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In this article, we propose a topological model to encode partial equivariance in

neural networks. To this end, we introduce a class of operators, called P-GENEOs,

that change data expressed by measurements, respecting the action of certain

sets of transformations, in a non-expansive way. If the set of transformations

acting is a group, we obtain the so-called GENEOs. We then study the spaces of

measurements, whose domains are subjected to the action of certain self-maps

and the space of P-GENEOs between these spaces. We define pseudo-metrics on

them and show some properties of the resulting spaces. In particular, we show

how such spaces have convenient approximation and convexity properties.
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1 Introduction

Over the past decade, several geometric techniques have been incorporated into Deep

Learning (DL), giving rise to the new field of Geometric Deep Learning (GDL) (Cohen

and Welling, 2016; Masci et al., 2016; Bronstein et al., 2017). This geometric approach

to deep learning is exploited with a dual purpose. On one hand, geometry provides a

commonmathematical framework to study neural network architectures. On the other hand,

a geometric bias, based on prior knowledge of the data set, can be incorporated into DL

models. In this second case, GDL models take advantage of the symmetries imposed by an

observer, which encode and elaborate the data. The general blueprint of many deep learning

architectures is modeled by group equivariance to encode such properties. If we consider

measurements on a data set and a group encoding their symmetries, i.e., transformations

taking admissible measurements (for example, rotation or translation of an image), the

group equivariance is the property guaranteeing that such symmetries are preserved after

applying an operator (e.g., a layer in a neural network) on the observed data. In particular,

let us assume that the input measurements8, the output measurements9 and, respectively,

their symmetry groups G and H are given. Then the agent F : 8 → 9 is T-equivariant if

F(ϕg) = F(ϕ)T(g), for any ϕ in8 and any g inG, where T is a group homomorphism fromG

to H. In the theory of Group Equivariant Non-Expansive Operators (GENEOs) (Camporesi

et al., 2018; Bergomi et al., 2019; Cascarano et al., 2021; Bocchi et al., 2022, 2023; Conti et al.,

2022; Frosini et al., 2023; Micheletti, 2023), as in many other GDL models, the collection

of all symmetries is represented by a group, but in some applications, the group axioms do

not necessarily hold since real-world data rarely follow strict mathematical symmetries due

to noise, incompleteness, or symmetry-breaking features. As an example, we can consider a

data set that contains images of digits and the group of rotations as the group acting on it.
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Rotating an image of the digit “6” by a straight angle returns an

image that the user would most likely interpret as “9”. At the same

time, we may want to be able to rotate the digit “6” by small angles

while preserving its meaning (see Figure 1).

It is then desirable to extend the theory of GENEOs by relaxing

the hypotheses on the sets of transformations. The main aim of

this article is to give a generalization of the results obtained for

GENEOs to a new mathematical framework, where the property

of equivariance is maintained only for some transformations of the

measurements, encoding a partial equivariance with respect to the

action of the group of all transformations. To this end, we introduce

the concept of Partial Group Equivariant Non-Expansive Operator

(P-GENEO).

In this new model, there are some substantial differences with

respect to the theory of GENEOs:

1. The user chooses two sets of measurements in input: the

one containing the original measurements and another set

that encloses the admissible variations of such measurements,

defined in the same domain. For example, in the case where the

function that represents the digit “6” is being observed, we define

an initial space that contains this function and another space that

contains certain small rotations of “6” but excludes all the others.

2. Instead of considering a group of transformations, we consider a

set containing only those that do not change the meaning of our

data, i.e., only those associating with each original measurement

another one inside the set of its admissible variations. Therefore,

by choosing the initial spaces, the user defines also which

transformations of the data set, given by right composition, are

admissible and which ones are not.

3. We define partial GENEOs, or P-GENEOs, as a generalization

of GENEOs. P-GENEOs are operators that respect the two

sets of measurements in input and the set of transformations

relating them. The term “partial” refers to the fact that the set

of transformations does not necessarily need to be a group.

With these assumptions in mind, we will extend the results

proven in the study by Bergomi et al. (2019) and Quercioli

(2021a) for GENEOs. We will define suitable pseudo-metrics

on the spaces of measurements, the set of transformations, and

the set of non-expansive operators. Grounding on their induced

topological structures, we prove compactness and convexity of

the space of P-GENEOs under the assumption that the function

spaces are compact and convex. These are useful properties from a

computational point of view. For example, compactness guarantees

that the space can be approximated by a finite set. Moreover,

convexity allows us to take the convex combination of P-GENEOs

in order to generate new ones.

2 Related work

The main motivation for our study is that observed data

rarely follow strict mathematical symmetries. This may be due, for

example, to the presence of noise in data measurements. The idea

of relaxing the hypothesis of equivariance in GDL and data analysis

is not novel, as it is shown by the recent increase in the number of

publications in this area (see, for example, Weiler and Cesa, 2019;

Finzi et al., 2021; Romero and Lohit, 2022; van der Ouderaa et al.,

2022; Wang et al., 2022; Chachlski et al., 2023).

We identify two main ways to transform data via operators that

are not strictly equivariant due to the lack of strict symmetries of

the measurements. On one hand, one could define approximately

equivariant operator. These are operators for which equivariance

holds up to small perturbation. In this case, given two groups, G

andH acting on the spaces of measurements8 and9 , respectively,

and a homomorphism between them, T : G → H, we say that

F : 8 → 9 is ε-equivariant if, for any g ∈ G and ϕ ∈

8, ‖F(ϕg) − F(ϕ)T(g)‖∞ ≤ ε. Alternatively, when defining

operators transforming the measurements of certain data sets,

equivariance may be substituted by partial equivariance. In this

case, equivariance is guaranteed for a subset of the groups acting on

the space of measurements, with no guarantees for this subset to be

a subgroup. Among the previously cited articles about relaxing the

property of equivariance in DL, the approach by Finzi et al. (2021)

is closer to an approximate equivariance model. Here, the authors

use a Bayesian approach to introduce an inductive bias in their

network that is sensitive to approximate symmetry. The authors of

Romero and Lohit (2022) utilize a partial equivariance approach,

where a probability distribution is defined and associated with each

group convolutional layer of the architecture, and the parameters

defining it are either learnt, to achieve equivariance, or partially

learnt, to achieve partial equivariance. The importance of choosing

equivariance with respect to different acting groups on each layer

of the CNN was actually first observed in the study by Weiler and

Cesa (2019) for the group of Euclidean isometries in R
2.

The point of view of this article is closer to the latter.

Our P-GENEOs are indeed operators that preserve the action of

certain sets ruling the admissibility of the transformations of the

measurements of our data sets. Moreover, non-expansiveness plays

a crucial role in our model. This is, in fact, the feature allowing us to

obtain compactness and approximability in the space of operators,

distinguishing ourmodel from the existing literature on equivariant

machine learning.

3 Mathematical setting

3.1 Data sets and operations

Consider a set X and the normed vector space (RX
b
, ‖·‖∞),

where R
X
b

is the space of all bounded real-valued functions on

X and ‖·‖∞ is the usual uniform norm, i.e., for any f ∈ R
X
b
,

‖f ‖∞ : = supx∈X|f (x)|. On the set X, the space of transformations

is given by elements of Aut(X), i.e., the group of bijections from X

to itself. Then, we can consider the right group actionR defined as

follows (we represent composition as a juxtaposition of functions):

R : R
X
b × Aut(X) → R

X
b , (ϕ, s) 7→ ϕs.

Remark 3.1. For every s ∈ Aut(X), the map Rs : R
X
b
→ R

X
b
, with

Rs(ϕ) : = ϕs preserves the distances. In fact, for any ϕ1,ϕ2 ∈ R
X
b
,
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FIGURE 1

Example of a symmetry breaking feature. Applying a rotation g of π/4, the digit “6” preserves its meaning (left). The rotation g4 of π is, instead, not

admissible, since it transforms the digit “6” into the digit “9” (right).

by bijectivity of s, we have that

‖Rs(ϕ1)−Rs(ϕ2)‖∞ = sup
x∈X

|ϕ1s(x)− ϕ2s(x)|

= sup
y∈X

|ϕ1(y)− ϕ2(y)|

= ‖ϕ1 − ϕ2‖∞.

In our model, our data sets are represented as two sets 8 and

8′ of bounded real-valued measurements on X. In particular, X

represents the space where the measurements can be made, 8 is

the space of permissible measurements, and 8′ is a space which

8 can be transformed into, without changing the interpretation of

its measurements after a transformation is applied. In other words,

we want to be able to apply some admissible transformations on

the space X so that the resulting changes in the measurements in

8 are contained in the space 8′. Thus, in our model, we consider

operations on X in the following way:

Definition 3.2. A (8,8′)-operation is an element s of Aut(X) such

that, for any measurement ϕ ∈ 8, the composition ϕs belongs to

8′. The set of all (8,8′) operations is denoted by Aut8,8′ (X).

Remark 3.3. We can observe that the identity function idX is an

element of Aut8,8′ (X) if8 ⊆ 8′.

For any s ∈ Aut8,8′ (X), the restriction to8×Aut8,8′ (X) of the

mapRs takes values in8
′ sinceRs(ϕ) : = ϕs ∈ 8′ for any ϕ ∈ 8.

We can consider the restriction of the map R (for simplicity, we

will continue to use the same symbol to denote this restriction):

R : 8× Aut8,8′ (X) → 8′, (ϕ, s) 7→ ϕs

whereR(ϕ, s) = Rs(ϕ), for every s ∈ Aut8,8′ (X) and every ϕ ∈ 8.

Definition 3.4. Let X be a set. A perception triple is a triple

(8,8′, S) with 8,8′ ⊆ R
X
b

and S ⊆ Aut8,8′ (X). The set X

is called the domain of the perception triple and is denoted by

dom(8,8′, S).

Example 3.5. Given X = R
2, consider two rectangles R and R′ in

X. Assume 8 : = {ϕ : X → [0, 1] : supp(ϕ) ⊆ R} and 8′
: =

{ϕ′ : X → [0, 1] : supp(ϕ′) ⊆ R′}. We recall that, if we consider

a function f : X → R, the support of f is the set of points in the

domain, where the function does not vanish, i.e., supp(f ) = {x ∈

X | f (x) 6= 0}. Consider S as the set of translations that bring R into

R′. The triple (8,8′, S) is a perception triple. If 8 represents a set

of gray level images, S determines which translations can be applied

to our pictures.

3.2 Pseudo-metrics on data sets

In our model, considering a generic set X, data are represented

by a space � ⊆ R
X
b
of bounded real-valued functions. We endow

the real lineRwith the usual Euclidean metric and the space X with

an extended pseudo-metric induced by�:

D�X (x1, x2) = sup
ω∈�

|ω(x1)− ω(x2)|

for every x1, x2 ∈ X. The choice of this pseudo-metric over

X means that two points can only be distinguished if they

assume different values for some measurements. For example,

if 8 contains only a constant function and X contains at

least two points, the distance between any two points of X is

always null.

The pseudo-metric space X� : = (X,D�X ) can be considered as

a topological space with the basis

B� = {B�(x0, r)}x0∈X, r∈R+ =
{

{x ∈ X : D�X (x, x0) < r}
}

x0∈X, r∈R+ ,

and the induced topology is denoted by τ�. The reason for

considering a topological space X, rather than just a set, follows

from the need of formalizing the assumption that data are stable

under small perturbations.

Remark 3.6. In our case, there are two collections of functions

8 and 8′ in R
X
b
representing our data, both of which induce a

topology on X. Hence, in the model, we consider two pseudo-

metric spaces X8 and X8′ with the same underlying set X. If

8 ⊆ 8′ ⊆ R
X
b
, the topologies τ8 and τ8′ are comparable and,

in particular, τ8′ is finer than τ8.

Now, given a set � ⊆ R
X
b
, we will prove a result about the

compactness of the pseudo-metric space X�. Before proceeding, let

us recall the following lemma (e.g., see Gaal, 1964):

Lemma 3.7. Let (P,d) be a pseudo-metric space. The following

conditions are equivalent:

1. P is totally bounded;

2. Every sequence in P admits a Cauchy subsequence.

Theorem 3.8. If� is totally bounded, X� is totally bounded.

Proof: By Lemma 3.7, it will suffice to prove that every sequence

in X admits a Cauchy subsequence with respect to the pseudo-

metric D�X . A sequence (xi)i∈N in X� is considered and a real
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number ε > 0 is taken. Since � is totally bounded, we can find

a finite subset �ε = {ω1, . . . ,ωn} such that for every ω ∈ �, there

exists ωr ∈ � for which ‖ω − ωr‖∞ < ε. We can consider now

the real sequence (ω1(xi))i∈N, which is bounded since ω1 ∈ R
X
b
.

From Bolzano-Weierstrass Theorem, it follows that we can extract

a convergent subsequence (ω1(xih ))h∈N. Again, we can extract

from (ω2(xih ))h∈N another convergent subsequence (ω2(xiht ))t∈N.

Repeating the process, we are able to extract a subsequence of

(xi)i∈N, that for simplicity of notation we can indicate as (xij )j∈N,

such that (ωk(xij ))j∈N is a convergent subsequence inR, and hence a

Cauchy sequence inR, for every k ∈ {1, . . . , n}. By construction,�ε
is finite, then we can find an index ̄ such that for any k ∈ {1, . . . , n}

|ωk(xiℓ )− ωk(xim )| ≤ ε, for every ℓ,m ≥ ̄ .

Furthermore, we have that, for any ω ∈ �, any ωk ∈ �ε , and

any ℓ,m ∈ N

|ω(xiℓ )− ω(xim )| ≤ |ω(xiℓ )− ωk(xiℓ )|+

|ωk(xiℓ )− ωk(xim )| + |ωk(xim )− ω(xim )|

≤ ‖ω − ωk‖∞ + |ωk(xiℓ )− ωk(xim )|+

‖ωk − ω‖∞.

We observe that the choice of ̄ depends only on ε and �ε not

on k. Then, choosing a ωk ∈ �ε such that ‖ωk − ω‖∞ < ε, we get

‖ω(xiℓ ) − ω(xim )‖∞ < 3ε for every ω ∈ � and every ℓ,m ≥ ̄ .

Then,

D�X (xiℓ , xim ) = sup
ω∈�

|ω(xiℓ )− ω(xim )| < 3ε for every ℓ,m ≥ ̄ .

Then (xij )j∈N is a Cauchy sequence in X�. For Lemma 3.7 the

statement holds.

Corollary 3.9. If � is totally bounded and X� is complete, X� is

compact.

Proof: From Theorem 3.8, we have that X� is totally bounded,

and since by hypothesis it is also complete, it is compact.

Now, we will prove that the choice of the pseudo-metric D�X on

X makes the functions in� non-expansive.

Definition 3.10. Two pseudo-metric spaces (P, dP) and (Q, dQ) are

considered. A non-expansive function from (P, dP) to (Q, dQ) is a

function f : P → Q such that dQ(f (p1), f (p2)) ≤ dP(p1, p2) for any

p1, p2 ∈ P.

We denote asNE(P,Q) the space of all non-expansive functions

from (P, dP) to (Q, dQ).

Proposition 3.11. � ⊆ NE(X�,R).

Proof: For any x1, x2 ∈ X, we have that

|ω(x1)− ω(x2)| ≤ sup
ω∈�

|ω(x1)− ω(x2)| = D�X (x1, x2).

Then, the topology on X induced by D�X naturally makes the

measurements in � continuous. In particular, since the previous

results hold for a generic � ⊆ R
X
b
, they are also true for 8 and 8′

in our model.

Remark 3.12. Assuming that (8,8′, S) is a perception triple. A

function ϕ′ ∈ 8′ may not be continuous from X8 to R and a

function ϕ ∈ 8 may not be continuous from X8′ to R. In other

words, the topology on X induced by the pseudo-metric of one

of the function spaces does not make the functions in the other

continuous.

Example 3.13. Assuming X = R, for every a, b ∈ R the functions

ϕa : X → R and ϕ′
b
: X → R are defined by setting

ϕa(x) =

{

0 if x ≥ a

1 otherwise
, ϕ′b(x) =

{

0 if x ≤ b

1 otherwise
.

Suppose 8 : = {ϕa : a ≥ 0} and 8′
: = {ϕ′

b
: b ≤ 0}. Consider

the symmetry with respect to the y-axis, i.e., the map s(x) = −x.

Surely, s ∈ Aut8,8′ (X). We can observe that the function ϕ1 ∈

8 is not continuous from X′
8 to R; indeed D8

′

X (0, 2) = 0, but

|ϕ1(0)− ϕ1(2)| = 1.

However, if 8 ⊆ 8′, we have that the functions in 8 are also

continuous on X8′ , indeed:

Corollary 3.14. If8 ⊆ 8′, then8 ⊆ NE(X8′ ,R).

Proof: By Proposition 3.11, the statement trivially holds since

8 ⊆ 8′ ⊆ NE(X8′ ,R).

3.3 Pseudo-metrics on the space of
operations

Proposition 3.15. Every element of Aut8,8′ (X) is non-expansive

from X8′ to X8.

Proof: Considering a bijection s ∈ Aut8,8′ (X) we have that

D8X (s(x1), s(x2)) = sup
ϕ∈8

|ϕs(x1)− ϕs(x2)|

= sup
ϕ∈8s

|ϕ(x1)− ϕ(x2)|

≤ sup
ϕ′∈8′

|ϕ′(x1)− ϕ
′(x2)| = D8

′

X (x1, x2)

for every x1, x2 ∈ X, where 8s = {ϕs,ϕ ∈ 8}. Then, s ∈

NE(X8′ ,X8) and the statement is proved.

Now, we are ready to put more structure on Aut8,8′ (X).

Considering a set � ⊆ R
X
b
of bounded real-valued functions, we

can endow the set Aut(X) with a pseudo-metric inherited from�

D�Aut(s1, s2) : = sup
ω∈�

‖ωs1 − ωs2‖∞

for any s1, s2 in Aut(X).

Remark 3.16. Analogously to what happens in Remark 3.6 for

X, the sets 8 and 8′ can endow Aut(X) with two possibly

different pseudo-metrics D8Aut and D8
′

Aut. In particular, we can

consider Aut8,8′ (X) as a pseudo-metric subspace of Aut(X) with

the induced pseudo-metrics.
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Remark 3.17. We observe that, for any s1, s2 in Aut(X),

D�Aut(s1, s2) : = sup
ω∈�

‖ωs1 − ωs2‖∞

= sup
x∈X

sup
ω∈�

|ω(s1(x))− ω(s2(x))|

= sup
x∈X

D�X (s1(x), s2(x)). (3.3.1)

In other words, the pseudo-metric D�Aut, which is based on the

action of the elements of Aut(X) on the set �, is exactly the usual

uniform pseudo-metric on X�.

3.4 The space of operations

Since we are only interested in transformations of functions in

8, it would be natural to just endow Aut8,8′ (X) with the pseudo-

metric D8Aut. However, it is sometimes necessary to consider the

pseudo-metric D8
′

Aut in order to guarantee the continuity of the

composition of elements in Aut8,8′ (X), whenever it is admissible.

Considering two elements s, t in Aut8,8′ (X) such that st is still an

element of Aut8,8′ (X), i.e., for every function ϕ ∈ 8, we have that

ϕst ∈ 8′. Then, for any ϕ ∈ 8 we have that

ϕ′ : = ϕs ∈ 8s ⊆ 8′, ϕ′t ∈ 8′.

Therefore, t is also an element of Aut8s,8′ (X). By definition,8s

is contained in 8′ for every s ∈ Aut8,8′ (X), and this justifies the

choice of considering in Aut8,8′ (X) also the pseudo-metric D8
′

Aut.

We have shown, in particular, that if s, t are elements of Aut8,8′ (X)

such that st is still an element of Aut8,8′ (X), t is an element of

Aut8s,8′ (X), which is an implication of the following proposition:

Proposition 3.18. Let s, t ∈ Aut8,8′ (X). Then, st ∈ Aut8,8′ (X) if

t ∈ Aut8s,8′ (X).

Proof: If the composition st belongs to Aut8,8′ (X), we have

already proven that t ∈ Aut8s,8′ (X). On the other hand, if t ∈

Aut8s,8′ (X), we have that ϕ̄t ∈ 8′ for every ϕ̄ ∈ 8s. Since

ϕ(st) = (ϕs)t, it follows that ϕ(st) ∈ 8′ for every ϕ ∈ 8. Therefore,

st ∈ Aut8,8′ (X) and the statement is proved.

Remark 3.19. Let t ∈ Aut8,8′ (X). We can observe that if s ∈

Aut8(X),8s ⊆ 8 and st ∈ Aut8,8′ (X).

Lemma 3.20. Consider r, s, t ∈ Aut(X). For any � ⊆ R
X
b
, it holds

that

D�Aut(rt, st) = D�Aut(r, s).

Proof: SinceRt preserves the distances, we have that:

D�Aut(rt, st) : = sup
ω∈�

‖ωrt − ωst‖∞

= sup
ω∈�

‖ωr − ωs‖∞

= D�Aut(r, s).

Lemma 3.21. Consider r, s ∈ Aut(X) and t ∈ Aut8,8′ (X). It holds

that

D8Aut(tr, ts) ≤ D8
′

Aut(r, s).

Proof: Since8t ⊆ 8′, we have that:

D8Aut(tr, ts) = sup
ϕ∈8

‖ϕtr − ϕts‖∞

= sup
ϕ′∈8t

‖ϕ′r − ϕ′s‖∞

≤ sup
ϕ′∈8′

‖ϕ′r − ϕ′s‖∞

= D8
′

Aut(r, s).

Let5 be the set of all pairs (s, t) such that s, t, st ∈ Aut8,8′ (X).

We endow5 with the pseudo-metric

D5((s1, t1), (s2, t2)) : = D8Aut(s1, s2)+ D8
′

Aut(t1, t2)

and the corresponding topology.

Proposition 3.22. The function ◦ : 5 → (Aut8,8′ (X),D8Aut) that

maps (s, t) to st is non-expansive and hence continuous.

Proof: Consider two elements (s1, t1), (s2, t2) of 5. By Lemma

3.20 and Lemma 3.21,

D8Aut(s1t1, s2t2) ≤ D8Aut(s1t1, s2t1)+ D8Aut(s2t1, s2t2)

≤ D8Aut(s1, s2)+ D8
′

Aut(t1, t2)

= D5((s1, t1), (s2, t2)).

Therefore, the statement is proved.

Let ϒ be the set of all s with s, s−1 ∈ Aut8,8′ (X).

Proposition 3.23. The function (·)−1
: (ϒ ,D8

′

Aut) →

(Aut8,8′ (X),D8Aut), that maps s to s−1, is non-expansive, and

hence continuous.

Proof: Consider two bijections s1, s2 ∈ ϒ . Because of Lemma

3.20 and Lemma 3.21, we obtain that

D8Aut(s
−1
1 , s−1

2 ) = D8Aut(s
−1
1 s2, s

−1
2 s2)

= D8Aut(s
−1
1 s2, idX)

= D8Aut(s
−1
1 s2, s

−1
1 s1)

≤ D8
′

Aut(s2, s1) = D8
′

Aut(s1, s2).

We have previously defined the map

R : 8× Aut8,8′ (X) → 8′, (ϕ, s) 7→ ϕs

whereR(8, s) = Rs(8), for every s ∈ Aut8,8′ (X).

Proposition 3.24. The function R is continuous by choosing the

pseudo-metric D8Aut on Aut8,8′ (X).

Proof: We have that

‖R(ϕ, t)−R(ϕ, s)‖∞ = ‖ϕt − ϕs‖∞

≤ ‖ϕt − ϕs‖∞ + ‖ϕs− ϕs‖∞

= ‖ϕt − ϕs‖∞ + ‖ϕ − ϕ‖∞

≤ D8Aut(t, s)+ ‖ϕ − ϕ‖∞

for any ϕ,ϕ ∈ 8 and any t, s ∈ Aut8,8′ (X). This proves that R is

continuous.

Now, we can give a result about the compactness of

(Aut8,8′ (X),D8Aut) under suitable assumptions.
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Proposition 3.25. If 8 and 8′ are totally bounded,

(Aut8,8′ (X),D8Aut) is totally bounded.

Proof: Consider a sequence (si)i∈N in Aut8,8′ (X) and a real

number ε > 0. Since 8 is totally bounded, we can find a finite

subset 8ε = {ϕ1, . . . ,ϕn} such that for every ϕ ∈ 8, there exists

ϕr ∈ 8 for which ‖ϕ − ϕr‖∞ < ε. Now, consider the sequence

(ϕ1si)i∈N in 8′. Since also 8′ is totally bounded, from Lemma 3.7,

it follows that we can extract a Cauchy subsequence (ϕ1sih )h∈N.

Again, we can extract another Cauchy subsequence (ϕ2siht )t∈N.

Repeating the process for every k ∈ {1, . . . , n}, we are able to

extract a subsequence of (si)i∈N, that for simplicity of notation we

can indicate as (sij )j∈N, such that (ϕksij )j∈N is a Cauchy sequence in

8′ for every k ∈ {1, . . . , n}.

Since 8ε is finite, we can find an index ̄ such that for any k ∈

{1, . . . , n}

‖ϕksiℓ − ϕksim‖∞ ≤ ε, for every ℓ,m ≥ ̄ . (3.4.1)

Furthermore, we have that for any ϕ ∈ 8, any ϕk ∈ 8ε , and

any ℓ,m ∈ N

‖ϕsiℓ − ϕsim‖∞ ≤ ‖ϕsiℓ − ϕksiℓ‖∞+

‖ϕksiℓ − ϕksim‖∞ + ‖ϕksim − ϕsim‖∞

= ‖ϕ − ϕk‖∞ + ‖ϕksiℓ − ϕksim‖∞ + ‖ϕk − ϕ‖∞.

We observe that the choice of ̄ in (3.4.1) depends only on ε and

8ε not on ϕ. Then, choosing a ϕk ∈ 8ε such that ‖ϕk − ϕ‖∞ < ε,

we get ‖ϕsiℓ − ϕsim‖∞ < 3ε for every ϕ ∈ 8 and every ℓ,m ≥ ̄ .

Hence, for every ℓ,m ∈ N

D8Aut(siℓ , sim ) = sup
ϕ∈8

‖ϕsiℓ − ϕsim‖∞ < 3ε

Therefore, (sij )j∈N is a Cauchy sequence in Aut8,8′ (X). For

Lemma 3.7, the statement holds.

Corollary 3.26. Assume that S ⊆ Aut8,8′ (X). If 8 and 8′ are

totally bounded and (S,D8Aut) is complete, it is also compact.

Proof: From Proposition 3.25, we have that S is totally bounded,

and since by hypothesis it is also complete, the statement holds.

4 The space of P-GENEOs

In this section, we introduce the concept of Partial Group

Equivariant Non-Expansive Operator (P-GENEO). P-GENEOs

allow us to transform data sets, preserving symmetries and

distances and maintaining the acceptability conditions of the

transformations. We will also describe some topological results

about the structure of the space of P-GENEOs and some techniques

used for defining new P-GENEOs in order to populate the space of

P-GENEOs.

Definition 4.1. Let X,Y be sets and (8,8′, S), (9 ,9 ′,Q) be

perception triples with domains X and Y , respectively. Consider a

triple of functions (F, F′,T) with the following properties:

• F : 8→ 9 , F′ : 8′ → 9 ′, T : S → Q;

• For any s, t ∈ S such that st ∈ S it holds that T(st) = T(s)T(t);

• For any s ∈ S such that s−1 ∈ S it holds that T(s−1) = T(s)−1;

• (F, F′,T) is equivariant, i.e., F′(ϕs) = F(ϕ)T(s) for every ϕ ∈

8, s ∈ S.

The triple (F, F′,T) is called a perception map or a

Partial Group Equivariant Operator (P-GEO) from (8,8′, S) to

(9 ,9 ′,Q).

In Remark 3.3, we observed that idX ∈ Aut8,8′ (X) if 8 ⊆ 8′.

Then, we can consider a perception triple (8,8′, S) with 8 ⊆ 8′

and idX ∈ S ⊆ Aut8,8′ (X). Now, we will show how a P-GEO from

this perception triple behaves.

Lemma 4.2. Consider two perception triples (8,8′, S) and

(9 ,9 ′,Q) with domains X and Y, respectively, and with idX ∈ S ⊆

Aut8,8′ (X). Let (F, F′,T) be a P-GEO from (8,8′, S) to (9 ,9 ′,Q).

Then,9 ⊆ 9 ′ and idY ∈ Q ⊆ Aut9 ,9 ′ (Y).

Proof: Since (F, F′,T) is a P-GEO, by definition, we have that,

for any s, t ∈ S such that st ∈ S, T(st) = T(s)T(t). Since idX ∈ S,

then

T(idX) = T(idX idX) = T(idX)T(idX)

and hence T(idX) = idY ∈ Q ⊆ Aut9 ,9 ′ (X). Moreover, for Remark

3.3, we have that9 ⊆ 9 ′.

Proposition 4.3. Consider two perception triples (8,8′, S) and

(9 ,9 ′,Q) with domains X and Y, respectively, and with idX ∈ S ⊆

Aut8,8′ (X). Let (F, F′,T) be a P-GEO from (8,8′, S) to (9 ,9 ′,Q).

Then F′|8 = F.

Proof: Since (F, F′,T) is a P-GEO, it is equivariant, and by

Lemma 4.2, we have that

F′(ϕ) = F′(ϕidX) = F(ϕ)T(idX) = F(ϕ)idY = F(ϕ)

for every ϕ ∈ 8.

Definition 4.4. Assume that (8,8′, S) and (9 ,9 ′,Q) are

perception triples. If (F, F′,T) is a perception map from (8,8′, S)

to (9 ,9 ′,Q) and F, F′ are non-expansive, i.e.,

‖F(ϕ1)− F(ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞,

‖F′(ϕ′1)− F′(ϕ′2)‖∞ ≤ ‖ϕ′1 − ϕ
′
2‖∞

for every ϕ1,ϕ2 ∈ 8, ϕ′1,ϕ
′
2 ∈ 8′, (F, F′,T) is called a Partial

Group Equivariant Non-Expansive Operator (P-GENEO).

In other words, a P-GENEO is a triple (F, F′,T) such that F, F′

are non-expansive and the following diagram commutes for every

s ∈ S:

Rs
8 −→ 8′

F ↓ ↓ F′

RT(s)
9 −→ 9 ′
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FIGURE 2

Squares used in Example 4.6.

Remark 4.5. We can observe that a GENEO (see Bergomi et al.,

2019) can be represented as a special case of P-GENEO, considering

two perception triples (8,8′, S), (9 ,9 ′,Q) such that8 = 8′,9 =

9 ′, and the subsets containing the invariant transformations S and

Q are groups (and then themap T : S → Q is a homomorphism). In

this setting, a P-GENEO (F, F′,T) is a triple where the operators F,

F′ are equal to each other (because of Proposition 4.3), and the map

T is a homomorphism. Hence, instead of the triple, we can simply

write the pair (F,T) that is a GENEO.

Considering two perception triples, we typically want to study

the space of all P-GENEOs between them with the map T fixed.

Therefore, when the map T is fixed and specified, we will simply

consider pairs of operators (F, F′) instead of triples (F, F′,T), and

we say that (F, F′) is a P-GENEO associated with or with respect

to the map T. Moreover, in this case, we indicate the property of

equivariance of the triple (F, F′,T) writing that the pair (F, F′) is

T-equivariant.

Example 4.6. Let X = R
2. Take a real number ℓ > 0. In X,

consider the square Q1 : = [0, ℓ] × [0, ℓ] and its translation sa of

a vector a = (a1, a2) ∈ R
2, Q′

1 : = [a1, ℓ + a1] × [a2, ℓ + a2].

Analogously, let us consider a real number 0 < ε < ℓ and

two squares inside Q1 and Q′
1, Q2 : = [ε, ℓ − ε] × [ε, ℓ − ε] and

Q′
2 : = [a1+ε, ℓ+a1−ε]×[a2+ε, ℓ+a2−ε], as shown in Figure 2.

Consider the following function spaces in R
X
b
:

8 : = {ϕ : X → R | supp(ϕ) ⊆ Q1}

8′
: = {ϕ′ : X → R | supp(ϕ′) ⊆ Q′

1}

9 : = {ψ : X → R | supp(ψ) ⊆ Q2}

9 ′
: = {ψ ′

: X → R | supp(ψ ′) ⊆ Q′
2}.

Let S : = {s−1
a }, where sa is the translation by the vector

a = (a1, a2). The triples (8,8′, S) and (9 ,9 ′, S) are perception

triples. This example could model the translation of two nested

gray-scale images.We want to build now an operator between these

images in order to obtain a transformation that commutes with

the selected translation. We can consider the triple of functions

(F, F′,T) defined as follows: F : 8 → 9 is the operator that

maintains the output of functions in8 at points ofQ2 and set them

to zero outside it; analogously, F′ : 8′ → 9 ′ is the operator that

maintains the output of functions in8′ at points ofQ′
2 and set them

to zero outside it and T = idS. Therefore, the triple (F, F
′,T) is a P-

GENEO from (8,8′, S) to (9 ,9 ′, S). It turns out that the maps are

non-expansive, and the equivariance holds

F′(ϕs−1
a ) = F(ϕ)T(s−1

a ) = F(ϕ)s−1
a

for any ϕ ∈ 8. From the point of view of application, we

are considering two square images and their translations, and we

apply an operator that “cuts” the images, taking into account only

the part of the image that interests the observer. This example

justifies the definition of P-GENEO as a triple of operators (F, F′,T),

without requiring F and F′ to be equal in the possibly non-empty

intersection of their domains. In fact, if ϕ is a function contained in

8 ∩8′, its image via F and F′ may be different.

4.1 Methods to construct P-GENEOs

Starting from a finite number of P-GENEOs, we will illustrate

some methods to construct new P-GENEOs. First of all, the

composition of two P-GENEOs is still a P-GENEO.

Proposition 4.7. Given two composable P-

GENEOs, (F1, F
′
1,T1) : (8,8′, S) → (9 ,9 ′,Q) and

(F2, F
′
2,T2) : (9 ,9 ′,Q) → (�,�′,K), their composition defined as

(F, F′,T) : = (F2 ◦ F1, F
′
2 ◦ F

′
1,T2 ◦ T1) : (8,8

′, S) → (�,�′,K)

is a P-GENEO.

Proof: First, one could easily check that the map T = T2 ◦

T1 respects the second and the third property of Definition 4.1.

Therefore, it remains to verify that F(8) ⊆ �, F′(8′) ⊆ �′

and the properties of equivariance and non-expansiveness are

maintained.

1. Since F1(8) ⊆ 9 and F2(9) ⊆ �, we have that F(8) = (F2 ◦

F1)(8) = F2(F1(8)) ⊆ F2(9) ⊆ �. Analogously, F′(8′) ⊆ �′.

2. Since (F1, F
′
1,T1) and (F2, F

′
2,T2) are equivariant, (F, F′,T) is

equivariant. Indeed, for every ϕ ∈ 8, we have that

F′(ϕs) = (F′2 ◦ F
′
1)(ϕs) = F′2(F

′
1(ϕs))

= F′2(F1(ϕ)T1(s)) = F2(F1(ϕ))T2(T1(s))

= (F2 ◦ F1)(ϕ)(T2 ◦ T1)(s) = F(ϕ)T(s).

3. Since F1 and F2 are non-expansive, F is non-expansive; indeed

for every ϕ1,ϕ2 ∈ 8, we have that

‖F(ϕ1)− F(ϕ2)‖∞ = ‖(F2 ◦ F1)(ϕ1)− (F2 ◦ F1)(ϕ2)‖∞

= ‖F2(F1(ϕ1))− F2(F1(ϕ2))‖∞

≤ ‖F1(ϕ1)− F1(ϕ2)‖∞

≤ ‖ϕ1 − ϕ2‖∞.
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Analogously, F′ is non-expansive.

Given a finite number of P-GENEOs with respect to the

same map T, we illustrate a general method to construct a

new operator as a combination of them. Given two sets X and

Y , consider a finite set {H1, . . . ,Hn} of functions from � ⊆

R
X
b

to R
Y
b

and a map L : R
n → R, where R

n is endowed

with the norm ‖(x1, . . . , xn)‖∞ : = max1≤i≤n |xi|. We define

L∗(H1, . . . ,Hn) : �→ R
Y
b
as

L
∗(H1, . . . ,Hn)(ω) : = [L(H1(ω), . . . ,Hn(ω))],

for any ω ∈ �, where [L(H1(ω), . . . ,Hn(ω))] : Y → R is defined

by setting

[L(H1(ω), . . . ,Hn(ω))](y) : = L(H1(ω)(y), . . . ,Hn(ω)(y))

for any y ∈ Y . Now, consider two perception triples (8,8′, S)

and (9 ,9 ′,Q) with domains X and Y , respectively, and a finite

set of P-GENEOs (F1, F
′
1), . . . (Fn, F

′
n) between them associated

with the map T : S → Q. We can consider the functions

L∗(F1, . . . , Fn) : 8 → R
Y
b
and L∗(F′1, . . . , F

′
n) : 8

′ → R
Y
b
, defined

as before and state the following result.

Proposition 4.8. Assume that L : R
n → R is non-expansive.

If L∗(F1, . . . , Fn)(8) ⊆ 9 and L∗(F′1, . . . , F
′
n)(8

′) ⊆ 9 ′,

(L∗(F1, . . . , Fn),L
∗(F′1, . . . , F

′
n)) is a P-GENEO from (8,8′, S) to

(9 ,9 ′,Q) with respect to T.

Proof: By hypothesis, L∗(F1, . . . , Fn)(8) ⊆ 9 and

L∗(F′1, . . . , F
′
n)(8

′) ⊆ 9 ′, so we just need to verify the properties

of equivariance and non-expansiveness.

1. Since (F1, F
′
1), . . . , (Fn, F

′
n) are T-equivariant, for any ϕ ∈ 8 and

any s ∈ S, we have that:

L
∗(F′1, . . . , F

′
n)(ϕs) = [L(F′1(ϕs), . . . , F

′
n(ϕs))]

= [L(F1(ϕ)T(s), . . . , Fn(ϕ)T(s))]

= [L(F1(ϕ), . . . , Fn(ϕ))]T(s)

= L
∗(F1, . . . , Fn)(ϕ)T(s).

Therefore, (L∗(F1, . . . , Fn),L
∗(F′1, . . . , F

′
n)) is T-equivariant.

2. Since F1, . . . , Fn and L are non-expansive, for any ϕ1,ϕ2 ∈ 8,

we have that:

‖L∗(F1, . . . , Fn)(ϕ1)− L
∗(F1, . . . , Fn)(ϕ2)‖∞

= max
y∈Y

|[L(F1(ϕ1), . . . , Fn(ϕ1))](y)

− [L(F1(ϕ2), . . . , Fn(ϕ2))](y)|

= max
y∈Y

|L(F1(ϕ1)(y), . . . , Fn(ϕ1)(y))

− L(F1(ϕ2)(y), . . . , Fn(ϕ2)(y))|

≤ max
y∈Y

‖(F1(ϕ1)(y)− F1(ϕ2)(y), . . . , Fn(ϕ1)(y)− Fn(ϕ2)(y))‖∞

= max
y∈Y

max
1≤i≤n

|Fi(ϕ1)(y)− Fi(ϕ2)(y)|

= max
1≤i≤n

‖Fi(ϕ1)− Fi(ϕ2)‖∞

≤ ‖ϕ1 − ϕ2‖∞.

Hence, L∗(F1, . . . , Fn) is non-expansive. Analogously, since

F′1, . . . , F
′
n and L are non-expansive, L∗(F′1, . . . , F

′
n) is non-

expansive.

Therefore, (L∗(F1, . . . , Fn),L
∗(F′1, . . . , F

′
n)) is a P-GENEO from

(8,8′, S) to (9 ,9 ′,Q) with respect to T.

Remark 4.9. The above result describes a general method to

build new P-GENEOs, starting from a finite number of known P-

GENEOs via non-expansive maps. Some examples of such non-

expansive maps are the maximum function, the power mean,

and the convex combination (for further details, see Frosini and

Quercioli, 2017; Quercioli, 2021a,b).

4.2 Compactness and convexity of the
space of P-GENEOs

Given two perception triples, under some assumptions on the

data sets, it is possible to show two useful features in applications:

compactness and convexity. These two properties guarantee, on

the one hand, that the space of P-GENEOs can be approximated

by a finite subset of them, and, on the other hand, that a convex

combination of P-GENEOs is again a P-GENEO.

First, we define a metric on the space of P-GENEOs. Let X,Y

be sets and consider two sets � ⊆ R
X
b
,1 ⊆ R

Y
b
, we can define the

distance

D�NE(F1, F2) : = sup
ω∈�

‖F1(ω)− F2(ω)‖∞

for every F1, F2 ∈ NE(�,1).

The metric DP-GENEO on the space F
all
T of all the P-GENEOs

between the perception triples (8,8′, S) and (9 ,9 ′,Q) associated

with the map T is defined as

DP-GENEO((F1, F
′
1), (F2, F

′
2)) : = max{D8NE(F1, F2),D

8′

NE(F
′
1, F

′
2)}

= max{sup
ϕ∈8

‖F1(ϕ)− F2(ϕ)‖∞, sup
ϕ′∈8′

‖F′1(ϕ
′)− F′2(ϕ

′)‖∞}

for every (F1, F
′
1), (F2, F

′
2) ∈ F

all
T .

4.2.1 Compactness
Before proceeding, we need to prove that the following result

holds:

Lemma 4.10. If (P, dP), (Q, dQ) are compact metric spaces,NE(P,Q)

is compact.

Proof: Theorem 5 in the study by Li et al. (2012) implies that

NE(P,Q) is relatively compact, since it is a equicontinuous space

of maps. Hence, it will suffice to show that NE(P,Q) is closed.

Considering a sequence (Fi)i∈N in NE(P,Q) such that limi→∞ Fi =

F, we have that

dQ(F(p1), F(p2)) = lim
i→∞

dQ(Fi(p1), Fi(p2)) ≤ dP(p1, p2)

for every p1, p2 ∈ P. Therefore, F ∈ NE(P,Q). It follows that

NE(P,Q) is closed.
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Consider two perception triples (8,8′, S) and (9 ,9 ′,Q), with

domains X and Y , respectively, and the space F
all
T of P-GENEOs

between them associated with the map T : S → Q. The following

result holds:

Theorem 4.11. If 8,8′,9 and 9 ′ are compact, Fall
T is compact

with respect to the metric DP−GENEO.

Proof: By definition, Fall
T ⊆ NE(8,9) × NE(8′,9 ′). Since

8,8′,9 and9 ′ are compact, for Lemma 4.10, the spacesNE(8,9)

and NE(8′,9 ′) are also compact, and then, by Tychonoff’s

Theorem, the product NE(8,9) × NE(8′,9 ′) is also compact,

with respect to the product topology. Hence, to prove our

statement, it suffices to show that Fall
T is closed. Let us consider

a sequence ((Fi, F
′
i))i∈N of P-GENEOs, converging to a pair

(F, F′) ∈ NE(8,9) × NE(8′,9 ′). Since (Fi, F
′
i) is T-equivariant

for every i ∈ N and the action of Q on 9 is continuous

(see Proposition 3.24), (F, F′) belongs to F
all
T . Indeed, we

have that

F′(ϕs) = lim
i→∞

F′i(ϕs) = lim
i→∞

Fi(ϕ)T(s) = F(ϕ)T(s)

for every s ∈ S and every ϕ ∈ 8. Hence, Fall
T is a closed subset of a

compact set, and then, it is also compact.

4.2.2 Convexity
Assume that 9 ,9 ′ are convex. Let (F1, F

′
1), . . . , (Fn, F

′
n) ∈ F

all
T

and consider an n-tuple (a1, . . . , an) ∈ R
n with ai ≥ 0 for every

i ∈ {1, . . . , n} and
∑n

i=1 ai = 1. We can define two operators

F6 : 8→ 9 and F′6 : 8′ → 9 ′ as

F6(ϕ) : =

n
∑

i=1

aiFi(ϕ), and F′6(ϕ
′) : =

n
∑

i=1

aiF
′
i(ϕ

′)

for every ϕ ∈ 8,ϕ′ ∈ 8′. We notice that the convexity of9 and9 ′

guarantees that F6 and F′6 are well defined.

Proposition 4.12. (F6 , F
′
6) belongs to F

all
T .

Proof: By hypothesis, for every i ∈ {1, . . . , n}, (Fi, F
′
i) is a

perception map, and then:

F′6(ϕs) =

n
∑

i=1

aiF
′
i(ϕs) =

n
∑

i=1

ai(Fi(ϕ)T(s))

=
(

n
∑

i=1

aiFi(ϕ)
)

T(s)

= F6(ϕ)T(s)

for every ϕ ∈ 8 and every s ∈ S. Furthermore, since for every

i ∈ {1, . . . , n}, Fi(8) ⊆ 9 and 9 are convex, also F6(8) ⊆

9 . Analogously, the convexity of 9 ′ implies that F′6(8
′) ⊆ 9 ′.

Therefore (F6 , F
′
6) is a P-GEO. It remains to show the non-

expansiveness of F6 and F′6 . Since Fi is non-expansive for any i,

for every ϕ1,ϕ2 ∈ 8, we have that

‖F6(ϕ1)− F6(ϕ2)‖∞ =

∥

∥

∥

∥

∥

n
∑

i=1

aiFi(ϕ1)−

n
∑

i=1

aiFi(ϕ2)

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

n
∑

i=1

ai(Fi(ϕ1)− Fi(ϕ2))

∥

∥

∥

∥

∥

∞

≤

n
∑

i=1

|ai|
∥

∥Fi(ϕ1)− Fi(ϕ2)
∥

∥

∞

≤

n
∑

i=1

|ai|‖ϕ1 − ϕ2‖∞ = ‖ϕ1 − ϕ2‖∞.

Analogously, since every F′i is non-expansive, for every ϕ
′
1,ϕ

′
2 ∈

8′, we have that

‖F′6(ϕ
′
1)− F′6(ϕ

′
2)‖∞ ≤

n
∑

i=1

|ai|‖ϕ
′
1 − ϕ

′
2‖∞ = ‖ϕ′1 − ϕ

′
2‖∞.

Therefore, we have proven that (F6 , F
′
6) is a P-GEO with F6

and F′6 non-expansive. Hence it is a P-GENEO.

Then, the following result holds:

Corollary 4.13. If9 ,9 ′ are convex, the set Fall
T is convex.

Proof: It is sufficient to apply Proposition 4.12 for n = 2 by

setting a1 = t, a2 = 1− t for 0 ≤ t ≤ 1.

5 P-GENEOs in applications

The importance of equivariance with respect to a group

is becoming clear and widespread in many machine learning

applications used for drug design, traffic forecasting, object

recognition, and detection (see, e.g., Bronstein et al., 2021;

Gerken et al., 2023). In some situations, however, requiring

equivariance with respect to a whole group could even become an

obstacle in the correct learning process of an equivariant neural

network. In the following, we describe a possible application to

optical character recognition (OCR), in which partial equivariance

might be better suited than equivariance. Consider a planar

transformation that deforms characters. One may notice that

if such transformation is performed too many times, the letter

may lose or change its meaning, as shown in Figure 3. Another

example is given by a reparameterization of the domain of a sound

message. While a limited contraction or dilation of the domain

can preserve the meaning attributed to the sound, an iterated

application of the same transformation can radically change the

perceived message.

Furthermore, experiments performed in the study by Weiler

and Cesa (2019) have shown that tuning the level of equivariance

in each layer of a neural network may increase the performance

of the model. This tuning is, however, performed manually.

The successive step, conducted in the study by Romero and

Lohit (2022), is to learn the level of equivariance of each layer

directly from data, possibly restricting to certain subsets whenever
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FIGURE 3

Applying a “shape-preserving” homeomorphism twice can change a

letter k into a letter x.

the full equivariance prevents a good classification performance.

The authors of Romero and Lohit (2022) test their result on

MNIST. In applications of this type, the use of P-GENEOs

could allow partial equivariance to be framed within a precise

mathematical model.

6 Conclusion

In this article, we proposed a generalization of some known

results in the theory of GENEOs to a newmathematical framework,

where the collection of all symmetries is represented by a subset

of a group of transformations. We introduced P-GENEOs and

showed that they are a generalization of GENEOs. We defined

pseudo-metrics on the space of measurements and on the space

of P-GENEOs and studied their induced topological structures.

Under the assumption that the function spaces are compact

and convex, we showed compactness and convexity of the space

of P-GENEOs. In particular, compactness guarantees that any

operator can be approximated by a finite number of operators

belonging to the same space, while convexity allows us to build

new P-GENEOs by taking convex combinations of P-GENEOs.

Compactness and convexity together ensure that every strictly

convex loss function on the space of P-GENEOs admits a unique

global minimum. Given a collection of P-GENEOs, we presented

a general method to construct new P-GENEOs as combinations of

the initial ones.
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