → K be a group homomorphism. An operator F : Φ → Ψ is said
to be a group equivariant non-expansive operator (GENEO, for short) from (Φ, G) to (Ψ, K) with
respect to T if

F(ϕ ◦ g) = F(ϕ) ◦ T(g), ϕ ∈ Φ, g ∈ G (6)

and
‖F(ϕ1)− F(ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞, ϕ1, ϕ2 ∈ Φ. (7)

For the sake of conciseness, we often write a GENEO as (F, T) : (Φ, G)→ (Ψ, K). An
operator that satisfies the first condition in this definition is called a group equivariant operator
(GEO, for short), while one satisfying the second condition is said to be non-expansive.

The set F all
T of all GENEOs (F, T) : (Φ, G)→ (Ψ, K), with respect to a fixed homomor-

phism T, is a metric space with the distance function given by

DGENEO(F1, F2) := sup
ϕ∈Φ

DΨ(F1(ϕ), F2(ϕ)), F1, F2 ∈ F all
T . (8)

A method to build GENEOs employing the concept of a permutant is illustrated in [20].
If G is a subgroup of AutΦ(X), then the conjugation map αg : AutΦ(X)→ AutΦ(X), given
by f 7→ g ◦ f ◦ g−1, g ∈ G, plays a key role in this technique.

Definition 3. Let H be a finite subset of AutΦ(X). We say that H is a permutant for G if H = ∅
or αg(H) ⊆ H for every g ∈ G; i.e., αg( f ) = g ◦ f ◦ g−1 ∈ H for every f ∈ H and g ∈ G.

Example 1. Let Φ be the set of all functions ϕ : X = S1 = {(x, y) ∈ R2 | x2 + y2 = 1} → [0, 1]
that are non-expansive with respect to the Euclidean distances on S1 and [0, 1]. Let us consider the
group G of all isometries of R2, restricted to S1. If h is the clockwise rotation of ` radians for a fixed
` ∈ R, then the set H = {h, h−1} is a permutant for G.

Other examples of permutants will be given in Example 10, Example 11, and Proposition 4.
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We recall the following result. As usual, in the following, we will denote the set of all
functions from the set A to the set B by the symbol BA.

Proposition 1. Let (Φ, G) be a perception pair with dom(Φ) = X. If H is a non-empty permutant
for G ⊆ AutΦ(X), then the restriction to Φ of the operator F : RX → RX defined by

F(ϕ) :=
1
|H| ∑

h∈H
ϕ ◦ h (9)

is a GENEO from (Φ, G) to (Φ, G) with respect to T = idG, provided that F(Φ) ⊆ Φ.

3. Generalized Permutants in the Set-Theoretical Setting

As revealed in Section 2, the notion of a permutant originally referred to a single
perception pair. This section introduces a generalization of the concept of a permutant to
the case of distinct perception pairs (Φ, G) and (Ψ, K), and shows how it can be used to
populate the space of GENEOs. In particular, Section 3.1 defines an equivalence relation
among maps and recognizes a generalized permutant as a union of equivalence classes;
Section 3.2 connects this notion with the action of the group G; and Section 3.3 recalls
(Definition 6) and generalizes (Definition 7) the notion of a permutant measure to this
new context.

Definition 4. Let (Φ, G), dom(Φ) = X and (Ψ, K), dom(Ψ) = Y be perception pairs and
T : G → K be a group homomorphism. A finite set H ⊆ XY of functions h : Y → X is called a
generalized permutant for T if H = ∅ or g ◦ h ◦ T(g−1) ∈ H for every h ∈ H, and every g ∈ G.

In this case, we have the following commutative diagram:

X
g // X

Y

h

OO

T(g) // Y

h′=g◦h◦T(g−1)

OO (10)

We observe that the map h 7→ g ◦ h ◦ T(g−1) is a bijection from H to H for any g ∈ G.
Definition 4 extends Definition 3 in two different directions. First, it does not require

that the origin perception pair (Φ, G) and the target perception pair (Ψ, K) coincide. Second,
it does not require that the elements of the set H are bijections. In Section 5.2, we will see
how the concept of generalized permutant can be applied.

Example 2. Let X, Y be two non-empty finite sets, with Y ⊆ X. Let G be the group of all
permutations of X that preserve Y, and K be the group of all permutations of Y. Set Φ = RX and
Ψ = RY. Assume that T : G → K takes each permutation of X to its restriction to Y. Define H as
the set of all functions h : Y → X such that the cardinality of Im h is smaller than a fixed integer m.
Then H is a generalized permutant for T.

In the following two subsections, we will express two other ways to look at generalized
permutants, beyond their definition. To this end, we will assume that two perception pairs
(Φ, G), (Ψ, K) and a group homomorphism T : G → K are given, with dom(Φ) = X and
dom(Ψ) = Y.

3.1. Generalized Permutants as Unions of Equivalence Classes

In view of Definition 4, we can define an equivalence relation ∼ on XY:

Definition 5. Let h, h′ ∈ XY. We say that h is equivalent to h′, and write h ∼ h′, if there is a
g ∈ G such that h′ = g ◦ h ◦ T(g−1).

It is easy to see that ∼ is indeed an equivalence relation on XY.
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Proposition 2. A subset H of XY is a generalized permutant for T if and only if H is a (possibly
empty) union of equivalence classes for ∼.

Proof. Assume that H is a generalized permutant for T. If h ∈ H and h ∼ h′ ∈ XY, then the
definition of the relation ∼ and the definition of generalized permutant imply that h′ ∈ H
as well, and, therefore, H is a union of equivalence classes for∼. Conversely, if H is a union
of equivalence classes for the relation ∼, h ∈ H, and g ∈ G, then g ◦ h ◦ T(g−1) ∈ H, since
g ◦ h ◦ T(g−1) ∼ h. As a consequence, H is a generalized permutant for T.

3.2. Generalized Permutants as Unions of Orbits

The map α : G × XY → XY taking (g, f ) to g ◦ f ◦ T(g−1) is a left group action,
since α(idX, f ) = idX ◦ f ◦ T(id−1

X ) = f and α(g2, α(g1, f )) = α(g2, g1 ◦ f ◦ T(g−1
1 )) =

g2 ◦ (g1 ◦ f ◦ T(g−1
1 )) ◦ T(g−1

2 ) = (g2 ◦ g1) ◦ f ◦ T((g2 ◦ g1)
−1) = α(g2 ◦ g1, f ). For every

f ∈ XY, the set O( f ) := {α(g, f ) : g ∈ G} is called the orbit of f . By observing that O( f ) is
the equivalence class of f in XY for ∼, from Proposition 2 the following result immediately
follows.

Proposition 3. A subset H of XY is a generalized permutant for T if and only if H is a (possibly
empty) union of orbits for the group action α.

The main use of the concept of generalized permutants is expressed by the following
theorem, extending Proposition 1.

Theorem 1. Let (Φ, G), dom(Φ) = X and (Ψ, K), dom(Ψ) = Y be perception pairs, T : G →
K a group homomorphism, and H be a generalized permutant for T. Then the restriction to Φ of the
operator F : RX → RY defined by

F(ϕ) :=
1
|H| ∑

h∈H
ϕ ◦ h (11)

is a GENEO from (Φ, G) to (Ψ, K) with respect to T provided F(Φ) ⊆ Ψ.

Proof. Let ϕ ∈ Φ and g ∈ G. Then, by the definition of a generalized permutant and the
change of variable h′ = g ◦ h ◦ T(g−1), we have

F(ϕ ◦ g) :=
1
|H| ∑

h∈H
(ϕ ◦ g) ◦ h

=
1
|H| ∑

h∈H
ϕ ◦ g ◦ h ◦ T(g−1) ◦ T(g)

=
1
|H| ∑

h′∈H
ϕ ◦ h′ ◦ T(g)

= F(ϕ) ◦ T(g)

(12)

whence F is equivariant.
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If ϕ1, ϕ2 ∈ Φ, then

‖F(ϕ1)− F(ϕ2)‖∞ =

∥∥∥∥∥ 1
|H| ∑

h∈H
ϕ1 ◦ h− 1

|H| ∑
h∈H

ϕ2 ◦ h

∥∥∥∥∥
∞

=
1
|H| ‖ ∑

h∈H
(ϕ1 ◦ h− ϕ2 ◦ h)‖∞

≤ 1
|H| ∑

h∈H
‖ϕ1 ◦ h− ϕ2 ◦ h‖∞

≤ 1
|H| ∑

h∈H
‖ϕ1 − ϕ2‖∞

=
1
|H| |H|‖ϕ1 − ϕ2‖∞

= ‖ϕ1 − ϕ2‖∞

(13)

whence F is non-expansive. Relations (12) and (13) prove that F is indeed a GENEO.

3.3. Generalized Permutant Measures

As shown in [21], the concept of permutants can be extended to the that of permutant
measures, provided that the set X is finite. This is done by the following definition, referring
to a subgroup G of the group Aut(X) of all permutations of the set X, and to the perception
pair (RX , G).

Definition 6 ([21]). A finite signed measure µ on Aut(X) is called a permutant measure with
respect to G if each subset H of Aut(X) is measurable and µ is invariant under the conjugation
action of G (i.e., µ(H) = µ(gHg−1) for every g ∈ G).

With a slight abuse of notation, we will denote by µ(h) the signed measure of the
singleton {h} for each h ∈ Aut(X). The next example shows how we can apply Definition 6.

Example 3. Let us consider the set X of the vertices of a cube in R3, and the group G of the
orientation-preserving isometries of R3 that take X to X. Set T = idG. Let π1, π2, π3 be the three
planes that contain the center of mass of X and are parallel to a face of the cube. Let hi : X → X
be the orthogonal symmetry with respect to πi, for i ∈ {1, 2, 3}. We have that the set {h1, h2, h3}
is an orbit under the action expressed by the map α defined in Section 3.2. We can now define a
permutant measure µ on Aut(X) by setting µ(h1) = µ(h2) = µ(h3) = c, where c is a positive
real number, and µ(h) = 0 for any h ∈ Aut(X) with h /∈ {h1, h2, h3}. We also observe that while
the cardinality of G is 24, the cardinality of the support supp(µ) := {h ∈ Aut(X) : µ(h) 6= 0} of
the signed measure µ is 3.

The concept of permutant measures is important because it makes available the
following representation result.

Theorem 2. Assume that G ⊆ Aut(X) transitively acts on the finite set X and F is a map from
RX to RX. The map F is a linear, group equivariant, non-expansive operator from (RX, G) to
(RX, G) with respect to the homomorphism idG : G → G if and only if a permutant measure µ
exists such that F(ϕ) = ∑h∈Aut(X) ϕ ◦ h−1 µ(h) for every ϕ ∈ RX , and ∑h∈Aut(X)|µ(h)| ≤ 1.

We now state a definition that extends the concept of permutant measures.

Definition 7. Let X, Y be two finite non-empty sets. Let us choose a subgroup G of Aut(X), a
subgroup K of Aut(Y), and a homomorphism T : G → K. A finite signed measure µ on XY is
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called a generalized permutant measure with respect to T if each subset H of XY is measurable
and µ

(
g ◦ H ◦ T(g−1)

)
= µ(H) for every g ∈ G.

Definition 7 extends Definition 6 in two different directions. First, it does not require
that the origin perception pair (RX, G) and the target perception pair (RY, K) coincide.
Second, the measure µ is not defined on Aut(X) but on the set XY.

Example 4. Let X, Y be two non-empty finite sets, with Y ⊆ X. Let G be the group of all
permutations of X that preserve Y, and K be the group of all permutations of Y. Set Φ = RX and
Ψ = RY. Assume that T : G → K takes each permutation of X to its restriction to Y. For any
positive integer m, define Hm as the set of all functions h : Y → X such that the cardinality of
Im h is equal to m. For each h ∈ Hm, let us set µ(h) := 1

m|Hm | . Then µ is a generalized permutant
measure with respect to T.

We can prove the following result, showing that every generalized permutant measure
allows us to build a GENEO between perception pairs.

Theorem 3. Let X, Y be two finite non-empty sets. Let us choose a subgroup G of Aut(X), a
subgroup K of Aut(Y), and a homomorphism T : G → K. If µ is a generalized permutant measure
with respect to T, then the map Fµ : RX → RY defined by setting Fµ(ϕ) := ∑ f∈XY ϕ ◦ f µ( f ) is a
linear GEO from (Φ, G) to (Ψ, K) with respect to T. If ∑ f∈XY |µ( f )| ≤ 1, then F is a GENEO.

Proof. It is immediate to check that Fµ is linear. Moreover, by applying the change of
variable f̂ = g ◦ f ◦ T(g−1) and the equality µ

(
g ◦ f ◦ T(g−1)

)
= µ( f ), for every ϕ ∈ RX

and every g ∈ G we get

Fµ(ϕ ◦ g) = ∑
f∈XY

ϕ ◦ g ◦ f µ( f )

= ∑
f∈XY

ϕ ◦ g ◦ f ◦ T(g−1) ◦ T(g) µ(g ◦ f ◦ T(g−1))

= ∑
f̂∈XY

ϕ ◦ f̂ ◦ T(g) µ( f̂ )

= Fµ(ϕ) ◦ T(g)

(14)

since the map f 7→ g ◦ f ◦ T
(

g−1) is a bijection from XY to XY. This proves that Fµ is
equivariant.

If ∑ f∈XY |µ( f )| ≤ 1,

‖Fµ(ϕ)‖∞ =

∥∥∥∥∥∥ ∑
f∈XY

ϕ ◦ f µ( f )

∥∥∥∥∥∥
∞

≤ ∑
f∈XY

‖ϕ ◦ f ‖∞|µ( f )|

≤ ∑
f∈XY

‖ϕ‖∞|µ( f )|

= ‖ϕ‖∞ ∑
f∈XY

|µ( f )|

≤ ‖ϕ‖∞.

(15)

This implies that the linear map Fµ is non-expansive. Relations (14) and (15) prove
that F is a GENEO, concluding the proof.
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The condition |supp(µ)| � |G| is not rare in applications (cf., e.g., Example 3) and is
the main reason to build GEOs utilizing (generalized) permutant measures, instead of using
the representation of GEOs as G-convolutions and integrating on possibly large groups.

In the following, the aforementioned concepts will be applied to graphs. For the
sake of simplicity, we will drop the word “generalized” and use the expression “graph
permutant”.

4. GENEOs on Graphs

The definitions of perception pairs (Definition 1), (generalized) permutants (Definition 3,
Definition 4), and GENEOs (Definition 2) can be easily applied in a graph-theoretic setting.
In most applications where data occur as graphs, these are endowed with a real function
(“weight”) defined either on vertices or on edges. Section 4.1 develops a model for graphs
with weights assigned to their vertices (vw-graphs, for short), and Section 4.2 does the
same for graphs with weights assigned to their edges (ew-graphs, for short), often called
“weighted graphs” in the literature. The vertex model has implications for the rapidly
growing field of graph convolutional neural networks, while the edge model owes its
significance to the widely recognized importance of weighted graphs. For either model,
several simple examples are provided.

As a graph [22], we shall mean a triple Γ = (VΓ, EΓ, ψΓ), where ψΓ assigns to each edge
of EΓ the unordered pair of its end vertices in VΓ. Since we only consider simple graphs
(i.e., with no loops and no multiple edges) we write e = {A, B} to mean ψΓ(e) = {A, B}.
Let us recall that an automorphism g of Γ is a pair g = (gV , gE), where gV : VΓ → VΓ and
gE : EΓ → EΓ are bijections respecting the incidence function ψΓ. The group Aut(Γ) of
all automorphisms of Γ induces two particular subgroups, here denoted as Aut(VΓ) and
Aut(EΓ), of the groups of permutations of VΓ and of EΓ. We represent permutations as
cycle products.

For any k ∈ N, put Nk := {1 ≤ i ≤ k | i ∈ N}.
Let a graph Γ = (VΓ, EΓ, ψΓ) with n vertices and m edges be given. By fixing an

indexing of the vertices (resp. edges), we can identify Aut(VΓ) (resp. Aut(EΓ)) with some
subgroup of Sn (resp. Sm), for the sake of simplicity. Analogously, a real function defined on
VΓ (resp. EΓ) will be represented as an n-tuple (resp. m-tuple) of real numbers. Regardless,
we shall denote vertices (resp. edges) by consecutive capital (resp. lowercase) letters and
not by numerical indexes.

In this section, a space ΦVΓ of real valued functions on VΓ will be considered as a
subspace of Rn endowed with the sup-norm ‖ · ‖∞; i.e., the real valued functions ϕ ∈ ΦVΓ

on the vertex set VΓ are given by vectors ϕ = (ϕ1, ϕ2, · · · , ϕn) of length n. Analogously,
the symbol ΦEΓ will refer to a subspace of Rm endowed with the sup-norm; i.e., the real
valued functions ϕ ∈ ΦEΓ on the edge set EΓ are given by vectors ϕ = (ϕ1, ϕ2, · · · , ϕm) of
length m.

Let G be a subgroup of the group Aut(VΓ) (resp. Aut(EΓ)) corresponding to the group
of all graph automorphisms of Γ. By the previous convention, the elements of G can be
considered to be permutations of the set Nn (resp. Nm).

4.1. GENEOs on Graphs Weighted on Vertices

The concepts of perception pairs, GEOs/GENEOs, and generalized permutants are
applied to vw-graphs in Definitions 8, 9, and 10, respectively.

Definition 8. Let ΦVΓ be a set of functions from VΓ to R and G be a subgroup of Aut(VΓ). If
(ΦVΓ , G) is a perception pair, we will call it a vw-graph perception pair for Γ = (VΓ, EΓ, ψΓ), and
will write dom(ΦVΓ) = VΓ.

Definition 9. Let (ΦVΓ1
, G1) and (ΦVΓ2

, G2) be two vw-graph perception pairs and T : G1 → G2

be a group homomorphism. If F : ΦVΓ1
→ ΦVΓ2

is a GEO (resp. GENEO) from (ΦVΓ1
, G1) to

(ΦVΓ2
, G2) with respect to T, we will say that F is a vw-graph GEO (resp. vw-graph GENEO).
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Definition 10. Let (ΦVΓ1
, G1) and (ΦVΓ2

, G2) be two vw-graph perception pairs and T : G1 →
G2 be a group homomorphism. We say that H ⊆ VΓ1

VΓ2 is a vw-graph permutant for T if
αg(H) ⊆ H for every g ∈ G1; that is, αg( f ) = g ◦ f ◦ T(g−1) ∈ H for every f ∈ H and g ∈ G1.

Let us consider some examples of vw-graph perception pairs, vw-graph GENEOs,
and vw-graph permutants.

Example 5. Consider the graph Γ = (VΓ, EΓ, ψΓ) with vertex set VΓ = {A, B, C, D} and edge
set EΓ =

{
p = {A, B}, q = {B, C}, r = {C, D}, s = {A, D}, t = {B, D}

}
(see Figure 1). Its

automorphism group Aut(VΓ) is given by

Aut(VΓ) = {idN4 , (A, C), (B, D), (A, C)(B, D)}. (16)

Let G = {idN4 , δ = (B, D)}, and ΦVΓ be the subspace of R4 given by

ΦVΓ := {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ R4 | ϕ1 − ϕ3 = 0}. (17)

Clearly, ϕ ◦ δ = (ϕ1, ϕ4, ϕ3, ϕ2) ∈ ΦVΓ for all ϕ ∈ ΦVΓ ; so, (ΦVΓ , G) is a vw-graph
perception pair for Γ.

A

B

C

D

p

qr

s

t

Figure 1. The graph of Examples 5, 6, and 7. It has four axial symmetries. With different function
sets and subgroups of the automorphism group, it gives rise to different vw-graph perception pairs
(Examples 5 and 6); Example 7 discusses GENEOs.

The next example shows that we can have different perception pairs with the same
graph and the same group.

Example 6. Let G be as in Example 5 and

ΦVΓ = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ R4 | ∑
i∈N4

(ϕi)2 ≤ 1}. (18)

Then (ΦVΓ , G) is a vw-graph perception pair.

We can now define a simple class of GENEOs.

Example 7. Let (ΦVΓ , G) be as in Example 5 and a map F be defined by

F(ϕ) = (ϕ1/d1, ϕ2/d2, ϕ3/d3, ϕ4/d4), ϕ ∈ ΦVΓ , and d1, d2, d3, d4 ∈ [1, ∞). (19)

If, for all ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ ΦVΓ and g ∈ G, we have F(ϕ ◦ g) = F(ϕ) ◦ g, then(
ϕ1

d1
,

ϕ4

d2
,

ϕ3

d3
,

ϕ2

d4

)
=

(
ϕ1

d1
,

ϕ4

d4
,

ϕ3

d3
,

ϕ2

d2

)
(20)



Mach. Learn. Knowl. Extr. 2023, 5 1914

whence d2 = d4; and the requirement that F(ϕ) ∈ ΦVΓ entails d1 = d3. Moreover, because of the
nature of the L∞ norm,

‖F(ϕ1)− F(ϕ2)‖∞ ≤
1

min{d1, d2}
‖ϕ1 − ϕ2‖∞ ≤ ‖ϕ1 − ϕ2‖∞ (21)

for all ϕ1 = (ϕ1
1, ϕ2

1, ϕ3
1, ϕ4

1), ϕ2 = (ϕ1
2, ϕ2

2, ϕ3
2, ϕ4

2) ∈ ΦVΓ , whence F is non-expansive. Therefore,
the map F defined above is a vw-graph GENEO if and only if d1 = d3 and d2 = d4.

We now prepare for the first instances of graph permutants in Examples 10 and 11.

Example 8. Let Γ = (VΓ, EΓ, ψΓ) be the cycle graph C4 with VΓ = {A, B, C, D}. Its automor-
phism group is given by

Aut(VΓ) = {idN4 , α = (A, B, C, D), α2, α3, (A, C), (B, D), (A, B)(C, D), (A, D)(B, C)} (22)

and G = {idN4 , α, α2, α3} is a subgroup of Aut(VΓ).
If ΦVΓ is the same as in Example 5, then (ΦVΓ , G) is not a vw-graph perception pair. However,

if we define

ΦVΓ = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ R4 | ϕ1 + ϕ3 = 0 = ϕ2 + ϕ4} (23)

then (ΦVΓ , Aut(VΓ)), and, therefore, (ΦVΓ , G), are vw-graph perception pairs.

Example 9. Let G be as in Example 8 and

ΦVΓ = {ϕ ∈ R4 | ‖ϕ‖∞ ≤ 1}. (24)

Then (ΦVΓ , G) is a vw-graph perception pair.

Example 10. Let G be as in Example 8 and

H = {h1 = (A, B)(C, D), h2 = (A, D)(B, C)} ⊆ Aut(VΓ). (25)

Then H is a vw-graph permutant for T = idG.

Example 11. Let Γ be as in Example 8 and

G = {idN4 , α2, (A, B)(C, D), (A, D)(B, C)} (26)

be the Klein 4-group contained in Aut(VΓ). If

H = {(A, C), (B, D)} ⊆ Aut(VΓ) (27)

then H is a vw-graph permutant for T = idG.

As usual, in the following, we will denote by Kn the complete graph on n vertices.

Proposition 4. Let Γ := Kn and H ⊆ G = Aut(VΓ) ∼= Sn be the set of all transpositions of VΓ.
Then H is a vw-graph permutant for T = idG.

Proof. Let f ∈ H and g ∈ G; we show that g ◦ f ◦ g−1 ∈ H. Let us put f := (A, B) for
some A, B ∈ VΓ, C := g(A) and D := g(B). Then

g ◦ f ◦ g−1(C) = g ◦ f (A) = g(B) = D (28)
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g ◦ f ◦ g−1(D) = g ◦ f (B) = g(A) = C. (29)

Take L ∈ VΓ, different from both C and D; since g is bijective, g−1(L) 6= g−1(C) = A
and g−1(L) 6= g−1(D) = B. We thus have

g ◦ f ◦ g−1(L) = g ◦ g−1(L) = L (30)

whence g ◦ f ◦ g−1 = (C, D) ∈ H, as required.

As stated in Theorem 1—which holds also in the graph-theoretical context, having a
purely set-theoretical proof—the concept of a vw-graph permutant can be used to define
vw-graph GENEOs.

Example 12. Let (ΦVΓ , G) be the same as in Example 9 and H be the same as in Example 10. Set
F(ϕ) = 1

2 (ϕ ◦ h1 + ϕ ◦ h2). Then F(ΦVΓ) ⊆ ΦVΓ ; therefore, by Theorem 1, F is a vw-graph
GENEO.

4.2. GENEOs on Graphs Weighted on Edges

The concepts of perception pairs, GEOs/GENEOs, and generalized permutants can
be applied to ew-graphs as well, as in Definitions 11, 12, and 13, respectively. Theorem 1
holds also in this case.

Definition 11. Let ΦEΓ be a set of functions from EΓ to R and G be a subgroup of Aut(EΓ). If
(ΦEΓ , G) is a perception pair, we will call it an ew-graph perception pair for Γ = (VΓ, EΓ, ψΓ), and
will write dom(ΦEΓ) = EΓ.

Definition 12. Let (ΦEΓ1
, G1) and (ΦEΓ2

, G2) be two ew-graph perception pairs and T : G1 →
G2 be a group homomorphism. If F : ΦEΓ1

→ ΦEΓ2
is a GEO (resp. GENEO) from (ΦEΓ1

, G1) to
(ΦEΓ2

, G2) with respect to T, we will say that F is an ew-graph GEO (resp. ew-graph GENEO).

Definition 13. Let (ΦEΓ1
, G1) and (ΦEΓ2

, G2) be two ew-graph perception pairs and T : G1 →
G2 be a group homomorphism. We say that H ⊆ EΓ1

EΓ2 is an ew-graph permutant for T if
αg(H) ⊆ H for every g ∈ G1; that is, αg( f ) = g ◦ f ◦ T(g−1) ∈ H for every f ∈ H and g ∈ G1.

The group Aut(Γ) of all graph automorphisms of a graph Γ induces a particular
subgroup Aut(EΓ) of the group Sm of all permutations of EΓ. The elements of Aut(EΓ) can
be considered to be those permutations of EΓ that directly correspond to the permutations
of VΓ defining all graph automorphisms of Γ.

If Γ = Kn, the complete graph with n vertices, the group Aut(Γ) is isomorphic to Sn,
and we have

Sn ∼= Aut(VΓ) ∼= Aut(EΓ) ⊆ Sm. (31)

Therefore, we will consider Aut(Γ) and Aut(EΓ) to be the same in this case.
Let us consider some examples of perception pairs and GENEOs in the context of

ew-graphs. Complete graphs are of particular interest because every simple graph with n
vertices is a subgraph of Kn and so can be identified by a map from the edge set of Kn to
{0, 1} (Section 5.1).

Example 13. Let Γ = K4 = (VΓ, EΓ, ψΓ) with VK4 = {A, B, C, D}, and EK4 =
{

p =
{A, B}, q = {B, C}, r = {A, C}, s = {A, D}, t = {B, D}, u = {C, D}

}
(see Figure 2),

and consider the group G = {idEΓ , δ = (r s)(q t)} ⊆ Aut(EΓ) together with the space
ΦEΓ = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) | ϕ1 + ϕ6 = 0} ⊆ Rm of the functions with opposite
values on the two edges fixed by the elements of G. Clearly, ϕ ◦ δ ∈ ΦEΓ , and (ΦEΓ , G) is an
ew-graph perception pair.
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Figure 2. The complete graph K4. Each vertex permutation induces an automorphism of it.
Example 13 endows it with a structure of an ew-graph perception pair and Example 14 discusses the
possible GENEOs on it.

Example 14. Let (ΦEΓ , G) be as in Example 13 and consider the map F defined by

F(ϕ) := (ϕ1/d1, ϕ2/d2, ϕ3/d3, ϕ4/d4, ϕ5/d5, ϕ6/d6),

ϕ ∈ ΦEΓ , and di ≥ 1, ∀i ∈ N6.
(32)

In order that F(ϕ) ∈ ΦEΓ , we should have d1 = d6, and the requirement that F be equivariant
with respect to G entails d3 = d4 and d2 = d5.

Moreover, a simple computation shows that

‖F(ϕ1)− F(ϕ2)‖∞ ≤
1

min{d1, d2, d3}
‖ϕ1 − ϕ2‖∞

≤ ‖ϕ1 − ϕ2‖∞

(33)

for all ϕ1 = (ϕi
1 / i ∈ N6), ϕ2 = (ϕi

2 / i ∈ N6) ∈ ΦEΓ , whence F is non-expansive.
Therefore, the map F defined above is an ew-graph GENEO if and only if d1 = d6, d2 = d5,

and d3 = d4.

5. Experiments

This section illustrates the model of Section 4.2 and shows how graph GENEOs allow
one to extract useful information from graphs. This can be done by “smart forgetting” of
differences, either by some sort of average, but keeping the same dimension of the space
of functions (as in Section 5.1), or by dimension reduction (as in Section 5.2). It should
be noted that these are not new findings or results comparable with competitors, but just
suggestions, by toy examples, of the possible use of the new tools provided in this paper. In
particular, Section 5.1 analyzes the information that is preserved by a certain permutant on
isomorphism classes of graphs with four vertices. Section 5.2 counts all possible generalized
permutants relative to a pair of cycle graphs.

5.1. Subgraphs of K4

The choice of a permutant determines how different functions are mapped to the
same “signature” by the corresponding GENEO. In this subsection, we consider functions
on the edge set of a complete graph Kn, taking values that are either 0 or 1; this means
that each such function identifies a subgraph of Kn. A GENEO will, in general, produce
functions that can have any real value, so no longer representing subgraphs. Intending to
obtain equal results for “similar” subgraphs, we have chosen as a permutant the set of edge
permutations produced by swapping two vertices in any possible way.

Let Γ be the complete graph K4 (Figure 2) with ΦEΓ := R6. We have

S4
∼= Aut(K4) ∼= Aut(EK4) ⊆ S6. (34)
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The subset H := {(q, r)(s, t), (p, q)(s, u), (p, t)(r, u), (p, r)(t, u), (p, s)(q, u), (q, t)(r, s)}
of G = Aut(EK4) consisting of permutations of EK4 induced by all transpositions of VK4 is
an ew-graph permutant for T = idG. Therefore, the operator F : R6 → R6 defined by

F(ϕ) :=
1
6 ∑

h∈H
ϕ ◦ h (35)

is an ew-graph GENEO.
Subgraphs of K4 can be represented by elements of

Φ4 :=
{

ϕ = (ϕ1, · · · , ϕ6) ∈ ΦEK4
| ϕr ∈ {0, 1}, r ∈ N6

}
(36)

and the restriction F4 of F to Φ4 ⊆ ΦEK4
can be used to draw meaningful comparisons

between them (see Figure 3). The following Definition 14 makes the discussion more fluid.

000000
000000

111111
666666

000001
011112

111110
655554

000011
121233

111100
545433

100001
222222

011110
444444

000111
222444

111000
444222

010101
233334

Figure 3. The subgraphs of K4 up to isomorphisms, the 6-tuples representing each of these (above),
and their F4-codes (multiplied by 6, below). On each column there is a pair of complementary
subgraphs, except the rightmost, which shows the only graph that is self-complementary (up to
isomorphism).

Definition 14. We say that the image F4(ϕ) is an F4-code for the subgraph ϕ ∈ Φ4 of K4. An
F4-code c1 is said to be F4-equivalent to an F4-code c2 (written c1 ∼4 c2) if c2 is the result of a
permutation of c1. The F4-code ϕ

′
:= (ϕ6, · · · , ϕ1) is called the reversal of ϕ := (ϕ1, · · · , ϕ6) ∈

ΦEK4
. Let ϕ1, ϕ2 ∈ ΦEK4

; we say that ϕ1 and ϕ2 are complementary if ϕ1 + ϕ2 = (1, · · · , 1)

Clearly, ∼4 is an equivalence relation.
A simple program enabled us to compute all F4-codes and to find that:

1. Naturally enough, isomorphic subgraphs have F4-equivalent codes. Therefore, in
some cases, it suffices to consider only the 11 non-isomorphic subgraphs of K4 (see
Remark 1);

2. Complementary subgraphs (i.e., subgraphs having vertex sets coinciding with VK4

and edge sets forming a partition of EK4 ) have complementary codes;
3. There is only one case, up to graph isomorphisms, in which non-isomorphic subgraphs

of K4 have F4-equivalent codes: ϕ1 = (1, 1, 1, 0, 0, 0) and ϕ2 = (0, 0, 0, 1, 1, 1) with
F4(ϕ1) = (4, 4, 4, 2, 2, 2)/6 and F4(ϕ2) = (2, 2, 2, 4, 4, 4)/6. In this case, the graphs are
complementary as well, which explains why we have equivalent codes despite the
graphs being non-isomorphic. Moreover, ϕ1 and ϕ2 are reversals of each other, and so
are the corresponding codes;

4. If ϕ1 ∈ Φ4 is a reversal of ϕ2 ∈ Φ4, then F4(ϕ1) is a reversal of F4(ϕ2).

Remark 1. For example, the third graph of the upper row in Figure 3 consists of the two adjacent
edges t and u and is represented by ϕ3 = (0, 0, 0, 0, 1, 1) with F4(ϕ3) = (1, 2, 1, 2, 3, 3)/6. The
isomorphic graph consisting of edges p and r (not shown) is represented by ϕ4 = (1, 0, 1, 0, 0, 0),
with F4(ϕ4) = (3, 2, 3, 2, 1, 1)/6. Their F4-codes are F4-equivalent, and are not F4-equivalent to
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the F4-code of a graph consisting of two non-adjacent edges—like the fourth in the upper row of
Figure 3—although the representing 6-tuples obviously are permutations of each other.

It was also possible to compute F5-codes for the 34 non-isomorphic subgraphs of K5,
and to find that they were never F5-equivalent. A similar statement holds for the complete
graph K3.

5.2. Graph GENEOs for C6 and C3

All examples in Sections 4.1, 4.2, and 5.1 were built on a single perception pair each.
Still, the ground reason for using GENEOs is that of a “smart forgetting” of differences
that are considered inessential. This can better be done by dimension reduction of the
space of functions. This is where the use of two perception pairs comes into play. This
subsection is meant to illustrate the application of the generalized notion of permutants
(Section 3) by mapping the edges of a small, auxiliary graph (the cyclic graph C3) to the
edges of the graph of interest (the cyclic graph C6; see Figure 4). Note that we have great
freedom, in that we are not bound to stick to graph homomorphisms: permutants are built
as equivalence classes of maps from EC3 to EC6 that do not necessarily respect adjacencies.
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Figure 4. The cycle graphs X = C6 and Y = C3. They have several axial and rotational symmetries.
All possible maps from EY to EX give rise to generalized permutants.

Let X := (VX , EX , ψX) be the cycle graph C6 (see Figure 4) with VX := {A, B, C, D, E, F},
EX := {a = {A, B}, b = {B, C}, c = {C, D}, d = {D, E}, e = {E, F}, f = {A, F}} and
Y := (VY, EY, ψY) be the cycle graph C3 with VY := {G, H, I}, EY := {g = {G, H}, h =
{H, I}, i = {G, I}}.

Their automorphisms groups, respectively, are the dihedral groups

D6 := {α, β | α6 = β2 = (βα)2 = 1}, (37)

D3 := {γ, δ | γ3 = δ2 = (δγ)2 = 1}, (38)

where α := (a, b, c, d, e, f ), β := (a, f )(b, e)(c, d), γ := (g, h, i), and δ := (g, i).
Let us put ΦEX := R6, ΦEY := R3, and also put G := Aut(EX) = D6 and K :=

Aut(EY) = D3, and consider the group homomorphism T : G → K given by T(α) := γ
and T(β) := δ.

There are 216 functions p : EY → EX and the equivalence class of each (in the sense of
Definition 5) is an ew-graph permutant Hp (Section 3.1). For the sake of conciseness, we
will denote the function p := {(g 7→ e1), (h 7→ e2), (i 7→ e3)} simply by p := e1e2e3. For
example, p := {(g 7→ c), (h 7→ a), (i 7→ f )} will be written as p := caf.

The ew-graph permutants Hp with p ∈ EEY
X are of four possible sizes:

1. There is only one ew-graph permutant with two elements. It corresponds to the
function aec;

2. There is only one ew-graph permutant with four elements. It is induced by bfd;
3. There are five ew-graph permutants with six elements each that correspond to the

functions aaa, abc, ace, add, and afb;
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4. There are 15 ew-graph permutants with 12 elements each that correspond to the
functions aab, aac, aad, aae, aaf, abd, acb, acd, adb, adc, baa, bad, bca, bce, and bdb.

Considering only the weights in {0, 1}, it was possible to compute the ew-graph
GENEOs corresponding to the functions aec and bfd. Similar computations can be made
for the rest of the functions listed above. This detailed analysis of particular functions
raised several questions and conjectures that we plan to study in the near future.

6. Discussion

This research aimed at extending the existing theory of Group Equivariant Non-
Expansive Operators (GENEOs) in two directions:

• A general definition of permutant as a tool for producing GENEOs between two
perception pairs (Theorem 1), while the original definition was limited to a single
perception pair;

• The adaptation of the theory to graphs with a weight function defined either on
vertices (Section 4.1) or on edges (Section 4.2).

Since every simple graph with n vertices can be identified with an edge-weighted
subgraph of the complete graph Kn, where the weight function has {0, 1} as a range,
permutants and GENEOs were used to analyze the set of subgraphs of K4 (Section 5.1). A
simple example of the construction of generalized permutants on graphs was also produced
(Section 5.2).

An evident limitation of the presented GENEOs and permutants is that they are not
aimed at particular graph-theoretical problems; they are just first, simple examples.

Here is a list of open problems:

• Is every GENEO between two perception pairs realizable as a combination of GENEOs
coming from (generalized) permutants or permutant measures?

• What are other interesting permutants on Kn?
• Are there permutants that can help determine subgraphs of a given graph, with

specified properties (e.g., being connected, Eulerian, Hamiltonian, etc.)?
• Can permutants and GENEOs help in refining the search for isomorphic graphs?

Apart from tackling these problems, a natural goal is to apply GENEOs and permu-
tants to concrete problems where data occur as weighted graphs.

The repository https://gitlab.com/patrizio.frosini/graph-geneos contains the C++
programs used here (accessed on 5 December 2023).
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