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Abstract
In this paper we exploit the concept of extended Pareto grid to study the geometric
properties of thematching distance forR2-valued regular functions defined on a closed
Riemannian manifold. In particular, we prove that in this case the matching distance
is realised either at special values or at values corresponding to vertical, horizontal or
slope 1 lines.
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Filtering functions
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1 Introduction

Feature extraction and comparison are the main tasks of data analysis. In topologi-
cal data analysis this translates into the problem of comparing persistence modules,
which encode the homological features extracted from geometric objects. In order to
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be able to compare persistence modules a distance is needed. There is a wide variety
of distances in the space of 1-parameter persistence modules, such as the bottleneck
and Wasserstein distances. However, such distances do not directly generalise to the
multiparameter setting. Thus, different ones have been proposed over the past years,
turning into a substantial catalogue, see for example (Cerri et al. 2013, 2019; Lesnick
2015). One of those is the matching distance, which can be defined in particular for 2-
parameter persistencemodules. This pseudometric, introduced in Cerri et al. (2013), is
a generalisation of the classical bottleneck distance for 1-parameter persistence mod-
ules and measures the difference between the 2-dimensional Betti numbers functions
(also known as rank invariants) of persistence modules. The definition of matching
distance is based on a foliation method, consisting of “slicing” the 2-parameter per-
sistence module into infinitely many 1-dimensional components by means of lines of
positive slope, that we refer to as filtering lines. Thematching distance is then obtained
by taking the supremum over all such lines of the bottleneck distances between the
resulting persistence diagrams after a suitable normalisation.

According to the definition, in order to compute the matching distance between
persistence modules, one should take into account infinitely many bottleneck distance
computations. Many efforts have been devoted to make this computation efficient, for
example, by identifying a finite number of filtering lines contributing to the actual
computation (Bapat et al. 2022; Bjerkevik and Kerber 2021; Kerber et al. 2019) or
approximation (Cerri and Frosini 2020; Biasotti et al. 2011; Kerber and Nigmetov
2020) of the distance. However, what many of these works have in common is that
their starting point is a pair of 2-parameter persistence modules. Our approach is simi-
lar in scope, but different in nature.We consider regular filtering functions on a smooth
manifoldwith values inR2. Their sublevel-set filtrations still return 2-parameter persis-
tence modules, for which we can compute the 2-dimensional persistent Betti numbers
functions and, hence, the matching distance between them. Our approach allows us
to observe phenomena and exploit structures that are not visible when directly con-
sidering persistence modules. For example, it is possible to exploit the differentiable
structure of the filtering functions to identify points in the persistence diagrams asso-
ciated to each filtering line. This structure made of arcs and half-lines is known as
extended Pareto grid (Cerri et al. 2019) (see also Wan 1975). The convenience of such
an approach relies on the fact that, by using this approach, the changes in homology
that occur when the filtering line changes are easy to follow and control.

In this context of 2-parameter persistence modules derived from regular filtering
functions on smooth manifolds, we show that filtering lines of slope 1 play a special
role in the computation of the matching distance. Our main result shows that the
matching distance between the 2-dimensional persistent Betti numbers functions of
two filtering functions is indeed realised either on values corresponding to vertical,
horizontal or slope 1 lines, or on special values associated with the two functions.
The authors of Bapat et al. (2022) recently obtained an analogous result in the discrete
setting. They show that thematching distance is realised either on values corresponding
to diagonal lines or on what they call switch values. One main difference is that the
collection of special values that we encounter, called special set, is strongly related
with the differentiable structure of our input. In particular, it relies on the structure
of the extended Pareto grid associated with a function and on the Position Theorem,
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Geometry of the matching distance for 2D filtering functions 817

proved in Cerri et al. (2019), which relates points of a persistence diagram to points
in the extended Pareto grid.

In this paper, we aim to prove the following:

Theorem The matching distance between f and g is realised either on a value asso-
ciated with a line of slope 1, a vertical or horizontal line, or on a special value of
( f , g).

2 Matching distance

Let M be a closedC∞-manifold with a Riemannian metric defined on it. Let f : M →
R be a smooth function. The filtered homology of the sublevel sets of f is known
as persistent homology. This information can be encoded as a multiset of points in
{(x, y) ∈ R

2 | x ≤ y}, known as the persistence diagram of f and denoted by
Dgm( f ). The subset � = {(x, y) ∈ R

2 | x = y} is always considered to be in
the persistence diagram of a function and, by convention, we treat it as a unique point
with infinitemultiplicity. See Edelsbrunner andMorozov (2013) formore details about
1-parameter persistent homology for sublevel set filtrations.

Let f = ( f1, f2) : M → R
2 and g = (g1, g2) : M → R

2 be smooth
functions. Consider the set of pairs (a, b) in ]0, 1[×R with the uniform metric
d∞((a, b), (a′, b′)) = max{|a − a′|, |b − b′|}. It parameterises all the lines of R2

with positive slope in the following way: r(a,b) is the line containing points of the form
t(a, 1−a)+(b,−b)with t inR. Each point (u(t), v(t)) of r(a,b) can be associatedwith
the set Ma,b

t = M(u(t),v(t)) = {x ∈ M | f1(x) ≤ u(t) and f2(x) ≤ v(t)}. This defines
a 1-dimensional filtration, depending on the line r(a,b), which can be associated with
a persistence diagram. Letting (a, b) vary, one obtains a collection of persistence dia-
grams described by the 2D persistent Betti numbers function of f . As observed in
Cerri et al. (2013), M (a,b)

t is also equal to
{
x ∈ M | f(a,b)(x) ≤ t

}
, where f(a,b)(x) =

max
{

f1(x)−b
a ,

f2(x)+b
1−a

}
(see Fig. 1). However, more commonly, f(a,b) is normalised,

without changing the nature of the filtration, and f ∗
(a,b) = min{a, 1−a} f(a,b) is instead

considered.
Given two functions f and g, the matching distance (Cerri et al. 2013) is defined

by

Dmatch( f , g) = sup
(a,b)∈]0,1[×R

dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
.

Here, dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
is the bottleneck distance between the

persistence diagrams of f ∗
(a,b) and g∗

(a,b), i.e.,

dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
= inf

σ
cost(σ ),
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Fig. 1 On the left the space of parameters ]0, 1[×R is represented. On the right we show the filtering lines
corresponding to the two parameters selected and the projection of a torus on the plane. Each of the lines
gives a sublevel set filtration of the torus in the direction of the line. The area down and left of the red point

(a1 t̄ + b1, (1− a1)t̄ − b1) on the line r(a1,b1) is the sublevel set M
a1,b1
t̄ associated to such a point (colour

figure online)

where cost(σ ) = max
X∈Dgm

(
f ∗
(a,b)

) d (X , σ (X)), σ runs over all bijections, called

matchings, between Dgm
(
f ∗
(a,b)

)
and Dgm

(
g∗
(a,b)

)
and, if X = (x1, x2) and Y =

(y1, y2), then

d(X ,Y ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ if X = (x1, x2), Y = (y1, y2) ∈ �+,

|x1 − y1| if X = (x1,∞), Y = (y1,∞),
x2−x1

2 if X = (x1, x2) ∈ �+, Y = �,
y2−y1

2 if Y = (y1, y2) ∈ �+, X = �,

0 if X = Y = �,

∞ otherwise.

where κ = min{max{|x1 − y1|, |x2 − y2|},max{ x2−x1
2 ,

y2−y1
2 }}. A matching realising

the matching distance, whenever it exists, is called an optimal matching. Note that
the matching distance Dmatch( f , g) can be seen both as a pseudo-metric between the
persistent Betti numbers functions of f and g, and between the filtering functions f
and g. For the sake of simplicity, we keep the notation Dmatch( f , g) for both cases.
For more details about this definition and the foliation method we refer to Cerri et al.
(2013).
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Geometry of the matching distance for 2D filtering functions 819

3 Extended Pareto grid

In this sectionwe recall the relation between a differential construction associatedwith
a smooth function f : M → R

2, called the extended Pareto grid, and the points of

the persistence diagrams Dgm
(
f ∗
(a,b)

)
. This connection is established in the Position

Theorem proved in Cerri et al. (2019).
Recall that the Jacobi set of f is the collection

J( f ) = {p ∈ M | ∇ f1 = λ∇ f2 or ∇ f2 = λ∇ f1, for some λ ∈ R}.

The Pareto critical set of f is the subset of J( f ) given by

JP ( f ) = {p ∈ J( f ) | ∇ f1 = λ∇ f2 or ∇ f2 = λ∇ f1, for some λ ≤ 0} .

Assume now that f is not only smooth, but it also satisfies the following properties:

(i) No point p exists in M at which both ∇ f1 and ∇ f2 vanish.
(ii) J( f ) is a 1-manifold smoothly embedded in M consisting of finitely many

components, each one diffeomorphic to a circle.
(iii) JP ( f ) is a 1-dimensional closed submanifold of M, with boundary in J( f ).
(iv) If we denote by JC ( f ) the subset of J( f ) where ∇ f1 and ∇ f2 are orthogonal

to J( f ), then the connected components of JP ( f ) \ JC ( f ) are finite in number,
each one being diffeomorphic to an interval. With respect to any parameterisa-
tion of each component, one of f1 and f2 is strictly increasing and the other is
strictly decreasing. Each component can meet critical points for f1, f2 only at
its endpoints.

Denote by {p1, . . . , ph} and {q1, . . . , qk}, respectively, the critical points of f1
and f2. Since the function f satisfies (i), then {p1, . . . , ph} ∩ {q1, . . . , qk} = ∅. The
extended Pareto grid of f is defined as the union

�( f ) = f (JP ( f )) ∪
(

⋃

i

vi

)

∪
⎛

⎝
⋃

j

h j

⎞

⎠

where vi is the vertical half-line {(x, y) ∈ R
2 | x = f1(pi ), y ≥ f2(pi )} and h j is the

horizontal half-line {(x, y) ∈ R
2 | x ≥ f1(q j ), y = f2(q j )}. We refer to these half-

lines as improper contours and to the closure of the image of the connected components
of JP ( f ) \ JC ( f ) as proper contours of �( f ). Figure2shows an example of extended
Pareto grid for the projection of a sphere inR3 on the plane y = 0. The violet horizontal
half-lines originate at critical values of f2, while the vertical ones originate at critical
values of f1. The red arcs are the images of those arcs on the sphere in which the
gradients ∇ f1 and ∇ f2 have the same direction but opposite orientation. Observe
that, because of property (ii), the number of contours in �( f ) is finite. Moreover,
property (iv) ensures that every contour can be parameterised as a curve whose two
coordinates are respectively strictly decreasing and strictly increasing. Formore details
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820 M. Ethier et al.

Fig. 2 The extendedPareto grid of the function f (x, y, z) = (x, z)on S2 = {(x, y, z) ∈ R
3 | x2+y2+z2 =

1}.On the left, the red arcs are the proper contours and the violet half-lines are the improper contours. Any
point in this extended Pareto grid corresponds to a birth or death of a homological class. For example, on
the right side of this figure, the red points correspond to the birth of homology classes in degree 0, while
the green points correspond to the birth of homology classes in degree 2 (colour figure online)

about properties (i)–(iv) we refer the interested reader to Cerri et al. (2019) and Wan
(1975).

One may observe that the portions of contours delimited by points of intersection
between different contours correspond to births and deaths of homology classes. For
example, the red union of contours corresponds to the birth of a homology class in
degree 0 and the green portions of contour to the birth of a homology class in degree
2. For a richer example we refer the reader to Cerri et al. (2019, Figure 8).

The Position Theorem (Theorem 2 in Cerri et al. 2019) allows us to obtain the
coordinates of the points in the persistence diagram of f ∗

(a,b) just by looking at the
extended Pareto grid of the function and the filtering line r(a,b). It reads as follows:

Theorem 3.1 Let (a, b) be in ]0, 1[×R and X in Dgm( f ∗
(a,b))\{�}. Then, for each

finite coordinate w of X, a point (p1, p2) in r(a,b) ∩ �( f ) exists such that w =
min{a,1−a}

a (p1 − b) = min{a,1−a}
1−a (p2 + b).

In Cerri et al. (2019) the set of filtering functions considered is the set of normal
functions. However, the reader can observe that the proof of this specific theorem is
actually independent from this assumption and it is valid also in our current setting.

4 Extension of persistence diagrams

In this section we show that it is possible to extend each 2D persistent Betti numbers
function from the open set ]0, 1[×R, where it is defined, to the closed set [0, 1] × R.
Moreover, we prove that the matching distance between f and g can be realised on
the compact set [0, 1] × [−C,C], with C = max{‖ f ‖∞, ‖g‖∞}.
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Geometry of the matching distance for 2D filtering functions 821

Proposition 4.1 Let C be a positive real number. If 0 < a, a′ ≤ 1
2 and |b| ≤ C, then,

for every b′,
∥∥∥ f ∗

(a,b) − f ∗
(a′,b′)

∥∥∥∞ ≤ 4|a − a′| (‖ f2‖∞ + C) + 3|b − b′|.

Proof Since a, a′ ≤ 1
2 , thenmin {a, 1 − a} = a andmin

{
a′, 1 − a′} = a′. Therefore,

recalling that |max {α, β} − max{γ, δ}| ≤ max{|α − γ |, |β − δ|} and observing that
(1 − a)(1 − a′) ≥ 1

4 ,

∥∥∥∥ f ∗
(a,b) − f ∗

(a′,b′)

∥∥∥∥
∞

=
∥∥∥∥amax

{
f1 − b

a
,
f2 + b

1 − a

}
− a′ max

{
f1 − b′

a′ ,
f2 + b′

1 − a′

} ∥∥∥∥
∞

= sup
x∈M

∣∣∣∣max

{
f1(x) − b,

a

1 − a
( f2(x) + b)

}

− max

{
f1(x) − b′, a′

1 − a′ ( f2(x) + b′)
} ∣∣∣∣

≤ sup
x∈M

max

{
|b − b′|,

∣∣∣∣
a

1 − a
( f2(x) + b) − a′

1 − a′ ( f2(x) + b′)
∣∣∣∣

}

= sup
x∈M

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|b − b′|,

∣∣∣∣a f2(x) + ab − aa′b − a′ f2(x) − a′b′ + aa′b′
∣∣∣∣

(1 − a)(1 − a′)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≤ max

{
|b − b′|, |a − a′|‖ f2‖∞ + |ab − a′b′| + |b − b′|aa′

(1 − a)(1 − a′)

}

≤ max
{|b − b′|, 4|a − a′|‖ f2‖∞ + 4|ab − a′b′| + 4|b − b′|aa′}

≤ max{|b − b′|, 4|a − a′|‖ f2‖∞ + 4|ab − a′b′| + |b − b′|}
= 4|a − a′|‖ f2‖∞ + 4|ab − a′b′| + |b − b′|
≤ 4|a − a′|‖ f2‖∞ + 4|a − a′||b| + 4|b − b′|a′ + |b − b′|
≤ 4|a − a′|‖ f2‖∞ + 4|a − a′||b| + 3|b − b′|
≤ 4|a − a′|(‖ f2‖∞ + C) + 3|b − b′|.

��
By observing that, if f = ( f1, f2) and h = ( f2, f1), then f ∗

(a,b) = h∗
(1−a,−b), we

obtain an analogous result to Proposition 4.1 for a, a′ ≥ 1
2 .

Proposition 4.2 Let C be a positive real number. If 1
2 ≤ a, a′ < 1 and |b| ≤ C, then,

for every b′,
∥∥∥ f ∗

(a,b) − f ∗
(a′,b′)

∥∥∥∞ ≤ 4|a − a′|(‖ f1‖∞ + C) + 3|b − b′|.
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822 M. Ethier et al.

As a consequence, the function

f ∗
(·,·) : ]0, 1[×R → C(M,R), (a, b) �→ f ∗

(a,b)

is locally Lipschitz. This is the content of the following result:

Theorem 4.3 If |b| ≤ C, then for every 0 < a, a′ < 1 and every b′,
∥∥∥ f ∗

(a,b) − f ∗
(a′,b′)

∥∥∥∞ ≤ 4|a − a′|(‖ f ‖∞ + C) + 3|b − b′|.

Proof If a, a′ ≤ 1
2 or a, a′ ≥ 1

2 , the statement follows directly from Propositions 4.1
and 4.2. Without loss of generality, we can assume that a ≤ 1

2 and a′ ≥ 1
2 . Moreover,

consider
( 1
2 , b

)
,
( 1
2 , b

′). We have that

∥∥∥ f ∗
(a,b) − f ∗

(a′,b′)

∥∥∥∞ ≤
∥∥∥∥∥
f ∗
(a,b) − f ∗(

1
2 ,b

)

∥∥∥∥∥∞
+

∥∥∥∥∥
f ∗
( 12 ,b)

− f ∗(
1
2 ,b′

)

∥∥∥∥∥∞
+

∥∥∥ f ∗
( 12 ,b′) − f ∗

(a′,b′)

∥∥∥
∞

≤ 4

∣∣∣∣a − 1

2

∣∣∣∣ (‖ f ‖∞ + C) + 3|b − b| + 4

∣∣∣∣
1

2
− 1

2

∣∣∣∣ (‖ f ‖∞ + C)

+ 3|b − b′| + 4

∣∣∣∣
1

2
− a′

∣∣∣∣ (‖ f ‖∞ + C) + 3|b′ − b′|

= 4

(∣∣∣∣a − 1

2

∣∣∣∣ +
∣∣∣∣
1

2
− a′

∣∣∣∣

)
(‖ f ‖∞ + C) + 3|b − b′|

= 4|a − a′|(‖ f ‖∞ + C) + 3|b − b′|.

��
In Theorem 4.3 we showed that the function f ∗

(·,·) is locally Lipschitz. As
such, it can be extended to the parameter values (0, b) (resp. (1, b)) as the limit
f ∗
(0,b) := lim(a′,b′)→(0,b) f ∗

(a′,b′) (resp., f ∗
(1,b) := lim(a′,b′)→(1,b) f ∗

(a′,b′)), for every
b in R. Such a function is continuous, and the stability of persistence diagrams

with respect to the uniform norm implies that the limit lim(a′,b′)→(0,b) Dgm
(
f ∗
(a′,b′)

)

(resp. lim(a′,b′)→(1,b) Dgm
(
f ∗
(a′,b′)

)
) also exists and is equal to Dgm

(
f ∗
(0,b)

)
(resp.

Dgm
(
f ∗
(1,b)

)
). In other words, f ∗

(·,·) can be uniquely extended to [0, 1] × R and this

extension is also a locally Lipschitz function. Therefore, in the rest of this paper, we
will be allowed to consider the functions f ∗

(a,b) for any (a, b) in [0, 1] × R. The limit
functions f ∗

(0,b) and f ∗
(1,b) can be computed explicitly for any b in R:

f ∗
(0,b)(x) = lim

(a′,b′)→(0,b)
f ∗
(a′,b′)(x)

= lim
a′→0

a′ max

{
f1(x) − b

a′ ,
f2(x) + b

1 − a′

}
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Geometry of the matching distance for 2D filtering functions 823

= max { f1(x) − b, 0} ,

f ∗
(1,b)(x) = lim

(a′,b′)→(1,b)
f ∗
(a′,b′)(x)

= lim
a′→1

(1 − a′)max

{
f1(x) − b

a′ ,
f2(x) + b

1 − a′

}

= max {0, f2(x) + b} .

Since Theorem 4.3 enables us to extend the functions f ∗
(·,·) and g∗

(·,·) to [0, 1] × R,
the function

(a, b) �→ dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
(4.1)

can be extended to [0, 1]×R, too. Furthermore, it is continuous because of the stability
of persistence diagrams and, hence, it admits a maximum in its compact domain.

Next, we show that it is not restrictive to compute the matching distance for
parameters in [0, 1] × [−C,C], where C = max{‖ f ‖∞, ‖g‖∞}.
Proposition 4.4 There exists (ā, b̄) in [0, 1]×[−C,C], with C = max{‖ f ‖∞, ‖g‖∞},
such that

Dmatch( f , g) = max
(a,b)∈[0,1]×[−C,C]

dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))

= dB
(
Dgm

(
f ∗
(ā,b̄)

)
,Dgm

(
g∗
(ā,b̄)

))
.

Proof Our strategy is to check what happens when |b| ≥ C . There are four pos-
sible cases given by the combinations of a ≤ 1

2 or a ≥ 1
2 and b ≤ −C

or b ≥ C . Consider the case a ≤ 1
2 and b ≤ −C . We have f ∗

(a,b) =
amax

{
1
a ( f1 − b), 1

1−a ( f2 + b)
}
. However, 1

a ( f1 − b) ≥ 1
a ( f1 + C) ≥ 0 and

1
1−a ( f2 + b) ≤ 1

1−a ( f2 − C) ≤ 0. Thus, f ∗
(a,b) = f1 − b and, similarly,

g∗
(a,b) = g1 − b. The bottleneck distance between their persistence diagrams will

thus be dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
= dB (Dgm ( f1 − b) ,Dgm (g1 − b)) =

dB (Dgm ( f1) ,Dgm (g1)). Therefore, dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
is constant

for a ≤ 1
2 and b ≤ −C . Hence we can limit ourselves to computing its value for

a = 1
2 and b = −C .

Consider now a ≥ 1
2 and b ≤ −C . We have f ∗

(a,b) = 1−a
a ( f1 −

b) and, similarly, g∗
(a,b) = 1−a

a (g1 − b). Fixing a, we observe that in this

case dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
= 1−a

a dB (Dgm( f1 − b),Dgm(g1 − b)) =
1−a
a dB(Dgm( f1),Dgm(g1)) is constant with respect to b. Since a ≥ 1

2 was chosen
arbitrarily, and there is no dependence on b, we can choose them to be a = 1

2 and
b = −C and conclude.

The other two cases follow the same strategy. ��
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824 M. Ethier et al.

Fig. 3 The bottleneck distance is
constant on the coloured regions
and half-lines, whereas it is
non-increasing with respect to a
on b = −C , if a ≥ 1

2 , and
non-decreasing with respect to a
on b = C , if a ≤ 1

2

The above proof also shows that the continuous function dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
is constant on the segments {(a, b) | 0 ≤ a ≤ 1

2 , b = −C} and {(a, b) |
1
2 ≤ a ≤ 1, b = C}, non-increasing on the segment {(a, b) | 1 ≥ a ≥ 1

2 , b = −C}
and non-decreasing on the segment {(a, b) | 0 ≤ a ≤ 1

2 , b = C}. Moreover, it is
0 on (0,C) and (1,−C) (see Fig. 3 ). Furthermore, we would like to point out that
Proposition 4.4 gives us a new formulation for the definition of the matching distance
Dmatch as follows:

Dmatch( f , g) = max
(a,b)∈[0,1]×R

dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
.

5 Special set andmatching distance

In this section we introduce the special set associated with a pair of functions ( f , g).
We prove that the matching distance between two functions is realised either on values
associated with vertical, horizontal or slope 1 lines, or on this special set.

Definition 5.1 LetCtr( f , g) be the set of all curves that are contours of f or g. The spe-
cial set of ( f , g), denoted by Sp( f , g), is the collection of all (a, b) in ]0, 1[×[−C,C]
for which two distinct pairs {αp, αq}, {αs, αt } of contours in Ctr( f , g) intersecting
r(a,b) exist, such that {αp, αq} �= {αs, αt } and
• c1|xP − xQ | = c2|xS − xT |, with c1, c2 ∈ {1, 2}, if a ≤ 1

2 ,
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Fig. 4 The light blue line corresponds to the pair (0.6, 0) and the green approximately to (0.491, 0.451).
They are both special, since |xA1 − xA2 | = |xB1 − xB2 | and |yC1 − yC2 | = |yD1 − yD2 | (colour figure
online)

• c1|yP − yQ | = c2|yS − yT |, with c1, c2 ∈ {1, 2}, if a ≥ 1
2 ,

where P = P(a,b) = r(a,b) ∩ αp, Q = Q(a,b) = r(a,b) ∩ αq , S = S(a,b) = r(a,b) ∩ αs

and T = T(a,b) = r(a,b) ∩αt , and x∗, y∗ denote abscissas and ordinates of these points.
An element of the special set Sp( f , g) is called a special value of the pair ( f , g).

Special values are values of ]0, 1[×[−C,C] in which the optimal matching may
abruptly change because of the presence of more than one pair of points with the same
distance between abscissas (a ≤ 1

2 ) or the same distance between ordinates (a ≥ 1
2 ).

This discontinuity behaviour gives an obstruction to proving that thematching distance
is realised only on vertical, horizontal and slope 1 lines. Indeed, the key for proving
Theorem 5.4 is being able to continuously move in the space of parameters and not
losing track of the points realising the optimal matching. When encountering a special
value this continuity may be missing.

Figure 4shows two examples of lines associated with special values of ( f , g), with
f , g : S2 → R

2, f (x, y, z) = (x, z) and g(x, y, z) = (2.1x + 2, 0.6z + 1.8). The
green and light blue lines correspond respectively to the parameter values (0.6, 0) and
(0.491, 0.451). The intersection points A1, A2 and B1, B2, between the green line and
the extended Pareto grid have equal difference between abscissas, thus (0.6, 0) is a
special value. On the other hand, the intersection points C1,C2 and D1, D2, between
the light blue line and the extendedPareto grid have equal difference betweenordinates.
In particular, (0.491, 0.451) approximates a special value up to a 5 × 10−7 error.

Proposition 5.2 Sp( f , g) is closed in ]0, 1[×[−C,C].
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Proof First, we show that Sp( f , g) ∩ (]0, 1
2 ] × [−C,C]) is closed. Consider a

sequence {(an, bn)} in Sp( f , g) ∩ (]0, 1
2 ] × [−C,C]) that converges to (a, b) in

]0, 1
2 ] × [−C,C]. Since such a sequence consists of special values of ( f , g), there

exist two distinct sets {αn
p, α

n
q } and {αn

s , α
n
t } in Ctr( f , g) such that cn1 |xPn − xQn | =

cn2 |xSn − xTn |, where Pn = r(an ,bn) ∩ αn
p, Qn = r(an ,bn) ∩ αn

q , Sn = r(an ,bn) ∩ αn
s and

Tn = r(an ,bn) ∩ αn
t and cn1 , c

n
2 ∈ {1, 2}, for every n. Since Ctr( f , g) has finitely many

contours, we can assume, up to subsequences, that the sequences {Pn}, {Qn}, {Sn} and
{Tn} lie respectively in the contours αn

p = αp, αn
q = αq , αn

s = αs and αn
t = αt , for

every n. For the same reason, we can assume that cn1 = c1 and cn2 = c2, for every n.
Since {(an, bn)} is convergent, it is also bounded. In particular, besides−C ≤ bn ≤ C ,
there is D such that 0 < D ≤ an ≤ 1

2 . Then
(⋃

n r(an ,bn)
) ∩ (�( f ) ∪ �(g)) is

bounded below by the line r( 12 ,C) and above by the line r(D,−C). Thus, {Pn}, {Qn},
{Sn} and {Tn} converge, respectively, to P , Q, S and T , up to restriction to subse-
quences. Since c1|xPn − xQn | = c2|xSn − xTn |, their limits are also equal, so we have
c1|xP − xQ | = c2|xS − xT |. Since P , Q, S and T all lie in r(a,b), (a, b) is also a special

value of ( f , g), concluding that Sp( f , g) ∩ (]0, 1
2 ] × [−C,C]) is closed.

Analogously, one can see that Sp( f , g) ∩ ([ 12 , 1[×[−C,C]) is closed. The set
Sp( f , g) is then a union of two closed sets, hence it is closed itself. ��

LetS be the set of all pairs (ā, b̄) in [0, 1]×[−C,C] realising thematching distance
between f and g, i.e., such that

Dmatch( f , g) = dB
(
Dgm

(
f ∗
(ā,b̄)

)
,Dgm

(
g∗
(ā,b̄)

))
.

As observed about (4.1), dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
is a continuous function

on [0, 1] × [−C,C], thus it admits a maximum in its domain and S is not empty.
Moreover, S is compact because it is the preimage of a point in R via a continuous
function defined on a compact set.

Note that for any (a, b) in [0, 1] × [−C,C], we have

dB
(
Dgm

(
f ∗
(a,b)

)
,Dgm

(
g∗
(a,b)

))
= cost(σ(a,b)), (5.1)

where σ(a,b) is an optimal matching. By applying a straightforward generalisation of
Theorem 28 in d’Amico et al. (2010) for arbitrary nth persistence diagrams, one can
see that such a matching always exists. Theorem 4.3 and the stability of the bottleneck
distance with respect to the uniform norm imply that cost(σ(a,b)) can be seen as a
continuous function in the variable (a, b) in [0, 1] × [−C,C].
Definition 5.3 Let σ : Dgm1 → Dgm2 be a matching between two persistence dia-
grams and let X in Dgm1 be such that cost(σ ) = d(X , σ (X)). The matching σ is of
type (1) if � /∈ {X , σ (X)}, and of type (2) if � ∈ {X , σ (X)}.

Observe that a matching can be both of type (1) and type (2). We use this
terminology in the proof of the following theorem.
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Theorem 5.4

S ∩
(
Sp( f , g) ∪

({
0,

1

2
, 1

}
× [−C,C]

))
�= ∅.

Proof Assume by contradiction that every (a, b) in S is not in Sp( f , g) and that
a �= 0, 1

2 , 1. Since S is compact, it is possible to take (a, b) in S minimising the

distance from the line a = 1
2 . Among these, consider (â, b̂) and a corresponding

matching σ̂ of minimum cost between Dgm
(
f ∗
(â,b̂)

)
and Dgm

(
g∗
(â,b̂)

)
. If 0 < â < 1

2 ,

the Position Theorem 3.1 implies that there exist α̂ and β̂ in Ctr( f , g) intersecting
r
(â,b̂), such that P̂ = r

(â,b̂) ∩ α̂ and Q̂ = r
(â,b̂) ∩ β̂ realise at least one of these

properties:

1. P̂ ∈ �( f ), Q̂ ∈ �(g), and Dmatch( f , g) = cost(̂σ ) = |xP̂ − xQ̂ |;
2. P̂, Q̂ ∈ �( f ) or P̂, Q̂ ∈ �(g), and Dmatch( f , g) = cost(̂σ ) = 1

2 |xP̂ − xQ̂ |.
Observe that the former matching is of type (1) and the latter of type (2). Note also
that xP̂ �= xQ̂ , and hence P̂ �= Q̂. If not, then Dmatch( f , g) = 0, implying that any

(a, b) belongs to S, including ( 1
2 , b

)
, which is a contradiction.

Consider a sequence {(an, bn)} in ]0, 1[×[−C,C] such that these (an, bn) are cho-
sen to identify lines obtained by rotating r(a,b) around P̂ clockwise in such a way
that (an, bn) → (â, b̂), where {an} is a decreasing sequence. Furthermore, given a

sequence {σn} of optimal matchings between Dgm
(
f ∗
(an ,bn)

)
and Dgm

(
g∗
(an,bn)

)
we

have that cost(σn) → cost(̂σ ) (see (5.1)). Since Sp( f , g) ∪ ({
0, 1

2 , 1
} × [−C,C]) is

closed, by Proposition 5.2, and (â, b̂) does not belong to this set, we can assume that
the sequence {(an, bn)} also has no points in this set. Hence, for any n inN there exists
a pair {Pn, Qn} in r(an ,bn) ∩ (�( f ) ∪ �(g)) for which at least one of the following
properties holds:

(A) Pn ∈ �( f ), Qn ∈ �(g) and cost(σn) = |xPn − xQn |;
(B) Pn, Qn ∈ �( f ) or Pn, Qn ∈ �(g), and cost(σn) = 1

2 |xPn − xQn |.
Up to subsequences, we can assume that thematchings σn are either all of type (1) or

all of type (2). We now show that {Pn} and P̂ belong to the same contour in Ctr( f , g),
and {Qn} and Q̂ also belong to the same contour in Ctr( f , g). Analogously to the
proof of Proposition 5.2 we may observe that the set

(⋃
n r(an ,bn)

) ∩ (�( f ) ∪ �(g))
is a bounded subset of �( f ) ∪ �(g). Thus, {Pn} and {Qn} are convergent up to
subsequences in the closed set �( f )∪�(g), respectively, to P and Q. By assumption,
there are only a finite number of contours, thus there exists at least a contour in
Ctr( f , g) for each sequence, {Pn} and {Qn}, containing infinitely many points of the
sequence. Hence, we can assume that each sequence, up to subsequences, lies entirely
on a single contour in Ctr( f , g), i.e., we can suppose that for every n in N, Pn is in α

and Qn is in β, with α and β in Ctr( f , g). Since contours are closed, P belongs to α

and Q belongs to β. We observe that {P, Q} ⊆ r
(â,b̂). Furthermore, we have that

c′|xP̂ − xQ̂ | = cost(̂σ ) = lim
n→∞ cost(σn) = lim

n→∞ c′′|xPn − xQn | = c′′|xP − xQ |
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Fig. 5 The clockwise rotation
around P̂ increases the distance
between the abscissas of the
intersection points. This fact is
used in the proof of Theorem 5.4
(case 1)

where c′, c′′ in { 12 , 1}. If {̂α, β̂} �= {α, β}, then (â, b̂) is a special value, contradicting
the initial assumption. Thus, {̂α, β̂} = {α, β}. Without loss of generality, by possibly
exchanging the roles of the contours α̂ and β̂, and of the points P̂ and Q̂, we can
assume that α̂ = α, β̂ = β, P̂ = P and Q̂ = Q. Consequently, by the fact that {Pn}
and P̂ are contained in the same line r(an ,bn) and the same contour α̂, Pn = P̂ for
every n, since a contour and a positive slope line can meet in at most one point.

Case 1Assume that σ̂ and σn are both of the same type for every n. Since Qn belongs
to β in Ctr( f , g) for any n, one can easily check that |xP̂ − xQn | ≥ |xP̂ − xQ̂ | (see
Fig. 5), and hence cost(σn) ≥ cost(̂σ ). If the equality holds there is a contradiction
with the assumption of (â, b̂) minimising the distance from the line a = 1

2 , since∣∣an − 1
2

∣∣ <
∣∣â − 1

2

∣∣. If the strict inequality holds, there is a contradiction with the
assumption of σ̂ being in S.
Case 2 Assume that all σn and σ̂ are of different types. This means that cost(σn) =
c′|xP̂ − xQn |, cost(̂σ ) = c′′|xP̂ − xQ̂ |, with c′ �= c′′ and c′, c′′ in { 12 , 1}, and c′|xP̂ −
xQn | → c′′|xP̂ − xQ̂ |. However, since Qn → Q̂, c′|xP̂ − xQn | → c′|xP̂ − xQ̂ |. Thus,
c′′|xP̂ − xQ̂ | = c′|xP̂ − xQ̂ |, which is a contradiction since Dmatch( f , g) �= 0 and,
hence, xP̂ �= xQ̂ .

Inverting the role of abscissas and ordinates as described by the Position The-
orem 3.1 and rotating the lines counterclockwise, one can see that an analogous
procedure holds for 1

2 < â < 1. ��
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Fig. 6 Approximation of a
special set

6 Conclusions

In this article we took advantage of the differential structure associated with smooth
functions fromaRiemannianmanifoldM toR2 to characterise somegeometric proper-
ties of the matching distance. We proved that the filtering lines that actually contribute
to the computation of the matching distance are horizontal, vertical, of slope 1, or
they are associated with parameter values in the special set. This new approach to the
computation of the matching distance could lead to new effective algorithms. In this
direction, we would like to highlight an open question that arose during our work. We
have not yet provided a characterisation of the special set. However, we conjecture
that the special set consists of a collection of curves, up to a small perturbation of the
filtering functions.

Figure 6 shows a selections of points in the special set for the functions f , g : S2 →
R
2, where S2 = {(x, y, z) | x2 + y2 + z2 = 1}, f (x, y, z) = (x + 1, z − 1) and

g(x, y, z) = (0.75x − 2, 0.75z + 2). One may notice clear segments, two of which,
on the left, correspond to values identifying lines through intersections of contours.
Such lines are in fact always associated with special values.

Acknowledgements P. Frosini was partially supported by INdAM-GNSAGA. F. Tombari was supported
by the Wallenberg AI, Autonomous System and Software Program (WASP) funded by Knut and Alice
Wallenberg Foundation.

Funding Open access funding provided by Royal Institute of Technology.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123



830 M. Ethier et al.

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bapat, A., Brooks, R., Hacker, C., Landi, C., Mahler, B.I., Stephenson, E.R.: Computing the matching
distance of 2-parameter persistence. arXiv:2210.12868 (2022)

Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the 2-dimensional matching
distance between size functions. Pattern Recognit. Lett. 32(14), 1735–1746 (2011). https://doi.org/
10.1016/j.patrec.2011.07.014

Bjerkevik, H., Kerber, M.: Asymptotic improvements on the exact matching distance for 2-parameter
persistence. arXiv:2111.10303 (2021)

Cerri, A., Frosini, P.: A new approximation algorithm for the matching distance in multidimensional
persistence. J. Comput. Math. 38(2), 291–309 (2020). https://doi.org/10.4208/jcm.1809-m2018-0043

Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent
homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013). https://doi.org/
10.1002/mma.2704

Cerri, A., Ethier, M., Frosini, P.: On the geometrical properties of the coherent matching distance in 2D
persistent homology. J. Appl. Comput. Topol. 3(4), 381–422 (2019). https://doi.org/10.1007/s41468-
019-00041-y

d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size
functions. Acta Appl. Math. 109(2), 527–554 (2010). https://doi.org/10.1007/s10440-008-9332-1

Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European Congress of
Mathematics, Eur. Math. Soc., Zürich, pp. 31–50 (2013)

Kerber, M., Nigmetov, A.: Efficient approximation of the matching distance for 2-parameter persistence.
In: 36th International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform.,
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, vol. 164, pp. 53–16 (2020)

Kerber, M., Lesnick, M., Oudot, S.: Exact computation of the matching distance on 2-parameter persistence
modules. In: 35th International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc.
Inform., Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, vol. 129, 46–15 (2019)

Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found.
Comput. Math. 15(3), 613–650 (2015). https://doi.org/10.1007/s10208-015-9255-y

Wan, Y.H.:Morse theory for two functions. Topology 14(3), 217–228 (1975). https://doi.org/10.1016/0040-
9383(75)90002-6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2210.12868
https://doi.org/10.1016/j.patrec.2011.07.014
https://doi.org/10.1016/j.patrec.2011.07.014
http://arxiv.org/abs/2111.10303
https://doi.org/10.4208/jcm.1809-m2018-0043
https://doi.org/10.1002/mma.2704
https://doi.org/10.1002/mma.2704
https://doi.org/10.1007/s41468-019-00041-y
https://doi.org/10.1007/s41468-019-00041-y
https://doi.org/10.1007/s10440-008-9332-1
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1016/0040-9383(75)90002-6
https://doi.org/10.1016/0040-9383(75)90002-6

	Geometry of the matching distance for 2D filtering functions
	Abstract
	1 Introduction
	2 Matching distance
	3 Extended Pareto grid
	4 Extension of persistence diagrams
	5 Special set and matching distance
	6 Conclusions
	Acknowledgements
	References




